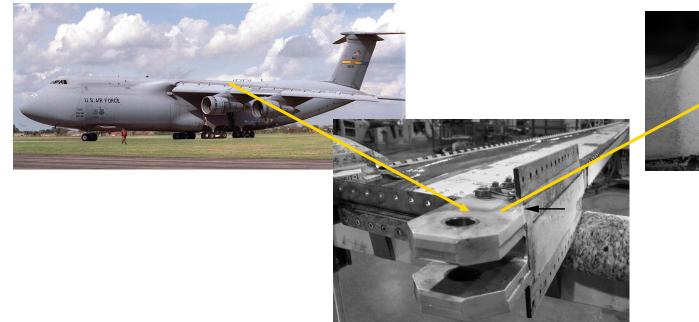


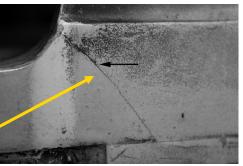
The Generalized Finite Element Method as a Framework for Multiscale Structural Analysis

C. Armando Duarte Dept. of Civil and Environmental Engineering Computational Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL

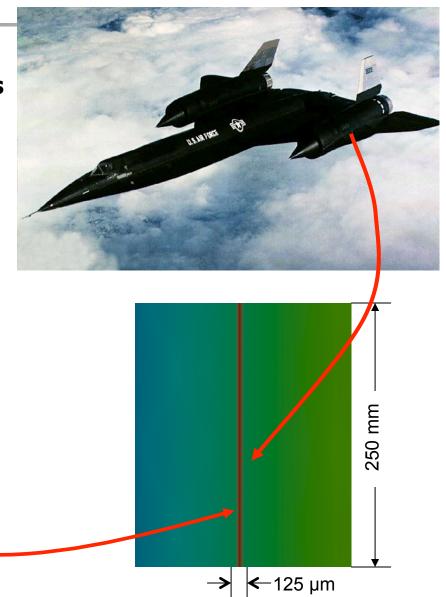
Berlin PUM Workshop Analysis and Applications of the GFEM, XFEM, MM 22-24 August 2012, Berlin, Germany

- A Digital Twin is a computational model of a *specific* aircraft
- The model will be flown through same flight profiles as recorder for the actual aircraft
- The digital model will be used to determine when and where structural damage is likely to occur
- A Digital Twin must capture responses and interactions among a broad range of scales: From aircraft scale to highly localized damage in one of its components

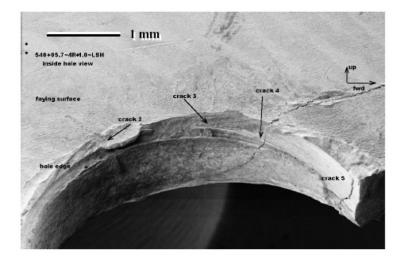




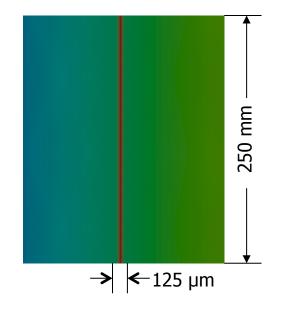
- Thermal loads on hypersonic aircrafts
- Shock wave impingements cause large thermal gradients
- Experiments are difficult and limited



Multiscale Structural Problems



Multiple cracks around a rivet hole [Sandia National Lab, 2005]



Thermal loads on hypersonic aircrafts (dimensions not to scale)

- Predictive simulations require modeling of phenomena spanning several spatial and temporal scales
- Advances in existing computational methods are needed
- Increasing computational power alone is not enough

- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems

Early works on Generalized FEMs

- Babuska, Caloz and Osborn, 1994 (Special FEM).
- Duarte and Oden, 1995 (Hp Clouds).
- Babuska and Melenk, 1995 (PUFEM).
- Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
- Duarte, Babuska and Oden, 1998 (GFEM).
- Belytschko et al., 1999 (Extended FEM).
- Strouboulis, Babuska and Copps, 2000 (GFEM).
- Basic idea:
 - Use a partition of unity to build Finite Element shape functions
- Recent review paper

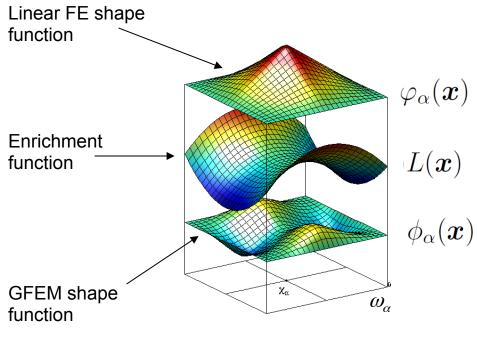
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized finite element methods for material modeling, *Mod. Simul. Matl. Sci. Eng.*, 2009

"The XFEM and GFEM are basically <u>identical</u> methods: the name generalized finite element method was adopted by the Texas school in 1995–1996 and the name extended finite element method was coined by the Northwestern school in 1999."

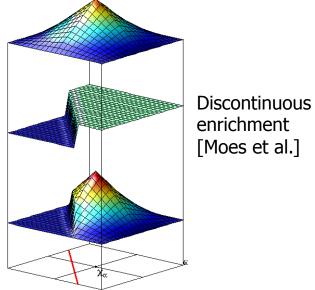
Generalized Finite Element Method

• GFEM shape function = FE shape function * enrichment function

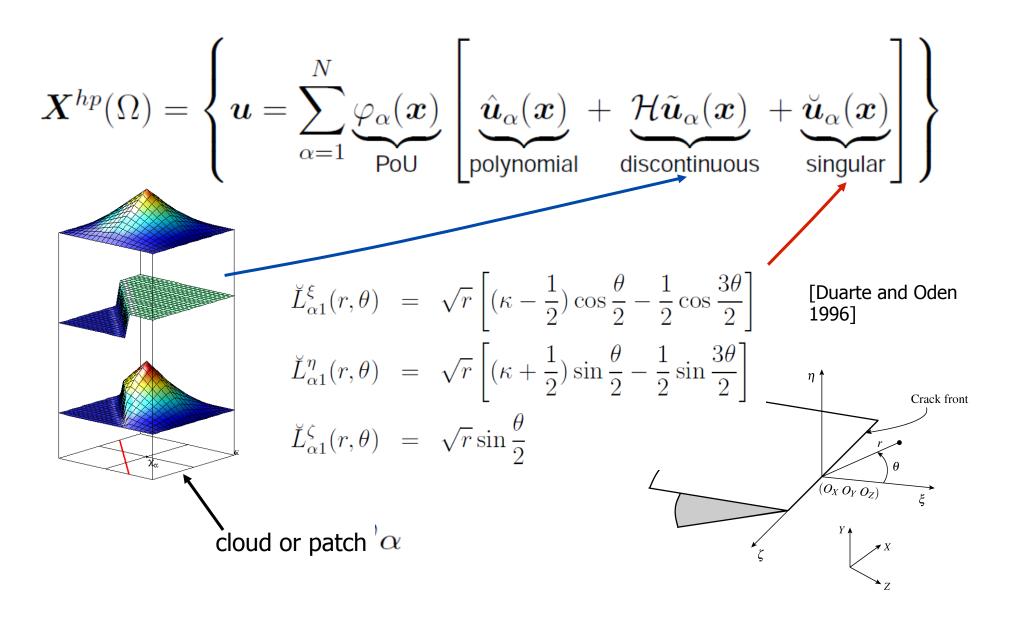
$$\phi_{\alpha}(\boldsymbol{x}) = \varphi_{\alpha}(\boldsymbol{x})L(\boldsymbol{x})$$



• Allows construction of shape functions incorporating a-priori knowledge about solution

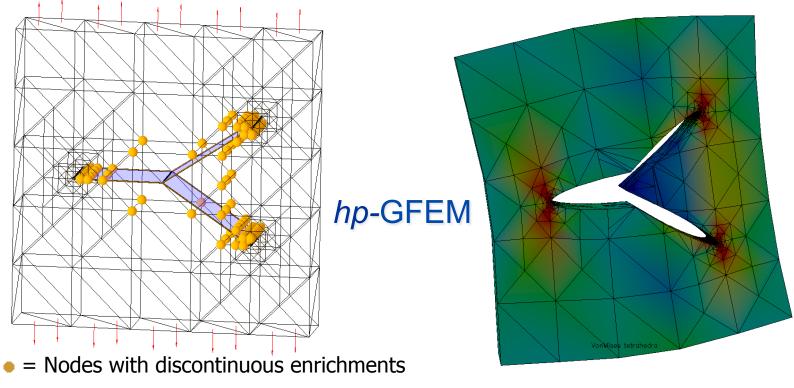


GFEM Approximation for 3-D Cracks



Modeling Cracks with hp-GFEM

- Discontinuities modeled via enrichment functions, not the FEM mesh
- Mesh refinement *still required* for acceptable accuracy

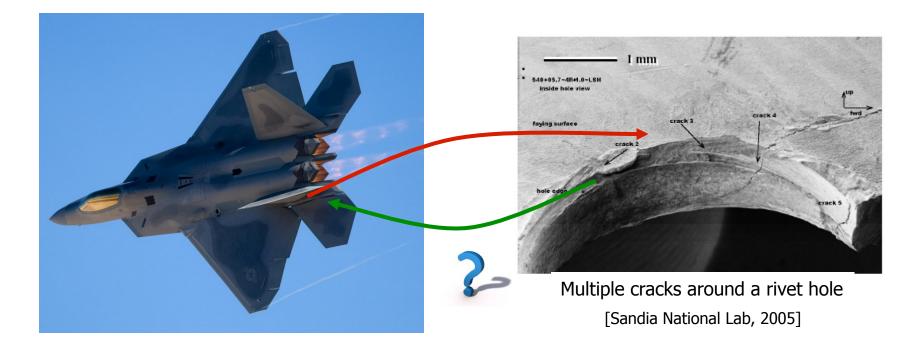


Von Mises stress

[Duarte et al., International Journal Numerical Methods in Engineering, 2007]

Bridging Scales with Global-Local Enrichment Functions

• How to account for interactions among scales?

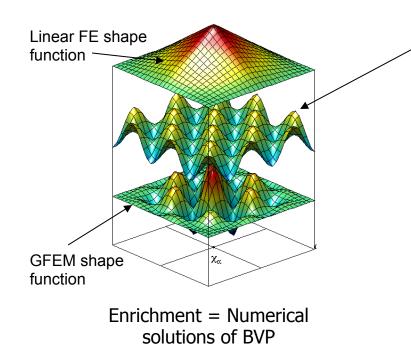


Goal:

• Capture fine scale effects on *coarse* meshes at the global (<u>structural</u>) scale

Bridging Scales with Global-Local Enrichment Functions *

Enrichment functions computed from solution of local boundary value problems: <u>Global-Local enrichment functions</u>

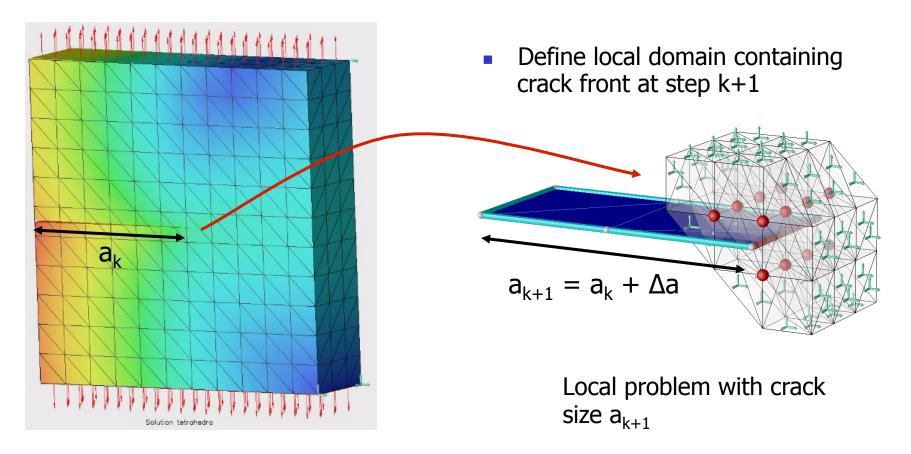


- Idea: Use available numerical solution at a simulation step to build shape functions for next step (quasi-static, transient, non-linear, etc.)
- Enrichment functions are produced numerically on-the-fly through a global-local analysis
- Use a *coarse* mesh enriched with Global-Local (G-L) functions

* Duarte et al. 2005, 2007, 2008, 2010, 2011

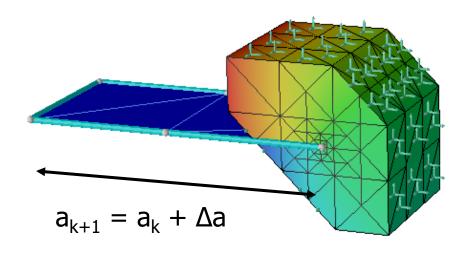
- Global-local FEM developed in the 1970's
- Multiscale FEM of Hou and Wu, 1997
- Mesh-based handbook approach of Strouboulis et al., 2001
- Multiscale method of Krause and Rank, 2003
- Two-scale XFEM for 2-D cracks, Cloirec et al., 2005
- Multiscale projection method, Loehnert and Belytschko, 2007
- Multiscale XFEM crack propagation, Guidault et al., 2008
- Spider-XFEM, Chahine et al., 2008
- Reduced basis enrichment for the XFEM, Chahine et al., 2008
- Local multigrid X-FEM for 3-D cracks, Rannou et al., 2009
- Method of Menk and Bordas for fracture of bi-materials, 2010
- Harmonic enrichments for 2-D branched cracks, Mousavi et al., 2011

• u_G^k solution of global problem at crack step k



 $u_G^k \in X_G^k(\Omega)$ = solution of global problem with crack size a_k

Solve local problem at step k using *hp*-GFEM



Boundary conditions for local problems provided by global solution:

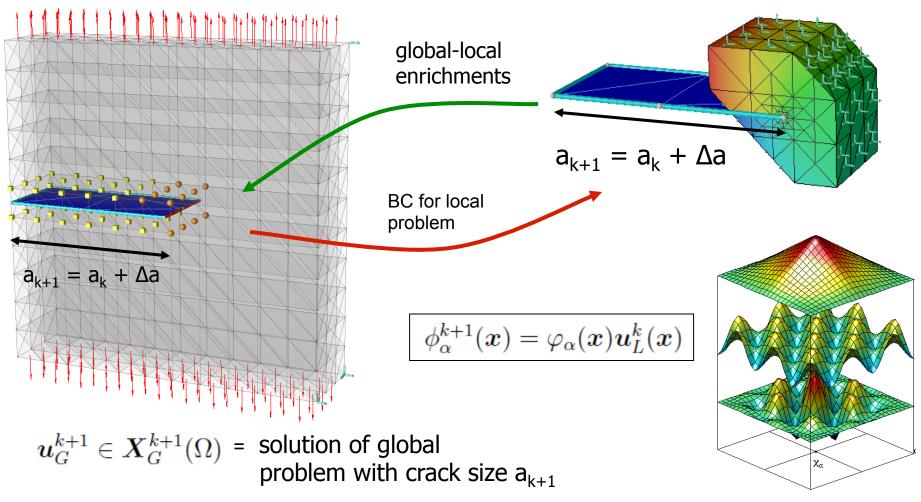
 $u_L^k = u_G^k$ on $\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)$

 $X_{L}^{k}\left(\Omega_{L}^{k}\right) = hp$ -GFEM space

Find $\boldsymbol{u}_{L}^{k} \in \boldsymbol{X}_{L}^{k}\left(\Omega_{L}^{k}\right) \subset H^{1}\left(\Omega_{L}^{k}\right)$ such that $\forall \boldsymbol{v}_{L}^{k} \in \boldsymbol{X}_{L}^{k}\left(\Omega_{L}^{k}\right)$

$$\begin{split} \int_{\Omega_L^k} \boldsymbol{\sigma}(\boldsymbol{u}_L^k) &: \boldsymbol{\varepsilon}(\boldsymbol{v}_L^k) d\boldsymbol{x} + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds \\ &= \int_{\partial \Omega_L^k \cap \partial \Omega^\sigma} \bar{\boldsymbol{t}} \cdot \boldsymbol{v}_L^k ds + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_G^k \cdot \boldsymbol{v}_L^k ds \end{split}$$

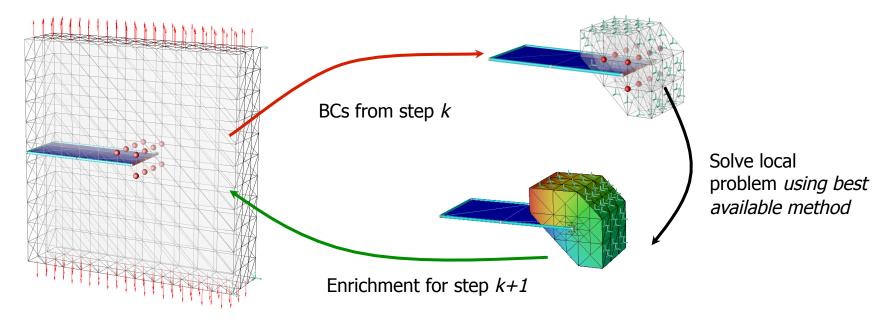
• Defining Step: Global space is enriched with local solutions



• Procedure may be repeated: Update local BCs and enrichment functions

Global-Local Enrichments for 3-D Fractures

 Summary: Use solution of global problem at simulation k to build enrichment functions for step k+1

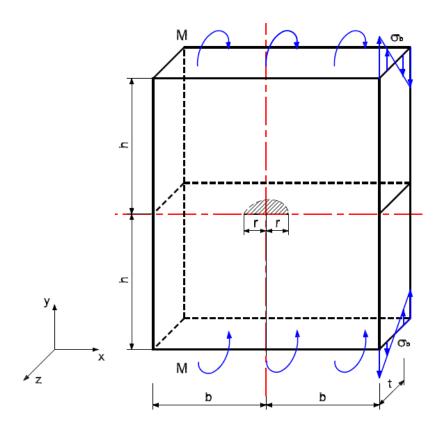


• Discretization spaces updated on-the-fly with global-local enrichment functions

$$\boldsymbol{X}_{G}^{k+1}(\Omega_{G}) = \left\{ \boldsymbol{u} = \sum_{\substack{\alpha=1 \\ \text{coarse-scale approx.}}}^{N} \varphi_{\alpha}(\boldsymbol{x}) \hat{\boldsymbol{u}}_{\alpha}(\boldsymbol{x}) + \sum_{\substack{\beta \in \mathcal{I}_{gl}^{k} \\ \text{fine-scale approx.}}}^{N} \varphi_{\beta}(\boldsymbol{x}) \boldsymbol{u}_{\beta}^{gl(k)}(\boldsymbol{x}) \right\} \quad \boldsymbol{u}_{\beta}^{gl(k)} = \text{G-L enrichment}$$
18

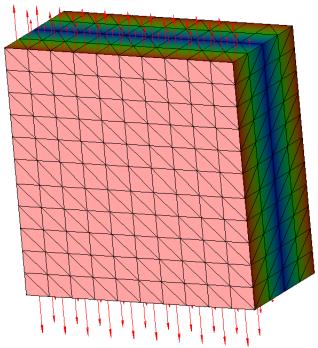
Numerical Verification: Static Crack

• Plate with a surface crack



b/t = h/t = 1, r/b=0.2

Initial (un-cracked) global problem

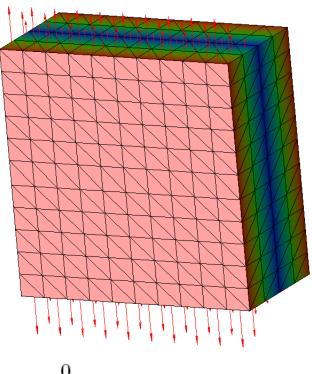


Solution of un-cracked global problem

- Crack not modeled in initial global problem •
- Goal: Analyze cracked domain while keeping ۲ global model as it is

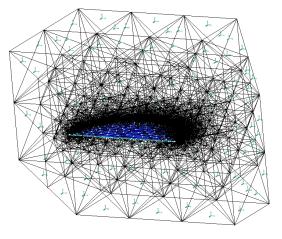
Boundary conditions

• Local problem: Define and solve with the GFEM a local problem containing crack



 u_G^0 = solution of global problem

Single local problem for entire crack



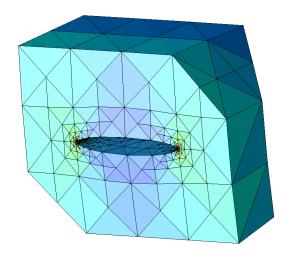
Boundary conditions for local problem provided by global solution:

 $oldsymbol{u}_{loc} = oldsymbol{u}_G^0 \quad ext{on} \; \partial\Omega_{loc}$

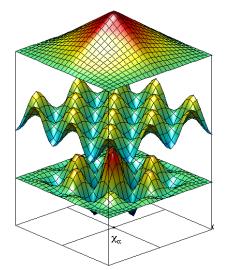
Other types of BCs can be used. E.g. Spring BC:

$$\boldsymbol{t}(\boldsymbol{u}) = \boldsymbol{t}(\boldsymbol{u}_G^0) + \kappa \boldsymbol{u}_G^0 - \kappa \boldsymbol{u}$$

Enriched global problem

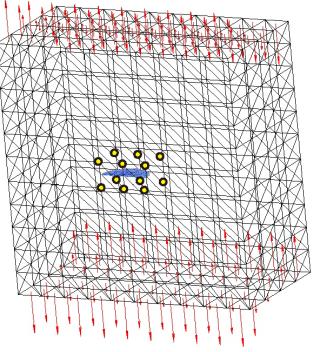


Global-local enrichments



Enrichment of global FEM mesh with local solutions

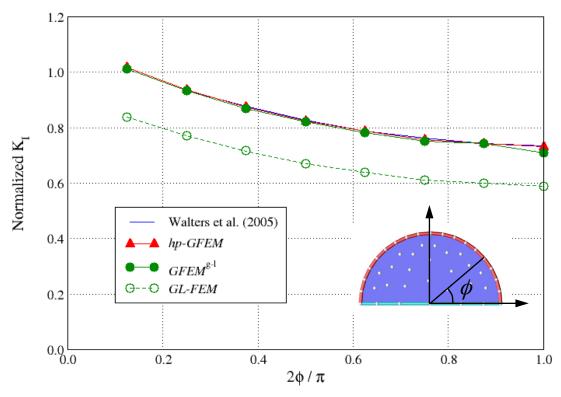
$$\phi_{\alpha} = \varphi_{\alpha} \boldsymbol{u}_{loc}$$



Enriched global problem

- Only 36 dofs added
- = 0.2 % (out of 19,800)

Numerical Verification: Static Crack

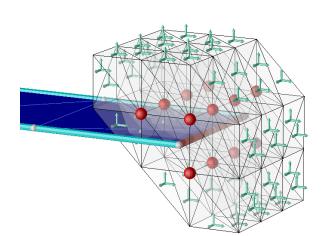


Normalized K_I for *GL-FEM* and *GFEM* ^{g-I} w/ <u>displacement BC</u> in local problem.

$$e^{r}(K_{i}) := \frac{\|e_{i}\|_{L^{2}}}{\|\hat{K}_{i}\|_{L^{2}}} = \frac{\sqrt{\sum_{j=1}^{N_{\text{ext}}} \left(K_{i}^{j} - \hat{K}_{i}^{j}\right)^{2}}}{\sqrt{\sum_{j=1}^{N_{\text{ext}}} \left(\hat{K}_{i}^{j}\right)^{2}}}$$

- Relative error $K_I GFEM^{g-1} \approx 1.2 \%$
- Relative error $K_I GL$ -FEM $\approx 18.5 \%$

Local Problem and Spring BC



$$\begin{split} \boldsymbol{t}(\boldsymbol{u}) &= \kappa(\boldsymbol{\delta} - \boldsymbol{u}) \quad \text{[Szabo and Babuska, 1991]} \\ \kappa \boldsymbol{\delta} &:= \boldsymbol{t}(\boldsymbol{u}_G^0) + \kappa \boldsymbol{u}_G^0 \quad \boldsymbol{\delta} \text{ : Displacement imposed at base of spring system} \end{split}$$

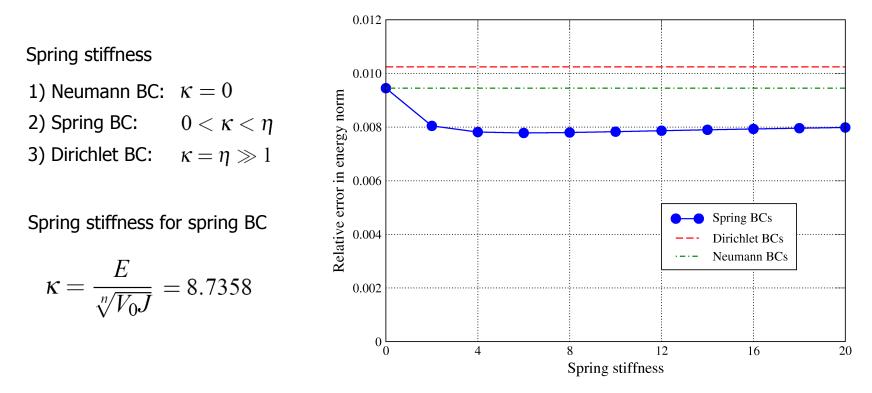
Spring BC:
$$t(\boldsymbol{u}) = t(\boldsymbol{u}_G^0) + \kappa \boldsymbol{u}_G^0 - \kappa \boldsymbol{u}$$

 $t(\boldsymbol{u}_G^0) = \hat{\boldsymbol{n}} \cdot \boldsymbol{\sigma}(\boldsymbol{u}_G^0) = \hat{\boldsymbol{n}} \cdot (\boldsymbol{C} : \boldsymbol{\varepsilon}(\boldsymbol{u}_G^0))$

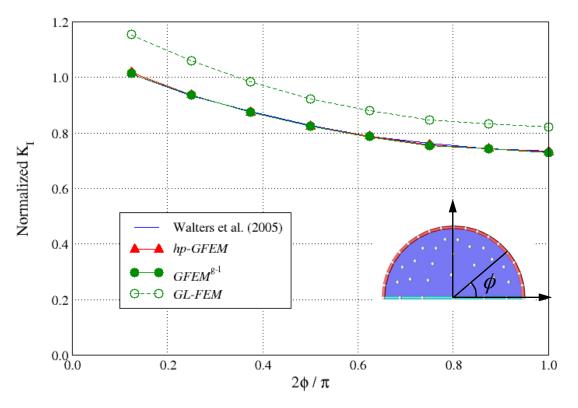
- (i) Neumann boundary condition: Set $\kappa = 0$.
- (ii) Dirichlet boundary condition: Set $\kappa = \eta \gg 1$.
- (iii) Cauchy or spring boundary condition: Set $0 < \kappa < \eta$.

$$\begin{split} \int_{\Omega_L} \boldsymbol{\sigma}(\boldsymbol{u}_L) &: \boldsymbol{\varepsilon}(\boldsymbol{v}_L) d\boldsymbol{x} + \eta \int_{\partial \Omega_L \cap \partial \Omega_G^u} \boldsymbol{u}_L \cdot \boldsymbol{v}_L d\boldsymbol{s} + \kappa \int_{\partial \Omega_L \setminus (\partial \Omega_L \cap \partial \Omega_G)} \boldsymbol{u}_L \cdot \boldsymbol{v}_L d\boldsymbol{s} = \\ \int_{\partial \Omega_L \cap \partial \Omega_G^\sigma} \overline{\boldsymbol{t}} \cdot \boldsymbol{v}_L d\boldsymbol{s} + \eta \int_{\partial \Omega_L \cap \partial \Omega_G^u} \overline{\boldsymbol{u}} \cdot \boldsymbol{v}_L d\boldsymbol{s} + \int_{\partial \Omega_L \setminus (\partial \Omega_L \cap \partial \Omega_G)} (\boldsymbol{t}(\boldsymbol{u}_G^0) + \kappa \boldsymbol{u}_G^0) \cdot \boldsymbol{v}_L d\boldsymbol{s} \\ \boldsymbol{u}_L : \text{Local solution} \qquad \qquad \boldsymbol{u}_G^0 : \text{Solution of initial global problem} \end{split}$$

Sensitivity analysis to stiffness of spring boundary condition



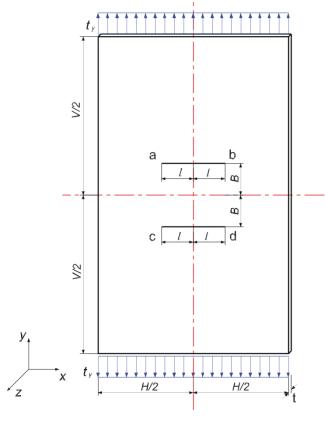
- Spring boundary conditions provide more accurate solutions
- Low sensitivity to spring constant: Robustness of method



Normalized K₁ for *GL-FEM* and *GFEM*^{g-I} w/ <u>spring BC</u> in local problem

- Relative error $K_I hp$ -GFEM $\approx 0.4 \%$
- Relative error $K_I GFEM^{g-1} \approx 0.5 \%$
- Relative error $K_I GL$ -FEM $\approx 12.4 \%$

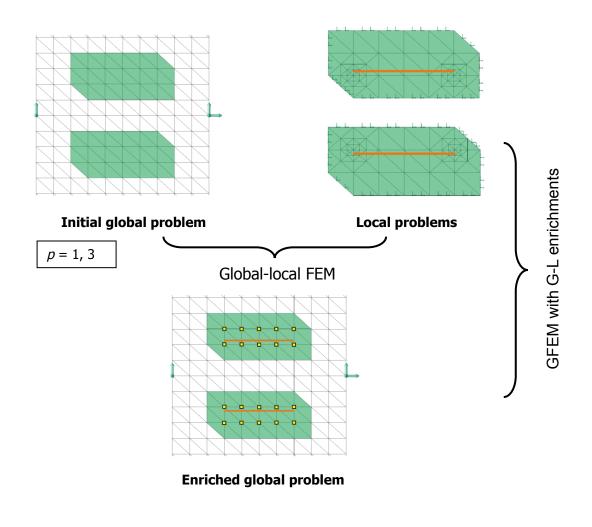
• Interacting cracks



Analysis for varying B/H

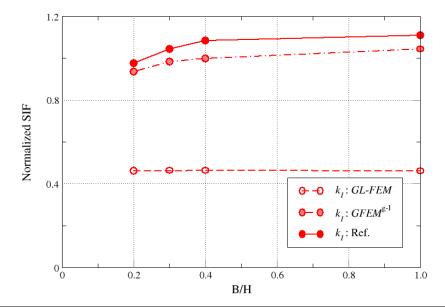
2I = 4.0; V = 200.0; H = 10.0; t = 1.0Poisson's ratio = 0.0 Young's modulus = 200,000

Two interacting cracks



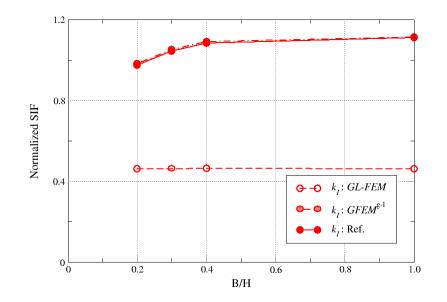
Cracks NOT discretized in global domain

- Normalized Mode I SIF. p = 1 in the global problem



B/H	Mode I, p = 1 in the global problem				
	SIF (GL-FEM)	Rel. err(%)	SIF (GFEM)	Rel. err(%)	
0.2	0.4617	52.64	0.9354	4.05	
0.3	0.4625	55.69	0.9834	5.78	
0.4	0.4630	57.28	0.9987	7.86	
1.0	0.4604	58.51	1.0425	6.05	

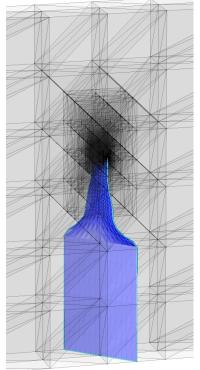
- Improving BCs for local problems: p = 3 in global problem



	Mode I, p = 3 in global problem					
B/H	SIF (GL-FEM)	Rel. err(%)	SIF (GFEM)	Rel. err(%)		
0.2	0.4617	52.64	0.9807	-0.59		
0.3	0.4625	55.69	1.0517	-0.77		
0.4	0.4630	57.28	1.0902	-0.58		
1.0	0.4604	58.51	1.1125	-0.26		

- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems

Mathematical Analysis*



GFEM^{gl}: Error controlled through global-local enrichments

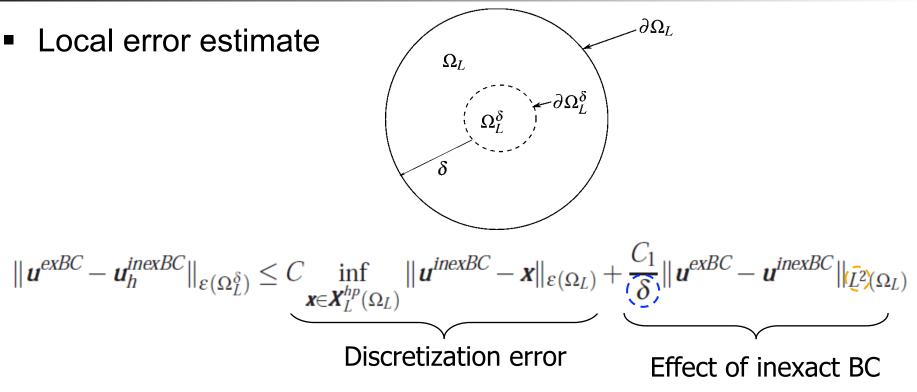
Questions:

- What are the effects of inexact BCs at fine-scale problems?
- How to control them?

hp-GFEM/FEM

*with V. Gupta

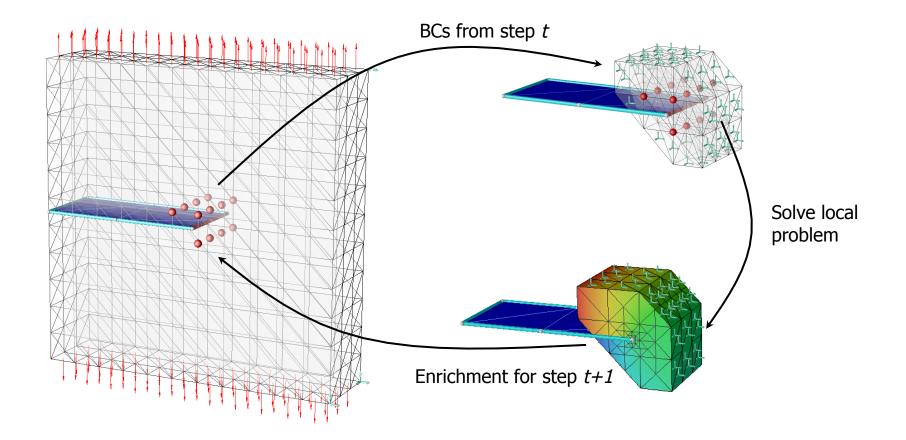
A-Priori Error Estimate



Global Error [Babuska and Melenk, 1996]

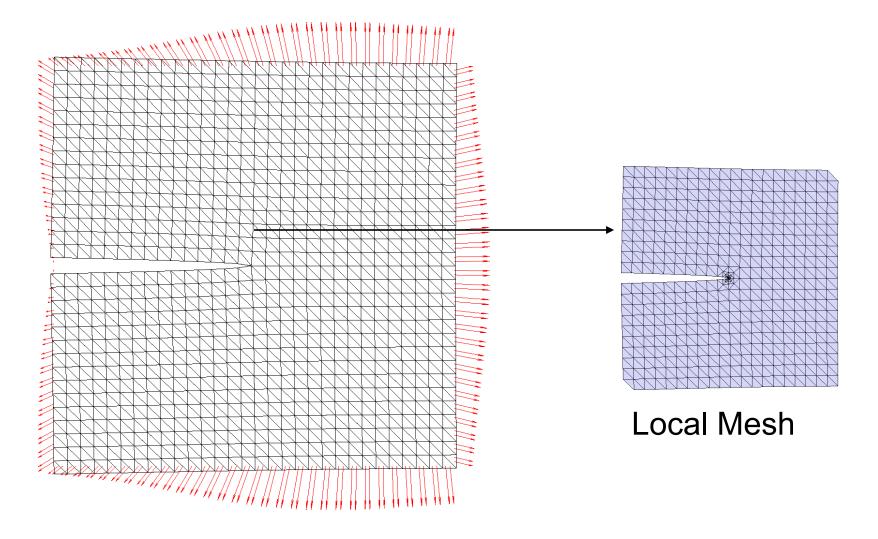
$$\|\boldsymbol{u}-\boldsymbol{u}_G\|_{\varepsilon(\Omega)}^2 \leq C \sum_{\alpha=1}^N \inf_{\boldsymbol{u}_\alpha \in \chi_\alpha} \|\boldsymbol{u}-\boldsymbol{u}_\alpha\|_{\varepsilon(\omega_\alpha)}^2 \leq C \sum_{\alpha=1}^N \|\boldsymbol{u}-\boldsymbol{u}_h^{\mathsf{inexBC}}\|_{\varepsilon(\omega_\alpha)}^2$$

where $\boldsymbol{u} \equiv \boldsymbol{u}^{\mathsf{exBC}}$

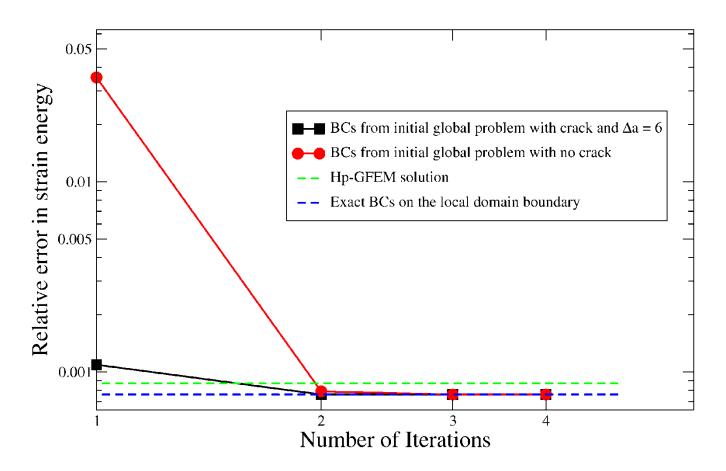


Repeat Global-local-Global cycle

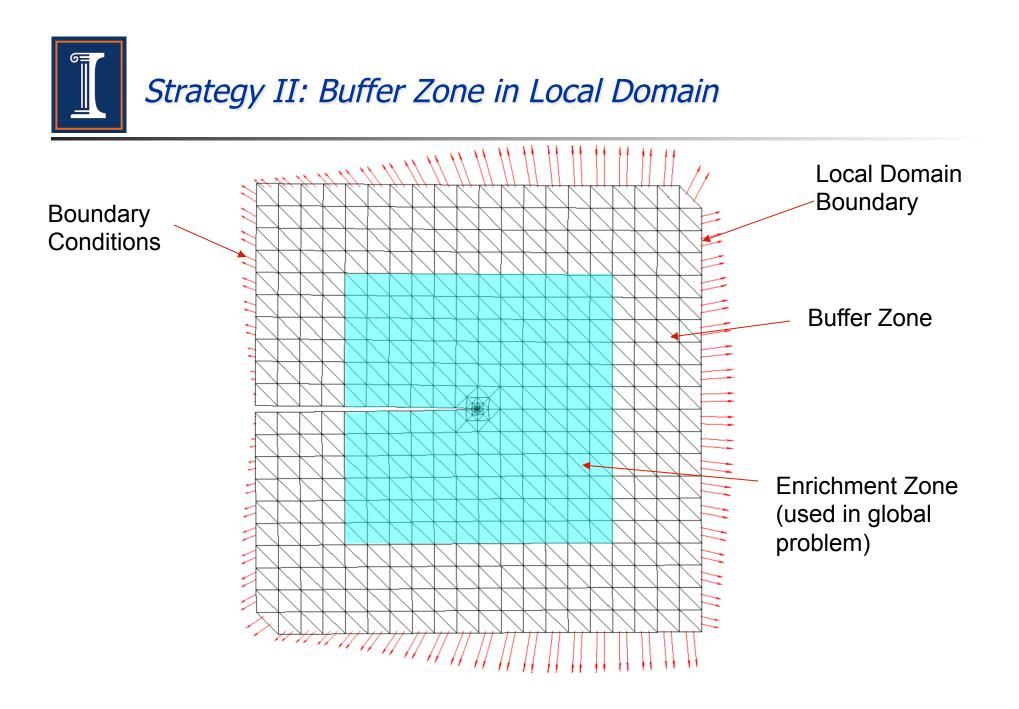
• 30" x 30" x 1" edge-crack panel loaded with Mode I tractions



Relative Error in Strain Energy



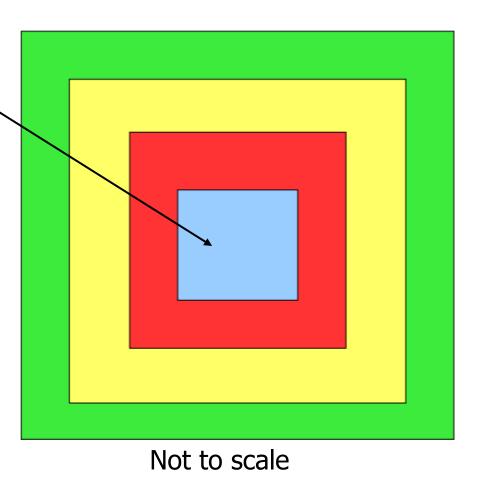
GFEM^{gl} can deliver same accuracy as hp-GFEM (DNS)



Strategy II: Buffer Zone in Local Domain

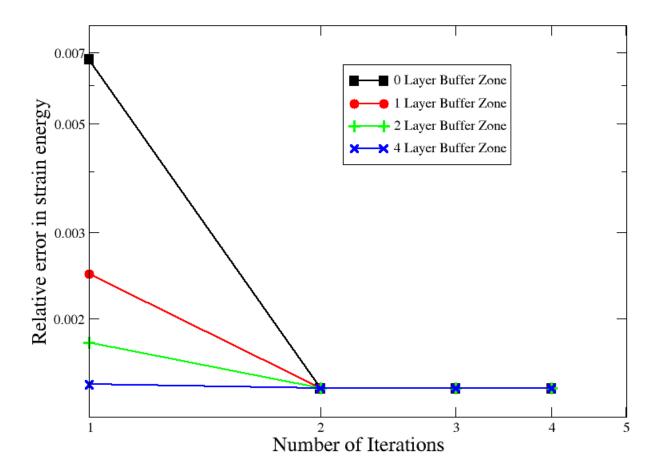
Buffer Zone Sizes Considered

- Enrichment Zone: 4" X 4" blue square region
- Buffer zone (in terms of number of layers of elements):
 - Red 1 layer
 - Yellow 2 layers
 - Green 4 layers



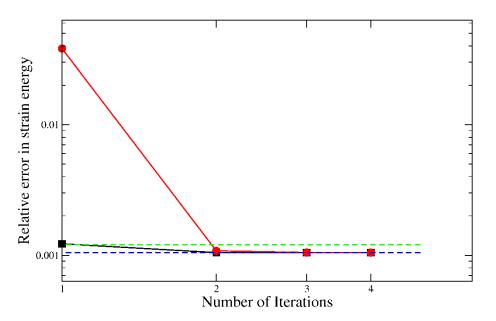
Strategy II: Buffer Zone in Local Domain

Relative Error in Strain Energy



• BCs from global problem *without* a crack

- A-priori error estimates and convergence analyses show optimal convergence even on <u>tough</u> problems:
 - Problems with strong singularities and/or numerical pollution effects
- Quality of global-local enrichments can be controlled through
 - Global-local iteration cycles
 - Buffer-zone in local domains

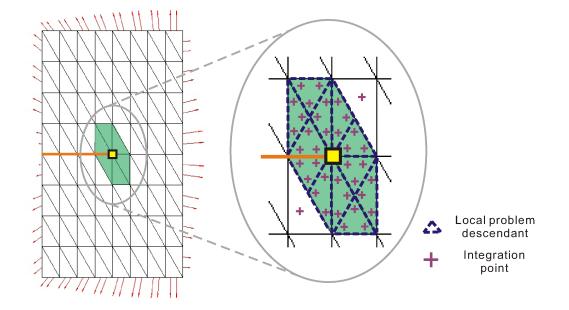


Comparison of relative error in Strain Energy

Fine-scale problems with buffer zone

- Fine-scale problems w/out buffer zone
- Error level for FEM with AMR

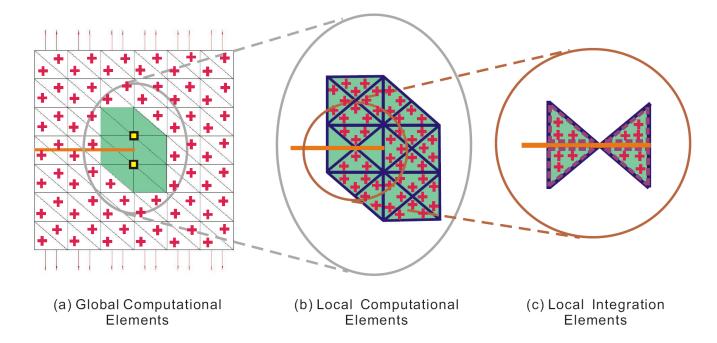
Numerical Integration Procedure



Numerical integration scheme in the global elements enriched with local solution

- ✓ Use local mesh for integration.
- Local mesh nested in global mesh: Greatly facilitate implementation.

Numerical Integration Procedure



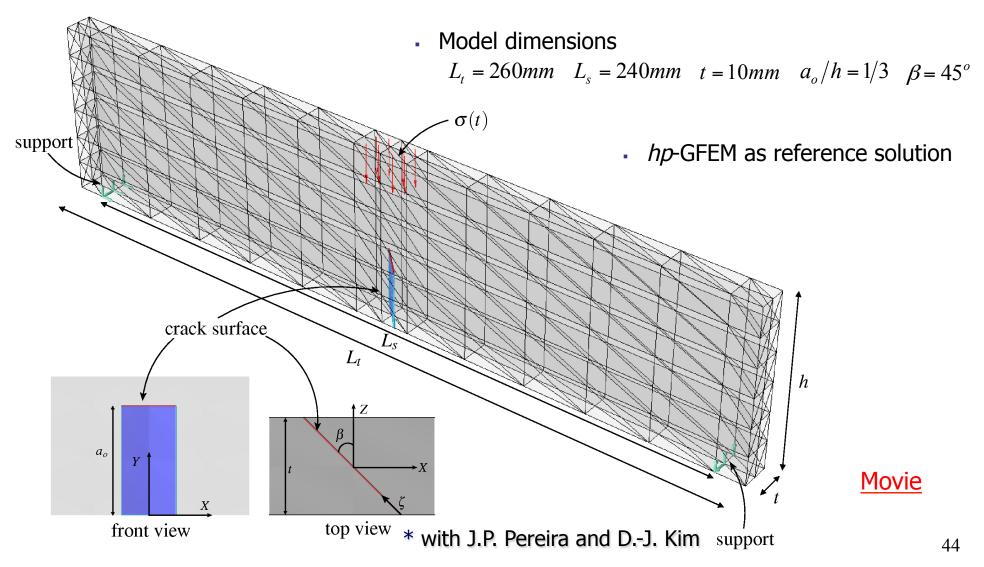
Numerical integration scheme in the global elements enriched with local solution

- ✓ Use local mesh for integration.
- Local mesh nested in global mesh: Greatly facilitate implementation.

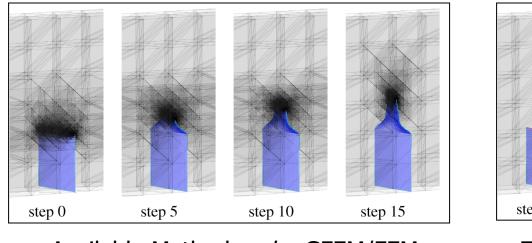
- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems

Crack Propagation: Edge-Notched Beam with Slanted Crack *

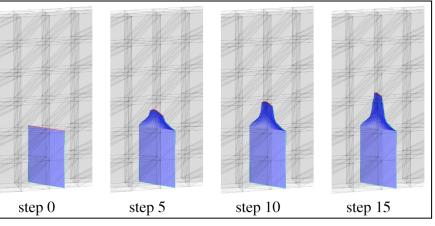
Fatigue Crack Growth: hp-GFEM and GFEM^{gl} solutions



Edge-Notched Beam with Slanted Crack



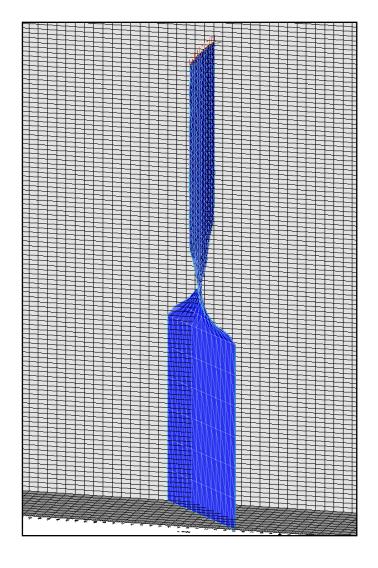
Available Methods – *hp*-GFEM/FEM



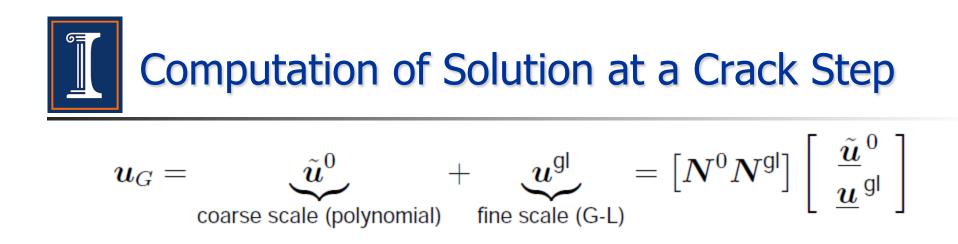
Two-Scale Generalized FEM – GFEM^{gl}

- Mesh with elements that are orders of magnitude larger than in a FEM mesh
- Fully compatible with FEM
- Single field formulation: Does not introduce stability (LBB) issues

Experimental Results



[Buchholz et al., 2004]



 $\underline{\tilde{u}}^{0} = \text{DOFs}$ associate with coarse scale discretization $u^{\text{gl}} = \text{DOFs}$ associate with G-L (hierarchical) enrichments

 $\dim(\underline{u}^{\mathsf{gl}}) << \dim(\underline{\tilde{u}}^{0})$

This leads to

Computed by
$$\begin{bmatrix} \mathbf{K}^{0} & \mathbf{K}^{0,gl} \\ \mathbf{K}^{gl,0} & \mathbf{K}^{gl} \end{bmatrix} \begin{bmatrix} \underline{\tilde{u}}^{0} \\ \underline{u}^{gl} \end{bmatrix} = \begin{bmatrix} F^{0} \\ F^{gl} \end{bmatrix}$$

Solve using, e.g., static condensation of \underline{u}^{gl}

From the first equation

$$\underline{\tilde{\boldsymbol{u}}}^{0} = (\boldsymbol{K}^{0})^{-1} \boldsymbol{F}^{0} - (\boldsymbol{K}^{0})^{-1} \boldsymbol{K}^{0, \text{gl}} \underline{\boldsymbol{u}}^{\text{gl}}$$

$$= \underline{\boldsymbol{u}}^{0} - \boldsymbol{S}^{0, \text{gl}} \underline{\boldsymbol{u}}^{\text{gl}}$$

Where

$$oldsymbol{S}^{0,\mathsf{gl}}:=(oldsymbol{K}^0)^{-1}oldsymbol{K}^{0,\mathsf{gl}}$$

 $S^{0,gl}$ = Pseudo coarse scale solutions computed through forward and backward substitutions on K^0 (by FEM code)

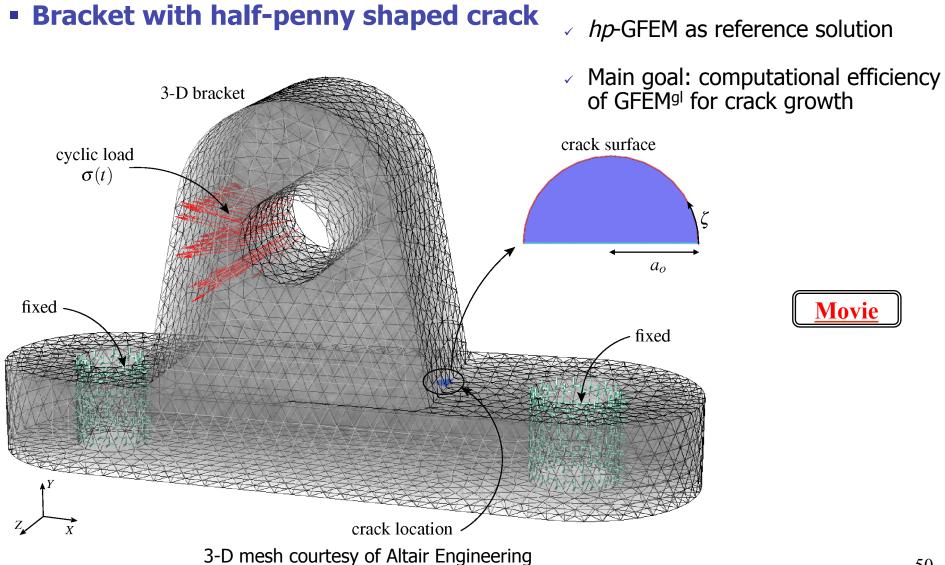
From the second equation and the above

$$oldsymbol{K}^{\mathsf{gl}}\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} \ = \ oldsymbol{F}^{\mathsf{gl}} - oldsymbol{K}^{\mathsf{gl},0} \left[\, oldsymbol{\underline{u}}^{\,0} - oldsymbol{S}^{0,\mathsf{gl}}\, oldsymbol{\underline{u}}^{\,\mathsf{gl}}
ight]$$

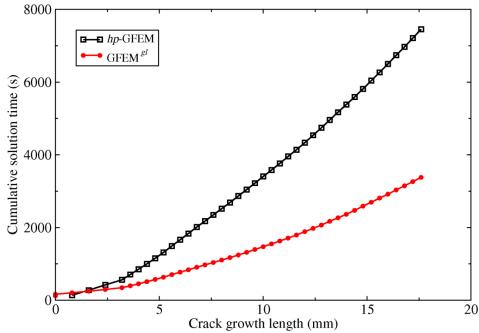
Thus

$$\underbrace{\left[\underbrace{K^{\mathsf{gl}} - K^{\mathsf{gl},0} S^{0,\mathsf{gl}}}_{\widehat{K}^{\mathsf{gl}}} \right] \underline{u}^{\mathsf{gl}} = \underbrace{F^{\mathsf{gl}} - K^{\mathsf{gl},0} \underline{u}^{0}}_{\widehat{F}^{\mathsf{gl}}}$$

Computation of u_G involves forward- and back-substitutions on K^0

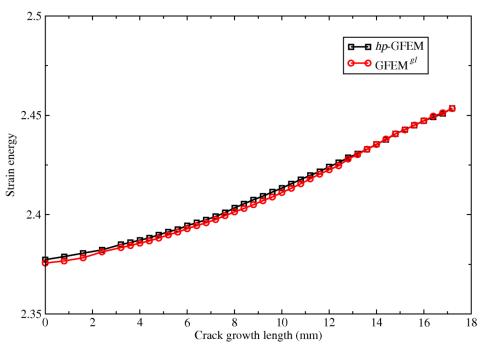


Computational Efficiency



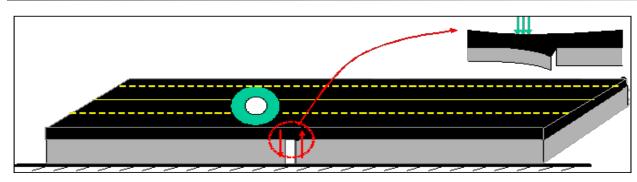
- GFEM^{gI}: 115,470 + 27 *dofs* (min) 115,470 + 84 *dofs* (max)
- *hp*-GFEM:
 186,666 global *dofs* (min)
 255,618 global *dofs* (max)

Strain Energy

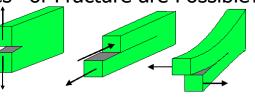


- ~ 60% computational cost reduction
- *hp*-GFEM and GFEM^{gl} solutions show good agreement

Reflective Crack Growth in Airfield Pavements

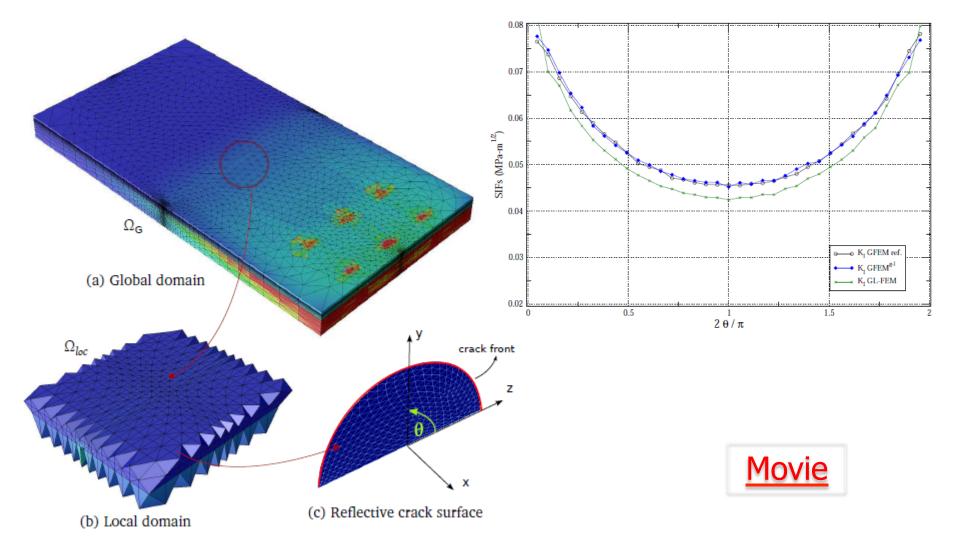


- Cracks and Joints in Underlying Pavement "Reflect" up to the Surface due to Stress Concentration Effect
- Three "Modes" of Fracture are Possible

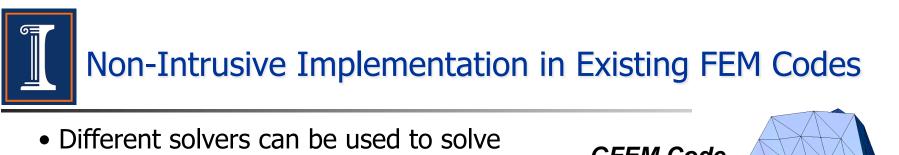


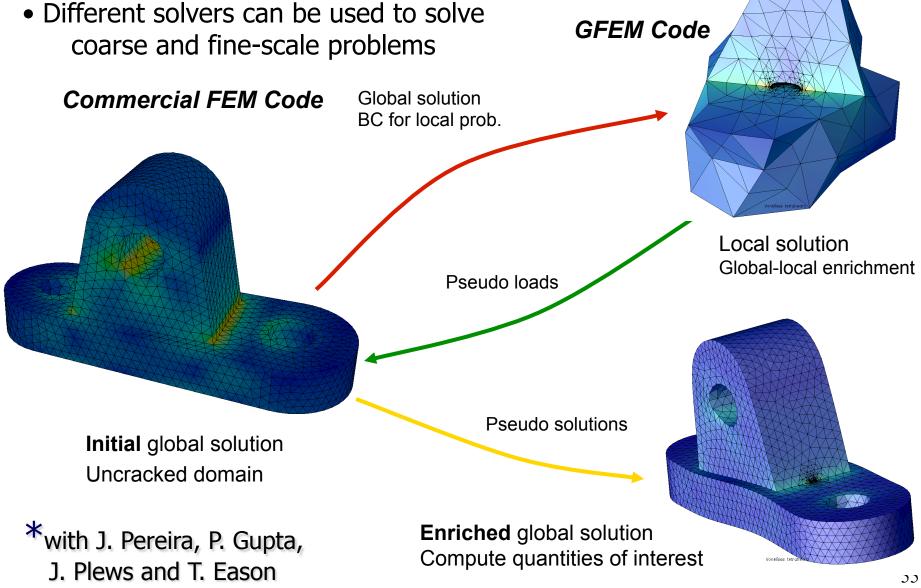
• Objectives

- Providing better understanding of RC in airfield pavements
- Being used to assist in development of reflective cracking test at National Airport Pavement Test Facility (NAPTF)



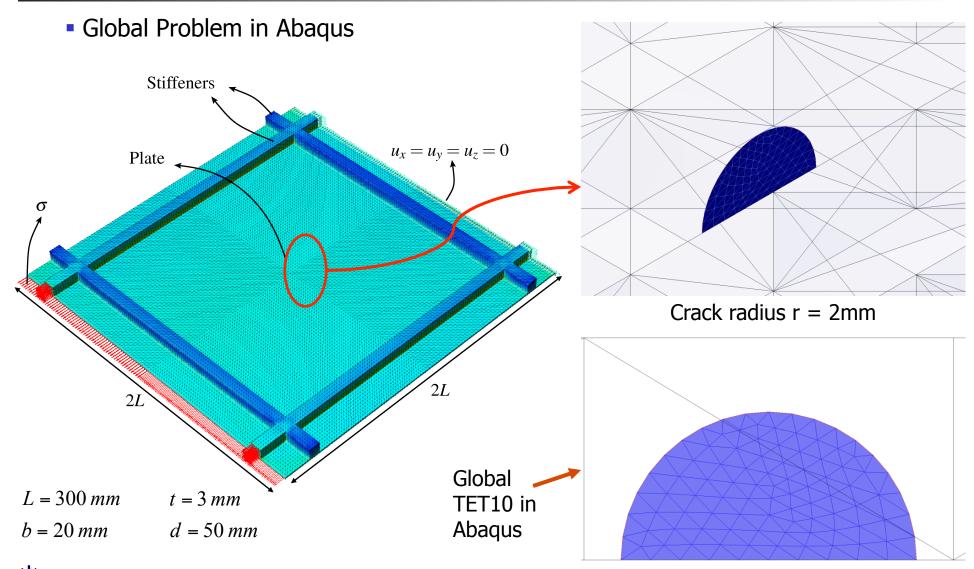
- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems





- Krause R, Rank, E. Multiscale computations with a combination of the h- and p-versions of the finite-element method. CMAME, 2003
- Bordas S, Moran B. Enriched finite elements and level sets for damage tolerance assessment of complex structures, EFM, 2006
- Gendre L, Allix O, Gosselet P, Comte F. Non-intrusive and exact global/local techniques for structural problems with local plasticity. CM, 2009
- Gendre L, Allix O, Gosselet P. A two-scale approximation of the Schur complement and its use for non-intrusive coupling. IJNME, 2011

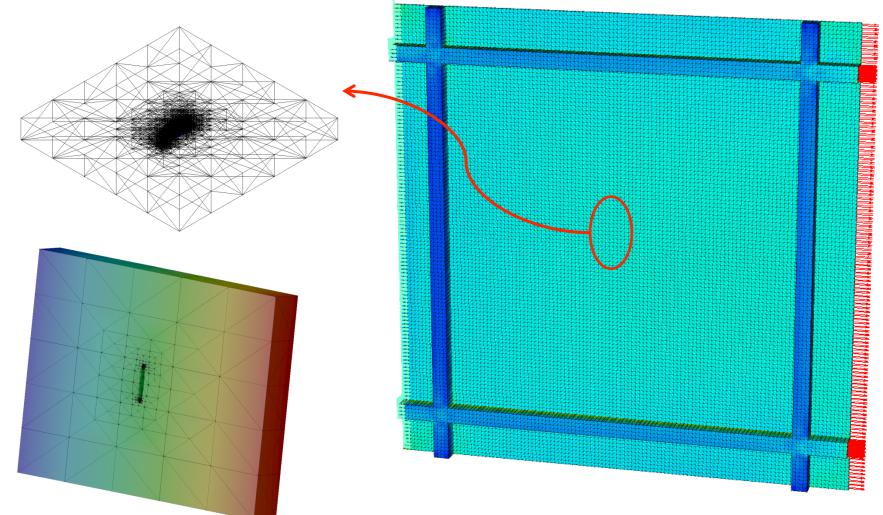
Stiffened Panel with Surface Crack*



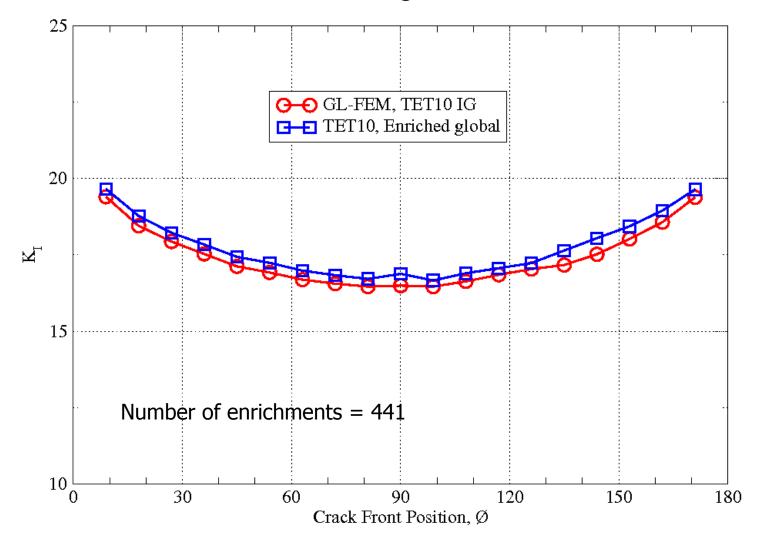
*with P. Gupta, J. Pereira and T. Eason

Stiffened Panel with Surface Crack

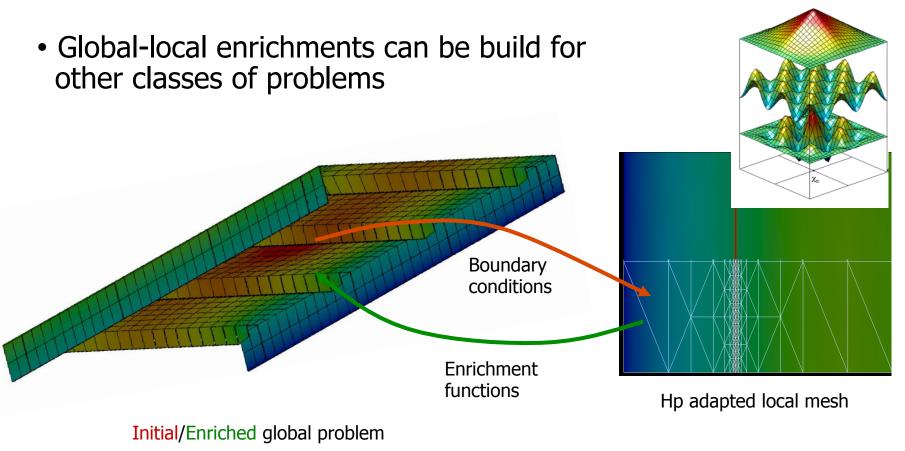
Local Problem in hp-GFEM code



Mode-I SIF along crack front



59



Enrichment of global FEM discretization with local solution:

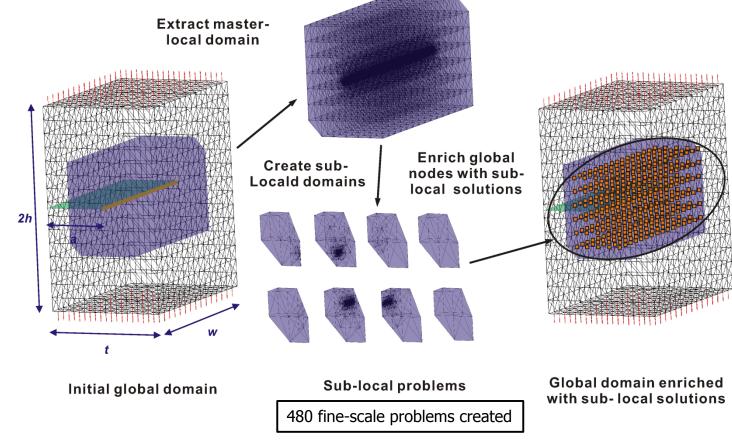
$$\phi_{\alpha} = \varphi_{\alpha} \boldsymbol{u}_{loc}$$

* with P. O'Hara and T. Eason

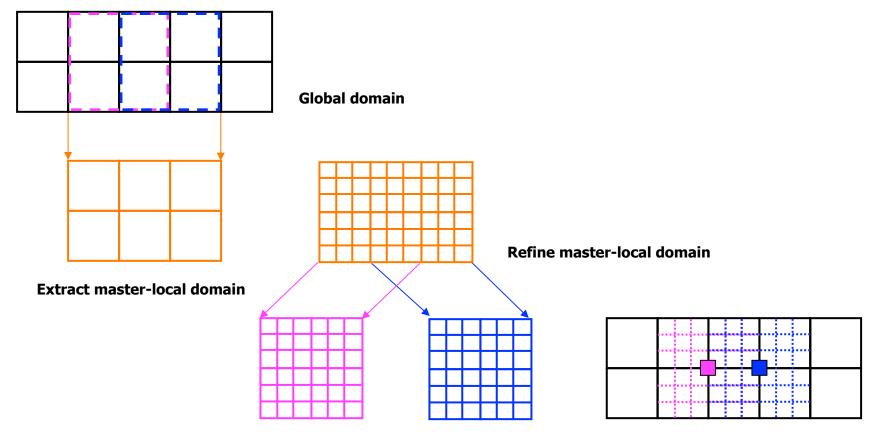
- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems

Parallel Computation of Enrichment Functions *

- A large number of small fine-scale problems can be created instead of a single one
- No communication is involved in their parallel solution



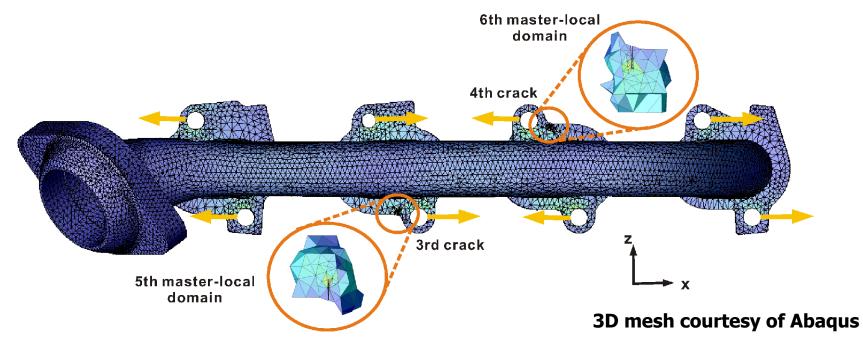
 KEY IDEA: Subdivide large local domains into smaller ones while keeping compatibility between local meshes.



Create sub-local problems

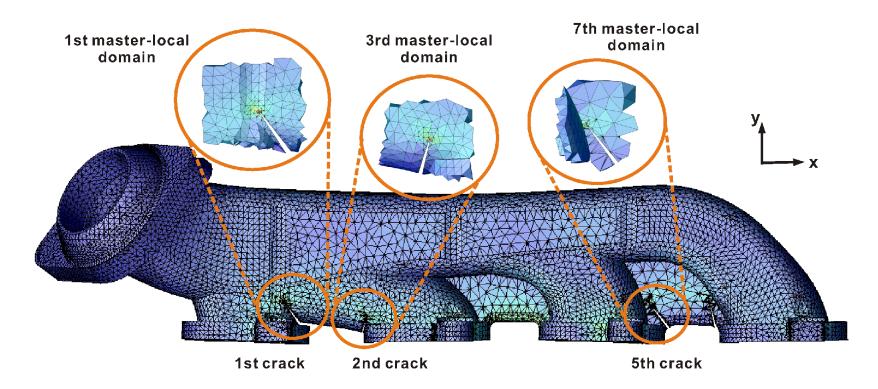
Enrich global domain with sublocal problem solutions

- Eight crack fronts and master-local problems
- 983 sub-local problems solved in parallel
- Comparable DNS model has 1,605,960 dofs



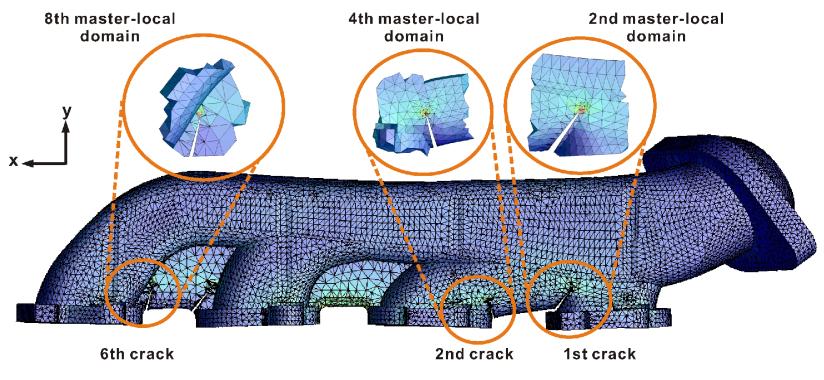
Top View and Boundary Conditions

- Eight crack fronts and master-local problems
- 983 sub-local problems solved in parallel



Front View

- Eight crack fronts and master-local problems
- 983 sub-local problems solved in parallel

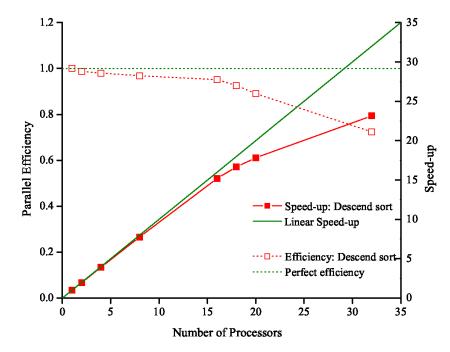


Back View

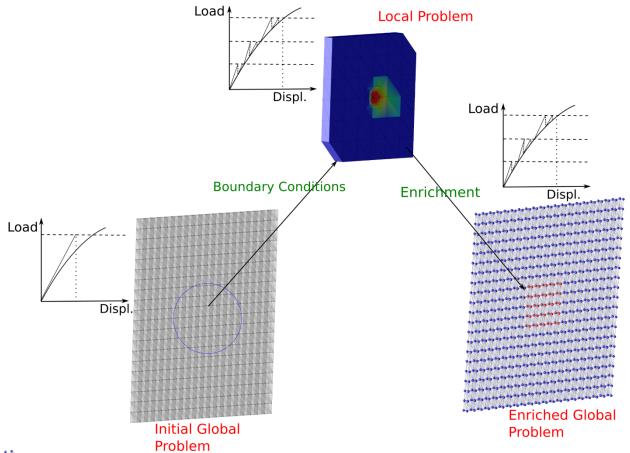
Mechanical Manifold with Multiple Cracks

• Parallel performance on a shared memory machine (NUMA architecture)

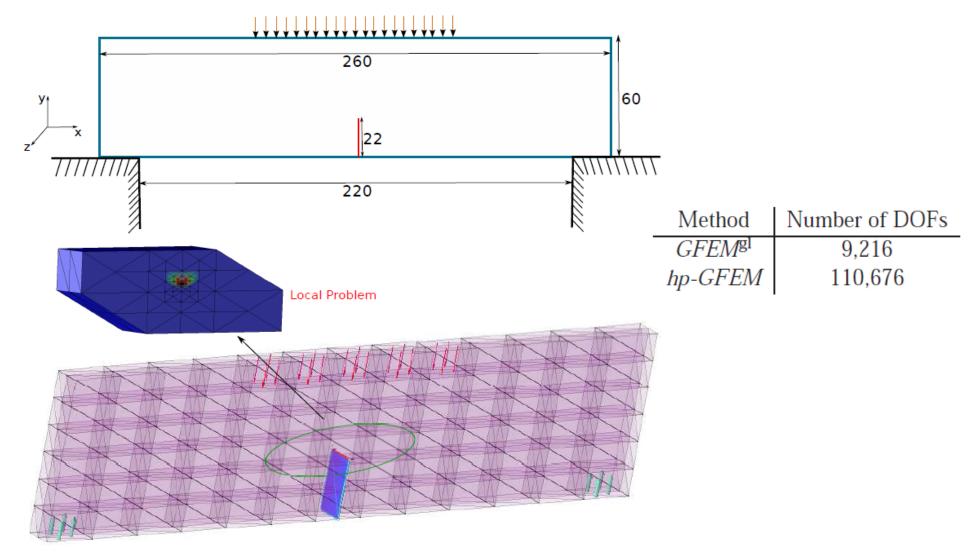
Number of processors	CPU time (s)	Parallel efficiency	Speed-up
1	1537.4	N/A	N/A
2	778.1	0.988	1.976
4	392.1	0.980	3.921
8	198.3	0.969	7.752
16	101.1	0.951	15.214
18	92.3	0.926	16.666
20	86.3	0.891	17.823
32	66.4	0.724	23.161



- Motivation for Multiscale Structural Analysis
- Bridging Scales with the GFEM:
 - Global-local enrichments
 - Verification
- Mathematical Analysis and Implementation
- Applications and Computational Efficiency
- Transition: Non-intrusive implementation in Abaqus
- Parallel Computation of Enrichment Functions
- Enrichment Functions for Confined Plasticity Problems

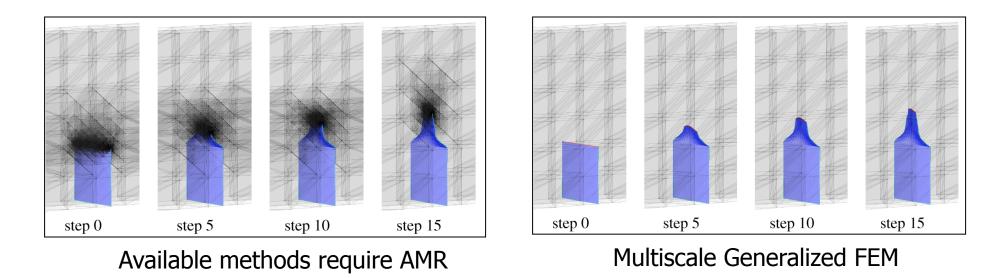


- Key Properties:
- Uses available information at a simulation step to build approximation spaces for the next step
- Uses coarse FEM meshes; solution spaces of much reduced dimension than in the FEM
- Two-way information transfer between scales; account for interactions among scales

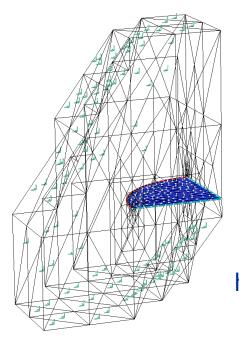


	Load	Number of iterations	
	step	<i>GFEM</i> ^{gl}	hp-GFEM
	1	2	1
	2	2	1
	3	2	2
	4	2	3
	5	2	3
	6	3	3
	7	3	4
	8	3	5
1	9	3	4
	10	3	4
	11	3	7
	12	3	5
	13	3	4
	14	3	4
	15	3	8
	16	3	9
	17	3	4
	18	3	4
	19	3	4
	20	4	4

Concluding Remarks

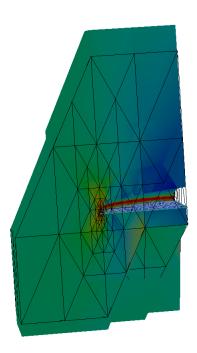


- FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale computations are intrinsically parallelizable; recycle coarse scale solution
- ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on meshes with elements that are orders of magnitude larger than in the FEM
- STABLE: Uses single-field variational principles
- TRANSITION: Fully compatible with FEM



Questions?

caduarte@uiuc.edu http://netfiles.uiuc.edu/caduarte/www/



Support:

