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J@ Motivation: US Air Force “Digital Twin”

e A Digital Twin is a computational model of a specific aircraft
e The model will be flown through same flight profiles as recorder for the

actual aircraft
e The digital model will be used to determine when and where structural

damage is likely to occur

o A Digital Twin must capture responses and interactions among a broad
range of scales: From aircraft scale to highly localized damage in one of its
components




][ Bridging Scales

« Thermal loads on hypersonic aircrafts

e Shock wave impingements cause large
thermal gradients

o Experiments are difficult and limited

Dimensions not to scale 4



Multiscale Structural Problems

I
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[Sandia National Lab, 2005] Thermal loads on

hypersonic aircrafts
(dimensions not to scale)

e Predictive simulations require modeling of phenomena spanning
several spatial and temporal scales
e Advances in existing computational methods are needed

e Increasing computational power alone is not enough
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][ Early works on Generalized FEMs

= Babuska, Caloz and Osborn, 1994 (Special FEM).

= Duarte and Oden, 1995 (Hp Clouds).

= Babuska and Melenk, 1995 (PUFEM).

= Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
= Duarte, Babuska and Oden, 1998 (GFEM).

= Belytschko et al., 1999 (Extended FEM).

= Strouboulis, Babuska and Copps, 2000 (GFEM).

e Basic idea:

e Use a partition of unity to build Finite Element shape functions

e Recent review paper

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009

“The XFEM and GFEM are basically identical methods: the name generalized finite
element method was adopted by the Texas school in 1995-1996 and the name
extended finite element method was coined by the Northwestern school in 1999.”




Generalized Finite Element Method

« GFEM shape function = FE shape function * enrichment function

Oa(T) = polx)L(x)

« Allows construction of shape functions
incorporating a-priori knowledge about solution

Linear FE shape

function \
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GFEM Approximation for 3-D Cracks

‘Zwa<w> () + iy (@) + (@)

polynomlal dlscontlnuous smgular

/

[Duarte and Oden
1996]

1 1
(=3 2° 2
I 1 1 360
= Vr|(k+ 2)bu — §sin 7] 0 .

0 T
| = /rsin=
g 2
OXOYOZ)
cloud or patch ' i k

CcO — OS —

0
S_
2
19
2




Modeling Cracks with hp-GFEM

I

¢ Discontinuities modeled via enrichment functions, not the FEM mesh
* Mesh refinement still required for acceptable accuracy
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Von Mises stress

[Duarte et al., International Journal Numerical Methods in Engineering, 2007]
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Bridging Scales with Global-Local
Enrichment Functions

I

e How to account for interactions among scales?

Multiple cracks around a rivet hole
[Sandia National Lab, 2005]

Goal:
e Capture fine scale effects on coarse meshes at the global (structural) scale
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Bridging Scales with Global-Local
Enrichment Functions *

I

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function
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s ldea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

= Enrichment functions are produced numerically
on-the-fly through a global-local analysis

7

GFEM shape
function

s Use a coarse mesh enriched with Global-Local
(G-L) functions

Enrichment = Numerical
solutions of BVP

* Duarte et al. 2005, 2007, 2008, 2010, 2011
13



j[ Related Approaches

= Global-local FEM developed in the 1970’ s

= Multiscale FEM of Hou and Wu, 1997

= Mesh-based handbook approach of Strouboulis et al., 2001

= Multiscale method of Krause and Rank, 2003

= Two-scale XFEM for 2-D cracks, Cloirec et al., 2005

= Multiscale projection method, Loehnert and Belytschko, 2007
= Multiscale XFEM crack propagation, Guidault et al., 2008

s Spider-XFEM, Chahine et al., 2008

= Reduced basis enrichment for the XFEM, Chahine et al., 2008
= Local multigrid X-FEM for 3-D cracks, Rannou et al., 2009

= Method of Menk and Bordas for fracture of bi-materials, 2010
= Harmonic enrichments for 2-D branched cracks, Mousavi et al., 2011



12|[ Global-Local Enrichments for 3-D Fractures

= up, solution of global problem at crack step k

= Define local domain containing
crack front at step k+1
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Global-Local Enrichments for 3-D Fractures

= Solve local problem at step k using hp-GFEM

Boundary conditions for local problems
provided by global solution:

uf =wuy, on 905\ (99 N o)

P —
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ol Tk X7 (QF) = hp-GFEM space

Find uf € X} (QF) < H' (QF) such that V v} € X} (QF)
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Global-Local Enrichments for 3-D Fractures

* Defining Step: Global space is enriched with local solutions
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« Procedure may be repeated: Update local BCs and enrichment functions



Global-Local Enrichments for 3-D Fractures

I

= Summary: Use solution of global problem at simulation & to build
enrichment functions for step k+1
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« Discretization spaces updated on-the-fly with global-local enrichment functions
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Numerical Verification: Static Crack

e Plate with a surface crack

= Initial (un-cracked) global problem

\G'n
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wS . Solution of un-cracked global problem

b b
e Crack not modeled in initial global problem

b/t = h/t = 1, r/b=0.2 e Goal: Analyze cracked domain while keeping

global model as it is

19



j[ GFEM with G-L Enrichment Functions

= Local problem: Define and solve with the

GFEM a local problem containing crack _ _
Single local problem for entire crack

Boundary
conditions
Boundary conditions for local problem
provided by global solution:
0
W = solution of global Other types of BCs can be used. E.g. Spring BC:

problem
t(u) =t(u)) + xup — xu

20



GFEM with G-L Enrichment Functions

= Enriched global problem
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Numerical Verification: Static Crack
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Local Problem and Spring BC

t(u) = K(6 — u) [Szabo and Babuska, 1991]

KO = t(u%) + Ku% O : Displacement imposed at base of
spring system

Spring BC: t(u) = t(u%) -+ K'u((]; — Ku

t(ug) =h-o(ug) =n-(C:&(ug))

(i) Neumann boundary condition: Set x = 0.
(ii) Dirichlet boundary condition: Set x =n > 1.

(iii) Cauchy or spring boundary condition: Set 0 < Kk < 7.

/ C(ur):&(vr)dx+n ur -vyds -+ K/ Uy -vyds =
Qr

IQ\(0QNIQG)

/ t- v;;dern/ E-v,;der/ (t(ud) + Kul) - vids
aQLﬂaQ% an_ﬁC}Qré (E’QL\(C}QLQ(;’QG)

Uj : Local solution u% : Solution of initial global problem

9Qr NI
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I

Local Problem and Spring BC

= Sensitivity analysis to stiffness of spring boundary condition

Spring stiffness

1) Neumann BC: k¥ =0

2) Spring BC: 0<K<n
3) Dirichlet BC: x=n>1

Spring stiffness for spring BC

E
K= = 8.7358

ST

0.012

0.010

e
o
S
oo

0.006

0.004

Relative error in energy norm

0.002

: : @—@ Spring BCs
- ................................. ................................. — DirichletBCS
: : == Neumann BCs
0 4 8 12 16 20

Spring stiffness

« Spring boundary conditions provide more accurate solutions
« Low sensitivity to spring constant: Robustness of method

24
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Local Problem and Spring BC

Normalized K[
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20/

Normalized K; for GL-FEM and GFEM 9" w/ spring BC in local problem

e Relative error K; hp-GFEM = 0.4 %
e Relative error K; GFEM 9! = 0.5 %
e Relative error K; GL-FEM = 12.4 %
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Robustness: Comparison with Global-Local
Finite Element Method

I

e Interacting cracks

V/2

|
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a b 2/ =4.0; V= 200.0;, H=10.0; t= 1.0
[ ] Poisson’s ratio = 0.0
R | ) m* o Young’s modulus = 200,000

V/2

Analysis for varying B/H
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I

Two interacting cracks

Initial global problem

p=13

-

=

Local problems
_J/

~"
Global-local FEM

Enriched global problem

Cracks NOT discretized in global domain

GFEM with G-L enrichments
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j[ Comparison with GL-FEM

- Normalized Mode I SIF. p = 1 in the global problem

Normalized SIF

(1), | ERRR IR ................

PaT—
-0 &:GFEM*

&8 k;:Ref

0.4 0.6
B/H

1
0.8 1.0

B/H

Mode I, p = 1 in the global problem

SIF (GL-FEM)

Rel. err(%)

SIF (GFEM)

Rel. err(%)

0.2

0.4617

52.64

0.9354

4.05

0.3

0.4625

55.69

0.9834

5.78

0.4

0.4630

57.28

0.9987

7.86

1.0

0.4604

58.51

1.0425

6.05
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j[ Comparison with GL-FEM

- Improving BCs for local problems: p = 3 in global problem

12 T T T Al
= :
[75] :
= H
(5] :
= :
E i
E :
S G ——O— -G ———————————— - -0
©-© k:GFEM®
@ K, Ref.
0 i 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0
B/H

Mode |, p = 3 in global problem
B/H | SIF (GL-FEM) Rel. err(%) SIF (GFEM) Rel. err(%)
0.2 0.4617 52.64 0.9807 -0.59
0.3 0.4625 55.69 1.0517 -0.77
0.4 0.4630 57.28 1.0902 -0.58
1.0 0.4604 58.51 1.1125 -0.26
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Outline

= Mathematical Analysis and Implementation

= Applications and Computational Efficiency

= Transition: Non-intrusive implementation in Abaqus
= Parallel Computation of Enrichment Functions

= Enrichment Functions for Confined Plasticity Problems

30



Mathematical Analysis*
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Questions:
« What are the effects of inexact BCs at fine-scale problems?
« How to control them?

*with V. Gupta
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A-Priori Error Estimate

I

Local error estimate

. . C .
xBC BC . xBC , 1 exBC nexBC
6 — P oy S € inf (| — o0+ | 0P — 0y
i XEXIJP(QL) N_/
= h'd ~ > ~ ~
Discretization error Effect of inexact BC

= Global Error [Babuska and Melenk, 1996]

<Cz inf  (lu—w,lZ,,) §UZ||U —u)
UaEXa

= O—
exBC

|u—uc||2

where v =u

(

o)
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Strategy I: Multiple Global-Local Iterations

ﬂmla

BCs from step t
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= Repeat Global-local-Global cycle
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][ Strategy I: Multiple Global-Local Iterations

= 30" x 30” x 1” edge-crack panel loaded with Mode I tractions
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j[ Strategy I: Multiple Global-Local Iterations

Relative Error in Strain Energy

0.05— —

Il BCs from initial global problem with crack and Aa =6
©®—® BC s from initial global problem with no crack
Hp-GFEM solution —

001
B — — Exact BCs on the local domain boundary

0.005 |~

Relative error in strain energy

Number of Iterations

= GFEMY can deliver same accuracy as hp-GFEM (DNS)
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][ Strategy II: Buffer Zone in Local Domain

TR \\ \\ H H H 1] Local Domain

Boundary

Boundary
Conditions

TN IR/
\vmxi

Buffer Zone

T \\\R\

Enrichment Zone
(used in global
problem)

T ]
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Strategy II: Buffer Zone in Local Domain

x Buffer Zone Sizes Considered
= Enrichment Zone: 4” X 4” blue
square region

= Buffer zone (in terms of number of
layers of elements):

e Red -1 layer
e Yellow - 2 layers

e Green - 4 layers

Not to scale
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Strategy II: Buffer Zone in Local Domain

Relative Error in Strain Energy

— 0 Layer Bufter Zone
®—® | Layer Buftfer Zone
- 2 Layer Buffer Zone —
¥ —X 4 Layer Buffer Zone

0.005

0.003

e

o

S
v
I

Relative error in strain energy

-t

| 1 |
! 2 3 4 5

Numl;er of Iterations

e BCs from global problem without a crack



Mathematical Analysis: Summary

= A-priori error estimates and convergence analyses show optimal convergence
even on tough problems:

= Problems with strong singularities and/or numerical pollution effects
= Quality of global-local enrichments can be controlled through

Relative error in strain energy

0.01

= Global-local iteration cycles
= Buffer-zone in local domains

Comparison of relative error in Strain Energy

2 3 4
Number of Iterations

B Fine-scale problems with buffer zone

® Fine-scale problems w/out buffer zone

Error level for FEM with AMR
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I

Numerical Integration Procedure
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Numerical integration scheme in the global elements enriched with local solution

Use local mesh for integration.

Local mesh nested in global mesh: Greatly facilitate implementation.
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Numerical Integration Procedure

I
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+ mQ+ +
+ o F R
Ll SN AN JNNL JRNE
(a) Global Computational (b) Local Computational (c) Local Integration
Elements Elements Elements

Numerical integration scheme in the global elements enriched with local solution

~Use local mesh for integration.

»Local mesh nested in global mesh: Greatly facilitate implementation.
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Outline

= Applications and Computational Efficiency
= Transition: Non-intrusive implementation in Abaqus
= Parallel Computation of Enrichment Functions

= Enrichment Functions for Confined Plasticity Problems
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Crack Propagation: Edge-Notched Beam
with Slanted Crack *
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][ Edge-Notched Beam with Slanted Crack

V‘step 0 »step 5 étep 10 étep 15 étep 0 step 5 step 10 étep 15
Available Methods — hp-GFEM/FEM Two-Scale Generalized FEM — GFEMY!

« Mesh with elements that are orders of magnitude larger than in a FEM mesh
« Fully compatible with FEM

« Single field formulation: Does not introduce stability (LBB) issues
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I

Experimental Results

[Buchholz et al., 2004]
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Computation of Solution at a Crack Step

~ 0
_ ~ 0 gl - 0 n 7l u
uG = X + ul —[NN][ugll
coarse scale (polynomial)  fine scale (G-L) o
u” = DOFs associate with coarse scale discretization
u9 = DOFs associate with G-L (hierarchical) enrichments

dim(u9) << dim(z°)
This leads to

KO KO,gI ,&O FO
Computed by/f ., | ] [ gl ] — [ | ]
FEM code K9" K¢ (O ES

Solve using, e.g., static condensation of u 9
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Computation of Solution at a Crack Step

From the first equation

QO _ (KO)—IFO o (KO)_lKO’glggl

_ uO . SO,qugI

Where
SO gl (KO)—IKO gl
KO SO,gl _ KO,gl
S~ N

pseudo coarse scale solutions pseudo coarse scale loads

S%9' = Pseudo coarse scale solutions computed

through forward and backward substitutions on K"
(by FEM code)
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Computation of Solution at a Crack Step

From the second equation and the above

Kglggl _ Fgl o KgI,O [uO o SO,glggl]

Thus
[Kgl o KgI,OSO,gI] Hgl _ Fgl o KgI,OHO
N —— — N — r—
K9 F9
K949 = F9

Computation of u¢ Involves forward- and back-substitutions
on K"
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. Computational Efficiency

= Bracket with half-penny shaped crack hp-GFEM as reference solution

» Main goal: computational efficiency
of GFEMY for crack growth

3-D bracke

cyclic load crack surface

—
A N = o
B P Y v e et
o g e
v e S ; 1t
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2 4’_",'_ = 1 g
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X crack location

3-D mesh courtesy of Altair Engineering 50



Computational Efficiency

= Computational cost analysis

2000 ' = GFEMY':
o 115,470 + 27 dofs (min)
—* GFEM ! A ' 115,470 + 84 dofs (max)
Z 6000 o ;
E = hp-GFEM:
E 186,666 global dofs (min)
5 4000 255,618 global dofs (max)
: = Strain Energy
§2000- 25 ——r——————7——
@—a hp-GFEM
0—0 GFEM*
O 5 ' 10 ' 15 ' 20

Crack growth length (mm)

Strain energy

= ~ 60% computational cost reduction

= hp-GFEM and GFEM? solutions show good
agreement

8 10 12 14 16 18
Crack growth length (mm)

0 2 4 6



j[ Reflective Crack Growth in Airfield Pavements

e Cracks and Joints in Underlying Pavement “Reflect” up to
the Surface due to Stress Concentration Effect

e Three “Modes” of Fracture are Possible.

o Objectives

« Providing better understanding of RC in airfield
pavements

» Being used to assist in development of reflective
cracking test at National Airport Pavement Test Facility
(NAPTF)




Reflective Crack on Airfield Pavement

0.08 =

-
Ne-
A

A
K
/
A
o

0.05 P
0.04
0.03 e—o K, GFEM ref.
+— K GFEM®'
— K,GL-FEM
0.02
0 0.5 1 15

(b) Local domain (c) Reflective crack surface
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Transition: Non-intrusive implementation in Abaqus
Parallel Computation of Enrichment Functions

Enrichment Functions for Confined Plasticity Problems
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j[ Non-Intrusive Implementation in Existing FEM Codes

e Different solvers can be used to solve ANV
coarse and fine-scale problems GFEM Code A%{g&{é}

Commercial FEM Code  Global solution
BC for local prob.

Local solution

Global-local enrichment
Pseudo loads

Pseudo solutions

Initial global solution
Uncracked domain

*with J. Pereira, P. Gupta, Enriched global solution e
Compute quantities of interest N

J. Plews and T. Eason S



j[ Related Methods

= Krause R, Rank, E. Multiscale computations with a combination
of the h- and p-versions of the finite-element method. CMAME,
2003

= Bordas S, Moran B. Enriched finite elements and level sets for
damage tolerance assessment of complex structures, EFM, 2006

= Gendre L, Allix O, Gosselet P, Comte F. Non-intrusive and exact
global/local techniques for structural problems with local
plasticity. CM, 2009

= Gendre L, Allix O, Gosselet P. A two-scale approximation of the
Schur complement and its use for non-intrusive coupling.
IJNME, 2011
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Stiffened Panel with Surface Crack*

= Global Problem in Abaqus ~——— ~ 1~

Stiffeners

Crack radius r = 2mm

Global —"
L =300mm t=3mm TET10 in
b =20mm d =50 mm Abaqus
" _

with P. Gupta, J. Pereira and T. Eason



Stiffened Panel with Surface Crack
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I

Stiffened Panel with Surface Crack

25

20

Mode-I SIF along crack front

T T T T T T T T T T T T T T T T T

G—© GL-FEM, TET101G |
[3—E] TET10, Enriched global |

.........................................................................................................................................................................

15 ........................................................................................................................................................................
Number of enrichments = 441
10 | | | | | | | | | | | |
0 30 60 90 120 150 180
Crack Front Position, @ 59
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] 3-D Problems with Sharp Thermal Gradients*

* Global-local enrichments can be build for
other classes of problems

Boundary
conditions

' m ‘
Es%
\ Em

Enrichment
functions

Hp adapted local mesh

Initial/Enriched global problem

Enrichment of global FEM discretization
with local solution:

/ — 1
Pa = PaWloc

* with P. O'Hara and T. Eason



Parallel Computation of Enrichment Functions

Enrichment Functions for Confined Plasticity Problems
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Parallel Computation of Enrichment
Functions *

I

e A large number of small fine-scale problems can be created instead of a
single one

o No communication is involved in their parallel solution

Extract master-
local domain

SRR

e

. nodes with sub-

Locald domains local solutions
Tard g

2h )

s v,

]/
/ / /

A _axt! i = by

LA A { AN 3

i 3 N
T
‘

i Il“l] | i

Initial glObaI domain Sub-local prob|ems Global domain enriched
with sub-local solutions

Lot Create sub- 1 Enrich global :

s

v

480 fine-scale problems created

*with D.-J. Kim and N. Sohb o



I

Master-Sub Local Problem Approach

= KEY IDEA: Subdivide large local domains into smaller ones
while keeping compatibility between local meshes.

1
|

| | I ]

i | :

I_ B ] Global domain

\ 4 A\ 4

Refine master-local domain

Extract master-local domain /

Create sub-local problems Enrich global domain with sub-

local problem solutions
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j[ Mechanical Manifold with Multiple Cracks

 Eight crack fronts and master-local problems
* 983 sub-local problems solved in parallel

e Comparable DNS model has 1,605,960 dofs

6th master-local
domain

4th crack /'

/ 3rd crack
¥ 4
[—> X

3D mesh courtesy of Abaqus

5th master-local
domain

Top View and Boundary Conditions
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][ Mechanical Manifold with Multiple Cracks

e Eight crack fronts and master-local problems
* 983 sub-local problems solved in parallel

7th master-local
1st master-local 3rd master-local domain
: domain

domain

1st crack 2nd crack 5th crack

Front View
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][ Mechanical Manifold with Multiple Cracks

e Eight crack fronts and master-local problems
* 983 sub-local problems solved in parallel

8th master-local 4th master-local 2nd master-local
domain domain

L

2nd crack 1st crack

6th crack
Back View
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j[ Mechanical Manifold with Multiple Cracks

e Parallel performance on a shared memory machine
(NUMA architecture)

Number of processors

CPU time (s)

Parallel efficiency

Speed-up

o e S

16
18
20
32

1537.4
778.1
392.1
198.3
101.1

92.3
86.3
66.4

N/A

0.988
0.980
0.969
0.951
0.926
0.891
0.724

N/A
1.976
3.921
7.752
15.214
16.666
17.823
23.161

Parallel Efficiency

1.2 4 35
- 30
1.0 E'ID'D ...........................................................................
-------- [ R
D-.'D"-D
T, 425
0.8 - |
g
/ q20
0.6 _n _3
M 8
—415 &
1)
0.4 —®— Speed-up: Descend sort
Linear Speed-up - 10
0.2+ ---0--- Efficiency: Descend sort- §
-------- Perfect efficiency
0.0 T T T T T T 0
0 5 10 15 20 25 30 35
Number of Processors
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Enrichment Functions for Confined Plasticity Problems
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GFEM?Y for Nonlinear Fracture Mechanics

Local Problem

“Initial Global Problem
Problem

Key Properties:
Uses available information at a simulation step to build approximation spaces for the next step

Uses coarse FEM meshes; solution spaces of much reduced dimension than in the FEM

Two-way information transfer between scales; account for interactions among scales
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3-D Beam with a Crack

RN E Y,

260
y 60
A ”22
ITTTTT1T7/ AN
g 220 §
Z \S Method | Number of DOFs
GFEM® 9,216
hp-GFEM 110,676

Local Problem
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3-D Beam with a Crack

Number of iterations

GFEM?

hp-GFEM

2

= W W WwWwWwWwWwWwWwWwwwwwwmNnND NN

= s = e © 00 = e O 0 W o O WO W W DN =
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Concluding Remarks

step 5 step 10 step 15

step O step 5 step 10 step 15

Available methods require AMR Multiscale Generalized FEM

= FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale
computations are intrinsically parallelizable; recycle coarse scale solution

= ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on
meshes with elements that are orders of magnitude larger than in the FEM

= STABLE: Uses single-field variational principles
= TRANSITION: Fully compatible with FEM
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Questions?

caduarte@uiuc.edu
http://netfiles.uiuc.edu/caduarte/www/




