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Motivation: US Air Force “Digital Twin” 

[Courtesy David Stargel, AFOSR] 

•  A Digital Twin is a computational model of a specific aircraft 
•  The model will be flown through same flight profiles as recorder for the 
actual aircraft  
•  The digital model will be used to determine when and where structural 
damage is likely to occur  
•  A Digital Twin must capture responses and interactions among a broad 
range of scales: From aircraft scale to highly localized damage in one of its 
components 
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Bridging Scales 

•  Thermal loads on hypersonic aircrafts 
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Dimensions not to scale 

•  Shock wave impingements cause large 
thermal gradients 

•  Experiments are difficult and limited 
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Multiscale Structural Problems 

125 µm 

Thermal loads on 
hypersonic aircrafts 
(dimensions not to scale) 
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Multiple cracks around a rivet hole 
[Sandia National Lab, 2005] 

•  Predictive simulations require modeling of phenomena spanning   
several spatial and temporal scales  

•  Advances in existing computational methods are needed  
•  Increasing computational power alone is not enough 
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation  

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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Early works on Generalized FEMs 

n  Babuska, Caloz and Osborn, 1994 (Special FEM). 
n  Duarte and Oden, 1995 (Hp Clouds). 
n  Babuska and Melenk, 1995 (PUFEM). 
n  Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). 
n  Duarte, Babuska and Oden, 1998 (GFEM). 
n  Belytschko et al., 1999 (Extended FEM). 
n  Strouboulis, Babuska and Copps, 2000 (GFEM). 

•  Basic idea:  

•  Use a partition of unity to build Finite Element shape functions 

•  Recent review paper  
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized 
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009 
 
“The XFEM and GFEM are basically identical methods: the name generalized finite 
element method was adopted by the Texas school in 1995–1996 and the name 
extended finite element method was coined by the Northwestern school in 1999.”  
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

•  GFEM shape function  = FE shape function   *  enrichment function  
                                            

Discontinuous 
enrichment 
[Moes et al.] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 
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GFEM Approximation for 3-D Cracks 

cloud or patch  

[Duarte and Oden 
1996] 
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Modeling Cracks with hp-GFEM 

•  Discontinuities modeled via enrichment functions, not  the FEM mesh 
•  Mesh refinement still required for acceptable accuracy 

"   = Nodes with discontinuous enrichments 
Von Mises stress 

[Duarte et al., International Journal Numerical Methods in Engineering, 2007] 

hp-GFEM 
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Bridging Scales with Global-Local 
Enrichment Functions 

Goal: 
•  Capture fine scale effects on coarse meshes at the global (structural) scale 

•  How to account for interactions among scales? 

Multiple cracks around a rivet hole 
[Sandia National Lab, 2005] 
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n  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

n  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

n  Use a coarse mesh enriched with Global-Local 
(G-L) functions 

Enrichment = Numerical 
solutions of BVP 

n  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions * 

* Duarte et al. 2005, 2007, 2008, 2010, 2011 
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Related Approaches 

n  Global-local FEM developed in the 1970’s 
n  Multiscale FEM of Hou and Wu, 1997  
n  Mesh-based handbook approach of Strouboulis et al., 2001 
n  Multiscale method of  Krause and Rank, 2003 
n  Two-scale XFEM for 2-D cracks, Cloirec et al., 2005 
n  Multiscale projection method, Loehnert and Belytschko, 2007 
n  Multiscale XFEM crack propagation, Guidault et al., 2008 
n  Spider-XFEM, Chahine et al., 2008 
n  Reduced basis enrichment for the XFEM, Chahine et al., 2008 
n  Local multigrid X-FEM for 3-D cracks, Rannou et al., 2009 
n  Method of Menk and Bordas for fracture of bi-materials, 2010 
n  Harmonic enrichments for 2-D branched cracks, Mousavi et al., 2011 
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n         solution of global problem at crack step k 

Global-Local Enrichments for 3-D Fractures 

ak 

Local problem with crack 
size ak+1 

n  Define local domain containing 
crack front at step k+1 

ak+1 = ak + ∆a 

  =  solution of global                 
problem with crack size ak 



16 

§  Solve local problem at step k using hp-GFEM 

Global-Local Enrichments for 3-D Fractures 

ak+1 = ak + ∆a 

Boundary conditions for local problems 
 provided by global solution: 

= hp-GFEM space 
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global-local 
enrichments 

•  Defining Step: Global space is enriched with local solutions 

Global-Local Enrichments for 3-D Fractures 

•   Procedure may be repeated: Update local BCs and enrichment functions 

ak+1 = ak + ∆a 

ak+1 = ak + ∆a 

  =  solution of global                 
problem with crack size ak+1 

BC for local  
problem 
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Global-Local Enrichments for 3-D Fractures 

§  Summary: Use solution of global problem at simulation k to build 
enrichment functions for step k+1 

BCs from step k 

Enrichment for step k+1 

Solve local 
problem using best 
available method 

•  Discretization spaces updated on-the-fly with global-local enrichment functions 

= G-L enrichment 
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b/t = h/t = 1, r/b=0.2 

•  Plate with a surface crack 

•    Crack not modeled in initial global problem  

•  Goal: Analyze cracked domain while keeping 
     global model as it is 

Solution of un-cracked global problem 

n  Initial (un-cracked) global problem 

Numerical Verification: Static Crack 
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Single local problem for entire crack 

Boundary 
conditions 

  = solution of global             
problem 

GFEM with G-L Enrichment Functions  

Boundary conditions for local problem 
provided by global solution: 

Other types of BCs can be used. E.g. Spring BC: 

n  Local problem: Define and solve with the 
GFEM a local problem containing crack 
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Enriched global problem 

Global-local 
enrichments 

•  Only 36 dofs added 
 
 = 0.2 % (out of 19,800) 

GFEM with G-L Enrichment Functions  

Enrichment of global FEM mesh 
with local solutions 

n  Enriched global problem 
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Normalized KI for GL-FEM and GFEM g-l w/ displacement BC in local problem

•  Relative error KI GFEM g-l  ≈ 1.2 % 

•  Relative error KI GL-FEM  ≈ 18.5 % 

φ

Numerical Verification: Static Crack 
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Local Problem and Spring BC 

: Local solution : Solution of initial global problem 

[Szabo and Babuska, 1991] 

: Displacement imposed at base of 
spring system  

Spring BC:  
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n  Sensitivity analysis to stiffness of spring boundary condition 

24 

l  Spring boundary conditions provide more accurate solutions 
l  Low sensitivity to spring constant: Robustness of method 

Spring stiffness 

1) Neumann BC: 

2) Spring BC: 

3) Dirichlet BC: 

Spring stiffness for spring BC 

Local Problem and Spring BC 
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Normalized KI for GL-FEM and GFEM g-l w/ spring BC in local problem 

•  Relative error KI hp-GFEM ≈ 0.4 % 

•  Relative error KI GFEM g-l  ≈ 0.5 % 

•  Relative error KI GL-FEM  ≈ 12.4 % 

φ

Local Problem and Spring BC 
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Robustness: Comparison with Global-Local 
Finite Element Method 

•   Interacting cracks 

2l = 4.0; V = 200.0; H = 10.0; t = 1.0 
 Poisson’s ratio = 0.0 

Young’s modulus = 200,000 

Analysis for varying B/H  
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Two interacting cracks 

G
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Enriched global problem 

Cracks NOT discretized in global domain 

Global-local FEM 

Initial global problem Local problems 

p = 1, 3 
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Comparison with GL-FEM  

- Normalized Mode I SIF.  p = 1 in the global problem  

B/H 
Mode I, p = 1 in the global problem  

SIF (GL-FEM) Rel. err(%) SIF (GFEM) Rel. err(%) 

0.2 0.4617 52.64 0.9354 4.05 

0.3 0.4625 55.69 0.9834 5.78 

0.4 0.4630 57.28 0.9987 7.86 

1.0 0.4604 58.51 1.0425 6.05 
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Comparison with GL-FEM  

- Improving BCs for local problems: p = 3 in global problem   

B/H 

Mode I, p = 3 in global problem   
 

SIF (GL-FEM) Rel. err(%) SIF (GFEM) Rel. err(%) 

0.2 0.4617 52.64 0.9807 -0.59 

0.3 0.4625 55.69 1.0517 -0.77 

0.4 0.4630 57.28 1.0902 -0.58 

1.0 0.4604 58.51 1.1125 -0.26 
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation 

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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Mathematical Analysis* 

Questions:   
•  What are the effects of inexact BCs at fine-scale problems? 
•  How to control them? 

GFEMgl:  Error controlled through 
global-local enrichments hp-GFEM/FEM GFEMgl 

*with V. Gupta 
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Discretization error Effect of inexact BC 

§  Global Error [Babuska and Melenk, 1996] 

§  Local error estimate 

A-Priori Error Estimate"

where 
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Strategy I: Multiple Global-Local Iterations 

BCs from step t 

Enrichment for step t+1 

Solve local 
problem 

§  Repeat Global-local-Global cycle 
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Strategy I: Multiple Global-Local Iterations  

Local Mesh 

§  30” x 30” x 1” edge-crack panel loaded with Mode I tractions 
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Strategy I: Multiple Global-Local Iterations  

§  GFEMgl can deliver same accuracy as hp-GFEM (DNS) 
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Strategy II: Buffer Zone in Local Domain 

Local Domain 
Boundary 

Buffer Zone 

Enrichment Zone 
(used in global 
problem) 

Boundary 
Conditions 
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n  Buffer Zone Sizes Considered 

Strategy II: Buffer Zone in Local Domain 

§  Enrichment Zone: 4” X 4” blue 
square region 

§  Buffer zone (in terms of number of 
layers of elements): 

•  Red  - 1 layer 

•  Yellow - 2 layers 

•  Green - 4 layers 

Not to scale 



38 

Strategy II: Buffer Zone in Local Domain 

•  BCs from global problem without a crack 
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Mathematical Analysis: Summary"

§  A-priori error estimates and convergence analyses show optimal convergence 
even on tough problems:"

§  Problems with strong singularities and/or numerical pollution effects"
§  Quality of global-local enrichments can be controlled through"

§  Global-local iteration cycles"
§  Buffer-zone in local domains"

Fine-scale problems with buffer zone"

Fine-scale problems w/out buffer zone"

Error level for FEM with AMR"
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Numerical integration scheme in the global elements enriched with local solution 

Numerical Integration Procedure 

ü  Use local mesh for integration. 

ü  Local mesh nested in global mesh: Greatly facilitate implementation. 
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Numerical integration scheme in the global elements enriched with local solution 

Numerical Integration Procedure 

ü  Use local mesh for integration. 

ü  Local mesh nested in global mesh: Greatly facilitate implementation. 
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation 

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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§  Fatigue Crack Growth: hp-GFEM and GFEMgl solutions 

§  Model dimensions  
mmt 10=mmLs 240=mmLt 260= 31=hao o45=β

§  hp-GFEM as reference solution 

Crack Propagation: Edge-Notched Beam 
with Slanted Crack * 

Movie 

* with J.P. Pereira and D.-J. Kim 
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Available Methods – hp-GFEM/FEM Two-Scale Generalized FEM – GFEMgl  

•  Mesh with elements that are orders of magnitude larger than in a FEM mesh   
•  Fully compatible with FEM 
•  Single field formulation: Does not introduce stability (LBB) issues 

Edge-Notched Beam with Slanted Crack 
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Experimental Results 

[Buchholz et al., 2004] 
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Computation of Solution at a Crack Step 

Computed by  
FEM code 
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Computation of Solution at a Crack Step 

(by FEM code) 
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Computation of Solution at a Crack Step 
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§  Bracket with half-penny shaped crack 

3-D mesh courtesy of Altair Engineering 

Computational Efficiency 

Movie 

ü  hp-GFEM as reference solution 

ü  Main goal: computational efficiency 
of GFEMgl for crack growth 
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§  Strain Energy 

§  ~ 60% computational cost reduction 

§  hp-GFEM and GFEMgl solutions show good 
agreement 

§  Computational cost analysis §  GFEMgl:  
    115,470 + 27 dofs (min)  
    115,470 + 84 dofs (max) 

§  hp-GFEM:  
    186,666 global dofs (min)  
    255,618 global dofs (max) 

Computational Efficiency 
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Reflective Crack Growth in Airfield Pavements 

l  Objectives 
l  Providing better understanding of RC in airfield 

pavements 
l  Being used to assist in development of reflective 

cracking test at National Airport Pavement Test Facility 
(NAPTF) 

•  Cracks and Joints in Underlying Pavement “Reflect” up to 
the Surface due to Stress Concentration Effect 

•  Three “Modes” of Fracture are Possible: 
 

52 
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Reflective Crack on Airfield Pavement 

Movie 

53 
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation 

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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Initial global solution  
Uncracked domain 

Commercial FEM Code 

Pseudo loads 

Local solution  
Global-local enrichment 

Global solution 
BC for local prob. 

GFEM Code 

Pseudo solutions 

Enriched global solution 
Compute quantities of interest 

Non-Intrusive Implementation in Existing FEM Codes 

•  Different solvers can be used to solve 
coarse and fine-scale problems 

*with J. Pereira, P. Gupta,  
J. Plews and T. Eason 
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Related Methods 

n  Krause R, Rank, E. Multiscale computations with a combination 
of the h- and p-versions of the finite-element method. CMAME, 
2003 

n  Bordas S, Moran B. Enriched finite elements and level sets for 
damage tolerance assessment of complex structures, EFM, 2006 

n  Gendre L, Allix O, Gosselet P, Comte F. Non-intrusive and exact 
global/local techniques for structural problems with local 
plasticity. CM, 2009 

n  Gendre L, Allix O, Gosselet P. A two-scale approximation of the 
Schur complement and its use for non-intrusive coupling. 
IJNME, 2011 
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Stiffened Panel with Surface Crack* 

mmL  300=

mmd  50=mmb  20=

mmt  3=

*with P. Gupta, J. Pereira and T. Eason 

§  Global Problem in Abaqus 

Crack radius r = 2mm  

Global  
TET10 in 
Abaqus 
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Stiffened Panel with Surface Crack 

§  Local Problem in hp-GFEM code 
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Stiffened Panel with Surface Crack 

Number of enrichments = 441 

Mode-I SIF along crack front 

59 
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•  Global-local enrichments can be build for 
  other classes of problems 
 

Initial/Enriched global problem 

Hp adapted local mesh 

Boundary 
conditions 

Enrichment of global FEM discretization 
with local solution: 

Enrichment 
functions 

3-D Problems with Sharp Thermal Gradients* 

* with P. O’Hara and T. Eason 
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation 

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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Parallel Computation of Enrichment 
Functions * 

•  A large number of small fine-scale problems can be created instead of a 
single one 

• No communication is involved in their parallel solution 

480 fine-scale problems created 

*with D.-J. Kim and N. Sohb 
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Master-Sub Local Problem Approach 

Extract master-local domain 

Refine master-local domain 

Create sub-local problems 

Global domain 

Enrich global domain with sub- 

 local problem solutions 

n  KEY IDEA: Subdivide large local domains into smaller ones 
while keeping compatibility between local meshes. 
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Mechanical Manifold with Multiple Cracks 

•  Eight crack fronts and master-local problems 
•  983 sub-local problems solved in parallel 
•  Comparable DNS model has 1,605,960 dofs  
 

Top View and Boundary Conditions 

3D mesh courtesy of Abaqus 
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Mechanical Manifold with Multiple Cracks 

•  Eight crack fronts and master-local problems 
•  983 sub-local problems solved in parallel 
 

Front View 
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Mechanical Manifold with Multiple Cracks 

•  Eight crack fronts and master-local problems 
•  983 sub-local problems solved in parallel 
 

Back View 
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Mechanical Manifold with Multiple Cracks 

•  Parallel performance on a shared memory machine 
(NUMA architecture)  
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Outline 

n  Motivation for Multiscale Structural Analysis 

n  Bridging Scales with the GFEM: 

§  Global-local enrichments 

§  Verification 

n  Mathematical Analysis and Implementation 

n  Applications and Computational Efficiency 

n  Transition: Non-intrusive implementation in Abaqus 

n  Parallel Computation of Enrichment Functions 

n  Enrichment Functions for Confined Plasticity Problems 
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GFEMgl for Nonlinear Fracture Mechanics 

•  Key Properties: 
•  Uses available information at a simulation step to build approximation spaces for the next step 
•  Uses coarse FEM meshes; solution spaces of much reduced dimension than in the FEM 
•  Two-way information transfer between scales; account for interactions among scales 
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3-D Beam with a Crack 
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3-D Beam with a Crack 
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Available methods require AMR Multiscale Generalized FEM  

§  FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale 
computations are intrinsically parallelizable; recycle coarse scale solution 

§  ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on 
meshes with elements that are orders of magnitude larger than in the FEM 

§  STABLE: Uses single-field variational principles  
§  TRANSITION: Fully compatible with FEM  

Concluding Remarks 



Questions? 

Support: 

caduarte@uiuc.edu 

http://netfiles.uiuc.edu/caduarte/www/ 


