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Motivation: Multiscale Structural Analysis 

•  Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to 
highly localized non-linear stress fields: 3-D finite element models with fine 
meshes are required 

•  Highly localized non-linear 3-D effects 

•  Most of the structure remains linear elastic 

•  3-D FEM: Large aspect ratio of elements may lead to  

     numerical instabilities 
Representative hypersonic skin panel 
[Sobotka et al., 2013] 
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Motivation: Multiscale Structural Analysis 

•  Hypersonic aircraft panels are assembled from sub-components using 
hundreds of fasteners or spot welds.  

•  Multiple spatial scales: Skin panel, stiffeners, spot welds. 

Panel 1 to Sub-Structure Attachment  
[AFRL-RB-WP-TR-2012-0280] 
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Motivation: Multiscale Structural Analysis 

•  Representation of a spot weld in the 
FEM requires detailed meshing. 

•  Hundreds of spot welds in one single 
panel: Not feasible to mesh them all. 

•  Multi-point constraint is used instead 
in the industry: This leads to mesh 
dependent solutions even far from 
spot welds! 

3-D Adaptive FEM mesh and von Mises 
stress in a lap joint with a spot weld 

•  Strategy:  

•  Formulate a two-scale GFEM for this 
class of problems; 

•  Keep global mesh coarse and resolve 
spot welds through enrichment 
functions computed in parallel.  



Outline 

n  Motivation 

n  Generalized finite element methods: Basic ideas 

n  Bridging scales with GFEM: 

§  Global-local enrichments for heat equation and nonlinear 

thermo-mechanical problems  

n  Numerical examples 

n  Conclusions  
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Generalized Finite Element Method 

•  GFEM is a Galerkin method with special test/trial space given by 

SGFEM = SFEM + SENR

Low order FEM space Enrichment space with functions related to the given problem 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

[Oden, Duarte & Zienkiewicz, 1996] 

X

↵
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�↵i(x) = '↵(x)L↵i(x)
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n  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

n  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

n  Use a coarse mesh enriched with Global-Local 
(GL) functions 

n  GFEMgl = GFEM with global-local enrichments 
Enrichment = Numerical 

solutions of BVP 

n  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions* 

*[Duarte et al. 2005] 
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Global-Local Enrichments for Heat Equation 

�
@u

@n
= ⌘ (ū� u) on �c

�
@u

@n
=

¯f on �f

u(x, 0) = u0(x) at t0

where u0(x) is the prescribed temperature field at time t = t0

⇢c
@u

@t
= r((x)ru) +Q(x, t) in ⌦

where u(x, t) is the temperature field, ⇢c is the volumetric heat capacity and

Q(x, t) is the internal heat source. (x) may be oscillatory.
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•  Goal: Solve with GFEMgl on the mesh shown below 

¯

f(x, t) = I0 ⇤ f(t) ⇤
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a = 50 b
Local material heterogeneity: 
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Global-Local Enrichments for Heat Equation 

Let un
G(x) 2 SGFEM,n

G (⌦) be the GFEM solution at time t = tn = n�t
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Global-Local Enrichments for Heat Equation 

n  Define local domain around the laser flux location at time t = tn+1  

Let un
G(x) 2 SGFEM,n

G (⌦) be the GFEM solution at time t = tn = n�t
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Global-Local Enrichments for Heat Equation 

§  Solve following local problem at time t = tn+1 using, e.g., hp-GFEM 

Find un+1
L 2 SGFEM,n+1

L (⌦L) such that, 8 wn+1
L 2 SGFEM,n+1

L (⌦L)
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global-local 
enrichments 

•  Defining Step: Global space is enriched with local solutions 

Global-Local Enrichments for Heat Equation 

BC for local  
problem 

Find un+1
G (x) 2 SGFEM,n+1

G (⌦) = SFEM
G +

�
'↵u

gl,n+1
↵ , ↵ 2 Igl

 

where ugl,n+1
↵ (x) = u↵u

n+1
L (x) 2 �n+1

↵ , u↵ 2 R

•  Discretization spaces updated on-the-fly with global-local enrichment functions 

�gl,n+1
↵ (x) = '↵(x) un+1

L (x)
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Time- or load-dependent GFEM space 

n  Updating local solutions at each step leads to time- or load-dependency of 
global-local enrichments and approximation spaces: 

 

n  An issue in: 
§  Transient problems: How to formulate time integration scheme?             

(O’Hara et al. 2010) 
§  Nonlinear problems: How to start Newton-Raphson iteration when solution 

space changes? Solution vector at load step (n) cannot be used with shape 
functions at load step (n+1)  

§  This is also an issue in  

§  analytically defined enrichment functions if they are added/deleted between 
time/load steps 

§  adaptive FEMs 

tn
tn+1

tn+2

�gl,n+1
↵ (x) = '↵(x) un+1

L (x)

Local solution 
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Time-dependent GFEM Spaces:  
Elasto-plastic materials 

n  Nonlinear solution based on incremental load steps: 

 

n  Elasto-plastic behavior: 

un+1 = un + �un+1 �(un+1) = �(un + �un+1)

�(un+1) = C : "m
n + �(�un+1)

Total stress is linear 
in previous converged 
solution 

Shape functions at 
previous time step 

Shape functions at 
current time step 

σ 

σy Elastic 
reload 

Elastic 
unload 

εp εe ε 
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Time-dependent GFEM Spaces:  
Elasto-plastic materials 

§  Solution vector at load step (n) cannot be used with shape functions at load 
step (n+1) 

§  Solve a linear elastic “predictor” problem to get the total solution at load step 
(n+1) using shape functions for step (n+1)    

§  Discretize using Current shape functions: n+1 step 
§  RHS uses: Current external loads and thermal strains, previous plastic 

strains 

Z
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Time-dependent GFEM Spaces:  
Elasto-plastic materials 

§  Solve a linear elastic “predictor” problem to get the total solution at load step 
(n+1) using shape functions for step (n+1)    

Current shape fns; current 
thermal, previous plastic 
strains 

Current shape functions 
and external load 

Ku
elas,n+1

du(1)

n+1

= fu
ext,n+1

� fu(0)

int,n+1

§  Yields predictor for total solution at initial Newton iteration 
§  Solution provides initial guess for Newton-Raphson at step (n+1) 
§  No interpolation of quantities between meshes like in adaptive FEM 
§  All information available at integration points which are NOT time-dependent 
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Numerical example: Laser-heated beam 
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GFEMgl (hp-adapted local problem) 

GFEMgl (coarse, structural-scale) 
Has special enrichment functions 
generated from local problem solutions 

hp-GFEM (locally refined) 
Direct FE Analysis (DFEA) 

n  Coupon beam subjected to transient Gaussian laser heating 
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Numerical example: Laser-heated beam 

n  Case 1: Stationary sharp heating, then cooling to room temperature 

GFEMgl 

hp-GFEM 

Temperature field Axial stress 

hp-GFEM mesh: GFEMgl mesh: 
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Numerical example: Laser-heated beam 

n  Case 1: Stationary sharp heating, then cooling to room temperature 

GFEMgl 

hp-GFEM 

Residual deformation, fully cooled 

GFEMgl captures localized 
temperature gradients, 
stresses, and residual 
deformations on a coarse-
scale, uniform mesh. 

GFEMgl mesh 
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Numerical example: Laser-heated beam 

n  GFEMgl vs. direct (hp-GFEM) analysis: 

§  Pointwise quantities at maximum load/temperature: 
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Numerical example: Laser-heated beam 

n  Case 2: Moving sharp flux 

GFEMgl 

hp-GFEM 

GFEMgl mesh hp-GFEM mesh 

Temperature Axial stress 
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Numerical example: Laser-heated beam 

n  GFEMgl vs. hp-GFEM solutions in time: Axial stress 
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Skin panel 

Stiffeners 

Spot welds 

GFEMgl Solution of a Hat-Stiffened Panel  

•  Stiffened panel with 168 spot welds* 

•  Represent spot welds using global-local enrichments 

•  Use a coarse mesh at global scale 

*Panel geometry and properties courtesy of Air Force Research Laboratory, OH, USA   

Ti-6242S properties: 

Property Value Units

E 17100 ksi

⌫ 0.325 –

�y 152.0 ksi

↵ 4.28 ⇥ 10

�6 �
F

�1

 0.8755

ft-lbf

s-in-

�
F

⇢c 14.04

ft-lbf

in

3

-

�
F
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10.25
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GFEMgl Solution of a Hat-Stiffened Panel  

Case 1: Mechanical load only: Uniform pressure on skin panel 

•  Linear elastic response 

•  Use symmetry properties to reduce problem size  

•  44 spot welds 

Problem dimensions (inches) 

t
skin

= 0.065 in

t
sti↵

= 0.032 in

R
spot

= 0.07 in
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GFEMgl Solution of a Hat-Stiffened Panel  

•  Global mesh with hexahedron elements: Spot welds are not 
discretized at this scale 

Dirichlet (blue) and Neumann (red) BCs 
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GFEMgl Solution of a Hat-Stiffened Panel  

Coarse global mesh 

•  Global problem provides BCs for local problems 

Local meshes w spot weld 

Local BCs 

Global-local 
enrichments 

•  Define and solve in parallel, a local problem 
for each spot weld 

•  Use local solutions as enrichments in global 
mesh (red nodes) 
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GFEMgl Solution of a Hat-Stiffened Panel  

Initial global problem, deformed shape and Von Mises stress 

•  GFEMgl results: Deformed configuration and von Mises stress 

Enriched global problem, deformed shape and Von Mises stress 
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GFEMgl Solution of a Hat-Stiffened Panel  

Von Mises Stress on the skin panel 

•  GFEMgl results: Von Mises stress 

Localized stress fields are well 
captured on a coarse global 
(HEX8) mesh  

Von Mises Stress on the stiffeners 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Case 2: Transient nonlinear thermo-mechanical analysis 

Transient local 
heating 

Parallel analysis of spot weld 
connections to predict 
stresses/plastic deformation 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Case 2: Boundary conditions 

A B 
C D 

Fixed against in-plane 
deformation 

Steady, uniform 
pressure + heat flux 

Springs 

Specified temperature 
along all edges 

✓̄ = 70 �F
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GFEMgl Solution of a Hat-Stiffened Panel  
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q  Localized, transient heat flux in Regions A and C: 

A B 
C D 

Temporal variation of 
peak (Gaussian) flux: 

Goal: Find critical location of a localized thermal load 

¯

f (x, t) =
I

0

2⇡a2

g(t)h(z) exp

 �(x � b)
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2a
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!
+ ¯
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GFEMgl Solution of a Hat-Stiffened Panel  

q  GFEMgl global + local meshes 
q  Same global mesh as before 

A B 
C D 

Coarse, global hexahedral 
mesh (capture structural 
geometry) 

Typical tetrahedral weld mesh 
(capture local stress 
concentrations/plasticity in welds) 

Tetrahedral local region mesh 
(capture sharp heat flux) 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Panel/stiffeners connected by series of 44 spot welds 

GFEMgl global + local problem sizes 

Estimated hp-GFEM/hp-FEM (direct analysis) 
problem size ≈ 4.5 million dofs 

Only ~1,000 extra global 
dofs from global–local 
enrichments (< 1% increase) 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Region A 

Von Mises stress 

Temperature 

Movie 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Region A 
q  Von Mises stress (panel + stiffeners) 

Local thermal stress 
effects concentrated in 
panel 

Movie 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Region C 

Von Mises stress 

Temperature 

Movie 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Region C 
q  Von Mises stress (panel + stiffeners) 

Local thermal stress effects 
in panel shielded by 
proximity to stiffeners 

Movie 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  Region C 
q  t = 2.0s (maximum thermal load) 

Temperature Localized spot weld stresses 
in vicinity of sharp heating 

von Mises stress 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  GFEMgl parallel performance 
o  Single time/load step—all solution phases (local + enriched 

global) considered 
o  Up to 24 CPUs 
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•  Good speedup on small 
number of threads 

•  Efficiency deteriorates 
as number of CPUs 
increases (expected) 

Number of local problems 
≈ number of threads—
difficult to achieve good 
load balance 
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GFEMgl Solution of a Hat-Stiffened Panel  

n  GFEMgl parallel performance 
o  Time spent in each solution phase vs. number of parallel threads: 
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scale ~uniformly—no 
bottlenecks! 
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Summary 

n  GFEMgl for large, nonlinear, coupled thermo-structural problems 
exhibiting phenomena spanning multiple spatial scales of 
interest 

n  Time-dependent global–local enrichments for capturing 
nonlinear (elasto-plastic) effects at disparate structural scales 

n  Fine-scale problems parallelizable; efficiently resolve localized 
plasticity at the fine scale, maintain coarse, global structural 
mesh 
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