Generalized finite element approaches for analysis of localized non-linear thermo-mechanical effects

To the memory of Prof. Ted Belytschko

C. Armando Duarte and Julia Plews
Dept. of Civil and Environmental Engineering
Computational Science and Engineering

Presented at the 8th International Workshop on Meshfree Methods for PDEs
Bonn, Germany, September, 2015
Motivation: Multiscale Structural Analysis

- Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to highly localized non-linear stress fields: 3-D finite element models with fine meshes are required.

- Highly localized non-linear 3-D effects
- Most of the structure remains linear elastic
- 3-D FEM: Large aspect ratio of elements may lead to numerical instabilities.

Representative hypersonic skin panel
[Sobotka et al., 2013]
Motivation: Multiscale Structural Analysis

- Hypersonic aircraft panels are assembled from sub-components using hundreds of fasteners or spot welds.
- Multiple spatial scales: Skin panel, stiffeners, spot welds.

Panel 1 to Sub-Structure Attachment
[AFRL-RB-WP-TR-2012-0280]
Motivation: Multiscale Structural Analysis

- Representation of a spot weld in the FEM requires detailed meshing.
- Hundreds of spot welds in one single panel: Not feasible to mesh them all.
- Multi-point constraint is used instead in the industry: This leads to mesh dependent solutions even far from spot welds!

Strategy:

- Formulate a two-scale GFEM for this class of problems;
- Keep global mesh coarse and resolve spot welds through enrichment functions computed in parallel.
Outline

- Motivation
- Generalized finite element methods: Basic ideas
- Bridging scales with GFEM:
 - Global-local enrichments for heat equation and nonlinear thermo-mechanical problems
- Numerical examples
- Conclusions
Generalized Finite Element Method

- GFEM is a Galerkin method with special test/trial space given by

\[
\mathcal{S}_{GFEM} = \mathcal{S}_{FEM} + \mathcal{S}_{ENR}
\]

Low order FEM space \hspace{1cm} Enrichment space with functions related to the given problem

\[
\mathcal{S}_{FEM} = \sum_{\alpha \in I_h} c_\alpha \varphi_\alpha, \quad c_\alpha \in \mathbb{R}
\]

\[
\mathcal{S}_{ENR} = \sum_{\alpha \in I^e \subset I_h} \varphi_\alpha \chi_\alpha; \quad \chi_\alpha = \text{span}\{L_{\alpha i}\}_{i=1}^{m_\alpha}
\]

\[
L_{\alpha i} \in \chi_\alpha(\omega_\alpha)
\]

Enrichment function \hspace{1cm} Patch space
Generalized Finite Element Method

\[S_{ENR} = \sum_{\alpha \in I_h^e \subset I_h} \varphi_\alpha \chi_\alpha; \quad \chi_\alpha = \text{span}\{L_{\alpha i}\}_{i=1}^{m_\alpha} \]

\[\phi_{\alpha i}(x) = \varphi_\alpha(x) L_{\alpha i}(x) \quad \sum_{\alpha} \varphi_\alpha(x) = 1 \]

- Allows construction of shape functions incorporating a-priori knowledge about solution

[Oden, Duarte & Zienkiewicz, 1996]
Bridging Scales with Global-Local Enrichment Functions*

- Enrichment functions computed from solution of local boundary value problems: Global-Local enrichment functions

- **Idea:** Use available numerical solution at a simulation step to build shape functions for next step (quasi-static, transient, non-linear, etc.)

- Enrichment functions are produced numerically on-the-fly through a global-local analysis

- Use a *coarse* mesh enriched with Global-Local (GL) functions

- \(\text{GFEM}^{\text{gl}} = \text{GFEM with global-local enrichments} \)

* [Duarte et al. 2005]
Global-Local Enrichments for Heat Equation

\[\rho c \frac{\partial u}{\partial t} = \nabla (\kappa(\mathbf{x}) \nabla u) + Q(\mathbf{x}, t) \quad \text{in} \quad \Omega \]

where \(u(\mathbf{x}, t) \) is the temperature field, \(\rho c \) is the volumetric heat capacity and \(Q(\mathbf{x}, t) \) is the internal heat source. \(\kappa(\mathbf{x}) \) may be oscillatory.

\[-\kappa \frac{\partial u}{\partial n} = \eta (\bar{u} - u) \quad \text{on} \quad \Gamma_c \]

\[-\kappa \frac{\partial u}{\partial n} = \bar{f} \quad \text{on} \quad \Gamma_f \]

\[u(\mathbf{x}, 0) = u^0(\mathbf{x}) \quad \text{at} \quad t^0 \]

where \(u^0(\mathbf{x}) \) is the prescribed temperature field at time \(t = t^0 \)
Domain Subjected to Sharp Laser Flux

- **Goal:** Solve with GFEMgl on the mesh shown below

\[
\bar{f}(\mathbf{x}, t) = I_0 \cdot f(t) \cdot \frac{1}{2\pi a^2} \cdot G(\mathbf{x}, b, a)
\]
\[
f(t) = 1 - \exp(-\gamma \cdot t)
\]
\[
G(\mathbf{x}, b, a) = \exp\left(\frac{-(x - b)^2}{2a^2}\right)
\]

Laser flux:

- Sharp (Gaussian), localized heat flux applied as shown

Convection BCs applied everywhere else

Local material heterogeneity:

\[
\kappa_a = 50 \kappa_b
\]
Global-Local Enrichments for Heat Equation

Let \(u^n_G(x) \in S^{GFEM,n}_G(\Omega) \) be the GFEM solution at time \(t = t^n = n\Delta t \)

Find \(u^n_G \in S^{GFEM,n}_G(\Omega_G) \) such that, \(\forall \ w^n_G \in S^{GFEM,n}_G(\Omega_G) \)

\[
\frac{\rho c}{\Delta t} \int_{\Omega} w^n_G u^n_G \, d\Omega + \int_{\Omega} (\nabla w^n_G)^T \kappa \nabla u^n_G \, d\Omega + \eta \int_{\Gamma_c} w^n_G u^n_G \, d\Gamma = 0
\]

\[
\frac{\rho c}{\Delta t} \int_{\Omega} w^n_G u^{n-1}_G \, d\Omega + \int_{\Gamma_f} f^n w^n_G \, d\Gamma + \eta \int_{\Gamma_c} \bar{u}^n w^n_G \, d\Gamma + \int_{\Omega} Q^n w^n_G \, d\Omega
\]
Global-Local Enrichments for Heat Equation

Let $u^n_G(x) \in S^{GFEM,n}_G(\Omega)$ be the GFEM solution at time $t = t^n = n\Delta t$

- Define local domain around the laser flux location at time $t = t^{n+1}$
Global-Local Enrichments for Heat Equation

- Solve following local problem at time $t = t^{n+1}$ using, e.g., hp-GFEM

Find $u_{L}^{n+1} \in S_{L}^{GFEM,n+1}(\Omega_{L})$ such that, $\forall w_{L}^{n+1} \in S_{L}^{GFEM,n+1}(\Omega_{L})$

$$
\int_{\Omega_{L}} (\nabla w_{L}^{n+1})^{T} \kappa \nabla u_{L}^{n+1} d\Omega + \eta \int_{\partial\Omega_{L} \setminus (\partial\Omega_{L} \cap \Gamma_{f})} w_{L}^{n+1} u_{L}^{n+1} d\Gamma \\
= \int_{\Omega_{L}} \bar{Q}^{n+1} w_{L}^{n+1} d\Omega + \int_{\partial\Omega_{L} \cap \Gamma_{f}} \bar{f}^{n+1} w_{L}^{n+1} d\Gamma \\
+ \eta \int_{\partial\Omega_{L} \setminus (\partial\Omega_{L} \cap \partial\Omega)} w_{L}^{n+1} u_{G}^{n} d\Gamma + \eta \int_{\partial\Omega_{L} \cap \Gamma_{c}} \bar{u}^{n+1} w_{L}^{n+1} d\Gamma
$$
Global-Local Enrichments for Heat Equation

• Defining Step: Global space is enriched with local solutions

\[\phi^{g1,n+1}_\alpha(x) = \varphi_\alpha(x) u^{n+1}_L(x) \]

Find \(u^{n+1}_G(x) \in S^{GFEM,n+1}_G(\Omega) = S^{FEM}_G + \{ \varphi_\alpha u^{g1,n+1}_\alpha, \alpha \in I^{g1} \} \)

where \(u^{g1,n+1}_\alpha(x) = u_\alpha u^{n+1}_L(x) \in \chi^{n+1}_\alpha, u_\alpha \in \mathbb{R} \)

• Discretization spaces updated on-the-fly with global-local enrichment functions
Time- or load-dependent GFEM space

- Updating local solutions at each step leads to time- or load-dependency of global-local enrichments and approximation spaces:

\[\phi^{gl,n+1}_\alpha(x) = \varphi_\alpha(x) u^{n+1}_L(x) \]

- An issue in:
 - **Transient problems**: How to formulate time integration scheme? (O’Hara et al. 2010)
 - **Nonlinear problems**: How to start Newton-Raphson iteration when solution space changes? Solution vector at load step (n) cannot be used with shape functions at load step (n+1)
 - This is also an issue in
 - analytically defined enrichment functions if they are added/deleted between time/load steps
 - adaptive FEMs
Time-dependent GFEM Spaces: Elasto-plastic materials

- Nonlinear solution based on incremental load steps:
 \[\mathbf{u}_{n+1} = \mathbf{u}_n + \Delta \mathbf{u}_{n+1} \]
 \[\sigma(\mathbf{u}_{n+1}) = \sigma(\mathbf{u}_n + \Delta \mathbf{u}_{n+1}) \]

 Shape functions at previous time step
 Shape functions at current time step

- Elasto-plastic behavior:
 \[\sigma(\mathbf{u}_{n+1}) = C : \varepsilon^m_n + \sigma(\Delta \mathbf{u}_{n+1}) \]

 Total stress is **linear** in previous converged solution

![Graph showing stress-strain relationship](image)
Time-dependent GFEM Spaces: Elasto-plastic materials

- Solution vector at load step (n) cannot be used with shape functions at load step (n+1)
- Solve a linear elastic “predictor” problem to get the total solution at load step (n+1) using shape functions for step (n+1)

\[
\int_{\Omega^u} \varepsilon(u^{(1)}_{n+1}) : C : \varepsilon(\delta u) \, d\Omega + \eta \int_{\Gamma^u} u^{(1)}_{n+1} \cdot \delta u \, d\Gamma = \int_{\Gamma^t} t_{n+1} \cdot \delta u \, d\Gamma \\
+ \eta \int_{\Gamma^u} \bar{u}_{n+1} \cdot \delta u \, d\Gamma + \int_{\Omega^u} \left(\varepsilon_n^{(p)} + \varepsilon_n^{(\theta)} \right) : C : \varepsilon(\delta u) \, d\Omega
\]

- Discretize using Current shape functions: n+1 step
- RHS uses: Current external loads and thermal strains, previous plastic strains

\[
u^{(1)}_{n+1} = \bar{N}^u_{n+1} d^{u(1)}_{n+1} \\
\varepsilon^{(1)}_{n+1} = \bar{B}^u_{n+1} d^{u(1)}_{n+1}
\]
Time-dependent GFEM Spaces: Elasto-plastic materials

- Solve a *linear elastic* “predictor” problem to get the total solution at load step (n+1) using shape functions for step (n+1)

\[
K_{elas,n+1}^{u} d_{n+1}^{u(1)} = f_{ext,n+1}^{u} + f_{int,n+1}^{u(0)}
\]

- Yields predictor for **total solution** at initial Newton iteration
- Solution provides initial guess for Newton-Raphson at step (n+1)
- No interpolation of quantities between meshes like in adaptive FEM
- *All information available at integration points which are NOT time-dependent*
Numerical example: Laser-heated beam

- Coupon beam subjected to transient Gaussian laser heating

- **hp-GFEM** (locally refined)
 - Direct FE Analysis (DFEA)

- **GFEMgl** (coarse, structural-scale)
 - Has special enrichment functions generated from local problem solutions

- **GFEMgl** (hp-adapted local problem)
Numerical example: Laser-heated beam

- **Case 1:** Stationary sharp heating, then cooling to room temperature
Numerical example: Laser-heated beam

- **Case 1:** Stationary sharp heating, then cooling to room temperature

GFEM\(^{gl}\) captures localized temperature gradients, stresses, and residual deformations on a coarse-scale, uniform mesh.
Numerical example: Laser-heated beam

- GFEM^gl vs. direct (hp-GFEM) analysis:
 - Pointwise quantities at maximum load/temperature:

 ![Graphs showing temperature and Von Mises stress vs. position.]
Numerical example: Laser-heated beam

- **Case 2**: Moving sharp flux

![Diagram showing GFEM and hp-GFEM meshes with temperature and axial stress comparison]
Numerical example: Laser-heated beam

- GFEMgl vs. \textit{hp}-GFEM solutions in time: Axial stress

\begin{itemize}
 \item \(t = 0.25 \)
 \item \(t = 3.0 \)
 \item \(t = 5.0 \)
 \item \(t = 8.0 \)
\end{itemize}
GFEMg_l Solution of a Hat-Stiffened Panel

- Stiffened panel with 168 spot welds*

Represent spot welds using global-local enrichments
- Use a coarse mesh at global scale

*Panel geometry and properties courtesy of Air Force Research Laboratory, OH, USA

Ti-6242S properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>17100</td>
<td>ksi</td>
</tr>
<tr>
<td>ν</td>
<td>0.325</td>
<td>–</td>
</tr>
<tr>
<td>σ_y</td>
<td>152.0</td>
<td>ksi</td>
</tr>
<tr>
<td>α</td>
<td>4.28×10^{-6}</td>
<td>°F$^{-1}$</td>
</tr>
<tr>
<td>κ</td>
<td>0.8755</td>
<td>$\frac{\text{ft-lbf}}{\text{s-in} \cdot \degree \text{F}}$</td>
</tr>
<tr>
<td>ρc</td>
<td>14.04</td>
<td>$\frac{\text{ft-lbf}}{\text{in}^3 \cdot \degree \text{F}}$</td>
</tr>
</tbody>
</table>
Case 1: Mechanical load only: Uniform pressure on skin panel

- Linear elastic response
- Use symmetry properties to reduce problem size
- 44 spot welds
GFEM$^\text{gl}$ Solution of a Hat-Stiffened Panel

- Global mesh with hexahedron elements: Spot welds are *not* discretized at this scale

Dirichlet (blue) and Neumann (red) BCs
GFEM$_{gl}$ Solution of a Hat-Stiffened Panel

- Global problem provides BCs for local problems
- Define and solve in **parallel**, a local problem for each spot weld
- Use local solutions as enrichments in global mesh (red nodes)
GFEMg_l Solution of a Hat-Stiffened Panel

- GFEMg_l results: Deformed configuration and von Mises stress

Enriched global problem, deformed shape and Von Mises stress
GFEMg_l Solution of a Hat-Stiffened Panel

- GFEMg_l results: Von Mises stress

Localized stress fields are well captured on a coarse global (HEX8) mesh

Von Mises Stress on the skin panel

Von Mises Stress on the stiffeners
Case 2: Transient nonlinear thermo-mechanical analysis

Parallel analysis of spot weld connections to predict stresses/plastic deformation
Case 2: Boundary conditions

- Steady, uniform pressure + heat flux
 - $\bar{p}_0 = 2.0$ psi
 - $\bar{f}_0 = 5.0 \text{ ft-lbf/s-in}^2$

- Fixed against in-plane deformation
 - $\bar{u}_x = 0$
 - $\bar{u}_z = 0$

- Specified temperature along all edges
 - $\bar{\theta} = 70^\circ F$

- Springs
Goal: Find critical location of a localized thermal load

- *Localized, transient heat flux* in Regions A and C:

\[
\bar{f}(x, t) = \frac{I_0}{2\pi a^2}g(t)h(z)\exp\left(-\frac{(x - b)^2}{2a^2}\right) + \bar{f}_0
\]

Temporal variation of peak (Gaussian) flux:
GFEMgl Solution of a Hat-Stiffened Panel

- GFEMgl global + local meshes
- Same global mesh as before

Coarse, global hexahedral mesh (capture structural geometry)

Typical tetrahedral weld mesh (capture local stress concentrations/plasticity in welds)

Tetrahedral local region mesh (capture sharp heat flux)
GFEMgl Solution of a Hat-Stiffened Panel

- Panel/stiffeners connected by series of 44 spot welds

GFEMgl global + local problem sizes

<table>
<thead>
<tr>
<th>Problem size (dofs)</th>
<th>Heat transfer</th>
<th>Thermoplasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial global</td>
<td>27,888</td>
<td>209,160</td>
</tr>
<tr>
<td>Enriched global (A)</td>
<td>28,480</td>
<td>210,936</td>
</tr>
<tr>
<td>Enriched global (C)</td>
<td>28,436</td>
<td>210,804</td>
</tr>
<tr>
<td>Local Full spot weld</td>
<td>7,966</td>
<td>95,592</td>
</tr>
<tr>
<td>Half-spot weld</td>
<td>4,179</td>
<td>50,148</td>
</tr>
<tr>
<td>Region A</td>
<td>5,807</td>
<td>69,684</td>
</tr>
<tr>
<td>Region C</td>
<td>5,965</td>
<td>71,580</td>
</tr>
</tbody>
</table>

Only \(~1,000\) extra global dofs from global–local enrichments (< 1% increase)

Estimated \(hp\)-GFEM/\(hp\)-FEM (direct analysis) problem size \(\approx 4.5\) million dofs
GFEMgl Solution of a Hat-Stiffened Panel

- **Region A**

 Von Mises stress

 Temperature

 Movie
GFEMg Solution of a Hat-Stiffened Panel

- **Region A**
 - Von Mises stress (panel + stiffeners)

Local thermal stress effects concentrated in panel

Movie
GFEMg_l Solution of a Hat-Stiffened Panel

- Region C

Von Mises stress

Temperature

Movie
GFEMgl Solution of a Hat-Stiffened Panel

- **Region C**
 - Von Mises stress (panel + stiffeners)

Local thermal stress effects in panel shielded by proximity to **stiffeners**

![Movie](image-url)
Region C
- $t = 2.0s$ (maximum thermal load)

Temperature

Localized spot weld stresses in vicinity of sharp heating

von Mises stress
GFEMgl Solution of a Hat-Stiffened Panel

- **GFEMgl parallel performance**
 - Single time/load step—all solution phases (local + enriched global) considered
 - Up to 24 CPUs

- Good speedup on small number of threads
- Efficiency deteriorates as number of CPUs increases (expected)

Number of local problems \(\approx\) number of threads—difficult to achieve good load balance
GFEMgl Solution of a Hat-Stiffened Panel

- GFEMgl parallel performance
 - Time spent in each solution phase vs. number of parallel threads:

![Graph showing time spent in each solution phase vs. number of threads.]

Total solution wall time

Fraction of total solution time

Wall times spent in enriched/local problems scale \(\sim \) uniformly—no bottlenecks!

- Enriched global assembly/solution
- Local assembly/solution
Summary

- GFEMg_l for large, nonlinear, coupled thermo-structural problems exhibiting phenomena spanning multiple spatial scales of interest

- Time-dependent global–local enrichments for capturing nonlinear (elasto-plastic) effects at disparate structural scales

- Fine-scale problems parallelizable; efficiently resolve localized plasticity *at the fine scale*, maintain coarse, global structural mesh
Acknowledgements

Jongheon Kim, Haoyang Li and Patrick O’Hara

caduarte@illinois.edu

http://gfem.cee.illinois.edu/