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][ Motivation: Multiscale Structural Analysis

« Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to
highly localized non-linear stress fields: 3-D finite element models with fine
meshes are required
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« Highly localized non-linear 3-D effects
« Most of the structure remains linear elastic
« 3-D FEM: Large aspect ratio of elements may lead to

Representative hypersonic skin panel o s
[Sobotka et al., 2013] numerical instabilities



j[ Motivation: Multiscale Structural Analysis

« Hypersonic aircraft panels are assembled from sub-components using
hundreds of fasteners or spot welds.

« Multiple spatial scales: Skin panel, stiffeners, spot welds.

Fastener Locations

ote, overlapping surfaces
cause display to mix colors

Panel 1 to Sub-Structure Attachment
[AFRL-RB-WP-TR-2012-0280]



][ Motivation: Multiscale Structural Analysis

« Representation of a spot weld in the
FEM requires detailed meshing.

« Hundreds of spot welds in one single
panel: Not feasible to mesh them all.

« Multi-point constraint is used instead
in the industry: This leads to mesh
dependent solutions even far from VonMises
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« Formulate a two-scale GFEM for this
class of problems;

3-D Adaptive FEM mesh and von Mises
 Keep global mesh coarse and resolve stress in a lap joint with a spot weld

spot welds through enrichment
functions computed in parallel.



Motivation

Generalized finite element methods: Basic ideas

Bridging scales with GFEM:

Global-local enrichments for heat equation and nonlinear

thermo-mechanical problems
Numerical examples

Conclusions




Generalized Finite Element Method

« GFEM is a Galerkin method with special test/trial space given by

SGFEM =SFEM +SENR

Low order FEM space Enrichment space with functions related to the given problem
SFEM — E CaPa Ca € R
aEly,

SENR — Z PaXas Xa — Span{Lai}?ial
OéEIfLCIh

Lonj S X« (wa)

Enrichment function Patch space
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Generalized Finite Element Method

. _ mq
SEAU%:: E: PaXas ;Xa‘—Span{Laiizl
OﬁEI;iCIh

¢O‘i(gj) — P (Z)Laz’ (517) za:goa(a:) =1

Linear FE shape

function « Allows construction of shape functions
\ incorporating a-priori knowledge about solution

Enrichment

function > | . .
Discontinuous
enrichment
[Moes et al.,
1999]

GFEM shape

function

[Oden, Duarte & Zienkiewicz, 1996]
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Bridging Scales with Global-Local
Enrichment Functions*

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function

9
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GFEM shape
function

Enrichment = Numerical
solutions of BVP

>|<[Duarte et al. 2005]

Idea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

Enrichment functions are produced numerically
on-the-fly through a global-local analysis

Use a coarse mesh enriched with Global-Local
(GL) functions

GFEM¢Y = GFEM with global-local enrichments
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][ Global-Local Enrichments for Heat Equation

pc% = V(k(x)Vu) + Q(x,t) in

where u(x,t) is the temperature field, pc is the volumetric heat capacity and
Q(x,t) is the internal heat source. k(x) may be oscillatory.

—m%:n(ﬂ—u) on I,
ou  —
—/1% =f on I

u(z,0) = u’(x) at ¢

where u’(x) is the prescribed temperature field at time ¢ = tY
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Domain Subjected to Sharp Laser Flux

« Goal: Solve with GFEM9 on the mesh shown below

Local material heterogeneity:

k; = 50«

Sharp (Gaussian), localized heat flux

Laser flux: applied as shown

F(a,t) = Io % f(t) ¥ —— % G(=, b, a)

2ma?
f(t) =1—exp(—yx*t) 6
2 . \\\\\\\“\“\\\W\\\\
6sa) = e “E5) g \‘“\\“\“\“\\\\\\\\\\w\\\Q{{\\t\\\m‘\u\\\\\\\\\\\\\\

Convection BCs applied everywhere else
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I

Let ug(x) € SGFEM’"(Q) be the GFEM solution at time ¢t = t" = nAt

Global-Local Enrichments for Heat Equation

i\‘i\‘“ﬁ‘i‘i“

BT N

Find v € S "™ (Qg) such that, ¥ wk € Sg' " (Qa)

(Vw2)" kVukdQ + 77/ weuedl =

pc
wud§2+/
A GY%GE r

Q

Z—i Wl 1dQ—I—/ f”wgdr—kn/
Ly

u"wgdf—l—/ Q" wedS)
T, Q
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Global-Local Enrichments for Heat Equation

Let ug(x) € SgFEM’n(Q) be the GFEM solution at time t = t" = nAt

\‘N

LN NN

= Define local domain around the laser flux locatioa at time t = t7*1

- AN /
e Xy

L 7N
‘lk‘l? ) &'«m\y
i 87 El”\ 2K
NP
= 5t ANVINY,
| o
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j[ Global-Local Enrichments for Heat Equation

= Solve following local problem at time t = t"*! using, e.qg., hp-GFEM

;;

P

AN

S

NANZNZN
SO

V

N
NN
‘gﬂﬂm

/ (VwZH)T VU dO + 77/ w1 dr
Qr,

o, 8QLﬁFf)
[ @ |
QL 8QLﬂF

[/ +1wz+1dF
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Global-Local Enrichments for Heat Equation

* Defining Step: Global space is enriched with local solutions

global-local
enrichments

O‘ ‘0‘
,,, ' '.0.0‘ |‘! TS
'I’l "‘0‘ ‘ “““

BC for local
problem

B (x) = o) u"“(x)

Find Un+1($) c SgFEM,n—I—l(Q) _ SZEM 4+ {Spauil’n—i_la = Igl}

where u"" T (x) = u u? T (x) € X2, u, €R

« Discretization spaces updated on-the-fly with global-local enrichment functions
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j[ Time- or load-dependent GFEM space

= Updating local solutions at each step leads to time- or load-dependency of
global-local enrichments and approximation spaces:

gln+1
a

(x) = @a(x) Ui (x)

NANNAN

Local solution

= An issue in:

Transient problems: How to formulate time integration scheme?
(O'Hara et al. 2010)

Nonlinear problems: How to start Newton-Raphson iteration when solution

space changes? Solution vector at load step (n) cannot be used with shape
functions at load step (n+1)

This is also an issue in

. analytically defined enrichment functions if they are added/deleted between
time/load steps

. adaptive FEMs
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Time-dependent GFEM Spaces:
Elasto-plastic materials

= Nonlinear solution based on incremental load steps:

U,y U, AUy
Shape functions at Shape functions at
previous time step current time step

= Elasto-plastic behavior:

o(u,) 5C: S;T o (A, )

/

Total stress is linear
in previous converged
solution

o(W,p1) = o(U, + Au,y )

Elastic ,/

/
unioad ,/ Elastic
,// reload
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Time-dependent GFEM Spaces:
Elasto-plastic materials

= Solution vector at load step (n) cannot be used with shape functions at load
step (n+1)

= Solve a linear elastic “predictor” problem to get the total solution at load step
(n+1) using shape functions for step (n+1)

/Qe( 57,421) C:s(5u)dQ—|—77/ u(l) coudl = / nt1 - oudl

—|—77/ Upg 5udF—|—/.=.n+1 C: g(du)dQ2
Fu 'l.l

= Discretize using Current shape functions: n+1 step
= RHS uses: Current external loads and thermal strains, previous plastic

strains
(1) _NJu du(l)
n+1 n+1"n+1
(1) _B du(l)

n+1>"n+l
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Time-dependent GFEM Spaces:
Elasto-plastic materials

= Solve a linear elastic “predictor” problem to get the total solution at load step
(n+1) using shape functions for step (n+1)

u u(l) u(0)
Kelas,n+ 1 dn+1 @ fint,n+1

Current shape functions \ Current shape fns; current
and external load thermal, previous plastic
strains

Yields predictor for total solution at initial Newton iteration

Solution provides initial guess for Newton-Raphson at step (n+1)

No interpolation of quantities between meshes like in adaptive FEM

All information available at integration points which are NOT time-dependent
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j[ Numerical example: Laser-heated beam

= Coupon beam subjected to transient Gaussian laser heating

80000 ——

70000 -

hp-GFEM (locally refined) _womol

2
£ 50000 -
=}
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][ Numerical example: Laser-heated beam

= Case 1: Stationary sharp heating, then cooling to room temperature

hp-GFEM mesh:

GFEMY

hp-GFEM

Temperature field Axial stress
26



j[ Numerical example: Laser-heated beam

= Case 1: Stationary sharp heating, then cooling to room temperature

GFEMd
GFEM?d' mesh
GFEMY captures localized
temperature gradients,
stresses, and residual
hp-GFEM deformations on a coarse-

scale, uniform mesh.

Residual deformation, fully cooled
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= GFEMY vs, direct (hp-GFEM) analysis:

Pointwise quantities at maximum load/temperature:

I I I I I I
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j[ Numerical example: Laser-heated beam
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: Laser-heated beam

Numerical example

]

Axial stress
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Numerical example: Laser-heated beam

= GFEMY vs. hp-GFEM solutions in time: Axial stress

x10* x10*
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Stiffeners
« Ti-6242S properties:

Property Value  Units
E 17100 ksi
v 0.325 -
s o 1520  ksi
" 7 o 428x10° °F
= AN e K 0.8755 bt
/t. \\ > Skin panel S-1n-
z X Spot welds " oc 14.04 iitgl_le

» Represent spot welds using global-local enrichments
« Use a coarse mesh at global scale

*Panel geometry and properties courtesy of Air Force Research Laboratory, OH, USA
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GFEM? Solution of a Hat-Stiffened Panel

Case 1: Mechanical load only: Uniform pressure on skin panel
 Linear elastic response

« Use symmetry properties to reduce problem size

* 44 spot welds

tskin Z (0.065 1
tstif I=0.0321m

Rspot = 0.07wn

Problem dimensions (inches)
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GFEM¢Y Solution of a Hat-Stiffened Panel

Global mesh with hexahedron elements: Spot welds are not
discretized at this scale

Dirichlet (blue) and Neumann (red) BCs
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GFEMY Solution of a Hat-Stiffened Panel

« Global problem provides BCs for local problems

« Define and solve in parallel, a local problem
for each spot weld

» Use local solutions as enrichments in global

Local BCs

¥ ;:13
Glok

e
J -E.E!

al-local
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GFEMY Solution of a Hat-Stiffened Panel

« GFEMY results: Deformed configuration and von Mises stress

VonMises

E2.000e+04

—15000

E] e+

—:5000

E] .682e-07

Enriched global problem, deformed shape and Von Mises stress
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GFEMY Solution of a Hat-Stiffened Panel

« GFEMY results: Von Mises stress

Localized stress fields are well 1.5e+04E°”M‘SGS
captured on a coarse global oo
(HEX8) mesh 8000

4000

6.55E

Von Mises Stress on the stiffeners

] Se+047Vonl\/lises

112000

18000
E4000

(’).55E

Von Mises Stress on the skin panel
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GFEMY Solution of a Hat-Stiffened Panel

= Case 2: Transient nonlinear thermo-mechanical analysis

Parallel analysis of spot weld
connections to predict
stresses/plastic deformation

Transient local
heating



. GFEMY Solution of a Hat-Stiffened Panel

= Case 2: Boundary conditions

Steady, uniform
pressure + heat flux

Springs

Fixed against in-plane
deformation

Specified temperature
along all edges

6 =70°F
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. GFEMY Solution of a Hat-Stiffened Panel

a GFEMY global + local meshes
o Same global mesh as before

Coarse, global hexahedral
mesh (capture structural
geometry)

P
KA FL
\“fé"- 7
T F
S

S AN

~ 75z
A‘A‘V‘%@ =

(capture local stress
concentrations/plasticity in welds)

SEK T
SESSES T
T

SESH

—
e
Tetrahedral local region mesh

(capture sharp heat flux)




GFEMY Solution of a Hat-Stiffened Panel

= Panel/stiffeners connected by series of 44 spot welds
GFEM¢Y global + local problem sizes

Problem size (dofs)

Heat transfer Thermoplasticity

Initial global 27,888 209,160 Only ~1,000 extra global
Enriched global (A) 28,480 210,936 | dofs from global-local
Enriched global (C) 28,436 210,804 | enrichments (< 1% increase)
Local Full spot weld 7,966 05,592

Half-spot weld 4,179 50,148

Region A 5,807 69,684

Region C 5,965 71,580

Estimated hp-GFEM/hp-FEM (direct analysis)
problem size = 4.5 million dofs
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GFEM¢Y Solution of a Hat-Stiffened Panel

= Region A

Von Mises stress

Temperature

Movie
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GFEM¢Y Solution of a Hat-Stiffened Panel

= Region A
o Von Mises stress (panel + stiffeners)

Local thermal stress
effects concentrated in
panel

onMises
2.617e+05
E2‘49+5

18645

12645

E6e+4
—0.000e+00

Movie
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GFEM9 Solution of a Hat-Stiffened Panel

= Region C

Von Mises stress

Temperature
5.319e+03
EASOO
%3600
—22700

Temperature

1800

EQOO
7.000e+01

Movie
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GFEM¢Y Solution of a Hat-Stiffened Panel

= Region C
o Von Mises stress (panel + stiffeners)

Local thermal stress effects
in panel shielded by
proximity to stiffeners

onMises

2.617e+05
E2.Ae+5

18645

—126145

Eée+4
0.000e+00

Movie

50



GFEM¢Y Solution of a Hat-Stiffened Panel

= Region C
o t=2.0s (maximum thermal load) @ -

von Mises stress

Temperature Localized spot weld stresses

in vicinity of sharp heating
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= GFEMY parallel performance

- Single time/load step—all solution phases (local + enriched

global) considered
- Up to 24 CPUs

« Good speedup on small
number of threads

« Efficiency deteriorates
as number of CPUs
increases (expected)

Number of local problems
~ number of threads—
difficult to achieve good
load balance

o
=
o]
[}
9}
[
n

25

20

15

10

GFEM¢Y Solution of a Hat-Stiffened Panel

—  Linear speedup
@-@® GFEM?! speedup
-O GFEM? efficiency

16
Number of threads

20

24

1.0

0.8

e
o

o
~

0.2

0.0

Efficiency



GFEMY Solution of a Hat-Stiffened Panel

= GFEM¢Y parallel performance

- Time spent in each solution phase vs. number of parallel threads:

Total solution
wall time

Fraction of total
solution time

Wall times spent in
enriched/local problems
scale ~uniformly—no
bottlenecks!

—~

Wall time (s

Ratio of total wall time

5000

4000 -

3000

2000

1000 -

0.8 |-

0.6 |

04 |

02|

0.0

T T
Il 1 ocal heat transfer
I Global heat transfer

I [ ocal thermoplasticity -

Il Global thermoplasticity

I.---
4 8 12 16 20

Number of threads

24

4 8 12 16 20

Number of threads

Enriched global

~~ assembly/solution

Local assembly/

L~ solution

53



Summary

= GFEMY for large, nonlinear, coupled thermo-structural problems
exhibiting phenomena spanning multiple spatial scales of
interest

= Time-dependent global-local enrichments for capturing
nonlinear (elasto-plastic) effects at disparate structural scales

= Fine-scale problems parallelizable; efficiently resolve localized
plasticity at the fine scale, maintain coarse, global structural
mesh
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