Generalized finite element approaches for analysis of localized non-linear thermo-mechanical effects

To the memory of Prof. Ted Belytschko

C. Armando Duarte and Julia Plews Dept. of Civil and Environmental Engineering Computational Science and Engineering

Presented at the 8th International Workshop on Meshfree Methods for PDEs Bonn, Germany, September, 2015

illinois.edu

Motivation: Multiscale Structural Analysis

 Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to highly localized non-linear stress fields: 3-D finite element models with fine meshes are required

- Hypersonic aircraft panels are assembled from sub-components using hundreds of fasteners or spot welds.
- Multiple spatial scales: Skin panel, stiffeners, spot welds.

Panel 1 to Sub-Structure Attachment [AFRL-RB-WP-TR-2012-0280]

Motivation: Multiscale Structural Analysis

- Representation of a spot weld in the FEM requires detailed meshing.
- Hundreds of spot welds in one single panel: Not feasible to mesh them all.
- Multi-point constraint is used instead in the industry: This leads to mesh dependent solutions even far from spot welds!

Strategy:

- Formulate a two-scale GFEM for this class of problems;
- Keep global mesh *coarse* and resolve spot welds through enrichment functions computed in parallel.

3-D Adaptive FEM mesh and von Mises stress in a lap joint with a spot weld

- Motivation
- Generalized finite element methods: Basic ideas
- Bridging scales with GFEM:
 - Global-local enrichments for heat equation and nonlinear thermo-mechanical problems
- Numerical examples
- Conclusions

Generalized Finite Element Method

• GFEM is a Galerkin method with special test/trial space given by

Generalized Finite Element Method

$$S_{ENR} = \sum_{\alpha \in I_h^e \subset I_h} \varphi_\alpha \chi_\alpha; \quad \chi_\alpha = \operatorname{span}\{L_{\alpha i}\}_{i=1}^{m_\alpha}$$
$$\phi_{\alpha i}(x) = \varphi_\alpha(x) L_{\alpha i}(x) \qquad \sum_{\alpha} \varphi_\alpha(x) = 1$$

Bridging Scales with Global-Local Enrichment Functions*

Enrichment functions computed from solution of local boundary value problems: <u>Global-Local enrichment functions</u>


```
    Idea: Use available numerical solution at a
simulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)
```

- Enrichment functions are produced numerically on-the-fly through a global-local analysis
- Use a *coarse* mesh enriched with Global-Local (GL) functions
- GFEM^{gl} = GFEM with global-local enrichments

$$\rho c \frac{\partial u}{\partial t} = \nabla (\kappa(\boldsymbol{x}) \nabla u) + Q(\boldsymbol{x}, t) \quad \text{in} \quad \Omega$$

where $u(\boldsymbol{x},t)$ is the temperature field, ρc is the volumetric heat capacity and $Q(\boldsymbol{x},t)$ is the internal heat source. $\kappa(\boldsymbol{x})$ may be oscillatory.

$$-\kappa \frac{\partial u}{\partial n} = \eta (\bar{u} - u) \quad \text{on} \quad \Gamma_c$$

 $-\kappa \frac{\partial u}{\partial n} = \bar{f} \quad \text{on} \quad \Gamma_f$
 $u(\boldsymbol{x}, 0) = u^0(\boldsymbol{x}) \quad \text{at} \quad t^0$

where $u^0(\boldsymbol{x})$ is the prescribed temperature field at time $t = t^0$

Domain Subjected to Sharp Laser Flux

Goal: Solve with GFEM^{gl} on the mesh shown below Local material heterogeneity: $\kappa_a = 50 \kappa_b$ GFEM^{gl} global mesh Sharp (Gaussian), localized heat flux Laser flux: applied as shown $\bar{f}(\boldsymbol{x},t) = I_0 * f(t) * \frac{1}{2\pi a^2} * G(\boldsymbol{x},b,a)$ 7 $f(t) = 1 - \exp(-\gamma * t)$ $G(\boldsymbol{x}, b, a) = \exp\left(\frac{-(x-b)^2}{2a^2}\right)$ Angle 4 0.2 0.8

0.4

0.6

Location

0.8

1 0

Convection BCs applied everywhere else

0.6

0.4

0.2

Let $u_G^n(\boldsymbol{x}) \in \mathbb{S}_G^{GFEM,n}(\Omega)$ be the GFEM solution at time $t = t^n = n\Delta t$

Find $u_G^n \in \mathbb{S}_G^{\text{GFEM},n}(\Omega_G)$ such that, $\forall w_G^n \in \mathbb{S}_G^{\text{GFEM},n}(\Omega_G)$

$$\frac{\rho c}{\Delta t} \int_{\Omega} w_{G}^{n} u_{G}^{n} d\Omega + \int_{\Omega} \left(\nabla w_{G}^{n} \right)^{T} \kappa \nabla u_{G}^{n} d\Omega + \eta \int_{\Gamma_{c}} w_{G}^{n} u_{G}^{n} d\Gamma = \frac{\rho c}{\Delta t} \int_{\Omega} w_{G}^{n} u_{G}^{n-1} d\Omega + \int_{\Gamma_{f}} \bar{f}^{n} w_{G}^{n} d\Gamma + \eta \int_{\Gamma_{c}} \bar{u}^{n} w_{G}^{n} d\Gamma + \int_{\Omega} Q^{n} w_{G}^{n} d\Omega$$

Let $u_G^n(\boldsymbol{x}) \in \mathbb{S}_G^{GFEM,n}(\Omega)$ be the GFEM solution at time $t = t^n = n\Delta t$

• Solve following *local problem* at time $t = t^{n+1}$ using, e.g., *hp*-GFEM

• Defining Step: Global space is enriched with local solutions

Find
$$u_G^{n+1}(\boldsymbol{x}) \in \mathbb{S}_G^{\text{GFEM},n+1}(\Omega) = \mathbb{S}_G^{\text{FEM}} + \left\{ \varphi_{\alpha} u_{\alpha}^{\text{gl},n+1}, \ \alpha \in \mathcal{I}^{\text{gl}} \right\}$$

where $u_{\alpha}^{\text{gl},n+1}(\boldsymbol{x}) = \underline{u}_{\alpha} u_L^{n+1}(\boldsymbol{x}) \in \chi_{\alpha}^{n+1}, \ \underline{u}_{\alpha} \in \mathbb{R}$

• Discretization spaces updated on-the-fly with global-local enrichment functions

 Updating local solutions at each step leads to time- or load-dependency of global-local enrichments and approximation spaces:

- Transient problems: How to formulate time integration scheme? (O'Hara et al. 2010)
- Nonlinear problems: How to start Newton-Raphson iteration when solution space changes? Solution vector at load step (n) cannot be used with shape functions at load step (n+1)
- This is also an issue in
 - analytically defined enrichment functions if they are added/deleted between time/load steps
 - adaptive FEMs

Nonlinear solution based on incremental load steps:

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \Delta \mathbf{u}_{n+1} \qquad \sigma(\mathbf{u}_{n+1}) = \sigma(\mathbf{u}_{n+1})$$
Shape functions at previous time step
Shape functions at current time step

$$\mathbf{c}_{\text{current time step}}$$
Shape functions at current time step

$$\mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}}$$
Shape functions at current time step

$$\mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}}$$
Shape functions at current time step

$$\mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}}$$
Shape functions at current time step

$$\mathbf{c}_{\text{current time step}} = \mathbf{c}_{\text{current time step}} =$$

$$\boldsymbol{\sigma}(\mathbf{u}_{n+1}) = \boldsymbol{\sigma}(\mathbf{u}_n + \Delta \mathbf{u}_{n+1})$$

unload

6

Elastic reload

εe

3

Time-dependent GFEM Spaces: Elasto-plastic materials

- Solution vector at load step (n) cannot be used with shape functions at load step (n+1)
- Solve a *linear elastic* "predictor" problem to get the total solution at load step (n+1) using shape functions for step (n+1)

$$\int_{\Omega^{\mathbf{u}}} \boldsymbol{\varepsilon}(\mathbf{u}_{n+1}^{(1)}) \colon \mathbf{C} \colon \boldsymbol{\varepsilon}(\delta\mathbf{u}) \,\mathrm{d}\Omega + \eta \int_{\Gamma^{\mathbf{u}}} \mathbf{u}_{n+1}^{(1)} \cdot \delta\mathbf{u} \,\mathrm{d}\Gamma = \int_{\Gamma^{\mathbf{t}}} \bar{\mathbf{t}}_{n+1} \cdot \delta\mathbf{u} \,\mathrm{d}\Gamma$$
$$+ \eta \int_{\Gamma^{\mathbf{u}}} \bar{\mathbf{u}}_{n+1} \cdot \delta\mathbf{u} \,\mathrm{d}\Gamma + \int_{\Omega^{\mathbf{u}}} (\boldsymbol{\varepsilon}_{n}^{p} + \boldsymbol{\varepsilon}_{n+1}^{\theta}) \colon \mathbf{C} \colon \boldsymbol{\varepsilon}(\delta\mathbf{u}) \,\mathrm{d}\Omega$$

- Discretize using *Current* shape functions: n+1 step
- RHS uses: *Current* external loads and thermal strains, *previous* plastic strains

$$\mathbf{u}_{n+1}^{(1)} = \bar{\mathbf{N}}_{n+1}^{\mathbf{u}} \mathbf{d}_{n+1}^{\mathbf{u}(1)}$$
$$\boldsymbol{\varepsilon}_{n+1}^{(1)} = \bar{\mathbf{B}}_{n+1}^{\mathbf{u}} \mathbf{d}_{n+1}^{\mathbf{u}(1)}$$

 Solve a *linear elastic* "predictor" problem to get the total solution at load step (n+1) using shape functions for step (n+1)

- Yields predictor for total solution at initial Newton iteration
- Solution provides initial guess for Newton-Raphson at step (n+1)
- No interpolation of quantities between meshes like in adaptive FEM
- All information available at integration points which are NOT time-dependent

Numerical example: Laser-heated beam

Coupon beam subjected to transient Gaussian laser heating

Numerical example: Laser-heated beam

• **Case 1:** Stationary sharp heating, then cooling to room temperature

Numerical example: Laser-heated beam

• **Case 1:** Stationary sharp heating, then cooling to room temperature

GFEM^{gl} mesh

GFEM^{gl} captures localized temperature gradients, stresses, and residual deformations on a **coarsescale, uniform mesh**.

Residual deformation, fully cooled

• GFEM^{gl} vs. direct (*hp*-GFEM) analysis:

• Pointwise quantities at maximum load/temperature:

<---->

• **Case 2:** Moving sharp flux

GFEM^{gl} vs. *hp*-GFEM solutions in time: Axial stress

• Stiffened panel with 168 spot welds*

- Represent spot welds using global-local enrichments
- Use a *coarse mesh* at global scale

*Panel geometry and properties courtesy of Air Force Research Laboratory, OH, USA

Case 1: Mechanical load only: Uniform pressure on skin panel

- Linear elastic response
- Use symmetry properties to reduce problem size

Global mesh with hexahedron elements: Spot welds are *not* discretized at this scale

- Global problem provides BCs for local problems
- Define and solve in **parallel**, a local problem for each spot weld
- Use local solutions as enrichments in global mesh (red nodes)

• GFEM^{gl} results: Deformed configuration and von Mises stress

Enriched global problem, deformed shape and Von Mises stress

• GFEM^{gl} results: Von Mises stress

captured on a coarse global (HEX8) mesh

Von Mises Stress on the skin panel

• **Case 2:** Transient nonlinear thermo-mechanical analysis

• **Case 2:** Boundary conditions

Goal: Find critical location of a localized thermal load

Localized, transient heat flux in Regions A and C:

GFEM^{gl} Solution of a Hat-Stiffened Panel

- GFEM^{gl} global + local meshes
- Same global mesh as before

 Panel/stiffeners connected by series of 44 spot welds GFEM^{gl} global + local problem sizes

	Problem size (dofs)		-
	Heat transfer	Thermoplasticity	
Initial global	27,888	209,160	Only ~1,000 extra global
Enriched global (A)	28,480	210,936	dofs from global-local
Enriched global (C)	28,436	210,804	enrichments (< 1% increase)
Local Full spot weld	7,966	95,592	
Half-spot weld	4,179	50,148	
Region A	5,807	69,684	
Region C	5,965	71,580	

Estimated *hp*-GFEM/hp-FEM (direct analysis) problem size \approx 4.5 million dofs

Region A

Region A

Von Mises stress (panel + stiffeners)

Movie

Region C

• Region C

Von Mises stress (panel + stiffeners)

- Region C
 - t = 2.0s (maximum thermal load)

Localized spot weld stresses in vicinity of sharp heating

GFEM^{gl} Solution of a Hat-Stiffened Panel

- GFEM^{gl} parallel performance
 - Single time/load step—all solution phases (local + enriched global) considered
 - Up to 24 CPUs
 - Good speedup on small number of threads
 - Efficiency deteriorates as number of CPUs increases (expected)

Number of local problems ≈ number of threads difficult to achieve good load balance

- GFEM^{gl} parallel performance
 - Time spent in each solution phase vs. number of parallel threads:

- GFEM^{gl} for large, nonlinear, coupled thermo-structural problems exhibiting phenomena spanning multiple spatial scales of interest
- Time-dependent global—local enrichments for capturing nonlinear (elasto-plastic) effects at disparate structural scales
- Fine-scale problems parallelizable; efficiently resolve localized plasticity at the fine scale, maintain coarse, global structural mesh

Acknowledgements

Jongheon Kim, Haoyang Li and Patrick O'Hara

caduarte@illinois.edu

http://gfem.cee.illinois.edu/