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Motivation: Multiscale Structural Analysis 

X-15 (1959) X-51a (2010) 

The US Air Force has expended six decades and untold resources in attempts to 
field a reusable hypersonic vehicle* 

*[T. G. Eason et al., 2013] 

Scientific challenge:  

“An inability to computationally capture the material evolution and degradation 
within a structural component” 



X-30 NASP 

Motivation: Multiscale Structural Analysis 

•  Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to 
highly localized non-linear 3-D stress fields: Finite element models with 
fine meshes are required 

3-D FEM: Large aspect ratio of elements may lead to  
numerical instabilities during analysis [Sobotka et al., 2013] 

Representative hypersonic skin panel 
[Sobotka et al., 2013] 



Motivation: Multiscale Structural Analysis 

•  Highly localized non-linear 3-D effects 
•  Most of the structure remains linear elastic 
 

[Sobotka et al., 2013] 

•  Q: How to efficiently capture these localized non-linear 3-D effects? 
•  Q: How to avoid numerical stability issues caused by aspect ratio of 

elements?  

•  Strategy: A Generalized FEM for multiscale structural analysis 



Outline 

n  Motivation 

n  Generalized finite element methods: Basic ideas 

n  Bridging scales with GFEM: 

§  Global-local enrichments for localized non-linearities  

n  Numerical examples 

n  Conclusions  
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Generalized Finite Element Method 

•  GFEM is a Galerkin method with special test/trial space given by 

SGFEM = SFEM + SENR

Low order FEM space Enrichment space with functions related to the given problem 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

[Oden, Duarte & Zienkiewicz, 1996] 
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Multiscale Structural Analysis 

•  Highly localized non-linear 3-D effects 
•  Most of the structure remains linear elastic 
 
•  Q: How to efficiently capture these localized non-linear 3-D effects? 
•  Q: How to avoid numerical stability issues caused by aspect ratio of 

elements?  

•  Strategy: A Generalized FEM for multiscale structural analysis 

[Sobotka et al., 2013] 
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n  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

n  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

n  Use a coarse mesh enriched with Global-Local 
(GL) functions 

n  GFEMgl = GFEM with global-local enrichments 
Enrichment = Numerical 

solutions of BVP 

n  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions* 

*[Duarte et al. 2005] 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  Model Problem: Simulation of propagating cracks using cohesive fracture models 
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Non-linear traction-
separation law 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

700
All lengths in [mm]

150

80

uP,

50 5050stress-free crack

Expected crack path

•  Three-Point Bending Beam 

Bi-linear intrinsic CZM [Park et al. 2008]  

•  Typical FEM discretization [Park et al. 2008]  

Goals: 
 
•  Solve problem on a coarse global mesh. 
•  Non-linear iterations at fine scales only. 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

Let un
G 2 SnG(⌦) be a GFEM approximation of global problem at load step n.

Global-local enrichments are used in the definition of SnG(⌦).

un+1
G,0 is used to prescribe boundary conditions for a non-linear local problem as

defined next.

Compute a rough and cheap estimate of global solution at next load step.

Define un+1
G,0 =

n+1
n un

G
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

§  Solve following non-linear local problem at load step n+1 using, e.g., hp-GFEM 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  Global space enriched with non-linear local solution 
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•  Discretization spaces updated on-the-fly with global-local enrichment functions 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  On-the-fly updating of global-local enrichment functions 
during the non-linear iterative solution process  
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  Global space at load step n+1 

un+1
G (x) 2 Sn+1

G (⌦G) = SFEM
G + SENR,n+1

G

where SENR,n+1
G =

�
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•  Discretization spaces updated on-the-fly with global-local enrichment functions 
•  Enrichment space is load dependent 
•  Dimension of global space does not change but its basis functions do: 

Use of vector with global DOFs computed at previous load step is not a robust 
choice for the initialization of the Newton-Rhapson non-linear iterations at this load 
step  

Classical strategy: Map un
G 2 SnG(⌦G) into Sn+1

G (⌦G)

dn
G and dn+1

G represent coe�cients of di↵erent sets of GFEM shape functions
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  Linear global problem at load step n+1 
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GFEMgl Algorithm for Cohesive Fractures 

Enrichments 
Damage parameters 

BCs
Fine-scale local problem

Coarse-scale global problem

: nodes enriched by polynomials & 
Heaviside functions

: nodes enriched by only polynomials

: nodes enriched by polynomials & 
local solutions

: nodes enriched by only polynomials

Interface between local domain 
boundary and global domain

•  A linear global problem with secant stiffness provided by local problem is solved at every 
load step 

•  All non-linearities are handled at the local problem 
•  BCs for local problem can be improved through global-local iterations 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

Experiments by [Roesler et al., 2007], 
2-D FEM results by [Park et al. 2008]  2-D FEM, hp-GFEM, and GFEMgl meshes 
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Control of Non-Linear Residue of Global 
Solution 
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Control of Non-Linear Residue of Global 
Solution 
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•  Non-linear residue of global solution computed with secant stiffness 

•  Residue is maximum at load step 37 while limit point is reached at load step 28 
•  One Newton-Raphason iteration reduces residue to ~10-11 at all load steps 
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Control of Non-Linear Residue of Global 
Solution 

If the residue Wn+1
G

=
Rn+1

G

T
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T
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is above acceptable tolerance: 

•  Solve non-linear global problem using Newton-Rhapson iterations with a 
cohesive tangent matrix instead of secant stiffness 

 
•  The solution of the global problem computed using secant stiffness 

provides a robust initialization of the iterative process  
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Delamination Test: Problem Setup 

•  Isotropic linear elasticity in the bulk 
•  Linear and Paulino-Park-Roesler (PPR) cohesive models adopted 

•                 : mode I,                     : mixed mode    

Bonded double cantilever beam (DCB) specimen  
 



28 

GFEMgl Algorithm for Cohesive Fractures 

: nodes enriched by polynomials & local solutions
: nodes enriched by only polynomials

Enrichments  Damage parameters BCs

Fine-scale local problem

Coarse-scale global problem

: nodes enriched by polynomials & Heaviside 
functions

: nodes enriched by only polynomials

blending elements

Interface between local domain 
boundary and global domain
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Delamination Test 

•  Solution for mixed mode case, linear cohesive law 
•  Stress component normal to crack is shown 
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Delamination Test 

Computed reaction versus imposed average displacement: Mixed mode case 
 

Linear cohesive law 
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Delamination Test 

•  Non-linear residue of global solution computed with secant stiffness 

•  Load steps corresponding to the limit point are not the same as those with maximum residue 
•  One Newton-Raphason iteration reduces residue to ~10-11 at all load steps 
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Conclusions and Outlook 

n  Proposed GFEMgl enables effective resolution of highly localized non-
linearities on coarse, structural-scale finite element meshes 

n  Neither global nor local meshes need to fit crack surface 

n  Method can be used with virtually any cohesive model and does not require 
a-priori knowledge about the exact solution of the problem 

n  Non-linear Newton-Rhapson iterations are in general performed only at local 
problems used in the computation of enrichment functions 

n  Solutions with comparable accuracy to those provided by adaptive GFEM are 
obtained with significantly fewer degrees of freedom at the global problem 

n  Amenable to non-intrusive integration with existing FEA software: Transition 
to Labs and Industries 

n  Extensions to fluid-driven cracks (hydraulic fractures) are underway 



Questions? 

caduarte@illinois.edu 
 

http://gfem.cee.illinois.edu/ 
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