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][ Motivation: Multiscale Structural Analysis

The US Air Force has expended six decades and untold resources in attempts to
field a reusable hypersonic vehicle*

Scientific challenge:

“An inability to computationally capture the material evolution and degradation
within a structural component”
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*[T. G. Eason et al., 2013]



][ Motivation: Multiscale Structural Analysis

« Thermo, mechanical and acoustic loads on hypersonic aircrafts lead to
highly localized non-linear 3-D stress fields: Finite element models with
fine meshes are required

46,215 nodes
9,644 20-node brick elements
135,738 degrees of freedom
Reduced integration

Material properties for Hastelloy X
WARP3D analysis

Equivalent "springs”

Trailing edge

0.25" by 0.25" grid
4 elements thick
Uniform regions of
skin and stiffener

Fillet and
transition region

Fillet close-up

Representative hypersonic skin panel 3-D FEM: Large aspect ratio of elements may lead to
[Sobotka et al., 2013] numerical instabilities during analysis [Sobotka et al., 2013]



j[ Motivation: Multiscale Structural Analysis

Highly localized non-linear 3-D effects
Most of the structure remains linear elastic

Q: How to efficiently capture these localized non-linear 3-D effects?

Q: How to avoid numerical stability issues caused by aspect ratio of
elements?

Strategy: A Generalized FEM for multiscale structural analysis

Trailing edge

Leading edge

[Sobotka et al., 2013]
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Generalized Finite Element Method

« GFEM is a Galerkin method with special test/trial space given by

SGFEM =SFEM +SENR

Low order FEM space Enrichment space with functions related to the given problem
SFEM — E CaPa Ca € R
aEly,

SENR — Z PaXas Xa — Span{Lai}?ial
OéEIfLCIh

Lonj S X« (wa)

Enrichment function Patch space




Generalized Finite Element Method

. _ mq
SEAU%:: E: PaXas ;Xa‘—Span{Laiizl
OﬁEI;iCIh

¢O‘i(gj) — P (Z)Laz’ (517) za:goa(a:) =1

Linear FE shape

function « Allows construction of shape functions
\ incorporating a-priori knowledge about solution

Enrichment

function > | . .
Discontinuous
enrichment
[Moes et al.,
1999]

GFEM shape

function

[Oden, Duarte & Zienkiewicz, 1996]




j[ Multiscale Structural Analysis

Highly localized non-linear 3-D effects
Most of the structure remains linear elastic

Q: How to efficiently capture these localized non-linear 3-D effects?
Q: How to avoid numerical stability issues caused by aspect ratio of
elements?

Strategy: A Generalized FEM for multiscale structural analysis

Trailing edge

Leading edge

[Sobotka et al., 2013]
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Bridging Scales with Global-Local
Enrichment Functions*

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function
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GFEM shape
function

Enrichment = Numerical
solutions of BVP

>|<[Duarte et al. 2005]

Idea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

Enrichment functions are produced numerically
on-the-fly through a global-local analysis

Use a coarse mesh enriched with Global-Local
(GL) functions

GFEM¢Y = GFEM with global-local enrichments
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Global-Local Enrichments for Problems
with Localized Non-Linearities

[

« Model Problem: Simulation of propagating cracks using cohesive fracture models

Non-linear traction-
separation law

Find u € H'(Qg), such that V du € H(Qg)

Ve (5u) : o (u) dV+/

Fcoh

S [u]C- teo™ ([u]) (1S+77/ ou - u dS

Qg r

:/ 5u-bdv+/
Qa I

u
G

5u-£ds+n/ Su - @ dS

t u
G FG
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Global-Local Enrichments for Problems
with Localized Non-Linearities

I

« Three-Point Bending Beam

- o
P, u A

v Penalty stiffness
wf / % (
< Expected crack path |
150 b b
50 50 /

<> stress-free crack 50 &> P ft, (wka @Z)f t )
AV YA/ Gy
J J d L Gr — Gy

700 A " w
w w w
All lengths in [mm)] r ! /

Bi-linear intrinsic CZM [Park et al. 2008]

+ Typical FEM discretization [Park et al. 2008]

; HE R Goals:

e e « Solve problem on a coarse global mesh.
« Non-linear iterations at fine scales only.
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Global-Local Enrichments for Problems
with Localized Non-Linearities

I

Let ug, € SE(€2) be a GFEM approximation of global problem at load step n.
Global-local enrichments are used in the definition of S7(£2).

0.1

0.08F

f 0.06-
| 2
]

d

Normaliz
=

0.02

0 5 10 15
Normalized CMOD

Compute a rough and cheap estimate of global solution at next load step.

n+l _ n4+l_.n
Define Ugly = UG

T

ug‘Lol is used to prescribe boundary conditions for a non-linear local problem as

defined next.
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Global-Local Enrichments for Problems
with Localized Non-Linearities

I

= Solve following non-linear /ocal problem at load step n+1 using, e.qg., hp-GFEM

0.1

0 5 10 15
Normalized CMOD

Find w?*! € S771(Qp) such that, V su}™ € ST (Qr)

[ v ury o ) ave [ supt et uyt
QL

I‘coh

) dS + 77/ Suttt .t ds
FLﬂl—“‘é

Suttt it dS = / Suttt . bdV +

suttt . £dS
QL

t
nrg,

0 i T () + s
CpNrg FL\(FLH(F&UFE))

+ /-a/
I\ (TLn(Tgury))
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Global-Local Enrichments for Problems
with Localized Non-Linearities

I

* Global space enriched with non-linear local solution

P (@) = o ()ul ()

ugt (x) € SEH () = Se™M + {paud "t a € T8}

( Qauz+1’<0> (CL’) \

1,<1
where w8 (z) = v ul TV (x) p, u,,v,,w, €R

X %UZ“KD (x) |

« Discretization spaces updated on-the-fly with global-local enrichment functions 16



Global-Local Enrichments for Problems
with Localized Non-Linearities

5 10 15
Normalized CMOD

« On-the-fly updating of global-local enrichment functions
during the non-linear iterative solution process
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Global-Local Enrichments for Problems
with Localized Non-Linearities

* Global space at load step n+1
+1 +1 _ oFEM ENR,n+1
ut i (x) € ST (Qg) = SEFM + SE
ENR,n+1 I,n+1 1
where S, = {pouq", a1}

« Discretization spaces updated on-the-fly with global-local enrichment functions
« Enrichment space is load dependent
« Dimension of global space does not change but its basis functions do:

Use of vector with global DOFs computed at previous load step is not a robust
choice for the initializatio € Newton-Rhapson non-linear iterations at this load
step

% and d"" represent coefficients of different sets of GFEM shape functions

Classical strategy: Map u% € S&(Qg) into ST (Qqg)
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Global-Local Enrichments for Problems
with Localized Non-Linearities

* Linear global problem at load step n+1

Find uy™ € ST (Qg) such that, V dulst € SEH(Q¢)
/ Ve (ugtt) o (ug) dV+/ Olug™ - O (ui ) [ug™ 1 dS +n | dug™ - ug™ dS
Qg

Fcoh Flé

:/ 5ug+1-de—|—/ 5u?;+1-fd8—|—n/ sult - @ dS
Qa It &

The cohesive secant matrix is given by

Cl?’s+1,<mO> 0 0
C%Jrl — 0 Cg+1,<m1> 0
0 O Cg+1,<m2>
where
t<mt> un—I—l y
Cn—|—1,<mt> _ COh (|I ]]), t: 071’2 [[ ]]

N PR RTE
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GFEM9! Algorithm for Cohesive Fractures

Fine-scale local problem

Damage parameters *: hodes enriched by polynomials &
local solutions

«: nodes enriched by only polynomials

: nodes enriched by polynomials &
Heaviside functions Interface between local domain

«: nodes enriched by only polynomials boundary and global domain

A linear global problem with secant stiffness provided by local problem is solved at every
load step

« All non-linearities are handled at the local problem
« BCs for local problem can be improved through global-local iterations
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Step 60

Global-Local Enrichments for Problems
with Localized Non-Linearities
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Global-Local Enrichments for Problems
with Localized Non-Linearities

0.1 — (@)
— Experiment 1 Conesive surface element
-=-Experiment 2 | o= |
---2.D FEM ‘ \
0.08. ,. ~—-Ip-GFEM (36,867 DOFs)| ‘ ‘ ] ‘
\ -6~ GFEM® (3,915 DOFs) % ; ; |
[ I

<

)

N
T

Normalized P
o
o
+

0.02

08 10
Normalized CMOD

Experiments by [Roesler et al., 2007],

2-D FEM results by [Park et al. 2008]

2-D FEM, hp-GFEM, and GFEM9Y' meshes
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Control of Non-Linear Residue of Global
Solution

The residue of the original non-linear global problem is evaluated using

RE™ = foln(dr™) — £ (dgT dT™)

where the internal and external force vectors are given by

n mn n -1 n —-T n vl n n
G (A dptt) = B o(d}lt!) dv + h¢ teon(dEt)dS+n [ N wlkt(dEt) dS
QG PCO 111(1;

ntl @ty = [ N ot v+ [ N &t dS+q [ N attlds
’ Qq Tt I

The magnitude of residue relative to external forces is measured using

n—|—1T n+1
RG dG

n+1 Tdn—l—l
G,ext G

n+1
Wo =

24



Control of Non-Linear Residue of Global
Solution

« Non-linear residue of global solution computed with secant stiffness

35X 10”7 |

—_ [\
—_ ()] [\ 194 W
\ \ \ \ \

Relative work of residual

<
W
T

0 20 40 60 80 100 120 140 160 180 200

Load step

« Residue is maximum at load step 37 while limit point is reached at load step 28
« One Newton-Raphason iteration reduces residue to ~10-11 at all load steps



Control of Non-Linear Residue of Global
Solution

n—l—lT n+1
R Ay

n+1 Tdn—l—l
G,ext G

If the residue Wg“ — is above acceptable tolerance:

« Solve non-linear global problem using Newton-Rhapson iterations with a
cohesive tangent matrix instead of secant stiffness

« The solution of the global problem computed using secant stiffness
provides a robust initialization of the iterative process
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j[ Delamination Test: Problem Setup

Bonded double cantilever beam (DCB) specimen

30
’/ 120

/|

-11 . pre-existing notch 30 bond-surface
| - A
Y

/

S AN o
10 Z pre-defined discontinuity
o
o/
e U1 = Uup:model, uy = 2u9: mixed mode

« Isotropic linear elasticity in the bulk
 Linear and Paulino-Park-Roesler (PPR) cohesive models adopted

All lengths 1 [mm]



GFEMY! Algorithm for Cohesive Fractures

Coarse-scale global problem

« : nodes enriched by polynomials & local solutions
«: nodes enriched by only polynomials

blending elements

BCs Enrichments\ Damage parameters «= [nterface between local domain

boundary and global domain

«: nodes enriched by polynomials & Heaviside
functions

Fine-scale local problem «: nodes enriched by only polynomials
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j[ Delamination Test

« Solution for mixed mode case, linear cohesive law
« Stress component normal to crack is shown
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Delamination Test

Computed reaction versus imposed average displacement: Mixed mode case

1200 1200
o00- g reoop -
AN i z - = R
= 800 -z po goo- TN I T Tl
g 8
s TS s 7 TS
S 600 === = 600- R
e e
& e
£ 400~ g 400r
o @]
-=-hp-GFEM w/ p=2 for all elements (95,088 DOFs) ===hp-GFEM w/ p=2 for all elements (95,088 DOFs)
200 ---GFEM® w/ p=2 for all elements (7,650 DOFs) i 200 ---GFEM® w/ p=2 for all elements (7,650 DOFs)
-e-GFEME w/ p=3 for blending elements (13,050 DOFs) -e-GFEM® w/ p=3 for blending elements (13,050 DOFs)
-4-GFEME w/ p=3 for blending elements/G-L iteration (13,050 DOFs) -4~ GFEM® w/ p=3 for blending elements/G-L iteration (13,050 DOFs)

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06

0.08 0.1
Imposed displacement [mm] Imposed displacement [mm]

Linear cohesive law PPR cohesive law
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j[ Delamination Test

« Non-linear residue of global solution computed with secant stiffness

-7

x 10

—Linear, %; = U3
—PPR, @ = s Ul
==Linear, @] = 2us

==PPR, @ = 24,

<
o

<
o)

0.4

Relative work of residual

I
&}

20 40 60 80 100 120 140

« Load steps corresponding to the limit point are not the same as those with maximum residue

« One Newton-Raphason iteration reduces residue to ~10-11 at all load steps
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Conclusions and Outlook

Proposed GFEMgl enables effective resolution of highly localized non-
linearities on coarse, structural-scale finite element meshes

Neither global nor local meshes need to fit crack surface

Method can be used with virtually any cohesive model and does not require
a-priori knowledge about the exact solution of the problem

Non-linear Newton-Rhapson iterations are in general performed only at local
problems used in the computation of enrichment functions

Solutions with comparable accuracy to those provided by adaptive GFEM are
obtained with significantly fewer degrees of freedom at the global problem

Amenable to non-intrusive integration with existing FEA software: Transition
to Labs and Industries

Extensions to fluid-driven cracks (hydraulic fractures) are underway
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Questions?

caduarte@illinois.edu

http://gfem.cee.illinois.edu/




