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Objectives: Develop computational methods that can  

•  provide more realist simulations of hydraulic fracturing treatments 
•  evaluate the potential environmental impact of interactions between hydraulic 

fractures and naturally existing fractures in shale reservoirs 

Hydraulic Fracturing of Gas Shale Reservoirs 

Motivation  
•  Natural gas and oil production in the US has 

increased significantly in the past few years thanks 
to advances in hydraulic fracturing of shale 
reservoirs  

•  Yet there are concerns about the environmental 
impact of toxic fluids used in this process 



What is Hydraulic Fracturing? 

Video 

Graham Roberts, New York Times,  http://www.nytimes.com/interactive/2011/02/27/us/fracking.html 4 



Hydraulic Fracturing Simulation 

Current Focus: 3-D effects not captured by available simulators  
•  Initial stages of fracture propagation: Fracture re-orientation, interaction and 

coalescence 

Strategy: Generalized Finite Element Methods 



Modeling 3-D Fractures:  
Limitations of Standard FEM  

n  It is not “just” fitting the 3-D evolving fracture  
n  FEM meshes must satisfy special requirements for acceptable accuracy 

Mesh with quarter-point elements 

FEM mesh for a surface fracture 
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Limitations of Standard FEM  

•  Not possible in general to automatically create 
structured meshes along both fracture fronts 
when they are in close proximity 

? 
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•  Difficulties arise if fracture front is close to complex geometrical features 
•  Fracture surfaces with sharp turns 
•  Coalescence of fractures 

•  Even with these crafted meshes and quarter-
point elements, convergence rate of std FEM is 
slow (controlled by singularity at fracture front) 

•  Strategy: Generalized FEM 



Outline 

n  Motivation and limitations of existing methods 

n  Basic ideas of GFEM 

n  GFEM for 3D hydraulic fractures 

n  Applications 

q  Verification  

q  Fracture re-orientation 

q  Coalescence of 3-D fractures 

n  Future work and conclusions 



Early Works on Generalized FEMs 

n  Babuska, Caloz and Osborn, 1994 (Special FEM). 
n  Duarte and Oden, 1995 (Hp Clouds). 
n  Babuska and Melenk, 1995 (PUFEM). 
n  Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). 
n  Duarte, Babuska and Oden, 1998 (GFEM). 
n  Belytschko et al., 1999 (Extended FEM). 
n  Strouboulis, Babuska and Copps, 2000 (GFEM). 

•  Basic idea:  

•  Use a partition of unity to build Finite Element shape functions 

•  Review paper  
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized 
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009 
 
“The XFEM and GFEM are basically identical methods: the name generalized finite 
element method was adopted by the Texas school in 1995–1996 and the name 
extended finite element method was coined by the Northwestern school in 1999.”  
 



Generalized Finite Element Method 

•  GFEM is a Galerkin method with special test/trial space given by 

SGFEM = SFEM + SENR

Low order FEM space Enrichment space with functions related to the given problem 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

[Oden, Duarte & Zienkiewicz, 1996] 
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GFEM Approximation for 3-D Fractures 

[Duarte & Oden 1996] 
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Modeling Fractures with the GFEM 

•  Fractures are modeled via enrichment functions, not  the FEM mesh 
•  Mesh refinement still required for acceptable accuracy 

"   = Nodes with discontinuous enrichments 
Von Mises stress 

[Duarte et al., International Journal Numerical Methods in Engineering, 2007] 

hp-GFEM 



3D Fracture Surface Representation 

n  High-fidelity explicit representation of fracture surfaces [Duarte et al., 2001, 
2009] 

n  Coalescence of fractures [Garzon et al., 2014] 
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Selection of Enrichment Functions: 
Hydraulic Fracturing Regimes 

•  Fracture propagation is governed by  
•  two competing energy dissipation mechanisms: Viscous flow and fracturing 
process; 
•  two competing storage mechanisms: In the fracture and in the porous 
matrix 

Current Focus: Storage-toughness dominated regime 

•  Low permeability reservoirs: Neglect flow of hydraulic fluid across fracture faces: 
•  Storage dominated regime 

•  High confining stress (no fluid lag) and low viscosity fluid (water):  
•  Near constant fluid pressure in fracture;  Toughness dominated regime 

•  Brittle elastic material *[Carrier & Granet, EFM, 2013] 

Hydraulic fracture parametric space* 

Dimensionless toughness K =
4KIcp
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Selection of Enrichment Functions: 
Hydraulic Fracturing Regimes 

[Duarte & Oden 1996] 
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Enrichments for toughness-dominated regime: 

Valid for toughness-
dominated problems 



Governing Equations for Coupled Problem 

Governing equations for porous medium 
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Fluid flow in the fracture 

Reynold’s lubrication theory: Conservation of mass 
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Weak form for hydraulic fluid in the fracture 

Fracture opening w = JuK · n�
(second coupling condition)



Coupled Equations 

A (u, �u) +B (p, J�uK) = Lu (�u)
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Coupled Equations 
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Discretizing in time and space 

•  Solved at each time step, within each crack propagation increment. 
•  System is PD: Unique solution without need of auxiliary conditions 

adopted in staggered schemes or restrictions on time step.  
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Outline 

n  Motivation and limitations of existing methods 

n  Basic ideas of GFEM 

n  GFEM for 3D hydraulic fractures 

n  Applications 

q  Verification 

q  Fracture re-orientation 

q  Coalescence of 3-D fractures 

n  Future work and conclusions 



Circular Fracture 

Geometrical and Computational 
fracture surface for fluid pressure 
computation 

a2L 

2L 



Circular Fracture 

Adopt [Zielonka et al. 2014]: 

L = 5m R = 0.5m

Incomp. Newtonian fluid with viscosity

µ = 25, 50, 100 cPoise

Injection rate at center of fracture

Q = 0.00005m3/s

E = 17GPa

⌫ = 0.2

KIc = 1.46 MPa

p
m

1/4th Schematic Cutaway 



Circular Fracture 

µ = 25 cPoise

d

Pressure distribution as a function of time 



Circular Fracture 

d

Pressure distribution as a function of time 

µ = 50 cPoise



Circular Fracture 

d

Pressure distribution as a function of time 

µ = 100 cPoise



Circular Fracture 

Time = 3 Seconds 



Verification: Propagation of Circular Fracture 

Analytical solution: Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic 
solutions, Savitski and Detournay, 2002. 36 

Critical pressure for a continuously propagating crack with KI = KIc  



Application: Fracture Re-Orientation* 

•  Fracture starts in a direction not perpendicular to minimum in-situ stress 
•  Misalignment of fracture and confining in-situ stresses 

a = 10m 
b = 5m 
h = 15m 
p = 3.5 MPa 

37 *[Rungamornrat et al., 2005; Gupta & Duarte, 2014] 

wellbore 

Vertical overburden 
stress of 2.5 MPa 



Fracture Re-Orientation  

2a
 

2b 

45o 



Fracture Re-Orientation  



Fracture Re-Orientation: Step 20  



Fracture Re-Orientation: Adaptive Mesh 
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a) b)

Side view Front view

36.4m 

13.2m 

•  Adaptive refinement along fracture front 
•  Sharp features are preserved 
•  High fidelity of fracture surface, regardless of computational mesh 



Typical Hydraulic Fracturing 

[Z. Rahim et al., 2012] 



Longitudinal Fractures 

•  Develop perpendicular to minimum in-situ stress 
•  Fractures along the length of the wellbore 
•  Planar fractures from the perforation 

Perforations 

Hydraulic 
Fracture 



Coalescence of Longitudinal Fractures 

•  Propagation and coalescence from a horizontal well 

50 

h = 2 m 
p = 3.5 MPa 

Vertical overburden stress of 2.5 MPa 



Coalescence of 3-D Fractures: GFEM Model 

•  Input mesh and fracture 
surfaces for GFEM simulation 

•  Automatic adaptive mesh 
refinement performed at each 
propagation step  

In-situ stress 
(all around) 



Coalescence of 3-D Fractures 



Coalescence of 3-D Fractures 

Fractures just prior to coalescence  Fractures just after coalescence 



Coalescence of 3-D Fractures 



Coalescence of 3-D Fractures 

•  Adaptive refinement along fracture fronts 



Ongoing Work 

•  Coalescence of non-planar fractures near a wellbore 

Vertical well with  
initial fractures in a 

spiral pattern	


After Propagation and 

coalescence	



Sharp kink	



Initial fracture 
reorientation	



Non-Planar 
coalesced surface	





Crack Coalescence – Non-Planar Cracks 

Traction BC on top and 
bottom surface	


	


PropagationMovie1	





Conclusions and Outlook 

n  Generalized FEM removes several limitations of std FEM 
n  It enables the solution of problems that are difficult or not practical 

with the FEM 
n  This is the case of three-dimensional fracture problems involving  

q  Complex crack surfaces 
q  Fluid-induced fracturing  
q  Coalescence of 3-D fractures, etc. 

n  Ongoing 
q  Coalescence of non-planar fractures 
q  Interaction between hydraulic and natural fractures 
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