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Lessons learned about method development 
while working at Altair Engineering 

http://www.tx.altair.com/ 

•  Generalized FEM for 3-D, dynamic crack propagation (1999) 

Cracked cylinder with ribs 
3-D discretization with crack cutting 
finite elements 



Lessons learned about method development 
while working at Altair Engineering 

•  Evolution of crack surface under dynamic loading 



Lessons learned about method development 
while working at Altair Engineering 

What does it take for a new computational method to be adopted 
by engineers?  
•  Must demonstrate that new method can solve problems that are difficult 

or impossible to be solved by available methods 
•  Computational performance is important but....  
•  Just being faster than available methods is not enough! 
•  Robustness of method must be a top priority 
•  It must be possible to integrate the new method in an existing analysis 

flow within an engineering or research group. 

•  Focus of this presentation:  
•  Generalized/Extended Finite Element Method (G/XFEM) 
•  Simulation of interaction and coalescence of 3-D fractures 

•  Goal: Demonstrate that the GFEM meets the above requirements for this 
class of problems 
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Coalescence of fatigue micro-cracks  

Crack fronts 

Crack Growth and Coalescence 

Cluster of hydraulic fractures 
propagating from a horizontal well 

ü  Understanding crack coalescence is of great importance in many applications 

Reflective crack in  
asphalt overlay  



Modeling 3-D Fractures:  
Limitations of Standard FEM  

n  It is not “just” fitting the 3-D evolving fracture  
n  FEM meshes must satisfy special requirements for acceptable accuracy 

Mesh with quarter-point elements 

FEM mesh for a surface fracture 
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Limitations of Standard FEM  

•  Not possible in general to automatically create 
structured meshes along both fracture fronts 
when they are in close proximity 

? 
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•  Difficulties arise if fracture front is close to complex geometrical features 
•  Fracture surfaces with sharp turns 
•  Coalescence of fractures 

•  Even with these crafted meshes and quarter-
point elements, convergence rate of std FEM is 
slow (controlled by singularity at fracture front) 



Outline 

n  Introduction 

n  Basic ideas of GFEM 

n  Application: Coalescence of 3-D hydraulic fractures 

n  Non-intrusive implementation of GFEM with global-local enrichment 

functions 

n  Conclusions and assessment 



Generalized Finite Element Method 

•  GFEM is a Galerkin method with special test/trial space given by 

SGFEM = SFEM + SENR

Low order FEM space Enrichment space with functions related to the given problem 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

[Oden, Duarte & Zienkiewicz, 1996] 
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GFEM Approximation for 3-D Fractures 

[Duarte & Oden 1996] 

patch !↵

SGFEM (⌦) =

8
><

>:
u

hp =
X

↵2Ih

'↵(x)| {z }
PoU

2
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Modeling Fractures with the GFEM 

•  Fractures are modeled via enrichment functions, not  the FEM mesh 
•  Mesh refinement still required for acceptable accuracy 

"   = Nodes with discontinuous enrichments 
Von Mises stress 

[Duarte et al., International Journal Numerical Methods in Engineering, 2007] 

hp-GFEM 



Outline 

n  Introduction 

n  Basic ideas of GFEM 

n  Application: Coalescence of 3-D hydraulic fractures 

n  Non-intrusive implementation of GFEM with global-local enrichment 

functions 

n  Conclusions and assessment 



Typical Hydraulic Fracturing Clusters 

[Z. Rahim et al., 2012] 



Longitudinal Fractures 

•  Develop perpendicular to minimum in-situ stress 
•  Fractures along the length of the wellbore 
•  Planar fractures from the perforation 

Perforations 

Hydraulic 
Fracture 



Coalescence of Longitudinal Fractures 

•  Propagation and coalescence from a horizontal well 
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h = 2 m 
p = 3.5 MPa 



Coalescence of 3-D Fractures: GFEM Model 

•  Input mesh and fracture 
surfaces for GFEM simulation 



Coalescence of 3-D Fractures 



Coalescence of 3-D Fractures 

Fractures just prior to coalescence  Fractures just after coalescence 



Coalescence of 3-D Fractures 

•  Adaptive refinement along fracture fronts 



How to transition this method? 

•  Implementation of 3-D adaptive methods in legacy FEM codes is non 
trivial 

•  Numerical integration of singular and discontinuous functions is much 
more difficult than polynomial shape functions used in the FEM 

Strategy: 
  
•  Non-intrusive implementation of GFEM with global-local enrichment 

functions 



n  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

n  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

n  Use a coarse mesh enriched with Global-Local 
(GL) functions 

n  GFEMgl = GFEM with global-local enrichments 
Enrichment = Numerical 

solutions of BVP 

n  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions* 

*[Duarte et al. 2005, 2007, 2008, 2010, 2011, 2014] 



Global-Local Enrichments for 3-D Fractures 

Key Idea: Use solution of global problem at simulation k to build 
enrichment functions for step k+1 

BCs from step k 

Enrichment for step k+1 

Solve local 
problem using best 
available method 

•  Discretization spaces updated on-the-fly with global-local enrichment functions 

= G-L enrichment 



Computation of Solution at a Crack Step 

Computed by  
FEM code 



Initial global solution  
Uncracked domain 

Commercial FEM Code 

Pseudo loads 

Local solution  
Global-local enrichment 

Global solution 
BC for local prob. 

GFEM Code 

Pseudo solutions 

Enriched global solution 
Compute quantities of interest 

Non-Intrusive Implementation in Existing FEM Codes* 

•  Different solvers can be used to solve 
coarse and fine-scale problems 

*with J. Pereira, P. Gupta,  
J. Plews and T. Eason 



Related Non-Intrusive Methods 

n  Krause R, Rank, E. Multiscale computations with a combination 
of the h- and p-versions of the finite-element method. CMAME, 
2003 

n  Gendre L, Allix O, Gosselet P, Comte F. Non-intrusive and exact 
global/local techniques for structural problems with local 
plasticity. CM, 2009 

n  Gendre L, Allix O, Gosselet P. A two-scale approximation of the 
Schur complement and its use for non-intrusive coupling. 
IJNME, 2011 



§  Bracket with half-penny shaped crack 

3-D mesh courtesy of Altair Engineering 

Computational Efficiency 

Movie 

ü  hp-GFEM as reference solution 

ü  Main goal: computational efficiency 
of GFEMgl for crack growth 



§  Strain Energy 

§  ~ 60% computational cost reduction 

§  hp-GFEM and GFEMgl solutions show good 
agreement 

§  Computational cost analysis §  GFEMgl:  
    115,470 + 27 dofs (min)  
    115,470 + 84 dofs (max) 

§  hp-GFEM:  
    186,666 global dofs (min)  
    255,618 global dofs (max) 

Computational Efficiency 



Conclusions and Assessment 

§  Generalized FEMs offer significant flexibility and attractive features 

§  It enables the solution of problems that are difficult or not practical 
with the FEM:  

q  Coalescence of 3-D fractures: Hydraulic fracturing of oil and gas 
reservoirs 

q  Multiscale problems:  

q  Fine-scale computations are naturally parallelizable 

q  Can adopt different discretization methods at each scale 
without introduction of additional fields (LM, mortar, etc.) 

§  Robust: Stable GFEM (Uday Banerjee talk on Tuesday) 

§  Transition to Labs and Industries: Non-intrusive integration with 
existing FEA software 
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