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Motivation: Multiscale Structural Analysis 

X-15 (1959) X-51a (2010) 

The US Air Force has expended six decades and untold resources in attempts to 
field a reusable hypersonic vehicle* 

*[T. G. Eason et al., 2013] 

Scientific challenge:  

“An inability to computationally capture the material evolution and degradation 
within a structural component” 
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Motivation: Multiscale Structural Analysis 

•  The analysis of hypersonic aircrafts involves multiple spatial and temporal 
scales: From airframe scale to material microscale, loading scale, etc 

Shock impingement 
Color = Temperature  

Coalescence of micro-cracks [Burns et al., IJF 2012 ] 

Crack fronts 

[AFRL-RB-WP-TR-2010-3069] 
Lockheed Martin HTV-3X 
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X-30 NASP 

Motivation: Multiscale Structural Analysis 

•  Thermo, mechanical and acoustic loads lead to highly localized non-linear 
3-D stress fields: Finite element models with fine meshes are required 

3-D FEM: Large aspect ratio of elements may lead to  
numerical instabilities during analysis [Sobotka et al., 2013] 

Representative hypersonic skin panel 
[Sobotka et al., 2013] 
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Motivation: Multiscale Structural Analysis 

•  Highly localized non-linear 3-D effects 
•  Most of the structure remains linear elastic 
 

[Sobotka et al., 2013] 

•  Q: How to efficiently capture these localized non-linear 3-D effects? 
•  Q: How to avoid numerical stability issues caused by aspect ratio of 

elements?  

•  Strategy: A Generalized FEM for multiscale structural analysis 
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Outline 

!  Motivation 

!  Generalized finite element methods: Basic ideas 

!  Bridging scales with GFEM: 

"  Global-local enrichments for localized non-linearities  

"  Global-local enrichment for heterogeneous materials and 

parallelization of fine-scale computations 

!  Conclusions and outlook 
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Early works on Generalized FEMs 

!  Babuska, Caloz and Osborn, 1994 (Special FEM). 
!  Duarte and Oden, 1995 (Hp Clouds). 
!  Babuska and Melenk, 1995 (PUFEM). 
!  Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). 
!  Duarte, Babuska and Oden, 1998 (GFEM). 
!  Belytschko et al., 1999 (Extended FEM). 
!  Strouboulis, Babuska and Copps, 2000 (GFEM). 

•  Basic idea:  

•  Use a partition of unity to build Finite Element shape functions 

•  Review paper  
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized 
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009 
 
“The XFEM and GFEM are basically identical methods: the name generalized finite 
element method was adopted by the Texas school in 1995–1996 and the name 
extended finite element method was coined by the Northwestern school in 1999.”  
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Generalized Finite Element Method 

•  GFEM is a Galerkin method with special test/trial space given by 

SGFEM = SFEM + SENR

Low order FEM space Enrichment space with functions related to the given problem 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

[Oden, Duarte & Zienkiewicz, 1996] 
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Multiscale Structural Analysis 

•  Highly localized non-linear 3-D effects 
•  Most of the structure remains linear elastic 
 
•  Q: How to efficiently capture these localized non-linear 3-D effects? 
•  Q: How to avoid numerical stability issues caused by aspect ratio of 

elements?  

•  Strategy: A Generalized FEM for multiscale structural analysis 

[Sobotka et al., 2013] 
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!  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

!  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

!  Use a coarse mesh enriched with Global-Local 
(GL) functions 

!  GFEMgl = GFEM with global-local enrichments 
Enrichment = Numerical 

solutions of BVP 

!  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions* 

*[Duarte et al. 2005, 2007, 2008, 2010, 2011, 2014] 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities* 

•  Model Problem: Simulation of propagating cracks using cohesive fracture models 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

700
All lengths in [mm]

150

80

uP,

50 5050stress-free crack

Expected crack path

•  Three-Point Bending Beam 

Bi-linear intrinsic CZM [Park et al. 2008]  

•  Typical FEM discretization [Park et al. 2008]  

Goals: 
 
•  Solve problem on a coarse global mesh. 
•  Non-linear iterations at fine scales only. 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

"  Solve following non-linear local problem at load step n+1 using, e.g., hp-GFEM 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  Defining Step: Global space is enriched with non-linear local solution 
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n+1
L (x)

•  Discretization spaces updated on-the-fly with global-local enrichment functions 
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

•  On-the-fly updating of global-local enrichment functions 
during the non-linear iterative solution process  
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Global-Local Enrichments for Problems 
with Localized Non-Linearities 

Experiments by [Roesler et al., 2007], 
2-D FEM results by [Park et al. 2008]  2-D FEM, hp-GFEM, and GFEMgl meshes 
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Discretization error Effect of inexact BC 
controlled by δ 

"  Local error estimate 

A-Priori Error Estimate*#

"  Global Error 

where *[Gupta and Duarte, CMAME, 2012] 
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Outline 

!  Motivation 

!  Generalized finite element methods: Basic ideas 

!  Bridging scales with GFEM: 

"  Global-local enrichments for localized non-linearities  

"  Global-local enrichment for heterogeneous materials and 

parallelization of fine-scale computations 

!  Conclusions and outlook 
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From Micro to Macro Scales 

Courtesy of General Electric Co.  

•  The performance of a turbine increases with its operational temperature 
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From Micro to Macro Scales 

•  High operational temperatures require new materials like 
Ceramic Matrix Composites (CMC) 

Turbine component made of CMC 

Structural performance depends strongly 
 on micro-scale details 
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•  Failure of Heterogeneous Materials 

From Micro to Macro Scales 

•  Damage characterization in composite materials involves complex 
multi-scale phenomena 

Damage in composite materials 

Debonding 

Matrix cracking 

•  Homogenization approaches can not be used near singularities: 
•  Can not predict local stress state since it converges in L2 norm 
•  Failure depends on local quantities as opposed to averaged [A. Needleman] 
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!  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

!  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

!  Use a coarse mesh enriched with Global-Local 
(GL) functions 

!  GFEMgl = GFEM with global-local enrichments 
Enrichment = Numerical 

solutions of BVP 

!  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Material and Structural Scales with 
Global-Local Enrichment Functions  
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Global-Local Enrichments for Heat Equation* 

�
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where u(x, t) is the temperature field, ⇢c is the volumetric heat capacity and

Q(x, t) is the internal heat source. (x) may be oscillatory.

*[O’Hara et al., CMAME, 2011; Plews and Duarte, 2014] 
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Bridging Material and Structural Scales with 
Global-Local Enrichment Functions  

Sharp&(Gaussian),&localized&heat&flux&
applied&as&shown&

Convec;on&BCs&applied&everywhere&else&

GFEMgl global mesh 

•  Goal: Solve with GFEMgl on the mesh shown below 

¯

f(x, t) = I0 ⇤ f(t) ⇤
1

2⇡a

2
⇤G(x, b, a)

f(t) = 1� exp(�� ⇤ t)

G(x, b, a) = exp

✓
�(x� b)

2

2a

2

◆

Laser&flux:&

a = 50 b
Local material heterogeneity: 



29 

Global-Local Enrichments for Heat Equation 
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Global-Local Enrichments for Heat Equation 

!  Define local domain around the laser flux location at time t = tn+1  

Let un
G(x) 2 SGFEM,n

G (⌦) be the GFEM solution at time t = tn = n�t
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Global-Local Enrichments for Heat Equation 

"  Solve following local problem at time t = tn+1 using, e.g., hp-GFEM 

Find un+1
L 2 SGFEM,n+1

L (⌦L) such that, 8 wn+1
L 2 SGFEM,n+1

L (⌦L)



32 

global-local 
enrichments 

•  Global space is enriched with local solutions 

Bridging Material and Structural Scales with 
Global-Local Enrichment 

BC for local  
problem 
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•  Discretization spaces updated on-the-fly with global-local enrichment functions 

Local material 
heterogeneity 
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Parallelization of Fine-Scale Computations 

!  Subdivide local problem into ‘sub-local’ domains 
#  Each global patch/cloud (node support) = One sub-local domain 

!  GFEMgl does not require 
"  Communication among sub-local problems 
"  Continuity across sub-local boundaries 

!  Analyze fine scale efficiently in parallel [Kim et al. 2010] 
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Example: Steady-State Heat Transfer on  
L-Shaped Domain*  

!  Heat flux singularity and material heterogeneity at reentrant corner 

a/b = 20

⇤ = Vaa + Vbb

!  Homogenization not valid at corner 
!  Adopt GFEMgl to capture interaction between material and global scales 

*[Plews and Duarte, 2014] 
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!  GFEMgl discretizations 

"  Coarse global mesh 

"  Refine heavily in sub-local 
problems 

"  Solve sub-local problems in parallel 

"  Global-local enrichments in 
neighborhood of corner only, 
polynomial enrichment elsewhere 

  
Steady-State Heat Transfer on  
L-Shaped Domain  
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!  GFEMgl discretizations: Fine-scale mesh is non-conforming with global mesh 

  
Steady-State Heat Transfer on  
L-Shaped Domain  



37 

!  GFEMgl resolves localized gradients and 
singularities on a coarse global mesh 

Homogenized (DNM) Actual 

  
Steady-State Heat Transfer on  
L-Shaped Domain  

Heat flux at re-entrant corner 
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!  Solution in neighborhood of reentrant corner: GFEMgl with two 
sub-local problems 

GFEMgl initial global 
solution on uniform 
mesh only used to 
generate boundary 
conditions for local 
problems. 

  
Steady-State Heat Transfer on  
L-Shaped Domain  
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!  Pointwise convergence of GFEMgl solution in neighborhood of 
reentrant corner 

  
Steady-State Heat Transfer on  
L-Shaped Domain  
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Method Sub-local prob. Global dofs Energy (⇥10

6

) % di↵erence Sol. time (s)

DNM (parallel) – 1,676,652 3.376 – 177.4

GFEM

gl

24 880 3.377 0.05% 281.6

161 1,789 3.377 0.03% 60.8

864 4,440 3.375 0.01% 30.2

Steady-State Heat Transfer on  
L-Shaped Domain  

!  Computational cost and parallelism 

•  Efficiency and accuracy increase with number of sub-local problems 

"  Global mesh refined to generate more sub-local problems 
"  Identical mesh size maintained in sub-local problems and DNM 
"  Server: 24 cores, 2 Intel Xeon E5-2697 v2 2.70GHz processors 
"  Pardiso parallel sparse solver adopted 
"  Solution time includes assembly, factorization and solve 
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Method Sub-local prob. Factorize/solve (s) Speedup E�ciency

DNM (serial) – 1373.1 – –

DNM (parallel) – 145.8 9.42 0.393

GFEM

gl

(parallel) 24 253.0 5.43 0.226

161 42.0 32.66 1.361

864 10.3 133.01 5.542

Steady-State Heat Transfer on  
L-Shaped Domain  

!  Computational cost and parallelism 

•  Efficiency and accuracy increase with number of sub-local problems 

"  Speedup&and&efficiency&computed&w.r.t.&DNM&serial&solu;on&
"  Efficiency&over&100%&rela;ve&to&DNM&with&nearly&iden;cal&accuracy 
"  Pardiso parallel sparse solver adopted 
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Enrichment = Numerical 
solutions of BVP 

!  Enrichment functions can be computed with almost any available 
discretization method: GFEM, FEM, BEM, Meshfree, Peridynamics, etc. 

Linear FE shape 
function 

GFEM shape 
function 

GFEMgl: Discretization Method at Fine Scale 

•  Simulation of impact and fragmentation using 
Peridynamics [Sa Wu and Marc A. Schweitzer, Bonn 
University]* 

•  Initial conditions for Peridynamics from GFEM sol. 
•  Use Peridynamics enrichments only where it is 

needed 

* http://schweitzer.ins.uni-bonn.de/people/wu.html 
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!  Peridynamics solution (left) used as enrichment at macro-scale 
GFEM mesh (right) * 

GFEMgl: Discretization Method at Fine Scale 

* http://schweitzer.ins.uni-bonn.de/people/wu.html 
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Conclusions and Outlook 

!  Generalized FEMs offer significant flexibility and attractive features 

!  It enables the solution of problems that are difficult or not practical 
with the FEM:  

$  Multiscale problems:  

$  Fine-scale computations are naturally parallelizable 

$  Can adopt different discretization methods at each scale 
without difficulty or introduction of additional fields (LM, 
mortar, etc.) 

$  Coalescence of 3-D fractures: Hydraulic fracturing of oil and gas 
reservoirs 

"  Transition to Labs and Industries: Non-intrusive integration with 
existing FEA software 
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