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][ Motivation: Multiscale Structural Analysis

The US Air Force has expended six decades and untold resources in attempts to
field a reusable hypersonic vehicle*

Scientific challenge:

“An inability to computationally capture the material evolution and degradation
within a structural component”
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*[T. G. Eason et al., 2013]



j[ Motivation: Multiscale Structural Analysis

« The analysis of hypersonic aircrafts involves multiple spatial and temporal
scales: From airframe scale to material microscale, loading scale, etc

Lockheed Martin HTV-3X
[AFRL-RB-WP-TR-2010-3069]
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Coalescence of micro-cracks [Burns et al., IJF 2012 ]

Shock impingement

Color = Temperature
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][ Motivation: Multiscale Structural Analysis

« Thermo, mechanical and acoustic loads lead to highly localized non-linear
3-D stress fields: Finite element models with fine meshes are required

46,215 nodes
9,644 20-node brick elements
135,738 degrees of freedom
Reduced integration

Material properties for Hastelloy X
WARP3D analysis

Equivalent "springs”

Trailing edge

0.25" by 0.25" grid
4 elements thick
Uniform regions of
skin and stiffener

Fillet and
transition region

Fillet close-up

Representative hypersonic skin panel 3-D FEM: Large aspect ratio of elements may lead to
[Sobotka et al., 2013] numerical instabilities during analysis [Sobotka et al., 2013]
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j[ Motivation: Multiscale Structural Analysis

Highly localized non-linear 3-D effects
Most of the structure remains linear elastic

Q: How to efficiently capture these localized non-linear 3-D effects?

Q: How to avoid numerical stability issues caused by aspect ratio of
elements?

Strategy: A Generalized FEM for multiscale structural analysis

Trailing edge

Leading edge

[Sobotka et al., 2013]



Motivation
Generalized finite element methods: Basic ideas

Bridging scales with GFEM:
Global-local enrichments for localized non-linearities

Global-local enrichment for heterogeneous materials and

parallelization of fine-scale computations

Conclusions and outlook




Early works on Generalized FEMs

Babuska, Caloz and Osborn, 1994 (Special FEM).
Duarte and Oden, 1995 (Hp Clouds).

Babuska and Melenk, 1995 (PUFEM).

Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
Duarte, Babuska and Oden, 1998 (GFEM).

Belytschko et al., 1999 (Extended FEM).

Strouboulis, Babuska and Copps, 2000 (GFEM).

Basic idea:

e Use a partition of unity to build Finite Element shape functions

Review paper
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009

“The XFEM and GFEM are basically identical methods: the name generalized finite
element method was adopted by the Texas school in 1995-1996 and the name
extended finite element method was coined by the Northwestern school in 1999.”




Generalized Finite Element Method

« GFEM is a Galerkin method with special test/trial space given by

SGFEM =SFEM +SENR

Low order FEM space Enrichment space with functions related to the given problem
SFEM — E CaPa Ca € R
aEly,

SENR — Z PaXas Xa — Span{Lai}?ial
OéEIfLCIh

Lonj S X« (wa)

Enrichment function Patch space




Generalized Finite Element Method

. _ mq
SEAU%:: E: PaXas ;Xa‘—Span{Laiizl
OﬁEI;iCIh

¢O‘i(gj) — P (Z)Laz’ (517) za:goa(a:) =1

Linear FE shape

function « Allows construction of shape functions
\ incorporating a-priori knowledge about solution

Enrichment

function > | . .
Discontinuous
enrichment
[Moes et al.,
1999]

GFEM shape

function

[Oden, Duarte & Zienkiewicz, 1996]
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j[ Multiscale Structural Analysis

Highly localized non-linear 3-D effects
Most of the structure remains linear elastic

Q: How to efficiently capture these localized non-linear 3-D effects?
Q: How to avoid numerical stability issues caused by aspect ratio of
elements?

Strategy: A Generalized FEM for multiscale structural analysis

Trailing edge

Leading edge

[Sobotka et al., 2013]
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Bridging Scales with Global-Local
Enrichment Functions*

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function

9
%;z'O%OOOQ:
l":::'l'o"““

7

GFEM shape
function

Enrichment = Numerical
solutions of BVP

Idea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

Enrichment functions are produced numerically
on-the-fly through a global-local analysis

Use a coarse mesh enriched with Global-Local
(GL) functions

GFEM¢Y = GFEM with global-local enrichments

*Duarte et al. 2005, 2007, 2008, 2010, 2011, 2014]
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Global-Local Enrichments for Problems
with Localized Non-Linearities*

[

« Model Problem: Simulation of propagating cracks using cohesive fracture models

Non-linear traction-
separation law

gdl

Find u € H'(Qg), such that V du € H*(Qg)

Ve (5u) : o (u) dV+/

Fcoh

S [u]C- teo™ ([u]) (1S+77/ ou - u dS

I'g

Qg
5u-£ds+n/ Sw - @ dS

:/ 5u-de—|—/
Qa FE} I'&

*[with Jongheon Kim] 13



Global-Local Enrichments for Problems
with Localized Non-Linearities

I

« Three-Point Bending Beam

- o
P, u A

v Penalty stiffness
wf / % (
< Expected crack path |
150 b b
50 50 /

<> stress-free crack 50 &> P ft, (wka @Z)f t )
AV YA/ Gy
J J d L Gr — Gy

700 A " w
w w w
All lengths in [mm)] r ! /

Bi-linear intrinsic CZM [Park et al. 2008]

+ Typical FEM discretization [Park et al. 2008]

; HE R Goals:

e e « Solve problem on a coarse global mesh.
« Non-linear iterations at fine scales only.
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Global-Local Enrichments for Problems
with Localized Non-Linearities

Let ug € S (2) and u} € ST(2), GFEM solutions of global and local problems
at load step n

0.1

d
K

Normalize
<

5

Find ug € SE(Q¢a) such that, V dug € SE(Q¢q) A
VS (5u) : o (ul) dV+/
Qg

o] Co@i)fug] dS+n [ dug-ug ds
T'coh Flé
=/ oug - de—l—/
97¢!

5ug-fd8+n/
Ly

dug - u dS
I'é

n+l _ n+l_.n
Define Ugy = UG

s
fil--

g 13



Global-Local Enrichments for Problems
with Localized Non-Linearities

I

= Solve following non-linear /ocal problem at load step n+1 using, e.qg., hp-GFEM

0.1

0 5 10 15
Normalized CMOD

Find w?*! € S771(Qp) such that, V su}™ € ST (Qr)

[ v ury o ) ave [ supt et uyt
QL

I‘coh

) dS + 77/ Suttt .t ds
FLﬂl—“‘é

Suttt it dS = / Suttt . bdV +

suttt . £dS
QL

t
nrg,

0 i T () + s
CpNrg FL\(FLH(F&UFE))

+ /-a/
I\ (TLn(Tgury))
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Global-Local Enrichments for Problems
with Localized Non-Linearities

I

* Defining Step: Global space is enriched with non-linear local solution

P (@) = o ()ul ()

ugt (x) € SEH () = Se™M + {paud ™ a € T8}

% gau2+1’<0>(m) \

1,<1
where w8 (z) = v ul TV (x) p, u,,v,,w, €R

X %UZ“KD (x) |

« Discretization spaces updated on-the-fly with global-local enrichment functions 17



Global-Local Enrichments for Problems
with Localized Non-Linearities

5 10 15
Normalized CMOD

« On-the-fly updating of global-local enrichment functions
during the non-linear iterative solution process
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Global-Local Enrichments for Problems
with Localized Non-Linearities

0.1 — (@)
— Experiment 1 Conesive surface element
-=-Experiment 2 | o= |
---2.D FEM ‘ \
0.08. ,. ~—-Ip-GFEM (36,867 DOFs)| ‘ ‘ ] ‘
\ -6~ GFEM® (3,915 DOFs) % ; ; |
[ I

<

)

N
T

Normalized P
o
o
+

0.02

08 10
Normalized CMOD

Experiments by [Roesler et al., 2007],

2-D FEM results by [Park et al. 2008]

2-D FEM, hp-GFEM, and GFEM9Y' meshes
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A-Priori Error Estimate”

Local error estimate

“ ueXBC o u;‘;)eXBC ” ‘

= Global Error

|u—uc||2

where v =u

<(”Z

a=1
exBC

Discretization error

inf ||lu—wu,

UaEXa

: Ci .
s < C inf umf-’XBC —xllre. — uexBC o umeXBC |
e(Qy) = XEXQP(QL) ” ”&(QL) +l\(§/\” ||L2(
= ~ > ~ =

Effect of inexact BC
controlled by ©

N

a=1

*[Gupta and Duarte, CMAME, 2012]
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Outline

s  Motivation

s  Generalized finite element methods: Basic ideas

= Bridging scales with GFEM:
Global-local enrichments for localized non-linearities

Global-local enrichment for heterogeneous materials and

parallelization of fine-scale computations

= Conclusions and outlook
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From Micro to Macro Scales

Low I~ W | High

Temperature

2000 | SST/HST

1800 1 (v2500)
(RJ500) o

FIRTI0 u IHI-17

F3-30

TURBINE INLET
TEMPERATURE (K)

Courtesy of General Electric Co.

1945 1955 1965 1975 1985 1995 2005
YEAR

e The performance of a turbine increases with its operational temperature
23



][ From Micro to Macro Scales

e High operational temperatures require new materials like

Ceramic Matrix Composites (CMC)

Turbine component made of CMC

Structural performance depends strongly
on micro-scale details

24
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From Micro to Macro Scales

e Failure of Heterogeneous Materials

e Damage characterization in composite materials involves complex

multi-scale phenomena
Matrix cracking

Damage in composite materials

e Homogenization approaches can not be used near singularities:
e Can not predict local stress state since it converges in L, norm

e Failure depends on local quantities as opposed to averaged [A. Needleman]
25



Bridging Material and Structural Scales with
Global-Local Enrichment Functions

I

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function PSS

744
LG5I RAGSEREKN
I"

s ldea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

= Enrichment functions are produced numerically
on-the-fly through a global-local analysis

7

or =M shape = Use a coarse mesh enriched with Global-Local
(GL) functions
Enrichment = Numerical
solutions of BVP = GFEMY = GFEM with global-local enrichments
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][ Global-Local Enrichments for Heat Equation*

pc% = V(k(x)Vu) + Q(x,t) in

where u(x,t) is the temperature field, pc is the volumetric heat capacity and
Q(x,t) is the internal heat source. k(x) may be oscillatory.

—m%:n(ﬂ—u) on I,
ou -
—/1% =f on I

u(z,0) = u’(x) at ¢
where u’(x) is the prescribed temperature field at time ¢ = tY

*[O'Hara et al.,, CMAME, 2011; Plews and Duarte, 2014]



Bridging Material and Structural Scales with
Global-Local Enrichment Functions

I

« Goal: Solve with GFEM9 on the mesh shown below

LR RN ‘ N
N0 N = \ |
N\ N
N N

GFEMg' global mesh o

Local material heterogeneity:
k; = 50«

Sharp (Gaussian), localized heat flux

Laser flux: applied as shown

flz,t) = Iy f(t) * ! x G(x,b,a)

2ma?
f(t) =1—exp(—yx*t) 6
2 . \\\\\\“\\\\\\\“\“\W\\\\
6sa) = e “E5) g \\\\\‘m\\\\\\\\\\\““‘\\\Q{{\\m\m\m\\\\\\\\\\\\\

Convection BCs applied everywhere else
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Let ug(x) € SGFEM’"(Q) be the GFEM solution at time ¢t = t" = nAt

Global-Local Enrichments for Heat Equation

i\‘i\‘“ﬁ‘i‘i“

BT N

Find v € S "™ (Qg) such that, ¥ wk € Sg' " (Qa)

(Vw2)" kVukdQ + 77/ weuedl =

pc
wud§2+/
A GY%GE r

Q

Z—i Wl 1dQ—I—/ f”wgdr—kn/
Ly

u"wgdf—l—/ Q" wedS)
T, Q

29



Global-Local Enrichments for Heat Equation

Let ug(x) € SgFEM’n(Q) be the GFEM solution at time t = t"” = nAt

\‘N

LN NN

= Define local domain around the laser flux locatioa at time t = t7*1

- AN /
e Xy

L 7N
‘lk‘l? ) &'«m\y
i 87 El”\ 2K
NP
= 5t ANVINY,
| o
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j[ Global-Local Enrichments for Heat Equation

= Solve following local problem at time t = t"*! using, e.qg., hp-GFEM

B

AN

(VwZH)T VU AQ 4 1 / w1 dr

o, 8QLﬁFf)

b

QL GQLHI‘

+n /
0N\ (0022, NON)

[/ +1wz+1dF
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Bridging Material and Structural Scales with
Global-Local Enrichment

I

* Global space is enriched with local solutions Local material
heterogeneity

global-local

enrichments

vq!‘
b‘ !g _i}

BC for local
problem

NN ]
2242423

B~
&' gg _b

1 _ +1
O () = pa(@)up™ (@)
Find Un+1($) c SgFEM,n—I—l(Q) _ SZEM 4+ {Spauil’n—i_la = Igl}
where u"" T (x) = u u? T (x) € X2, u, €R

« Discretization spaces updated on-the-fly with global-local enrichment functions
32



j[ Parallelization of Fine-Scale Computations

= Subdivide local problem into ‘sub-local” domains
» Each global patch/cloud (node support) = One sub-local domain

= GFEMY does not require
- Communication among sub-local problems
- Continuity across sub-local boundaries

= Analyze fine scale efficiently in parallel [Kim et al. 2010]

33



Example: Steady-State Heat Transfer on
L-Shaped Domain*

I

s Heat flux singularity and material heterogeneity at reentrant corner

Ky

ko /kp =20

6, = 150 5.0
Y :
< >
| 50 |
100.0 .-
_I .
4
6, = -150
) 100.0

= Homogenization not valid at corner
= Adopt GFEMY to capture interaction between material and global scales

*[Plews and Duarte, 2014]



Steady-State Heat Transfer on
[-Shaped Domain

I

= GFEMY discretizations g, = 150 Boundary

- Coarse global mesh

Conditions §

- Refine heavily in sub-/ocal

problems
. Solve sub-local problems in parallel - nrichment
. Global-local enrichments in N Functions

neighborhood of corner only,
polynomial enrichment elsewhere

35



Steady-State Heat Transfer on
[-Shaped Domain

= GFEMY discretizations: Fine-scale mesh is non-conforming with global mesh

36



Steady-State Heat Transfer on
[-Shaped Domain

[

= GFEMY resolves localized gradients and
singularities on a coarse global mesh

Heat flux at re-entrant corner

Flux Magnitude Flux Magnitude

200 300 400 100 200 300 400
| | w

464

Homogenized (DNM)
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Steady-State Heat Transfer on

L-Shaped Domain

= Solution in neighborhood of reentrant corner: GFEM9 with two
sub-local problems

Temperature 6(x)

25

20

(S
(9}

(S
=
|

— DNM T~

- - GFEM?, Dirichlet
— +  GFEM?, Mixed
- - GFEM?, initial

DNM, homogenized

40

42 44 46
x-coordinate

GFEMY initial global
solution on uniform
mesh only used to

L~ generate boundary

conditions for local
problems.
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Steady-State Heat Transfer on
L-Shaped Domain

I

= Pointwise convergence of GFEM9Y solution in neighborhood of
reentrant corner

25

20

p—
(9]

—
-

Temperature 6(x)

— DNM
— +  GFEM¥, 2 sub-local
- GFEM#, 24 sub-local

- - GFEM¥, 161 sub-local
O | | | |

40 42 44 46 48 50
x-coordinate
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Steady-State Heat Transfer on
L-Shaped Domain

= Computational cost and parallelism

Method Sub-local prob.  Global dofs  Energy (x10°) % difference  Sol. time (s)

DNM (parallel) — 1,676,652 3.376 — 177.4

GFEM¢# 24 880 3.377 0.05% 7816
161 1.789 3.377 0.03% 60.8
864 4,440 3.375 0.01% 30.2

Global mesh refined to generate more sub-local problems
Identical mesh size maintained in sub-local problems and DNM
Server: 24 cores, 2 Intel Xeon E5-2697 v2 2.70GHz processors
Pardiso parallel sparse solver adopted

Solution time includes assembly, factorization and solve

Efficiency and accuracy increase with number of sub-local problems
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Steady-State Heat Transfer on
L-Shaped Domain

= Computational cost and parallelism

Method Sub-local prob.  Factorize/solve (s) Speedup Efficiency
DNM (serial) - 1373.1 - -
DNM (parallel) — 145.8 9.42 0.393
GFEM¢#! (parallel) 24 253.0 5.43 0.226
161 42.0 32.66 1.361
864 10.3 133.01 5.542

Speedup and efficiency computed w.r.t. DNM serial solution
Efficiency over 100% relative to DNM with nearly identical accuracy
Pardiso parallel sparse solver adopted

Efficiency and accuracy increase with number of sub-local problems

41



GFEM¢Y': Discretization Method at Fine Scale

I

= Enrichment functions can be computed with almost any available
discretization method: GFEM, FEM, BEM, Meshfree, Peridynamics, etc.

Linear FE shape
function

0

e Y %
25520
%%

7

GFEM shape
function

« Simulation of impact and fragmentation using
_ _ Peridynamics [Sa Wu and Marc A. Schweitzer, Bonn
Enrichment = Numerical : s
solutions of BVP Un_|\_/er5|ty] - _ _
« Initial conditions for Peridynamics from GFEM sol.
« Use Peridynamics enrichments only where it is
needed

* http://schweitzer.ins.uni-bonn.de/people/wu.html “
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GFEM¢Y': Discretization Method at Fine Scale

= Peridynamics solution (left) used as enrichment at macro-scale
GFEM mesh (right) *

* http://schweitzer.ins.uni-bonn.de/people/wu.html
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Conclusions and Outlook

= Generalized FEMs offer significant flexibility and attractive features

= It enables the solution of problems that are difficult or not practical
with the FEM:

o Multiscale problems:
a Fine-scale computations are naturally parallelizable

o Can adopt different discretization methods at each scale
without difficulty or introduction of additional fields (LM,
mortar, etc.)

o Coalescence of 3-D fractures: Hydraulic fracturing of oil and gas
reservoirs

= Transition to Labs and Industries: Non-intrusive integration with
existing FEA software
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