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Coalescence of fatigue micro-cracks  

Crack fronts 

Crack Growth and Coalescence: Motivation 

Hydraulic fractures from  
horizontal well 

ü  Crack growth prediction is of great importance in many applications 

Reflective crack in  
asphalt overlay  



Modeling 3-D Fractures:  
Limitations of Standard FEM  

n  It is not “just” fitting the 3-D evolving crack surface  
n  FEM meshes must satisfy special requirements for acceptable accuracy 

Mesh with quarter-point elements 

FEM mesh for a surface crack 
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Limitations of Standard FEM  

Not possible in general to automatically create 
structured meshes along both crack fronts when 
they are in close proximity 

? 
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•  Difficulties arise if crack front is close to complex geometrical features 
•  Crack surfaces with sharp turns 
•  Coalescence of cracks 

Even with these crafted meshes and quarter-
point elements, convergence rate of std FEM is 
slow (controlled by singularity at crack front) 
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Outline 

n  Motivation 

n  Basic ideas of GFEM 

n  GFEM for 3D Cracks 

n  Applications 

ü  Interaction of hydraulic and natural fractures 

ü  Coalescence of fractures 

n  Conclusions 
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Early Works on Generalized FEMs 

n  Babuska, Caloz and Osborn, 1994 (Special FEM). 
n  Duarte and Oden, 1995 (Hp Clouds). 
n  Babuska and Melenk, 1995 (PUFEM). 
n  Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). 
n  Duarte, Babuska and Oden, 1998 (GFEM). 
n  Belytschko et al., 1999 (Extended FEM). 
n  Strouboulis, Babuska and Copps, 2000 (GFEM). 

•  Basic idea:  

•  Use a partition of unity to build Finite Element shape functions 

•  Review paper  
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized 
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009 
 
“The XFEM and GFEM are basically identical methods: the name generalized finite 
element method was adopted by the Texas school in 1995–1996 and the name 
extended finite element method was coined by the Northwestern school in 1999.”  
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

            GFEM shape function  = FE shape function   *  enrichment function                                             

Discontinuous 
enrichment 
[Moes et al., 
1999] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 

•  GFEM can be interpreted as a FEM with shape functions built using the 
concept of a partition of unity: 

[Oden, Duarte & Zienkiewicz, 1996] 

X

↵

'↵(x) = 1
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GFEM Approximation for 3-D Cracks 

cloud or patch  

[Duarte and Oden 
1996] 
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Modeling Cracks with hp-GFEM 

•  Discontinuities modeled via enrichment functions, not  the FEM mesh 
•  Mesh refinement still required for acceptable accuracy 

"   = Nodes with discontinuous enrichments 
Von Mises stress 

[Duarte et al., International Journal Numerical Methods in Engineering, 2007] 

hp-GFEM 



3D Crack Surface Representation 

n  High-fidelity explicit representation of crack surfaces [Duarte et al., 2001, 
2009] 

n  Coalescence of fractures [Garzon et al., 2014] 
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Objectives 
•  Computational simulations will lead to better designs of hydraulic fracture 

treatments, thus reducing the amount of toxic fluids used 
•  Realistic modeling of hydraulic fracturing treatments can evaluate the potential 

impact of interactions between hydraulic fractures and naturally existing 
fractures in shale reservoirs 

Hydraulic Fracturing of Gas Shale Reservoirs 

Motivation  
•  Natural gas production in the US has increased 

significantly in the past few years thanks to 
advances in hydraulic fracturing of gas shale 
reservoirs  

•  Yet there are concerns about the environmental 
impact of toxic fluids used in this process 



What is Hydraulic Fracturing? 

Video 

Graham Roberts, New York Times,  http://www.nytimes.com/interactive/2011/02/27/us/fracking.html 13 



Hydraulic Fracturing Simulation 

Current Focus: 3-D effects not captured by available simulators  
•  Initial stages of fracture propagation: Fracture re-orientation, interaction and 

coalescence 



Hydraulic Fracturing Regimes 

•  Fracture propagation is governed by  
•  two competing energy dissipation mechanisms: Viscous flow and fracturing 
process; 
•  two competing storage mechanisms: In the fracture and in the porous 
matrix 

Hydraulic fracture parametric space* 
Current Focus: Storage-toughness dominated regime 

•  Low permeability reservoirs: Neglect flow of hydraulic fluid across crack faces: 
•  Storage dominated regime 

•  High confining stress and low viscosity fluid (water):  
•  Constant pressure distribution in fracture;  Toughness dominated regime 

•  Brittle elastic material 

Dimensionless 
toughness 

Leak-off  
coefficient 

*[Carrier & Granet, EFM, 2013] 



Weak Form at Propagation Step k 

Cross section of fracture 



Application: Non-Planar Fracture Growth 
•  Propagation from a horizontal or deviated well 
•  Misalignment of fracture and confining in-situ stresses 

a = 10m 
b = 5m 
h = 15m 
p = 3.5 MPa 
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Fracture Propagation Model 
•  Crack increment at front vertex i according to Mear-Wheeler* Model"

�ai =

8
<

:
0, if Ki

I,eq

< K
Ic

�a
max

⇣
K

i

I,eq

�K

Ic

K

max

I,eq

�K

Ic

⌘
m

, if Ki

I,eq

> K
Ic

�a
max

and m are model constants

Ki
I,eq = Mode I equivalent SIF (Shollmann’s criterium)

KIc = Fracture toughness

K
Ic

= 0.894MPa
p
m

m = 1 �amax = 0.5m

E = 5GPa ⌫ = 0.3

*[Rungamornrat et al., 2005] 



Inclined elliptical crack  

2a
 

2b 

45o 



Inclined elliptical crack  



Inclined elliptical crack: Step 10  



Inclined elliptical crack: Step 20  



Non-Planar Fracture Growth 
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a) b)

Side view Front view

36.4m 

13.2m 

•  Adaptive refinement along the crack front 
•  Sharp features are preserved 
•  High fidelity of crack surface 



Hydraulic Fracturing: Interaction with 
Natural Fractures 

Graham Roberts, New York Times,  http://www.nytimes.com/interactive/2011/02/27/us/fracking.html 28 



Interaction with Natural Fractures 

Material Properties 
 
 
 
 Domain size 
 
 
Crack Sizes 
 
 



Interaction with Natural Fractures 

Opening 
caused by 
hydraulic 
fracture 

Natural  
fracture 
inter-penetration 



Interaction with Natural Fractures 

Without contact constraints With contact constraints 



Outline 

n  Motivation 
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Coalescence of Cracks 

n  Early stages of fatigue crack growth and hydraulic fracturing involve 
coalescence of multiple fractures  

Scanning electron fractographs showing coalescence of fatigue micro-
cracks in aluminum 7075-T651 [Burns et al., IJF 2012 ] 

Crack fronts 



Coalescence of Crack Surfaces* 

•  Crack surfaces interact and coalesce  
 
•  When coalescence happens? 
 
•  What is the size of the coalesced zone or 

minimum distance for coalescence? 
 
 

* J. Garzon et ali, 2014 



Coalescence Criterion 

rp =
(Keq)

2

⇡�2
y

Size of coalesced zone or minimum 
distance for coalescence given by, 
e.g., size of process zone [1] 

* J. Garzon and P. O’Hara (AFRL) 

plastic zone plastic zone

[1] Swift T. Damage tolerance capability. Fatigue 
of Aircraft Materials, 1992. Delft University Press. 



Coalescence of Micro-Cracks 

n  Challenge: Coalesced cracks are in general non-planar 

Coalescence of surface micro-cracks [L. Lawson, 2005] 



Coalescence of Non-Planar Cracks* 

* J. Garzon et ali, 2014 



Coalescence of Non-Planar Cracks 

Propagation step prior to coalescence  Propagation step just after coalescence 



Coalescence of Non-Planar Cracks 

Five propagation steps after coalescence Two propagation steps after coalescence 



Coalescence of Non-Planar Cracks 
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Application: Reflective Crack Growth in Pavements 

•  Cracks and joints in a pavement with asphalt concrete overlay “reflect” up to the 
surface, propagating through overlay 
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Frame and Actuator (350 Tons) Joint – Hydronic Cooling 

•  Reflective crack testing at FAA – NAPTF – Simulation and life prediction 

Application: Reflective Crack Growth in Pavements 



48 

Application: Reflective Crack Growth in Pavements 

•  Computational challenges 

•  Strong 3-D effects: Crack channeling 
•  RC surface change in size by orders of magnitude 
•  Fatigue cracking with thousands of cycles 
•  Coalescence of 3-D cracks significantly affects life of 

pavement 



•  Reflective crack testing at FAA – NAPTF – Simulation and life estimate 

Reflective Cracking Simulation 

Cycles @ 0.10 mil/sec 

Material Prop. from Laboratory Evaluation of FAA 
Cracking Rig Materials report. 

Video 
49 



•  Reflective crack testing at FAA – NAPTF – Simulation and life estimate 

Reflective Cracking Simulation 

•  Strong channeling effect: Requires solving a 3-D model 
•  RC surface grows by orders of magnitude 
•  Crack front speeds varies significantly along the front 
•  Interactions with domain boundary:  

•  Difficult to automatically create structured mesh around crack front as required by FEM 
•  Considered only ONE crack 

•  In reality, there may be several cracks growing and coalescing….. 
•  How the number of “seed cracks” affects the life of the pavement? 
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•  Reflective crack testing at FAA – NAPTF – Simulation and life estimates 

Coalescence of 3D Reflective Cracks 
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Video 



•  Reflective crack testing at FAA – NAPTF – Simulation and life estimates 

Coalescence of 3D Reflective Cracks 
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Conclusions 

n  Generalized/Extended FEM removes several limitations of FEM 

n  It enables the solution of problems that are difficult or not practical 

with the FEM 

n  This is the case of three-dimensional fracture problems involving  

ü  Complex crack surfaces 

ü  Fluid-induced fracturing  

ü  Coalescence of 3-D fractures, etc. 

n  Open issues under investigation include 

ü  Numerical stability (Stable GFEM) 

ü  Non-intrusive integration with existing FEA software 



Questions? 

caduarte@illinois.edu 
 

http://gfem.cee.illinois.edu/ 


