Bridging Scales with a Generalized Finite Element method #### C. Armando Duarte Dept. of Civil and Environmental Engineering Computational Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL International Conference on Extended Finite Element Methods - XFEM 2011 June 29 – July 1, 2011, Cardiff, United Kingdom ## Motivation: The Need to Bridge Scales ### Mechanically-Short Cracks - Hypersonic aircrafts are subjected to intense thermo, mechanical and acoustic loads - Most of the life of the aircraft structure corresponds to the incubation and growth of micro-cracks Multiple cracks around a rivet hole [Sandia National Lab, 2005] ## **Bridging Scales** - Thermal loads on hypersonic aircrafts - Shock wave impingements cause large thermal gradients - Experiments are difficult and limited ### Multi-scale Problems Multiple cracks around a rivet hole [Sandia National Lab, 2005] Thermal loads on hypersonic aircrafts (dimensions not to scale) Multiple interacting fractures - Predictive simulations require modeling of phenomena spanning several spatial and temporal scales - Advances in existing computational methods are needed - Increasing computational power alone is not enough ### **Outline** - Generalized finite element methods: Basic ideas - Bridging scales with the GFEM: - Global-local enrichments - Applications and mathematical analysis - Transition: Non-intrusive implementation in Abaqus - Extension to nonlinear problems - Closing remarks ### Early works on Generalized FEMs - Babuska, Caloz and Osborn, 1994 (Special FEM). - Duarte and Oden, 1995 (Hp Clouds). - Babuska and Melenk, 1995 (PUFEM). - Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). - Duarte, Babuska and Oden, 1998 (GFEM). - Belytschko et al., 1999 (Extended FEM). - Strouboulis, Babuska and Copps, 2000 (GFEM). #### Basic idea: Use a partition of unity to build Finite Element shape functions ### Recent review papers Belytschko T., Gracie R. and Ventura G. A review of extended/generalized finite element methods for material modeling, *Mod. Simul. Matl. Sci. Eng.*, 2009 Fries, T.-P. and Belytschko, T. The generalized/extended finite element method: An overview of the method and its applications, *Int. J. Num. Meth. Eng.*, 2010. ### Generalized Finite Element Method GFEM can be interpreted as a FEM with shape functions built using the concept of a partition of unity Partition of Unity (PoU) $$\sum_{\alpha} \varphi_{\alpha}(x) = 1 \qquad \forall x \in \Omega$$ • φ_{α} = Linear FEM shape function ### Generalized Finite Element Method GFEM shape function = FE shape function * enrichment function $$\phi_{\alpha}(\boldsymbol{x}) = \varphi_{\alpha}(\boldsymbol{x})L(\boldsymbol{x})$$ • Allows construction of shape functions incorporating a-priori knowledge about solution # GFEM Approximation for 3-D Cracks ## Modeling Cracks with hp-GFEM - Discontinuities modeled via enrichment functions, *not* the FEM mesh - Mesh refinement *still required* for acceptable accuracy [Duarte et al., Int. J. Num. Meth. Eng., 2007] ### Bridging Scales with Global-Local Enrichment Functions How to account for interactions among scales? ### Goal: • Capture fine scale effects on coarse meshes at the global (structural) scale ### Bridging Scales with Global-Local Enrichment Functions * Enrichment functions computed from solution of local boundary value problems: Global-Local enrichment functions - Idea: Use available numerical solution at a simulation step to build shape functions for next step (quasi-static, transient, non-linear, etc.) - Enrichment functions are produced numerically on-the-fly through a global-local analysis - Use a coarse mesh enriched with Global-Local (G-L) functions ^{*} Duarte et al. 2005, 2007, 2008, 2010, 2011 ### Global-Local Enrichments for 3-D Fractures $ullet u_G^k$ solution of global problem at crack step k Define local domain containing crack front at step k+1 Local problem with crack size a_{k+1} $u_G^k \in X_G^k(\Omega)$ = solution of global problem with crack size $\mathbf{a_k}$ # Global-Local Enrichments for 3-D Fractures Solve local problem at step k using hp-GFEM Boundary conditions for local problems provided by global solution: $$u_L^k = u_G^k$$ on $\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)$ $$X_L^k\left(\Omega_L^k\right) = hp$$ -GFEM space Find $u_L^k \in X_L^k\left(\Omega_L^k\right) \subset H^1\left(\Omega_L^k\right)$ such that $\forall v_L^k \in X_L^k\left(\Omega_L^k\right)$ $$\int_{\Omega_L^k} \boldsymbol{\sigma}(\boldsymbol{u}_L^k) : \boldsymbol{\varepsilon}(\boldsymbol{v}_L^k) d\boldsymbol{x} + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$ $$= \int_{\partial \Omega_L^k \cap \partial \Omega^\sigma} \bar{\boldsymbol{t}} \cdot \boldsymbol{v}_L^k ds + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$ # Global-Local Enrichments for 3-D Fractures • **Defining Step:** Global space is enriched with local solutions Procedure may be repeated: Update local BCs and enrichment functions ## Global-Local Enrichments for Crack Growth **Summary:** Use solution of global problem at simulation k to build enrichment functions for step k+1 • Discretization spaces updated on-the-fly with global-local enrichment functions $$\boldsymbol{X}_{G}^{k+1}(\Omega_{G}) = \left\{ \boldsymbol{u} = \underbrace{\sum_{\alpha=1}^{N} \varphi_{\alpha}(\boldsymbol{x}) \hat{\boldsymbol{u}}_{\alpha}(\boldsymbol{x})}_{\text{coarse-scale approx.}} + \underbrace{\sum_{\beta \in \mathcal{I}_{gl}^{k}} \varphi_{\beta}(\boldsymbol{x}) \boldsymbol{u}_{\beta}^{gl(k)}(\boldsymbol{x})}_{\text{fine-scale approx.}} \right\} \quad \boldsymbol{u}_{\beta}^{gl(k)} = \text{G-L enrichment}$$ ### Edge-Notched Beam with Slanted Crack * ### Fatigue Crack Growth: hp-GFEM and GFEMgl solutions ### Edge-Notched Beam with Slanted Crack step 0 step 5 step 10 step 15 Available Methods – *hp*-GFEM/FEM Two-Scale Generalized FEM – GFEM^{gl} - Mesh with elements that are orders of magnitude larger than in a FEM mesh - Fully compatible with FEM - Single field formulation: Does not introduce stability (LBB) issues # **Experimental Results** [Buchholz et al., 2004] # Parallel Computation of Enrichment Functions * - A large number of small fine-scale problems can be created instead of a single one - No communication is involved in their parallel solution ^{*}with D.-J. Kim and N. Sohb # Mathematical Analysis * GFEM^{gl}: Error controlled through global-local enrichments ### **Questions:** - What are the effects of inexact BCs at fine-scale problems? - How to control them? *with V. Gupta ### A-Priori Error Estimate Local error estimate $$\|\boldsymbol{u}^{exBC} - \boldsymbol{u}_h^{inexBC}\|_{\varepsilon(\Omega_L^{\delta})} \leq C \inf_{\boldsymbol{x} \in \boldsymbol{X}_L^{hp}(\Omega_L)} \|\boldsymbol{u}^{inexBC} - \boldsymbol{x}\|_{\varepsilon(\Omega_L)} + \underbrace{\frac{C_1}{\delta}} \|\boldsymbol{u}^{exBC} - \boldsymbol{u}^{inexBC}\|_{L^2(\Omega_L)}$$ Discretization error Effect of inexact BC Global Error [Babuska and Melenk, 1996] $$\|\boldsymbol{u} - \boldsymbol{u}_G\|_{\varepsilon(\Omega)}^2 \le C \sum_{\alpha=1}^N \inf_{\boldsymbol{u}_\alpha \in \chi_\alpha} \|\boldsymbol{u} - \boldsymbol{u}_\alpha\|_{\varepsilon(\omega_\alpha)}^2 \le C \sum_{\alpha=1}^N \|\boldsymbol{u} - \boldsymbol{u}_h^{\mathsf{inexBC}}\|_{\varepsilon(\omega_\alpha)}^2$$ where $u \equiv u^{ ext{exBC}}$ # Strategy I: Multiple Global-Local Iterations Repeat Global-local-Global cycle before advancing crack ## Strategy I: Multiple Global-Local Iterations ■ 30" x 30" x 1" edge-crack panel loaded with Mode I tractions # Strategy I: Multiple Global-Local Iterations ### Relative Error in Strain Energy GFEMgl can deliver same accuracy as hp-GFEM (DNS) # Strategy II: Buffer Zone in Local Domain ### Strategy II: Buffer Zone in Local Domain ### Buffer Zone Sizes Considered - Enrichment Zone: 4" X 4" blue square region - Buffer zone (in terms of number of layers of elements): - Red 1 layer - Yellow 2 layers - Green 4 layers Not to scale ### Strategy II: Buffer Zone in Local Domain #### Relative Error in Strain Energy • BCs from global problem *without* a crack ### **Outline** - Generalized finite element methods: Basic ideas - Bridging scales with the GFEM: - Global-local enrichments - Applications and mathematical analysis - Transition: Non-intrusive implementation in Abaqus - Extension to nonlinear problems - Closing remarks ### Computation of Solution at a Crack Step $$oldsymbol{u}_G = \underbrace{ ilde{oldsymbol{u}}^0}_{ ext{coarse scale (polynomial)}} + \underbrace{oldsymbol{u}}^{ ext{gl}}_{ ext{fine scale (G-L)}} = ig[oldsymbol{N}^0 oldsymbol{N}^ ext{gl} ig] \left[egin{array}{c} rac{ ilde{oldsymbol{u}}^0}{ ext{u}}^ ext{gl} \end{array} ight]$$ $\underline{\tilde{u}}^{\,0} = \mathsf{DOFs}$ associate with coarse scale discretization $\underline{u}^{\,\mathrm{gl}} = \mathrm{DOFs}$ associate with G-L (hierarchical) enrichments $$\dim(\underline{u}^{gl}) << \dim(\underline{\tilde{u}}^{0})$$ This leads to Computed by $$egin{bmatrix} m{K}^0 & m{K}^{0,\mathrm{gl}} \\ m{K}^{\mathrm{gl},0} & m{K}^{\mathrm{gl}} \end{bmatrix} \left[\begin{array}{c} \underline{ ilde{u}}^0 \\ \underline{ ilde{u}}^{\mathrm{gl}} \end{array} \right] = \left[\begin{array}{c} m{F}^0 \\ m{F}^{\mathrm{gl}} \end{array} \right]$$ Solve using, e.g., static condensation of $\underline{u}^{\text{gl}}$ ### Computation of Solution at a Crack Step ### From the first equation $$\underline{\tilde{u}}^{0} = (\mathbf{K}^{0})^{-1}\mathbf{F}^{0} - (\mathbf{K}^{0})^{-1}\mathbf{K}^{0,g|}\underline{u}^{g|} = \underline{u}^{0} - \mathbf{S}^{0,g|}\underline{u}^{g|}$$ Where $$\mathbf{S}^{0,\mathsf{gl}} := (\mathbf{K}^0)^{-1} \mathbf{K}^{0,\mathsf{gl}}$$ $$K^0$$ $S^{0,\mathrm{gl}}$ = $K^{0,\mathrm{gl}}$ pseudo coarse scale solutions pseudo coarse scale loads $S^{0,gl}$ = Pseudo coarse scale solutions computed through forward and backward substitutions on K^0 (by FEM code) ### Computation of Solution at a Crack Step From the second equation and the above $$oldsymbol{K}^{\mathsf{gl}}\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} \ = \ oldsymbol{F}^{\mathsf{gl}} - oldsymbol{K}^{\mathsf{gl},0} \left[\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} - oldsymbol{S}^{0,\mathsf{gl}} \, oldsymbol{\underline{u}}^{\,\mathsf{gl}} ight]$$ Thus $$\underbrace{\left[\underline{\boldsymbol{K}}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{S}}^{0,\mathrm{gl}} \right]}_{\widehat{\boldsymbol{K}}^{\mathrm{gl}}} \underline{\boldsymbol{u}}^{\mathrm{gl}} = \underbrace{\boldsymbol{F}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{u}}^{\mathrm{gl}}}_{\widehat{\boldsymbol{F}}^{\mathrm{gl}}}$$ $$egin{aligned} \widehat{m{K}}^{ ext{gl}} \, m{\underline{u}}^{ ext{gl}} &= \widehat{m{F}}^{ ext{gl}} \ &= m{\underline{u}}^{0} - m{S}^{0, ext{gl}} \, m{\underline{u}}^{ ext{gl}} &= \ &m{u}^{0} + m{u}^{ ext{gl}} &= m{[m{N}^{0}m{N}^{ ext{gl}}]} \, m{ar{u}}^{0} \ &m{\underline{u}}^{ ext{gl}} \, \end{bmatrix}$$ Computation of u_G involves forward- and back-substitutions on K^0 # Non-Intrusive Implementation in Existing FEM Codes # Non-intrusive implementation of GFEM^{gl} for Poisson equation in Abaqus * ### Singularities in thermal fields Coarse-Scale Abaqus Solution at critical region Abaqus + GFEM Solution Able to effectively capture sharp flux singularity adding only 16 global-local degrees of freedom to Abaqus model ^{*}with J. Plews and T. Eason # Enrichment Functions for Confined Plasticity Problems * ### J₂ plasticity with isotropic hardening # Enrichment Functions for Confined Plasticity Problems ### Key Idea: Use nonlinear local solution as enrichment for global problem solved on a coarse mesh (a) Linear initial global problem (b) Nonlinear local problem (c) Nonlinear enriched global problem G-L enrichments can be updated during iterative solution of nonlinear global problem # Enrichment Functions for Confined Plasticity Problems 0.07 0.06 0.05 0.03 0.02 0.01 0.00 Von Mises stress distribution at final load step Load-displacement curves for hp-GFEM and GFEM^{gl} ## Concluding Remarks step 0 step 5 step 10 step 15 Available methods require AMR Multiscale Generalized FEM - FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale computations are intrinsically parallelizable; recycle coarse scale solution - ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on meshes with elements that are orders of magnitude larger than in the FEM - STABLE: Uses single-field variational principles - TRANSITION: Fully compatible with FEM ### Questions? caduarte@uiuc.edu http://netfiles.uiuc.edu/caduarte/www/ ### **Support:**