

Bridging Scales with a Generalized Finite Element method

C. Armando Duarte

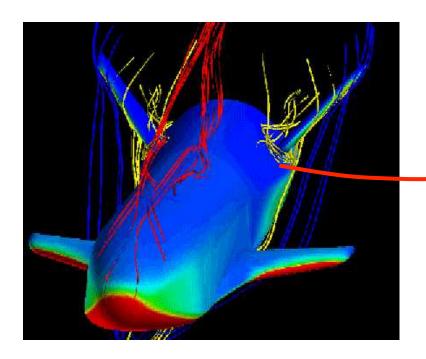
Dept. of Civil and Environmental Engineering Computational Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL

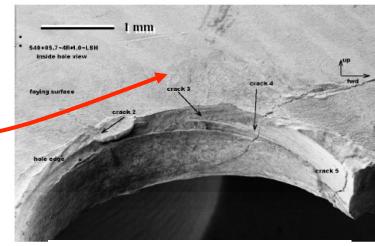
International Conference on Extended Finite Element Methods - XFEM 2011 June 29 – July 1, 2011, Cardiff, United Kingdom

Motivation: The Need to Bridge Scales

Mechanically-Short Cracks

- Hypersonic aircrafts are subjected to intense thermo, mechanical and acoustic loads
- Most of the life of the aircraft structure corresponds to the incubation and growth of micro-cracks

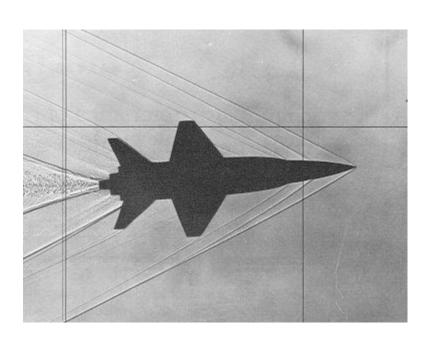


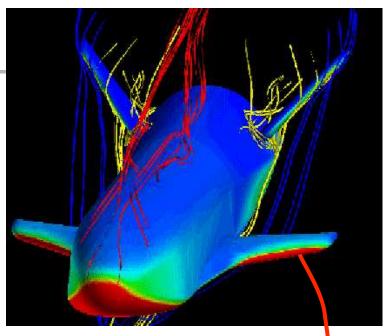


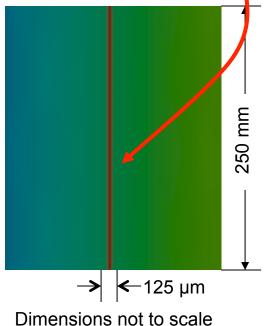
Multiple cracks around a rivet hole [Sandia National Lab, 2005]

Bridging Scales

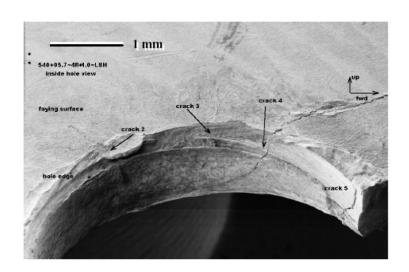
- Thermal loads on hypersonic aircrafts
- Shock wave impingements cause large thermal gradients
- Experiments are difficult and limited



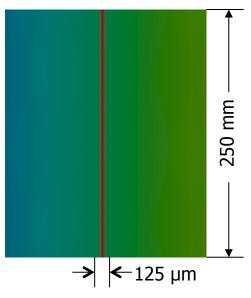




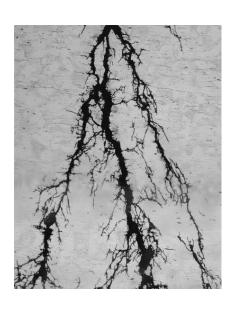
Multi-scale Problems



Multiple cracks around a rivet hole [Sandia National Lab, 2005]



Thermal loads on hypersonic aircrafts (dimensions not to scale)



Multiple interacting fractures

- Predictive simulations require modeling of phenomena spanning several spatial and temporal scales
- Advances in existing computational methods are needed
- Increasing computational power alone is not enough

Outline

- Generalized finite element methods: Basic ideas
- Bridging scales with the GFEM:
 - Global-local enrichments
- Applications and mathematical analysis
- Transition: Non-intrusive implementation in Abaqus
- Extension to nonlinear problems
- Closing remarks

Early works on Generalized FEMs

- Babuska, Caloz and Osborn, 1994 (Special FEM).
- Duarte and Oden, 1995 (Hp Clouds).
- Babuska and Melenk, 1995 (PUFEM).
- Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
- Duarte, Babuska and Oden, 1998 (GFEM).
- Belytschko et al., 1999 (Extended FEM).
- Strouboulis, Babuska and Copps, 2000 (GFEM).

Basic idea:

Use a partition of unity to build Finite Element shape functions

Recent review papers

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized finite element methods for material modeling, *Mod. Simul. Matl. Sci. Eng.*, 2009

Fries, T.-P. and Belytschko, T. The generalized/extended finite element method: An overview of the method and its applications, *Int. J. Num. Meth. Eng.*, 2010.

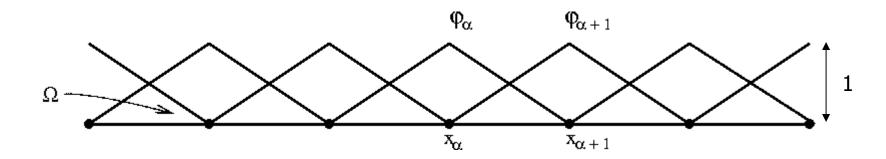
Generalized Finite Element Method

GFEM can be interpreted as a FEM with shape functions built using the concept of a partition of unity

Partition of Unity (PoU)

$$\sum_{\alpha} \varphi_{\alpha}(x) = 1 \qquad \forall x \in \Omega$$

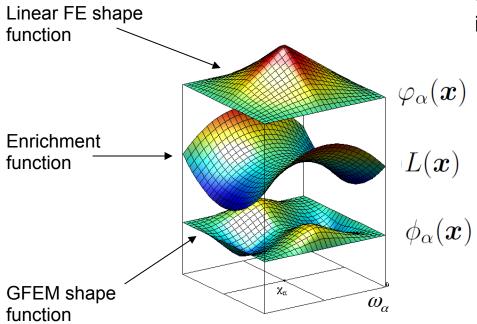
• φ_{α} = Linear FEM shape function



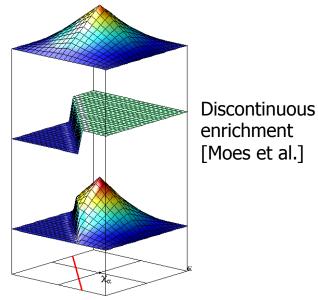
Generalized Finite Element Method

GFEM shape function = FE shape function * enrichment function

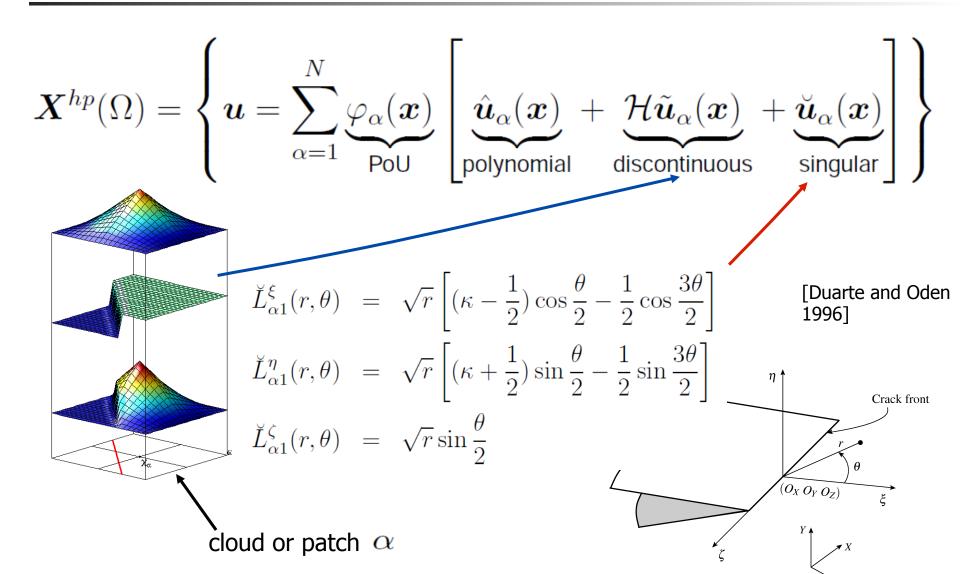
$$\phi_{\alpha}(\boldsymbol{x}) = \varphi_{\alpha}(\boldsymbol{x})L(\boldsymbol{x})$$



• Allows construction of shape functions incorporating a-priori knowledge about solution

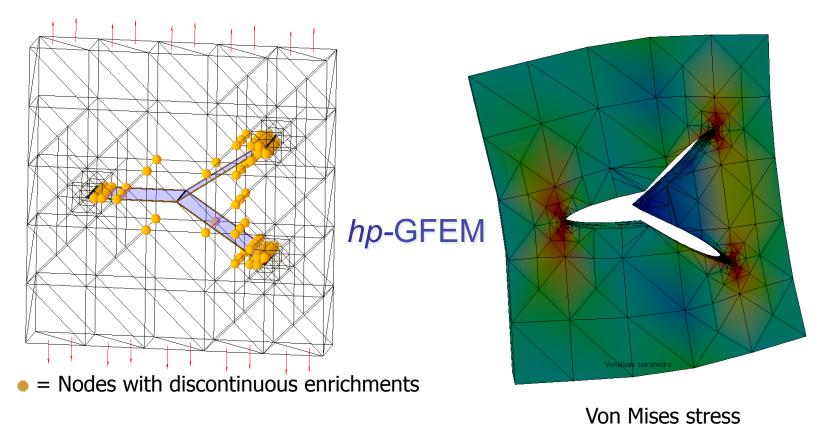


GFEM Approximation for 3-D Cracks



Modeling Cracks with hp-GFEM

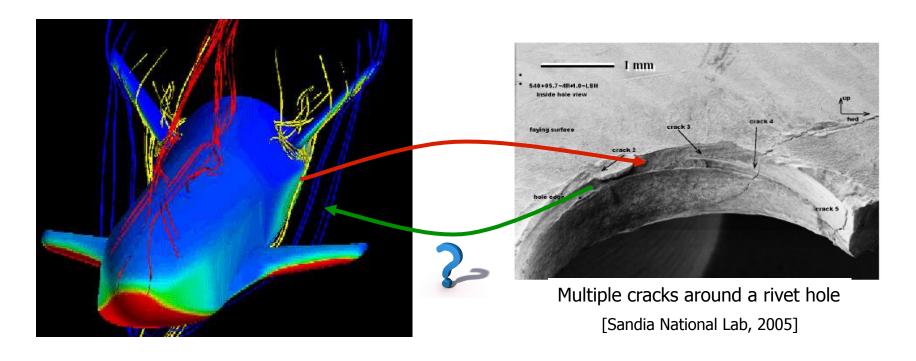
- Discontinuities modeled via enrichment functions, *not* the FEM mesh
- Mesh refinement *still required* for acceptable accuracy



[Duarte et al., Int. J. Num. Meth. Eng., 2007]

Bridging Scales with Global-Local Enrichment Functions

How to account for interactions among scales?

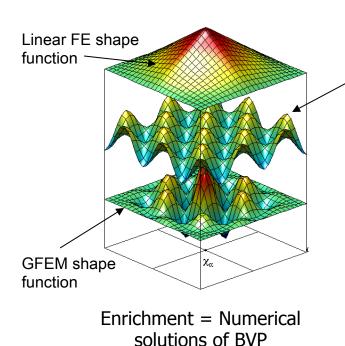


Goal:

• Capture fine scale effects on coarse meshes at the global (structural) scale

Bridging Scales with Global-Local Enrichment Functions *

Enrichment functions computed from solution of local boundary value problems: Global-Local enrichment functions

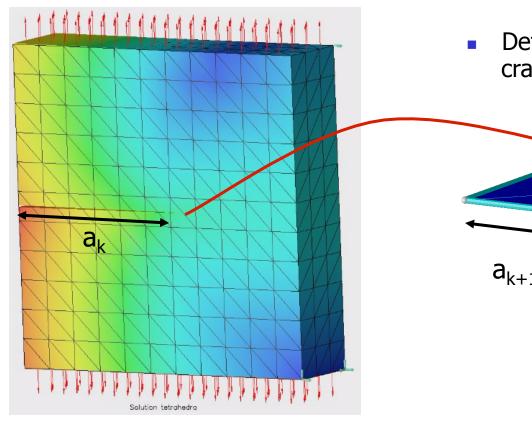


- Idea: Use available numerical solution at a simulation step to build shape functions for next step (quasi-static, transient, non-linear, etc.)
- Enrichment functions are produced numerically on-the-fly through a global-local analysis
- Use a coarse mesh enriched with Global-Local (G-L) functions

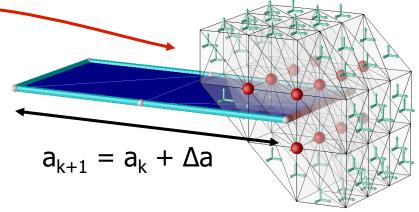
^{*} Duarte et al. 2005, 2007, 2008, 2010, 2011

Global-Local Enrichments for 3-D Fractures

 $ullet u_G^k$ solution of global problem at crack step k



 Define local domain containing crack front at step k+1

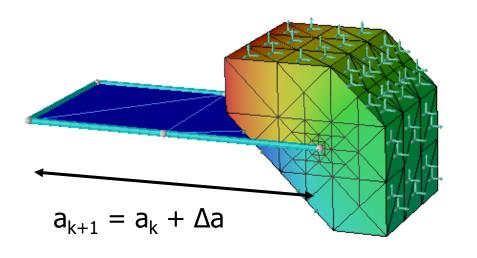


Local problem with crack size a_{k+1}

 $u_G^k \in X_G^k(\Omega)$ = solution of global problem with crack size $\mathbf{a_k}$

Global-Local Enrichments for 3-D Fractures

Solve local problem at step k using hp-GFEM



Boundary conditions for local problems provided by global solution:

$$u_L^k = u_G^k$$
 on $\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)$

$$X_L^k\left(\Omega_L^k\right) = hp$$
-GFEM space

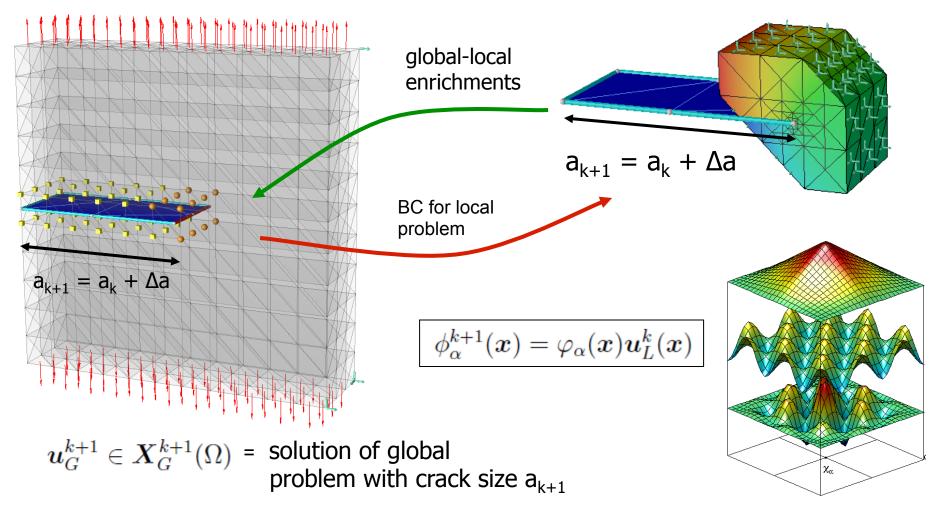
Find $u_L^k \in X_L^k\left(\Omega_L^k\right) \subset H^1\left(\Omega_L^k\right)$ such that $\forall v_L^k \in X_L^k\left(\Omega_L^k\right)$

$$\int_{\Omega_L^k} \boldsymbol{\sigma}(\boldsymbol{u}_L^k) : \boldsymbol{\varepsilon}(\boldsymbol{v}_L^k) d\boldsymbol{x} + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$

$$= \int_{\partial \Omega_L^k \cap \partial \Omega^\sigma} \bar{\boldsymbol{t}} \cdot \boldsymbol{v}_L^k ds + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$

Global-Local Enrichments for 3-D Fractures

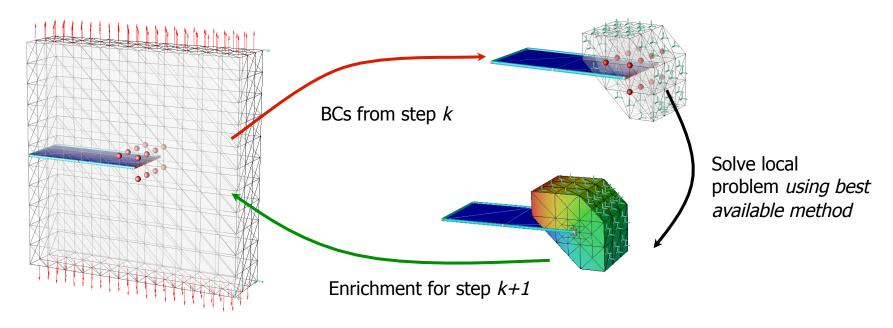
• **Defining Step:** Global space is enriched with local solutions



Procedure may be repeated: Update local BCs and enrichment functions

Global-Local Enrichments for Crack Growth

Summary: Use solution of global problem at simulation k to build enrichment functions for step k+1

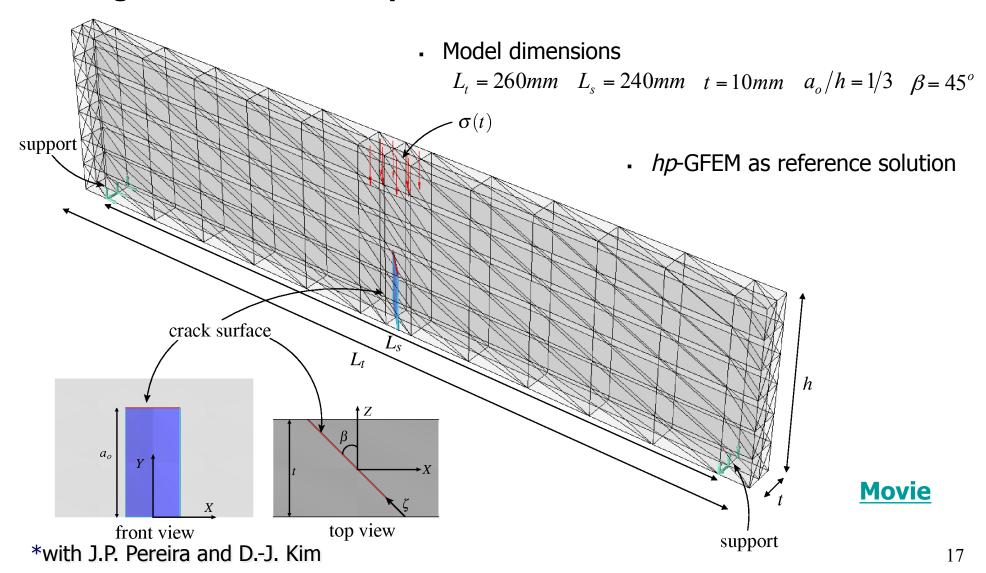


• Discretization spaces updated on-the-fly with global-local enrichment functions

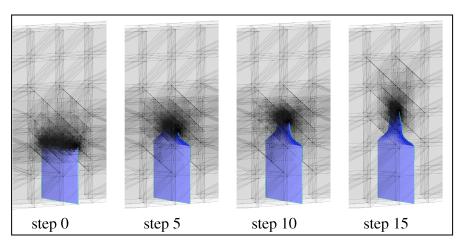
$$\boldsymbol{X}_{G}^{k+1}(\Omega_{G}) = \left\{ \boldsymbol{u} = \underbrace{\sum_{\alpha=1}^{N} \varphi_{\alpha}(\boldsymbol{x}) \hat{\boldsymbol{u}}_{\alpha}(\boldsymbol{x})}_{\text{coarse-scale approx.}} + \underbrace{\sum_{\beta \in \mathcal{I}_{gl}^{k}} \varphi_{\beta}(\boldsymbol{x}) \boldsymbol{u}_{\beta}^{gl(k)}(\boldsymbol{x})}_{\text{fine-scale approx.}} \right\} \quad \boldsymbol{u}_{\beta}^{gl(k)} = \text{G-L enrichment}$$

Edge-Notched Beam with Slanted Crack *

Fatigue Crack Growth: hp-GFEM and GFEMgl solutions



Edge-Notched Beam with Slanted Crack



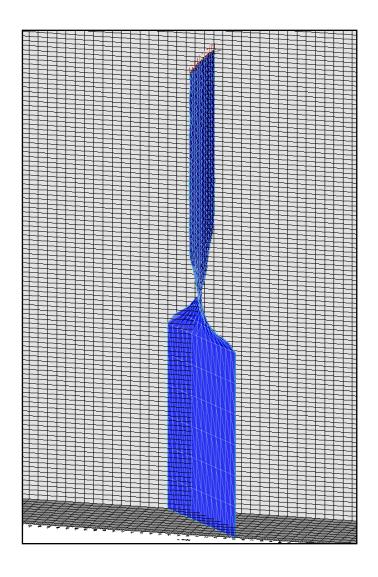
step 0 step 5 step 10 step 15

Available Methods – *hp*-GFEM/FEM

Two-Scale Generalized FEM – GFEM^{gl}

- Mesh with elements that are orders of magnitude larger than in a FEM mesh
- Fully compatible with FEM
- Single field formulation: Does not introduce stability (LBB) issues

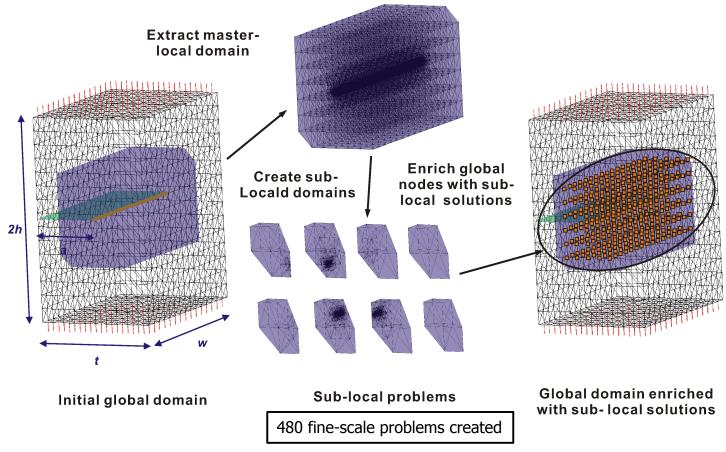
Experimental Results



[Buchholz et al., 2004]

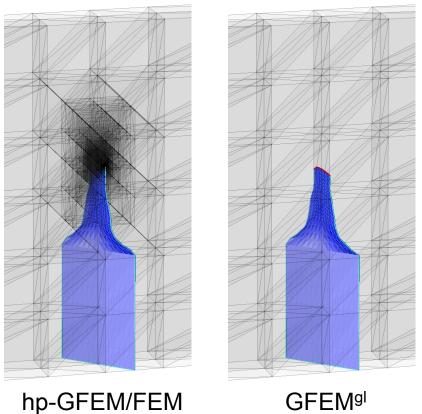
Parallel Computation of Enrichment Functions *

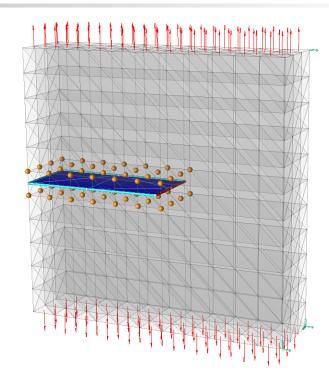
- A large number of small fine-scale problems can be created instead of a single one
- No communication is involved in their parallel solution



^{*}with D.-J. Kim and N. Sohb

Mathematical Analysis *





GFEM^{gl}: Error controlled through global-local enrichments

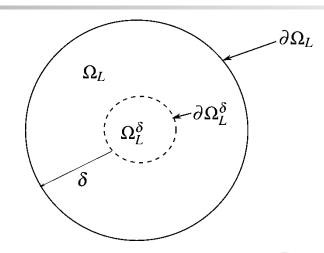
Questions:

- What are the effects of inexact BCs at fine-scale problems?
- How to control them?

*with V. Gupta

A-Priori Error Estimate

Local error estimate



$$\|\boldsymbol{u}^{exBC} - \boldsymbol{u}_h^{inexBC}\|_{\varepsilon(\Omega_L^{\delta})} \leq C \inf_{\boldsymbol{x} \in \boldsymbol{X}_L^{hp}(\Omega_L)} \|\boldsymbol{u}^{inexBC} - \boldsymbol{x}\|_{\varepsilon(\Omega_L)} + \underbrace{\frac{C_1}{\delta}} \|\boldsymbol{u}^{exBC} - \boldsymbol{u}^{inexBC}\|_{L^2(\Omega_L)}$$

Discretization error

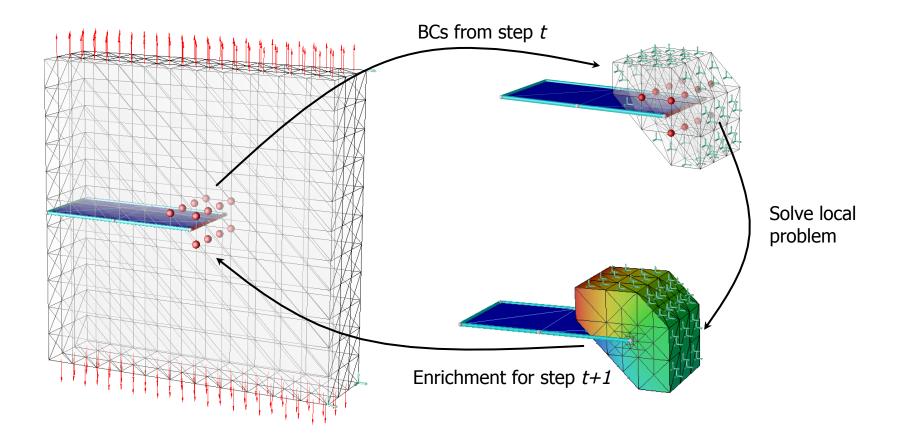
Effect of inexact BC

Global Error [Babuska and Melenk, 1996]

$$\|\boldsymbol{u} - \boldsymbol{u}_G\|_{\varepsilon(\Omega)}^2 \le C \sum_{\alpha=1}^N \inf_{\boldsymbol{u}_\alpha \in \chi_\alpha} \|\boldsymbol{u} - \boldsymbol{u}_\alpha\|_{\varepsilon(\omega_\alpha)}^2 \le C \sum_{\alpha=1}^N \|\boldsymbol{u} - \boldsymbol{u}_h^{\mathsf{inexBC}}\|_{\varepsilon(\omega_\alpha)}^2$$

where $u \equiv u^{ ext{exBC}}$

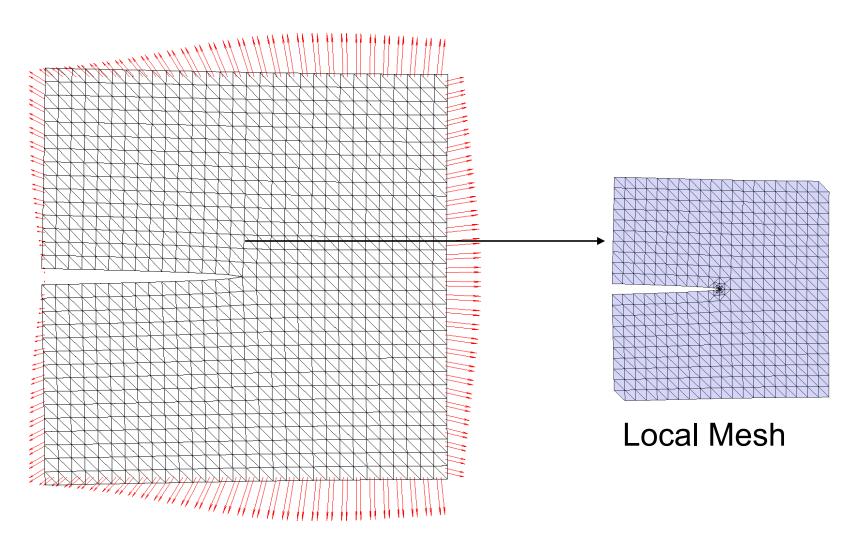
Strategy I: Multiple Global-Local Iterations



Repeat Global-local-Global cycle before advancing crack

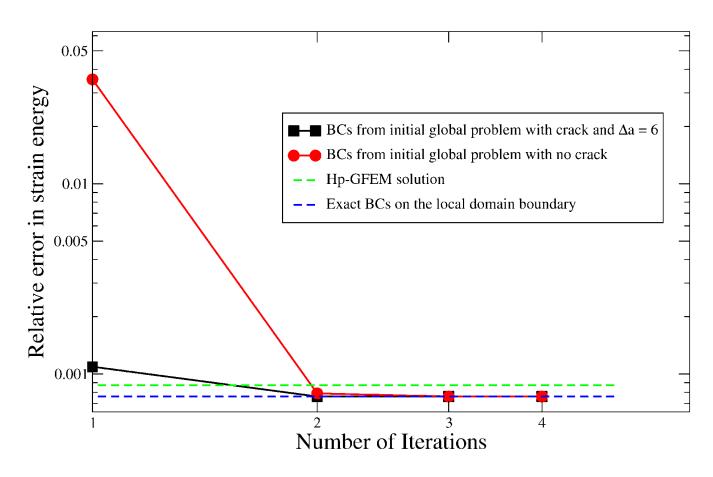
Strategy I: Multiple Global-Local Iterations

■ 30" x 30" x 1" edge-crack panel loaded with Mode I tractions



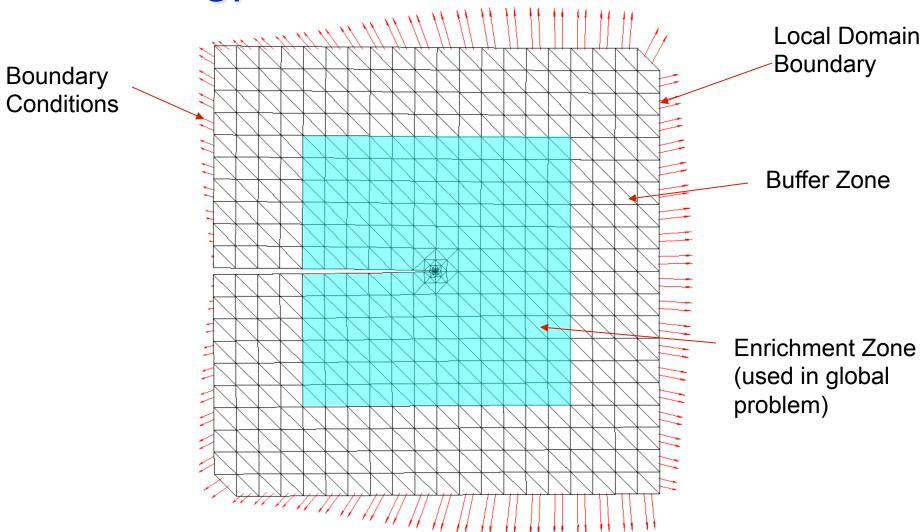
Strategy I: Multiple Global-Local Iterations

Relative Error in Strain Energy



GFEMgl can deliver same accuracy as hp-GFEM (DNS)

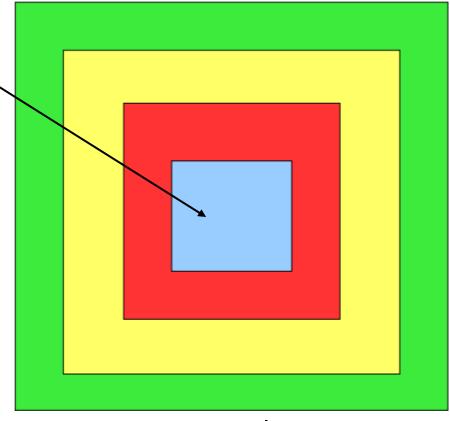
Strategy II: Buffer Zone in Local Domain



Strategy II: Buffer Zone in Local Domain

Buffer Zone Sizes Considered

- Enrichment Zone: 4" X 4" blue square region
- Buffer zone (in terms of number of layers of elements):
 - Red 1 layer
 - Yellow 2 layers
 - Green 4 layers



Not to scale

Strategy II: Buffer Zone in Local Domain

Relative Error in Strain Energy



• BCs from global problem *without* a crack

Outline

- Generalized finite element methods: Basic ideas
- Bridging scales with the GFEM:
 - Global-local enrichments
- Applications and mathematical analysis
- Transition: Non-intrusive implementation in Abaqus
- Extension to nonlinear problems
- Closing remarks

Computation of Solution at a Crack Step

$$oldsymbol{u}_G = \underbrace{ ilde{oldsymbol{u}}^0}_{ ext{coarse scale (polynomial)}} + \underbrace{oldsymbol{u}}^{ ext{gl}}_{ ext{fine scale (G-L)}} = ig[oldsymbol{N}^0 oldsymbol{N}^ ext{gl} ig] \left[egin{array}{c} rac{ ilde{oldsymbol{u}}^0}{ ext{u}}^ ext{gl} \end{array}
ight]$$

 $\underline{\tilde{u}}^{\,0} = \mathsf{DOFs}$ associate with coarse scale discretization

 $\underline{u}^{\,\mathrm{gl}} = \mathrm{DOFs}$ associate with G-L (hierarchical) enrichments

$$\dim(\underline{u}^{gl}) << \dim(\underline{\tilde{u}}^{0})$$

This leads to

Computed by
$$egin{bmatrix} m{K}^0 & m{K}^{0,\mathrm{gl}} \\ m{K}^{\mathrm{gl},0} & m{K}^{\mathrm{gl}} \end{bmatrix} \left[\begin{array}{c} \underline{ ilde{u}}^0 \\ \underline{ ilde{u}}^{\mathrm{gl}} \end{array} \right] = \left[\begin{array}{c} m{F}^0 \\ m{F}^{\mathrm{gl}} \end{array} \right]$$

Solve using, e.g., static condensation of $\underline{u}^{\text{gl}}$

Computation of Solution at a Crack Step

From the first equation

$$\underline{\tilde{u}}^{0} = (\mathbf{K}^{0})^{-1}\mathbf{F}^{0} - (\mathbf{K}^{0})^{-1}\mathbf{K}^{0,g|}\underline{u}^{g|}
= \underline{u}^{0} - \mathbf{S}^{0,g|}\underline{u}^{g|}$$

Where

$$\mathbf{S}^{0,\mathsf{gl}} := (\mathbf{K}^0)^{-1} \mathbf{K}^{0,\mathsf{gl}}$$

$$K^0$$
 $S^{0,\mathrm{gl}}$ = $K^{0,\mathrm{gl}}$ pseudo coarse scale solutions pseudo coarse scale loads

 $S^{0,gl}$ = Pseudo coarse scale solutions computed through forward and backward substitutions on K^0 (by FEM code)

Computation of Solution at a Crack Step

From the second equation and the above

$$oldsymbol{K}^{\mathsf{gl}}\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} \ = \ oldsymbol{F}^{\mathsf{gl}} - oldsymbol{K}^{\mathsf{gl},0} \left[\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} - oldsymbol{S}^{0,\mathsf{gl}} \, oldsymbol{\underline{u}}^{\,\mathsf{gl}}
ight]$$

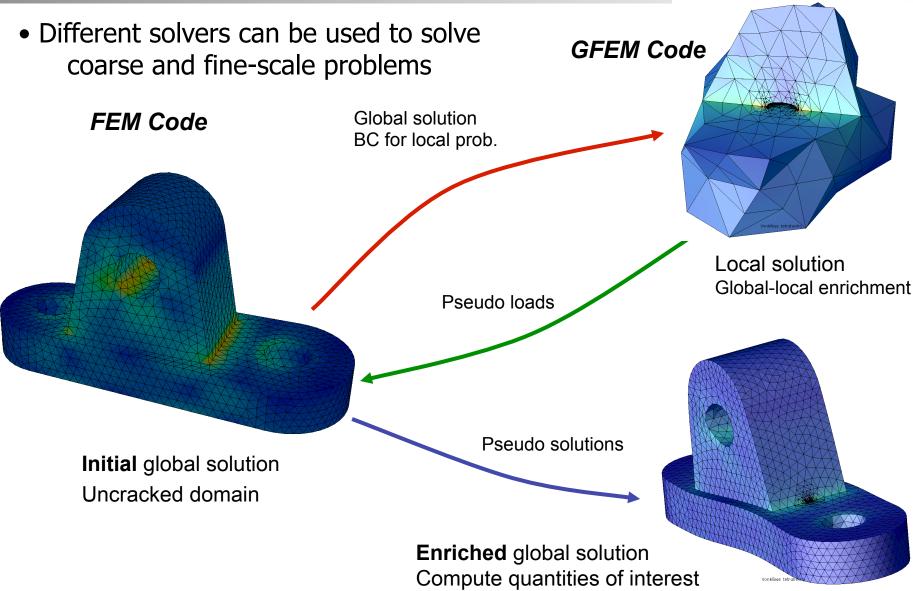
Thus

$$\underbrace{\left[\underline{\boldsymbol{K}}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{S}}^{0,\mathrm{gl}} \right]}_{\widehat{\boldsymbol{K}}^{\mathrm{gl}}} \underline{\boldsymbol{u}}^{\mathrm{gl}} = \underbrace{\boldsymbol{F}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{u}}^{\mathrm{gl}}}_{\widehat{\boldsymbol{F}}^{\mathrm{gl}}}$$

$$egin{aligned} \widehat{m{K}}^{ ext{gl}} \, m{\underline{u}}^{ ext{gl}} &= \widehat{m{F}}^{ ext{gl}} \ &= m{\underline{u}}^{0} - m{S}^{0, ext{gl}} \, m{\underline{u}}^{ ext{gl}} &= \ &m{u}^{0} + m{u}^{ ext{gl}} &= m{[m{N}^{0}m{N}^{ ext{gl}}]} \, m{ar{u}}^{0} \ &m{\underline{u}}^{ ext{gl}} \, \end{bmatrix}$$

Computation of u_G involves forward- and back-substitutions on K^0

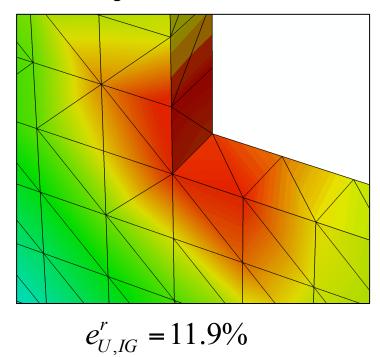
Non-Intrusive Implementation in Existing FEM Codes



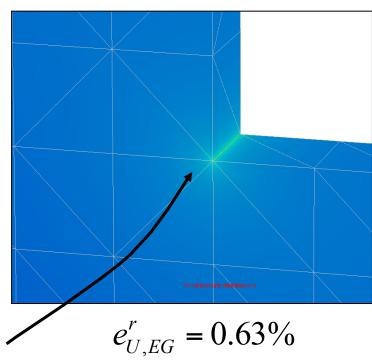
Non-intrusive implementation of GFEM^{gl} for Poisson equation in Abaqus *

Singularities in thermal fields

Coarse-Scale Abaqus Solution at critical region



Abaqus + GFEM Solution

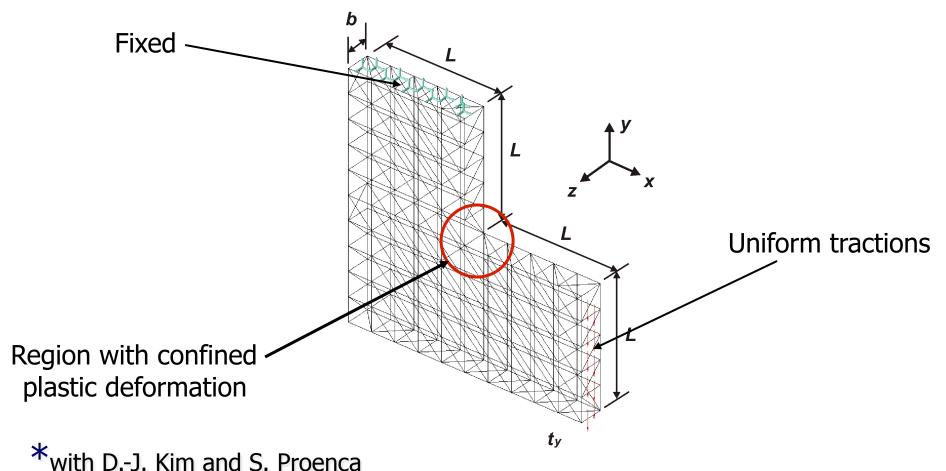


 Able to effectively capture sharp flux singularity adding only 16 global-local degrees of freedom to Abaqus model

^{*}with J. Plews and T. Eason

Enrichment Functions for Confined Plasticity Problems *

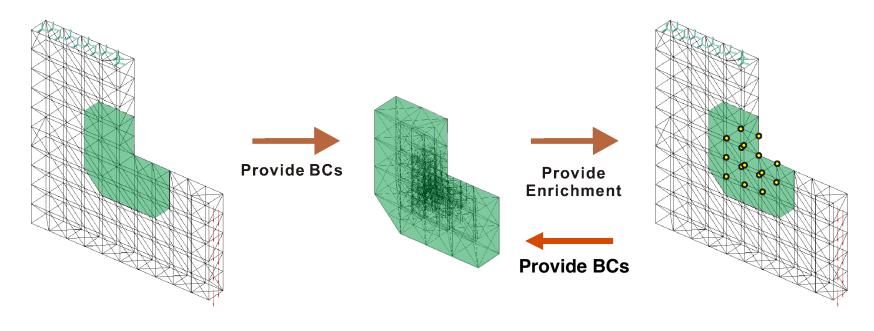
J₂ plasticity with isotropic hardening



Enrichment Functions for Confined Plasticity Problems

Key Idea:

 Use nonlinear local solution as enrichment for global problem solved on a coarse mesh



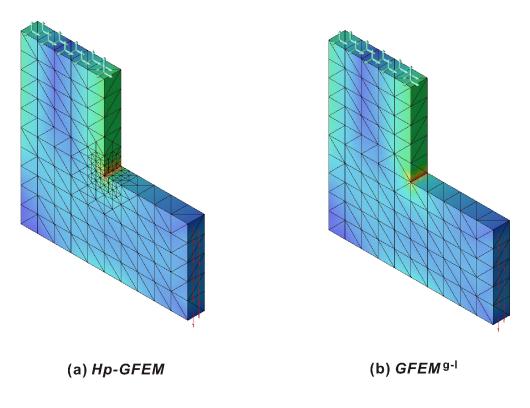
(a) Linear initial global problem

(b) Nonlinear local problem

(c) Nonlinear enriched global problem

 G-L enrichments can be updated during iterative solution of nonlinear global problem

Enrichment Functions for Confined Plasticity Problems

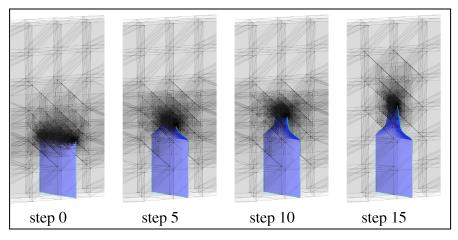


0.07 0.06 0.05 0.03 0.02 0.01 0.00

Von Mises stress distribution at final load step

Load-displacement curves for hp-GFEM and GFEM^{gl}

Concluding Remarks

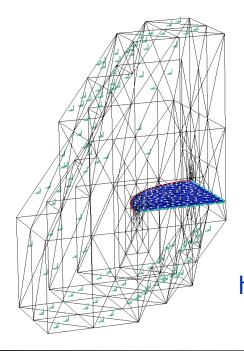


step 0 step 5 step 10 step 15

Available methods require AMR

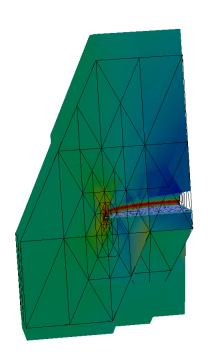
Multiscale Generalized FEM

- FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale computations are intrinsically parallelizable; recycle coarse scale solution
- ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on meshes with elements that are orders of magnitude larger than in the FEM
- STABLE: Uses single-field variational principles
- TRANSITION: Fully compatible with FEM



Questions?

caduarte@uiuc.edu http://netfiles.uiuc.edu/caduarte/www/



Support:

