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Motivation: The Need to Bridge Scales

e Mechanically-Short Cracks
e Hypersonic aircrafts are subjected to intense thermo, mechanical
and acoustic loads

e Most of the life of the aircraft structure corresponds to the
incubation and growth of micro-cracks
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Multiple cracks around a rivet hole
[Sandia National Lab, 2005]



][ Bridging Scales

e Thermal loads on hypersonic aircrafts

e Shock wave impingements cause large
thermal gradients

o Experiments are difficult and limited

Dimensions not to scale 3



j[ Multi-scale Problems
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[Sandia National Lab, 2005] Thermal loads on Multiple interacting

hypersonic aircrafts fractures
(dimensions not to scale)

e Predictive simulations require modeling of phenomena spanning
several spatial and temporal scales

e Advances in existing computational methods are needed
e Increasing computational power alone is not enough



Outline

e Generalized finite element methods: Basic ideas
e Bridging scales with the GFEM:
— Global-local enrichments

e Applications and mathematical analysis

e Transition: Non-intrusive implementation in Abaqus
e Extension to nonlinear problems

e Closing remarks



j[ Early works on Generalized FEMs

Babuska, Caloz and Osborn, 1994 (Special FEM).
Duarte and Oden, 1995 (Hp Clouds).

Babuska and Melenk, 1995 (PUFEM).

Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
Duarte, Babuska and Oden, 1998 (GFEM).

Belytschko et al., 1999 (Extended FEM).

Strouboulis, Babuska and Copps, 2000 (GFEM).

Basic idea:

e Use a partition of unity to build Finite Element shape functions

Recent review papers

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009

Fries, T.-P. and Belytschko, T. The generalized/extended finite element method: An
overview of the method and its applications, Int. J. Num. Meth. Eng., 2010.



Generalized Finite Element Method

GFEM can be interpreted as a FEM with shape functions built using the
concept of a partition of unity

Patrtition of Unity (PoU)
E @,(x)=1 V x€Q

« ¢, = Linear FEM shape function




Generalized Finite Element Method

« GFEM shape function = FE shape function * enrichment function

Oa(T) = polx)L(x)

« Allows construction of shape functions
incorporating a-priori knowledge about solution

Linear FE shape

function \
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GFEM Approximation for 3-D Cracks
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Modeling Cracks with hp-GFEM

¢ Discontinuities modeled via enrichment functions, not the FEM mesh
* Mesh refinement still required for acceptable accuracy
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¢ = Nodes with discontinuous enrichments

NTT— N

L

Von Mises stress

[Duarte et al., Int. J. Num. Meth. Eng., 2007]
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Bridging Scales with Global-Local
Enrichment Functions

Multiple cracks around a rivet hole
[Sandia National Lab, 2005]

Goal:
e Capture fine scale effects on coarse meshes at the global (structural) scale
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Bridging Scales with Global-Local
Enrichment Functions *

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function
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s ldea: Use available numerical solution at a
Ssimulation step to build shape functions for next
step (quasi-static, transient, non-linear, etc.)

= Enrichment functions are produced numerically
on-the-fly through a global-local analysis

7

GFEM shape
function

s Use a coarse mesh enriched with Global-Local
(G-L) functions

Enrichment = Numerical
solutions of BVP

* Duarte et al. 2005, 2007, 2008, 2010, 2011
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][ Global-Local Enrichments for 3-D Fractures

= up, solution of global problem at crack step k

= Define local domain containing
crack front at step k+1

i+1\’ﬂ1 1lfl‘| | lt1}r'|?1‘q.

Local problem with crack

N N 1 | )
NI .
| s VA size a

Solution tetrahedra k+ 1

ul, € XE(Q) = solution of global
problem with crack size a,
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][ Global-Local Enrichments for 3-D Fractures

= Solve local problem at step k using hp-GFEM

Boundary conditions for local problems
provided by global solution:

uf =wuy, on 905\ (99 N o)

P —
<

a1 = 9 + Aa
ol Tk X7 (QF) = hp-GFEM space

Find uf € X} (QF) < H' (QF) such that V v} € X} (QF)

/ a(uf) : s(v}f)dw + h/ ul,: : vfds
Qk Bk \ (92K NoN)

:/ f.vf(ls—kf{/
o0k NoNT B0k \ (992 NOQ)
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I\[ Global-Local Enrichments for 3-D Fractures

* Defining Step: Global space is enriched with local solutions

global-local
enrichments
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problem with crack size a,

« Procedure may be repeated: Update local BCs and enrichment functions



j[ Global-Local Enrichments for Crack Growth

= Summary: Use solution of global problem at simulation & to build
enrichment functions for step k+1
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« Discretization spaces updated on-the-fly with global-local enrichment functions
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Edge-Notched Beam with Slanted Crack

step 5 step 10 step 0 step 5 step 10 step 15

step 0

Available Methods — hp-GFEM/FEM Two-Scale Generalized FEM — GFEMY

« Mesh with elements that are orders of magnitude larger than in a FEM mesh
« Fully compatible with FEM
« Single field formulation: Does not introduce stability (LBB) issues
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Experimental Results

[Buchholz et al., 2004]
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Parallel Computation of Enrichment
Functions *

e A large number of small fine-scale problems can be created instead of a
single one

o No communication is involved in their parallel solution

Extract master-
local domain

Enrich global
nodes with sub-
local solutions

Create sub-
Locald domains

Sub-local problems Global domain enriched
with sub-local solutions

Initial global domain

480 fine-scale problems created

*with D--J. Kim and N. Sohb

20



——— —
ey

= /
= = y, 7
= y /
| / / 7

/ / /

/

LN\
LN

\“ \\\‘\ |
\ N

&
A\ |

— =7

N
\\\ \

|
|
|
N

\\ \\. \\\‘
\§\ \q ?‘

|
\

'y

\

,
\
\

\\H \»\\
\,\\\ \ \i ¥ \\\ W
A\ AR
\ \

\\H \»\\

\,\\\ \ \i ¥ \\\ W
A\ A
\ \\

|

Questions:

" hp-GFEM/FEM
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Mathematical Analysis *
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« What are the effects of inexact BCs at fine-scale problems?

« How to control them?

*with V. Gupta
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A-Priori Error Estimate

Local error estimate

. 1 C i
xBC BC . nexBC o L\ exBC nexBC
a5 — ey SC_inf 0™~ Kleqau) + 753 l0 — ™ e
: xeX;'(Q) N-f
Discretization error Effect of inexact BC

= Global Error [Babuska and Melenk, 1996]

<CZ inf  (lu—w,lZ,,) §UZ||U —u)
UaEXa

= O—
exBC

|u—uc||2

where v =u
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o)

22



I

R
2 > \7 ‘:,,

\ ,«'/f\ A
- . \\:\\\ "»‘“\\\
L A L % M
T T
T (I

N
A X ) ,lJ
] i
17y
4,
e

2B \
L

"-‘
=%

AvEan e, s e
R N

Strategy I: Multiple Global-Local Iterations

BCs from step t
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Solve local
problem

=

=

= Repeat Global-local-Global cycle before advancing crack
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|
trategy I: Multiple Global-Local Iterations

= 30" x 30” x 1” edge-crack panel loaded with Mode I tractions
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E=NiStrategy I: Multiple Global-Local Iterations

Relative Error in Strain Energy

0.05— —

B BCs from initial global problem with crack and Aa = 6
©®—@ BCs from initial global problem with no crack
Hp-GFEM solution —

001
B — — Exact BCs on the local domain boundary

0.005 -

Relative error in strain energy

Number of Iterations

= GFEMY can deliver same accuracy as hp-GFEM (DNS)
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Boundary
Conditions

I

Strategy II: Buffer Zone in Local Domain
oA

Local Domain
Boundary
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Buffer Zone
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(used in global
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Strategy II: Buffer Zone in Local Domain

e Buffer Zone Sizes Considered

=  Enrichment Zone: 4” X 4” blue
square region

= Buffer zone (in terms of number of
layers of elements):

e Red -1 layer
e Yellow - 2 layers

e Green - 4 layers

Not to scale
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Strategy II: Buffer Zone in Local Domain

I

Relative Error in Strain Energy

— 0 Layer Bufter Zone
®—® | Layer Buftfer Zone
- 2 Layer Buffer Zone —
¥ —X 4 Layer Buffer Zone

0.005

0.003
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Relative error in strain energy

-t

| 1 |
1 2 3 4 5
Number of Iterations

e BCs from global problem without a crack
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Computation of Solution at a Crack Step

~ 0
_ ~ 0 gl - 0 n 7l u
uG = X + ul —[NN][ugu]
coarse scale (polynomial)  fine scale (G-L) o
u' = DOFs associate with coarse scale discretization
u9 = DOFs associate with G-L (hierarchical) enrichments

dim(u9) << dim(z°)
This leads to

KO KO,gI ,&O FO
Computed b ., | ] [ gl ] — [ | ]
FEM code K9" K¢ (O ES

Solve using, e.g., static condensation of u 9
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Computation of Solution at a Crack Step

From the first equation

QO _ (KO)—IFO o (KO)_lKO’glggl

_ uO . SO,qugI

Where
SO gl (KO)—IKO gl
KO SO,gl _ KO,gl
S~ N

pseudo coarse scale solutions pseudo coarse scale loads

S%9' = Pseudo coarse scale solutions computed

through forward and backward substitutions on K"
(by FEM code)
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I

Computation of Solution at a Crack Step

From the second equation and the above

Kglygl _ Fgl o KgI,O [uO o SO,glygl]

Thus
[Kgl o KgI,OSO,gI] Hgl _ Fgl o KgI,OHO
N —— — N — r—
K9 F9
K949 = F9

Computation of u¢ Involves forward- and back-substitutions
on K"
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Non-Intrusive Implementation in Existing
FEM Codes

e Different solvers can be used to solve
coarse and fine-scale problems

I

GFEM Code

NVA\ V
A A “

FEM Code Global solution
BC for local prob.

Local solution

Global-local enrichment
Pseudo loads

Pseudo solutions
Initial global solution

Uncracked domain

Enriched global solution

L‘ L5
Compute quantities of interest e o SRS
J20



‘j[ Non-intrusive implementation of GFEMY for
Poisson equation in Abaqus *

= Singularities in thermal fields

Coarse-Scale Abaqus Solution
at critical region Abaqus + GFEM Solution

ey 6 =11.9%

e o =0.63%
= Able to effectively capture sharp flux singularity adding only 16 global-local
degrees of freedom to Abaqus model

>|<with J. Plews and T. Eason
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Enrichment Functions for Confined
Plasticity Problems *

I

= J, plasticity with isotropic hardening

Fixed \ﬁﬂl

Region with confined /

plastic deformation %
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>|<with D.-]J. Kim and S. Proenca 35



Enrichment Functions for Confined
Plasticity Problems

= Key Idea:

Use nonlinear local solution as enrichment for global problem
solved on a coarse mesh

%% A % o ‘
< N> Provide BCs Provide
% % Enrichment
iigg — =
%% Provide BCs
J
i
(a) Linear initial global problem (b) Nonlinear local problem (c) Nonlinear enriched

global problem

G-L enrichments can be updated during iterative solution of
nonlinear global problem



Enrichment Functions for Confined

Plasticity Problems

244

\ DX

77X

ATz,
ENETE
]
VERY.

s

(a) Hp-GFEM

Von Mises stress distribution at final load step

(b) GFEM 9"
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Load-displacement curves for
hp-GFEM and GFEMY




Concluding Remarks

step 0 step 5 step 10 step 15 step 5 step 10 step 15

Available methods require AMR Multiscale Generalized FEM

= FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale
computations are intrinsically parallelizable; recycle coarse scale solution

= ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on
meshes with elements that are orders of magnitude larger than in the FEM

= STABLE: Uses single-field variational principles
= TRANSITION: Fully compatible with FEM

38



v

VA

ql
)

Nl
A VA
BN

I

/)

-
‘%’h}lﬂ

A

)
1

NIV

Questions?

LS

N J

caduarte@uiuc.edu
http://netfiles.uiuc.edu/caduarte/www/

i
LAY, S i
===

N
‘




