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Multiple cracks around a rivet hole 
[Sandia National Lab, 2005] 

•  Mechanically-Short Cracks 

Motivation: The Need to Bridge Scales 

•  Hypersonic aircrafts are subjected to intense thermo, mechanical 
and acoustic loads 

•  Most of the life of the aircraft structure corresponds to the 
incubation and growth of micro-cracks 
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Bridging Scales 

•  Thermal loads on hypersonic aircrafts 
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Dimensions not to scale 

•  Shock wave impingements cause large 
thermal gradients 

•  Experiments are difficult and limited 
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Multi-scale Problems 
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Multiple cracks around a rivet hole 
[Sandia National Lab, 2005] 

•  Predictive simulations require modeling of phenomena spanning   
several spatial and temporal scales  

•  Advances in existing computational methods are needed  
•  Increasing computational power alone is not enough 

Multiple interacting 
 fractures 
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Outline 

•  Generalized finite element methods: Basic ideas 

•  Bridging scales with the GFEM: 

–  Global-local enrichments 

•  Applications and mathematical analysis 

•  Transition: Non-intrusive implementation in Abaqus 

•  Extension to nonlinear problems 

•  Closing remarks 
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Early works on Generalized FEMs 

!  Babuska, Caloz and Osborn, 1994 (Special FEM). 
!  Duarte and Oden, 1995 (Hp Clouds). 
!  Babuska and Melenk, 1995 (PUFEM). 
!  Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM). 
!  Duarte, Babuska and Oden, 1998 (GFEM). 
!  Belytschko et al., 1999 (Extended FEM). 
!  Strouboulis, Babuska and Copps, 2000 (GFEM). 

•  Basic idea:  

•  Use a partition of unity to build Finite Element shape functions 

•  Recent review papers  
Belytschko T., Gracie R. and Ventura G. A review of extended/generalized 
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009 
 
Fries, T.-P. and Belytschko, T. The generalized/extended finite element method: An  
overview of the method and its applications, Int. J. Num. Meth. Eng., 2010. 
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Generalized Finite Element Method 

   GFEM can be interpreted as a FEM with shape functions built using the 
concept of a partition of unity 

Partition of Unity (PoU)  

( ) 1         x xα
α

ϕ = ∀ ∈Ω∑

•       = Linear FEM shape function        

1 

α ϕ 
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Generalized Finite Element Method 

•  Allows construction of shape functions 
incorporating a-priori knowledge about solution   

•  GFEM shape function  = FE shape function   *  enrichment function  
                                            

Discontinuous 
enrichment 
[Moes et al.] 

αω

Linear FE shape 
function 

Enrichment 
function 

GFEM shape 
function 
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GFEM Approximation for 3-D Cracks 

cloud or patch     

[Duarte and Oden 
1996] 
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Modeling Cracks with hp-GFEM 

•  Discontinuities modeled via enrichment functions, not  the FEM mesh 
•  Mesh refinement still required for acceptable accuracy 

"   = Nodes with discontinuous enrichments 
Von Mises stress 

[Duarte et al., Int. J. Num. Meth. Eng., 2007] 

hp-GFEM 
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Bridging Scales with Global-Local 
Enrichment Functions 

Goal: 
•  Capture fine scale effects on coarse meshes at the global (structural) scale 

•  How to account for interactions among scales? 

Multiple cracks around a rivet hole 
[Sandia National Lab, 2005] 
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!  Idea: Use available numerical solution at a 
simulation step to build shape functions for next 
step (quasi-static, transient, non-linear, etc.) 

!  Enrichment functions are produced numerically 
on-the-fly through a global-local analysis 

!  Use a coarse mesh enriched with Global-Local 
(G-L) functions 

Enrichment = Numerical 
solutions of BVP 

!  Enrichment functions computed from solution of local boundary value 
problems: Global-Local enrichment functions 

Linear FE shape 
function 

GFEM shape 
function 

Bridging Scales with Global-Local 
Enrichment Functions * 

* Duarte et al. 2005, 2007, 2008, 2010, 2011 
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!         solution of global problem at crack step k 

Global-Local Enrichments for 3-D Fractures 

ak 

Local problem with crack 
size ak+1 

!  Define local domain containing 
crack front at step k+1 

ak+1 = ak + ∆a 

  =  solution of global                 
problem with crack size ak 
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"  Solve local problem at step k using hp-GFEM 

Global-Local Enrichments for 3-D Fractures 

ak+1 = ak + ∆a 

Boundary conditions for local problems 
 provided by global solution: 

= hp-GFEM space 
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global-local 
enrichments 

•  Defining Step: Global space is enriched with local solutions 

Global-Local Enrichments for 3-D Fractures 

•   Procedure may be repeated: Update local BCs and enrichment functions 

ak+1 = ak + ∆a 

ak+1 = ak + ∆a 

  =  solution of global                 
problem with crack size ak+1 

BC for local  
problem 
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Global-Local Enrichments for Crack Growth 
"  Summary: Use solution of global problem at simulation k to build 

enrichment functions for step k+1 

BCs from step k 

Enrichment for step k+1 

Solve local 
problem using best 
available method 

•  Discretization spaces updated on-the-fly with global-local enrichment functions 

= G-L enrichment 
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"  Fatigue Crack Growth: hp-GFEM and GFEMgl solutions 

"  Model dimensions  
mmt 10=mmLs 240=mmLt 260= 31=hao o45=β

"  hp-GFEM as reference solution 

Edge-Notched Beam with Slanted Crack * 

Movie 

*with J.P. Pereira and D.-J. Kim 
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Available Methods – hp-GFEM/FEM Two-Scale Generalized FEM – GFEMgl  

•  Mesh with elements that are orders of magnitude larger than in a FEM mesh   
•  Fully compatible with FEM 
•  Single field formulation: Does not introduce stability (LBB) issues 

Edge-Notched Beam with Slanted Crack 
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Experimental Results 

[Buchholz et al., 2004] 
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Parallel Computation of Enrichment 
Functions * 

•  A large number of small fine-scale problems can be created instead of a 
single one 

• No communication is involved in their parallel solution 

480 fine-scale problems created 

*with D.-J. Kim and N. Sohb 
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Mathematical Analysis *"

Questions:   
•  What are the effects of inexact BCs at fine-scale problems? 
•  How to control them? 

GFEMgl:  Error controlled through 
global-local enrichments hp-GFEM/FEM GFEMgl 

*with V. Gupta 



22 

Discretization error Effect of inexact BC 

"  Global Error [Babuska and Melenk, 1996] 

"  Local error estimate 

A-Priori Error Estimate"

where 
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Strategy I: Multiple Global-Local Iterations 

BCs from step t 

Enrichment for step t+1 

Solve local 
problem 

"  Repeat Global-local-Global cycle before advancing crack 
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Strategy I: Multiple Global-Local Iterations  

Local Mesh 

"  30� x 30� x 1� edge-crack panel loaded with Mode I tractions 
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Strategy I: Multiple Global-Local Iterations  

"  GFEMgl can deliver same accuracy as hp-GFEM (DNS) 
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Strategy II: Buffer Zone in Local Domain 
Local Domain 
Boundary 

Buffer Zone 

Enrichment Zone 
(used in global 
problem) 

Boundary 
Conditions 
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•  Buffer Zone Sizes Considered 

Strategy II: Buffer Zone in Local Domain 

"  Enrichment Zone: 4� X 4� blue 
square region 

"  Buffer zone (in terms of number of 
layers of elements): 

•  Red  - 1 layer 

•  Yellow - 2 layers 

•  Green - 4 layers 

Not to scale 
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Strategy II: Buffer Zone in Local Domain 

•  BCs from global problem without a crack 
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Outline 

•  Generalized finite element methods: Basic ideas 

•  Bridging scales with the GFEM: 

–  Global-local enrichments 

•  Applications and mathematical analysis 

•  Transition: Non-intrusive implementation in Abaqus 

•  Extension to nonlinear problems 

•  Closing remarks 
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Computation of Solution at a Crack Step 

Computed by  
FEM code 
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Computation of Solution at a Crack Step 

(by FEM code) 
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Computation of Solution at a Crack Step 
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Initial global solution  
Uncracked domain 

FEM Code 

Pseudo loads 

Local solution  
Global-local enrichment 

Global solution 
BC for local prob. 

GFEM Code 

Pseudo solutions 

Enriched global solution 
Compute quantities of interest 

Non-Intrusive Implementation in Existing 
FEM Codes 

•  Different solvers can be used to solve 
coarse and fine-scale problems 



34 

150 °C 

-150 °C 

"  Able to effectively capture sharp flux singularity adding only 16 global-local 
degrees of freedom to Abaqus model 

Abaqus + GFEM Solution"

%63.0, =r
EGUe

" Singularities in thermal fields 

Non-intrusive implementation of GFEMgl for 
Poisson equation in Abaqus * 

Coarse-Scale Abaqus Solution 
at critical region"

%9.11, =r
IGUe

*with J. Plews and T. Eason 
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Enrichment Functions for Confined 
Plasticity Problems * 

!  J2 plasticity with isotropic hardening  

Fixed 

Uniform tractions  

Region with confined 
plastic deformation 

*with D.-J. Kim and S. Proenca 
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Enrichment Functions for Confined 
Plasticity Problems 

!  Key Idea:  
"  Use nonlinear local solution as enrichment for global problem 

solved on a coarse mesh 

"  G-L enrichments can be updated during iterative solution of 
nonlinear global problem 

Provide BCs!
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Enrichment Functions for Confined 
Plasticity Problems 

Von Mises stress distribution at final load step Load-displacement curves for  
hp-GFEM and GFEMgl 
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Available methods require AMR Multiscale Generalized FEM  

"  FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale 
computations are intrinsically parallelizable; recycle coarse scale solution 

"  ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on 
meshes with elements that are orders of magnitude larger than in the FEM 

"  STABLE: Uses single-field variational principles  
"  TRANSITION: Fully compatible with FEM  

Concluding Remarks 



Questions? 

Support: 

caduarte@uiuc.edu 

http://netfiles.uiuc.edu/caduarte/www/ 


