

Bridging Scales with a Generalized Finite Element method

C. Armando Duarte

Dept. of Civil and Environmental Engineering Computational Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL

Recent Advances in Multiscale and Multiphysics Computational Materials Modeling USNCCM, July 25 – 28, 2011, Minneapolis, MN

Motivation: From Micro to Macro

Courtesy of General Electric Co.

• The performance of a turbine increases with its operational temperature

Motivation: From Micro to Macro

 High operational temperatures require new materials like Ceramic Matrix Composites (CMC)

Turbine component made of CMC

Structural performance depends strongly on micro-scale details

Motivation: From Micro to Macro

- Failure of Heterogeneous Materials
 - Damage characterization in composite materials involves complex multi-scale phenomena

Damage in composite materials

- Homogenization approaches can not be used near singularities:
 - Can not predict local stress state since it converges in L₂ norm
 - Failure depends on local quantities as opposed to averaged [A. Needleman]

Multi-Scale Problems: Computational Challenges

• Discretization of fine-scale features like fibers and polycrystalline grains

Fracture Surface of CMC

[Saether & Ta'asan, 2004] Inter-granular Fracture

- Advances in existing computational methods are needed
- Increasing computational power alone is not enough

How to Account for Interactions Among Scales?

Multi-scale Problems

Damage in composite materials

Multiple cracks around a rivet hole [Sandia National Lab, 2005]

Thermal loads on hypersonic aircrafts (dimensions not to scale)

- Predictive simulations require modeling of phenomena spanning several spatial and temporal scales
- Advances in existing computational methods are needed
- Increasing computational power alone is not enough

Outline

- Generalized finite element methods: Basic ideas
- GFEM for polycrystals and fibers
- Bridging scales with the GFEM:
 - Global-local enrichments
- Applications and mathematical analysis
- Transition: Non-intrusive implementation in Abaqus
- Assessment and closing remarks

Early works on Generalized FEMs

- Babuska, Caloz and Osborn, 1994 (Special FEM).
- Duarte and Oden, 1995 (Hp Clouds).
- Babuska and Melenk, 1995 (PUFEM).
- Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
- Duarte, Babuska and Oden, 1998 (GFEM).
- Belytschko et al., 1999 (Extended FEM).
- Strouboulis, Babuska and Copps, 2000 (GFEM).

Basic idea:

Use a partition of unity to build Finite Element shape functions

Recent review papers

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized finite element methods for material modeling, *Mod. Simul. Matl. Sci. Eng.*, 2009

Fries, T.-P. and Belytschko, T. The generalized/extended finite element method: An overview of the method and its applications, *Int. J. Num. Meth. Eng.*, 2010.

Generalized Finite Element Method

GFEM can be interpreted as a FEM with shape functions built using the concept of a partition of unity

Partition of Unity (PoU)

$$\sum_{\alpha} \varphi_{\alpha}(x) = 1 \qquad \forall x \in \Omega$$

• φ_{α} = Linear FEM shape function

Generalized Finite Element Method

GFEM shape function = FE shape function * enrichment function

$$\phi_{\alpha}(\boldsymbol{x}) = \varphi_{\alpha}(\boldsymbol{x})L(\boldsymbol{x})$$

• Allows construction of shape functions incorporating a-priori knowledge about solution

GFEM Approximation for 3-D Cracks

Modeling Cracks with hp-GFEM

- Discontinuities modeled via enrichment functions, *not* the FEM mesh
- Mesh refinement *still required* for acceptable accuracy

Von Mises stress

[Duarte, Reno and Simone, Int. J. Num. Meth. Eng., 2007]

Discretization of Micro Scales: GFEM for Polycrystals

Goals:

- Modeling inter-granular crack propagation
- What is the role of grain boundary parameters on the path of a crack?

[Saether & Ta'asan, 2004]

GFEM for Polycrystals*

- Grain boundaries cut elements
- Grain junctions within elements
- Any constitutive relation at grains
- Any traction-separation law at grain boundaries

GFEM for Polycrystals: Basic Idea

Grains interact through cohesive laws

Displacement decomposition

$$m{u} = \hat{m{u}} + \sum_{i=1}^{N_{\mathcal{G}}} \mathcal{H}_i \tilde{m{u}}_i \quad ext{with} \quad \mathcal{H}_i(m{x}) = \left\{ egin{array}{ll} 1 & ext{if } m{x} \in \mathcal{G}_i \\ 0 & ext{otherwise} \end{array}
ight.$$

GFEM for Polycrystals: Basic Idea

- Grain boundaries cut elements; Grain junctions within elements
- Mesh refinement still required for acceptable accuracy
 - split cut elements...as if there were no discontinuities: Preserve aspect ratio

GFEM for Polycrystals

• Effect of grain boundary parameters on crack path (*)

- Crack path is insensitive to variations of grain boundary parameters
 - (*) Shabir, Van der Giessen, Duarte and Simone, MSMSE, 2011

Discretization of Micro Scales: GFEM for Fibers(*)

- Enrichment functions are used to represent fiber-matrix materialinterfaces
- Fibers do not have to coincide with FE mesh

(*) Radtke, Simone and Sluys, IJNME, 2010

Outline

- Generalized finite element methods: Basic ideas
- GFEM for polycrystals and fibers
- Bridging scales with the GFEM:
 - Global-local enrichments
- Applications and mathematical analysis
- Transition: Non-intrusive implementation in Abaqus
- Assessment and closing remarks

Bridging Scales with Global-Local Enrichment Functions

How to account for interactions among scales?

Goal:

• Capture fine scale effects on coarse meshes at the global (structural) scale

Bridging Scales with Global-Local Enrichment Functions *

Enrichment functions computed from solution of local boundary value problems: Global-Local enrichment functions

- Idea: Use available numerical solution at a simulation step to build shape functions for next step (quasi-static, transient, non-linear, etc.)
- Enrichment functions are produced numerically on-the-fly through a global-local analysis
- Use a coarse mesh enriched with Global-Local (G-L) functions

^{*} Duarte et al. 2005, 2007, 2008, 2010, 2011

Global-Local Enrichments for 3-D Fractures

 $lack u_G^k$ solution of global problem at crack step k

$$u_G^k \in X_G^k(\Omega)$$
 = solution of global problem with crack size a_k

Global-Local Enrichments for 3-D Fractures

Solve local problem at step k using hp-GFEM

Boundary conditions for local problems provided by global solution:

$$u_L^k = u_G^k$$
 on $\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)$

$$X_L^k\left(\Omega_L^k\right) = hp$$
-GFEM space

Find $u_L^k \in X_L^k\left(\Omega_L^k\right) \subset H^1\left(\Omega_L^k\right)$ such that $\forall v_L^k \in X_L^k\left(\Omega_L^k\right)$

$$\int_{\Omega_L^k} \boldsymbol{\sigma}(\boldsymbol{u}_L^k) : \boldsymbol{\varepsilon}(\boldsymbol{v}_L^k) d\boldsymbol{x} + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$

$$= \int_{\partial \Omega_L^k \cap \partial \Omega^\sigma} \bar{\boldsymbol{t}} \cdot \boldsymbol{v}_L^k ds + \kappa \int_{\partial \Omega_L^k \setminus (\partial \Omega_L^k \cap \partial \Omega)} \boldsymbol{u}_L^k \cdot \boldsymbol{v}_L^k ds$$

Global-Local Enrichments for 3-D Fractures

• **Defining Step:** Global space is enriched with local solutions

Procedure may be repeated: Update local BCs and enrichment functions

Global-Local Enrichments for Crack Growth

Summary: Use solution of global problem at simulation k to build enrichment functions for step k+1

• Discretization spaces updated on-the-fly with global-local enrichment functions

$$\boldsymbol{X}_{G}^{k+1}(\Omega_{G}) = \left\{ \boldsymbol{u} = \underbrace{\sum_{\alpha=1}^{N} \varphi_{\alpha}(\boldsymbol{x}) \hat{\boldsymbol{u}}_{\alpha}(\boldsymbol{x})}_{\text{coarse-scale approx.}} + \underbrace{\sum_{\beta \in \mathcal{I}_{gl}^{k}} \varphi_{\beta}(\boldsymbol{x}) \boldsymbol{u}_{\beta}^{gl(k)}(\boldsymbol{x})}_{\text{fine-scale approx.}} \right\} \quad \boldsymbol{u}_{\beta}^{gl(k)} = \text{G-L enrichment}$$

Edge-Notched Beam with Slanted Crack *

Fatigue Crack Growth: hp-GFEM and GFEMgl solutions

Edge-Notched Beam with Slanted Crack

step 0 step 5 step 10 step 15

Available Methods – *hp*-GFEM/FEM

Two-Scale Generalized FEM – GFEM^{gl}

- Mesh with elements that are orders of magnitude larger than in a FEM mesh
- Fully compatible with FEM
- Single field formulation: Does not introduce stability (LBB) issues

Experimental Results

[Buchholz et al., 2004]

Parallel Computation of Enrichment Functions *

- A large number of small fine-scale problems can be created instead of a single one
- No communication is involved in their parallel solution

^{*}with D.-J. Kim and N. Sohb

Mathematical Analysis *

GFEM^{gl}: Error controlled through global-local enrichments

Questions:

- What are the effects of inexact BCs at fine-scale problems?
- How to control them?

*with Varun Gupta

A-Priori Error Estimate

Local error estimate

$$\|\boldsymbol{u}^{exBC} - \boldsymbol{u}_h^{inexBC}\|_{\varepsilon(\Omega_L^{\delta})} \leq C \inf_{\boldsymbol{x} \in \boldsymbol{X}_L^{hp}(\Omega_L)} \|\boldsymbol{u}^{inexBC} - \boldsymbol{x}\|_{\varepsilon(\Omega_L)} + \underbrace{\frac{C_1}{\delta}} \|\boldsymbol{u}^{exBC} - \boldsymbol{u}^{inexBC}\|_{L^2(\Omega_L)}$$

Discretization error Fff

Effect of inexact BC

Global Error [Babuska and Melenk, 1996]

$$\|\boldsymbol{u} - \boldsymbol{u}_G\|_{\varepsilon(\Omega)}^2 \le C \sum_{\alpha=1}^N \inf_{\boldsymbol{u}_\alpha \in \chi_\alpha} \|\boldsymbol{u} - \boldsymbol{u}_\alpha\|_{\varepsilon(\omega_\alpha)}^2 \le C \sum_{\alpha=1}^N \|\boldsymbol{u} - \boldsymbol{u}_h^{\mathsf{inexBC}}\|_{\varepsilon(\omega_\alpha)}^2$$

where $u \equiv u^{ ext{exBC}}$

Strategy I: Multiple Global-Local Iterations

Repeat Global-local-Global cycle before advancing crack

Strategy I: Multiple Global-Local Iterations

■ 30" x 30" x 1" edge-crack panel loaded with Mode I tractions

Strategy I: Multiple Global-Local Iterations

Relative Error in Strain Energy

GFEMgl can deliver same accuracy as hp-GFEM (DNS)

Strategy II: Buffer Zone in Local Domain

Strategy II: Buffer Zone in Local Domain

Buffer Zone Sizes Considered

- Enrichment Zone: 4" X 4" blue square region
- Buffer zone (in terms of number of layers of elements):
 - Red 1 layer
 - Yellow 2 layers
 - Green 4 layers

Not to scale

Strategy II: Buffer Zone in Local Domain

Relative Error in Strain Energy

• BCs from global problem *without* a crack

Outline

- Generalized finite element methods: Basic ideas
- Bridging scales with the GFEM:
 - Global-local enrichments
- Applications and mathematical analysis

- Extension to nonlinear problems
- Closing remarks

Computation of Solution at a Crack Step

$$oldsymbol{u}_G = \underbrace{ ilde{oldsymbol{u}}^0}_{ ext{coarse scale (polynomial)}} + \underbrace{oldsymbol{u}}^{ ext{gl}}_{ ext{fine scale (G-L)}} = ig[oldsymbol{N}^0 oldsymbol{N}^ ext{gl} ig] \left[egin{array}{c} rac{ ilde{oldsymbol{u}}^0}{ ext{u}}^ ext{gl} \end{array}
ight]$$

 $\underline{\tilde{u}}^{\,0} = \mathsf{DOFs}$ associate with coarse scale discretization

 $\underline{u}^{\,\mathrm{gl}} = \mathrm{DOFs}$ associate with G-L (hierarchical) enrichments

$$\dim(\underline{u}^{gl}) << \dim(\underline{\tilde{u}}^{0})$$

This leads to

Computed by
$$egin{bmatrix} m{K}^0 & m{K}^{0,\mathrm{gl}} \\ m{K}^{\mathrm{gl},0} & m{K}^{\mathrm{gl}} \end{bmatrix} \left[\begin{array}{c} \underline{ ilde{u}}^0 \\ \underline{ ilde{u}}^{\mathrm{gl}} \end{array} \right] = \left[\begin{array}{c} m{F}^0 \\ m{F}^{\mathrm{gl}} \end{array} \right]$$

Solve using, e.g., static condensation of $\underline{u}^{\text{gl}}$

Computation of Solution at a Crack Step

From the first equation

$$\underline{\tilde{u}}^{0} = (\mathbf{K}^{0})^{-1}\mathbf{F}^{0} - (\mathbf{K}^{0})^{-1}\mathbf{K}^{0,g|}\underline{u}^{g|}
= \underline{u}^{0} - \mathbf{S}^{0,g|}\underline{u}^{g|}$$

Where

$$\mathbf{S}^{0,\mathsf{gl}} := (\mathbf{K}^0)^{-1} \mathbf{K}^{0,\mathsf{gl}}$$

$$m{K}^0$$
 $m{\mathcal{S}}^{0,\mathrm{gl}}$ = $m{\mathcal{K}}^{0,\mathrm{gl}}$ pseudo coarse scale loads

 $S^{0,gl}$ = Pseudo coarse scale solutions computed through forward and backward substitutions on K^0 (by FEM code)

Computation of Solution at a Crack Step

From the second equation and the above

$$oldsymbol{K}^{\mathsf{gl}}\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} \ = \ oldsymbol{F}^{\mathsf{gl}} - oldsymbol{K}^{\mathsf{gl},0} \left[\, oldsymbol{\underline{u}}^{\,\mathsf{gl}} - oldsymbol{S}^{0,\mathsf{gl}} \, oldsymbol{\underline{u}}^{\,\mathsf{gl}}
ight]$$

Thus

$$\underbrace{\left[\underline{\boldsymbol{K}}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{S}}^{0,\mathrm{gl}} \right]}_{\widehat{\boldsymbol{K}}^{\mathrm{gl}}} \underline{\boldsymbol{u}}^{\mathrm{gl}} = \underbrace{\boldsymbol{F}^{\mathrm{gl}} - \underline{\boldsymbol{K}}^{\mathrm{gl},0} \underline{\boldsymbol{u}}^{\mathrm{gl}}}_{\widehat{\boldsymbol{F}}^{\mathrm{gl}}}$$

Computation of u_G involves forward- and back-substitutions on $oldsymbol{K}^0$

Non-Intrusive Implementation in Existing FEM Codes

Non-intrusive implementation of GFEM^{gl} for Poisson equation in Abaqus *

Singularities in thermal fields

Coarse-Scale Abaqus Solution at critical region

Abagus + GFEM Solution

 Able to effectively capture sharp flux singularity adding only 16 global-local degrees of freedom to Abaqus model

^{*}with J. Plews, Piyush Gupta and T. Eason

Enrichment Functions for Confined Plasticity Problems *

J₂ plasticity with isotropic hardening

Enrichment Functions for Confined Plasticity Problems

Key Idea:

 Use nonlinear local solution as enrichment for global problem solved on a coarse mesh

(a) Linear initial global problem

(b) Nonlinear local problem

(c) Nonlinear enriched global problem

 G-L enrichments can be updated during iterative solution of nonlinear global problem

Enrichment Functions for Confined Plasticity Problems

Load-displacement curves for hp-GFEM and GFEM^{gl}

Concluding Remarks

step 0 step 5 step 10 step 15

Available methods require AMR

Multiscale Generalized FEM

- FAST: Coarse-scale model of much reduced dimension than FEM; Fine-Scale computations are intrinsically parallelizable; recycle coarse scale solution
- ACCURATE: Can deliver same accuracy as adaptive mesh refinement (AMR) on meshes with elements that are orders of magnitude larger than in the FEM
- STABLE: Uses single-field variational principles
- TRANSITION: Fully compatible with FEM

Questions?

caduarte@illinois.edu http://gfem.cee.illinois.edu/

Support:

