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Generalized Finite Element Method

GFEM can be interpreted as a FEM with shape functions built using the
concept of a partition of unity

Partition of Unity (PoU)

Yo, (x)=1 V xeQ

- @, = Linear FEM shape function




Generalized Finite Element Method

- GFEM shape function = FE shape function * enrichment function

Oa(x) = @alz)L(2)

* Allows construction of shape functions which
represent well the physics of the problem

Linear FE shape

function \

Enrichment

function > . .
Discontinuous
enrichment
(Moes et. Al)

GFEM shape

function




j[ hp-GFEM Solution Space for 3-D Cracks
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Modeling Cracks with hp-GFEM

I

e Discontinuities modeled via enrichment functions, not the FEM mesh
e Elements faces need not fit crack surfaces as in std FEM:
Elements with good aspect ratio
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— Nodes with discontinuous enrichments

Von Mises stress

[Duarte et al., International Journal Numerical Methods in Engineering, 2007]



][ Application to Crack Fatigue Crack Growth

GFEM solution

+ Model dimensions

» Edge-Notched Beam with Slanted: hp-
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j[ Assessment

= Greatly facilitates discretization of cracks:

~ Simply insert crack surface in un-cracked mesh
» Mesh need not fit crack surface: More robust than FEM

= Computational cost still high

+ Requires refinement of global mesh for each crack configuration
~ Needs to solve, large, global problem from scratch

s How to overcome these limitations?

Crack growth algorithms require small crack increments, which lead
to small changes in overall solution

Take advantage of this: Use available information to build solution
space for next crack step



Global-Local Enrichment Functions

= Enrichment functions computed from solution of local boundary value
problems: Global-Local enrichment functions

Linear FE shape
function

<
=
S

Instead of using analytically defined
functions:

= Enrichment functions are produced numerically
on-the-fly through a global-local analysis

s Use a coarse mesh enriched with Global-Local
(G-L) functions

e

GFEM shape
function

Enrichment = Numerical
solutions of BVP

[Copps et al. 2000],
[Duarte et al. 2005]

- Duarte and Kim, Computer Methods in Applied Mechanics and Engineering, 2008.
- O’'Hara, Duarte and Eason, Computer Methods in Applied Mechanics and Engineering, 2009.
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j[ Global-Local Enrichments for 3-D Fractures

8 uéw solution of global problem at crack step k

SEENEEENRER CEEEIRITER ]

= Define local domain containing
crack front

N

LI 118 Local problem with crack
lution tetr J ' l Slze ak+1

ul, = XE(Q) = solution of global
problem with crack size a,



][ Global-Local Enrichments for 3-D Fractures

= Solve local problem at step k using hp-GFEM

Boundary conditions for local problems
provided by global solution:

uf =ul, on 905\ (9 M o)

F

., = + Aa .k
1 = 8 X} (QF) = hp-GFEM space

Find uf € X (QF) < H' (Q}) such that V v} € X} (Qf)

/ a(uf) ; e(vf)d:c + h‘/ u’i : vf(l.s'
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j[ Global-Local Enrichments for 3-D Fractures

® Defining Step: Global space is enriched with local solutions

global-local
enrichments

BC for local
problem

ué‘jl c ngl(Q) = solution of global
problem with crack size a,,,

- Procedure may be repeated: Update local BCs and enrichment functions



][ Global-Local Enrichments for Crack Growth

= Summary: Use solution of global problem at crack step k to build
enrichment functions for crack step k+1
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* Discretization spaces updated on-the-fly with global-local enrichment functions
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Error in Boundary Conditions

= Crack loaded at infinity 7)1 ) 72
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Solution for crack size 2a
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Error in Boundary Conditions

AT 712
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Solution for crack size 2a + 2Aa
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Error in Boundary Conditions

Change in solution on S
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Error in Boundary Conditions
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= Relative error scales with r, (distance of S, to crack tip): Error can be controlled using
larger local domains

 Relative error is less than 10 for typical Aa

e Recall that error in boundary conditions can also be controlled through global-local-global
cycles

e By Saint-Venant's principle (and homogeneous materials), the error of local problem
solution due to errors in boundary conditions is small away from local boundary
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GFEMY for crack growth - example

I

* Panel with edge crack

Model dimensions
global problem 2h/t =b/t =4 a/t=2.1

AN

AN

Material parameters
E =1.0x10°MPa v=0.3

AN

Paris Law parameters (crack growth)
C =1.5463x10 ™" MPa *'m™°® m=2.1

Aa._.. =0.048 a

AN

Reference solutions for strain energy and SIF

hp-GFEM with p=3 and plane-strain solution

AN

Simulation output

| local-problem | | GFEM¢" vs. hp-GFEM |




I

= Stress intensity factors at center of crack front

GFEM® vs. hp-GFEM

70 Y T Y T ’ T T T ¥ T T T

v Reduced number of dofs

60 |

= hp-GFEM: 35,157 dofs (average)

50 F

— — plane strain solution
&—8 hp-GI'EM

— GFEM®'

= GFEMY': 19,236 global dofs (average)
only 36 dofs from global-local
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SIF
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» Relative difference w.r.t. pl strain
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0.08

Q . ] . 1 . 1 . 1 . .
).0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 hn-GFEM
crack growth length &—a hp-GHE

*—= GFEM®"

0.06

v Relative difference w.r.t. plane strain
solution

0.04

0.02

relative difference w.r.t. plane strain solution

+ Both methods show good agreement
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Edge-Notched Beam with Slanted Crack
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v=0.3
v hp-GFEM as reference solution

C =1.546x10"2 (N /mm? )**mm°% /cycle

E =2.1x10° N/mm?
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step O step 5 step 10 step 15

Edge-Notched Beam with Slanted Crack
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Available Methods — hp-GFEM/FEM

Two-Scale Generalized FEM — GFEMY

» Mesh with elements that are orders of magnitude larger than in a FEM mesh

 Fully compatible with FEM
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Edge-Notched Beam with Slanted Crack
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Computation of Solution at a Crack Step

~ 0
- ~ () gl - 0 n7gl u
UG = u -+ u — IN"N
G N~ —— [ ] [ ugl ]
coarse scale (polynomial)  fine scale (G-L) -

uw- = DOFs associate with coarse scale discretization
u9 = DOFs associate with G-L (hierarchical) enrichments
dim(u9) << dim(u?)
This leads to

KO KO,gI i 0 FO
w0 00 || o] =[]

Solve using, e.g., static condensation of u 9
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Computational Efficiency

= Bracket with half-penny shaped crack hp-GFEM as reference solution

~ Main goal: computational efficiency
of GFEMY' for crack growth

3-D bracket

cyclic load crack surface

| movie |
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3-D mesh courtesy of Altair Engineering 29



Computational Efficiency
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= Computational cost analysis . GFEMO-
8000 . T . . . . . )
T 115,470 + 27 dofs (min)
— GrEm? b ' 115,470 + 84 dofs (max)
Z 6000 8
E = hp-GFEM:
g 186,666 global dofs (min)
< 40001 255,618 global dofs (max)
g = Strain Energy
52000- 2.5 ———————
g—a hp-GFEM
=0 GFEM®
% 5 ' 10 ' 15 ' 20
Crack growth length (mm) 245
= ~ 60% computational cost reduction . 2l
= hp-GFEM and GFEMY' solutions show
good agreement
2.35

1 1 1 " 1 " 1 1 1 1 1 I
6 8 10 12 14 16 18
Crack growth length (mm)

1
0 2 4



][ Concluding Remarks

FEM with
remeshing/ GFEM with G-L
hp-GFEM enrichments
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e The GFEMY' is robust and accurate
e remove FEM meshing issues in 3-D crack simulations
e account for interaction among non-separable scales

e Computationally efficient

e can deliver accurate solutions on coarse meshes

e global matrices can be recycled during crack propagation simulations
e Can be applied to a broad range of problems: Fracture (linear and non-
linear), time-dependent, etc.
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