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• Generalized finite element methods: Basic ideas

• Global-local enrichments for 3-D Crack Growth

• Applications

• Assessment and closing remarks



Generalized Finite Element MethodGeneralized Finite Element Method

   GFEM can be interpreted as a FEM with shape functions built using the
concept of a partition of unity

Partition of Unity (PoU) 

( ) 1         x x=

•      = Linear FEM shape function
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Generalized Finite Element MethodGeneralized Finite Element Method

• Allows construction of shape functions which

represent well the physics of the problem

• GFEM shape function  = FE shape function   *  enrichment function

Discontinuous
enrichment
(Moes et. Al)

Linear FE shape

function

Enrichment

function

GFEM shape

function



hp-GFEM Solution Space for 3-D Cracks

cloud or patch
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Modeling Cracks with hp-GFEMModeling Cracks with hp-GFEM

• Discontinuities modeled via enrichment functions, not  the FEM mesh
• Elements faces need not fit crack surfaces as in std FEM:

Elements with good aspect ratio

 = Nodes with discontinuous enrichments

Von Mises stress
[Duarte et al., International Journal Numerical Methods in Engineering, 2007]

hp-hp-GFEMGFEM
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Edge-Notched Beam with Slanted: hp-GFEM solution

Model dimensions

mmt 10=mmL
s

240=

Material parameters

25
101.2 mmNE = 3.0=

( ) cyclemmmmNC 05.01.2212
10546.1=

1.2=m

mmL
t

260= 31=ha
o

o
45=

Application to Crack Fatigue Crack GrowthApplication to Crack Fatigue Crack Growth

Movie

amax = 0.048 ao



AssessmentAssessment

Greatly facilitates discretization of cracks:
Simply insert crack surface in un-cracked mesh

Mesh need not fit crack surface: More robust than FEM

Computational cost still high
Requires refinement of global mesh for each crack configuration

Needs to solve, large, global problem from scratch

How to overcome these limitations?

Crack growth algorithms require small crack increments, which lead
to small changes in overall solution

Take advantage of this: Use available information to build solution
space for next crack step
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     Instead of using analytically defined

functions:

Enrichment functions are produced numerically

on-the-fly through a global-local analysis

Use a coarse mesh enriched with Global-Local

(G-L) functions

Enrichment = Numerical
solutions of BVP

[Copps et al. 2000],

[Duarte et al. 2005]

 Enrichment functions computed from solution of local boundary value

problems: Global-Local enrichment functions

- Duarte and Kim, Computer Methods in Applied Mechanics and Engineering, 2008.

- O’Hara, Duarte and Eason, Computer Methods in Applied Mechanics and Engineering, 2009.

Linear FE shape

function

GFEM shape

function

Global-Local Enrichment FunctionsGlobal-Local Enrichment Functions
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       solution of global problem at crack step k

Global-Local Enrichments for 3-D FracturesGlobal-Local Enrichments for 3-D Fractures

ak

Local problem with crack
size ak+1

Define local domain containing
crack front

ak+1 = ak + a

  =  solution of global
problem with crack size ak
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 Solve local problem at step k using hp-GFEM

Global-Local Enrichments for 3-D FracturesGlobal-Local Enrichments for 3-D Fractures

ak+1 = ak + a

Boundary conditions for local problems
 provided by global solution:

= hp-GFEM space
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global-local
enrichments

• Defining Step: Global space is enriched with local solutions

Global-Local Enrichments for 3-D FracturesGlobal-Local Enrichments for 3-D Fractures

•  Procedure may be repeated: Update local BCs and enrichment functions

ak+1 = ak + a

ak+1 = ak + a

  =  solution of global
problem with crack size ak+1

BC for local

problem
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Global-Local Enrichments for Crack GrowthGlobal-Local Enrichments for Crack Growth

Summary: Use solution of global problem at crack step k to build

enrichment functions for crack step k+1

BCs from step k

Enrichment for step k+1

Solve local

problem

• Discretization spaces updated on-the-fly with global-local enrichment functions

= G-L enrichment
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Error in Boundary ConditionsError in Boundary Conditions

 Crack loaded at infinity
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Error in Boundary ConditionsError in Boundary Conditions
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Error in Boundary ConditionsError in Boundary Conditions
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Error in Boundary ConditionsError in Boundary Conditions

• Relative error scales with r2 (distance of S2 to crack tip): Error can be controlled using
larger local domains

• Relative error is less than 10-4 for typical a

• Recall that error in boundary conditions can also be controlled through global-local-global
cycles

•By Saint-Venant's principle (and homogeneous materials), the error of local problem
solution due to errors in boundary conditions is small away from local boundary



Panel with edge crack
Model dimensions

1.2=ta42 == tbth

Material parameters

MPaE
5

100.1= 3.0=

05.01.211
105463.1= mMPaC 1.2=m

Reference solutions for strain energy and SIF

hp-GFEM with p=3 and plane-strain solution

local-problem GFEMg-l vs. hp-GFEM

Simulation output

Paris Law parameters (crack growth)

amax = 0.048 a

GFEMGFEMglgl for crack growth - example for crack growth - example
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Relative difference w.r.t. pl strain

Both methods show good agreement

Relative difference w.r.t. plane strain
solution

Stress intensity factors at center of crack front

Reduced number of dofs

hp-GFEM: 35,157 dofs (average)

GFEMgl: 19,236 global dofs (average)

                 only 36 dofs from global-local

GFEMGFEMglgl vs.  vs. hphp-GFEM-GFEM
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Fatigue Crack Growth: GFEMgl solution

Model dimensions

mmt 10=mmL
s

240=

Material parameters

25
101.2 mmNE = 3.0=

( ) cyclemmmmNC 05.01.2212
10546.1=

1.2=m

mmL
t

260= 31=ha
o

o
45=

movie

hp-GFEM as reference solution

Edge-Notched Beam with Slanted CrackEdge-Notched Beam with Slanted Crack
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Available Methods – hp-GFEM/FEM Two-Scale Generalized FEM – GFEMgl 

• Mesh with elements that are orders of magnitude larger than in a FEM mesh

• Fully compatible with FEM

Edge-Notched Beam with Slanted CrackEdge-Notched Beam with Slanted Crack
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Strain energy

Good agreement between GFEMgl and
hp-GFEM

Stress intensity factors

SIFs at the middle of the crack front

Edge-Notched Beam with Slanted CrackEdge-Notched Beam with Slanted Crack
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Computation of Solution at a Crack StepComputation of Solution at a Crack Step
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Bracket with half-penny shaped crack

3-D mesh courtesy of Altair Engineering

Computational EfficiencyComputational Efficiency

movie

hp-GFEM as reference solution

Main goal: computational efficiency
of GFEMgl for crack growth
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Strain Energy

~ 60% computational cost reduction

hp-GFEM and GFEMgl solutions show
good agreement

Computational cost analysis GFEMgl:

    115,470 + 27 dofs (min)

    115,470 + 84 dofs (max)

hp-GFEM:

    186,666 global dofs (min)

    255,618 global dofs (max)

Computational EfficiencyComputational Efficiency



Concluding RemarksConcluding Remarks

GFEM with G-L
enrichments

FEM with
remeshing/
hp-GFEM

•  Can be applied to a broad range of problems: Fracture (linear and non-
linear), time-dependent, etc.

• Computationally efficient

• can deliver accurate solutions on coarse meshes

• global matrices can be recycled during crack propagation simulations

• The GFEMgl is robust and accurate

•• remove FEM meshing issues in 3-D crack simulationsremove FEM meshing issues in 3-D crack simulations

•• account for interaction among non-separable scalesaccount for interaction among non-separable scales
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