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][ Motivation

Thermal loads on hypersonic aircrafts

e Vehicles in hypersonic flight are
subjected to intense thermal loads

e Shock wave impingements cause large
thermal gradients

e Experiments are difficult and limited

e Predictive simulations require modeling phenomena
spanning several spatial scales

e Advances in existing computational methods are
needed

e Increasing computational power alone is not
enough

Dimensions not to scale 2



j[ Multi-Scale Problems: Computational Challenges

Thermal loads on
hypersonic aircrafts

b
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e Adaptive mesh refinement (AMR) is required in standard FE Methods

 AMR requires several solve/adapt cycles in large computational models

e Most fine scale effects are non-local
» Standard global-local analysis is not robust in general

e Transient and/or non-linear effects add significant complexity

» Fine meshes may require very small time steps for stability/accuracy



Objectives and Outline

Capture multi-scale phenomena in structural scale FEM meshes

— No refinement of large scale structural models

Computational accuracy comparable to AMR but at a much reduced
computational cost and complexity

Proposed approach
e Generalized FEM with global-local enrichment functions: GFEMY!

Outline

Generalized finite element methods: Basic ideas
Global-local enrichments for sharp thermal gradients
Applications

Assessment and closing remarks




][ Early works on Generalized FEMs

= Babuska, Caloz and Osborn, 1994 (Special FEM).
= Duarte and Oden, 1995 (Hp Clouds).

= Babuska and Melenk, 1995 (PUFEM).

= Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
= Duarte, Babuska and Oden, 1998 (GFEM).
= Belytschko et al., 1999 (Extended FEM).

= Strouboulis, Babuska and Copps, 2000 (GFEM).

e Basic idea:

e Use a partition of unity to build shape functions

e Recent review paper

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized
finite element methods for material modeling, Mod. Simul. Matl. Sci. Eng., 2009



Generalized Finite Element Method

I

GFEM can be interpreted as a FEM in which shape functions are built using the
concept of a partition of unity

Partition of Unity (PoU)

Yo, (x)=1 V xeQ

- @, = Linear FEM shape function




Generalized Finite Element Method

- GFEM shape function = FE shape function * enrichment function

Linear FE shape

function \

Enrichment
function g\

GFEM shape
function
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iel(a)

* Allows construction of shape functions which
represent well the physics of the problem

» Applied to fracture mechanics, boundary and
internal layers, moving interfaces, etc.



][ Modeling Cracks with the GFEM

e Discontinuities modeled via enrichment functions, not the FEM mesh
e Elements faces need not fit crack surfaces as in the std FEM:
Elements with good aspect ratio
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= Nodes with discoﬁtinuods enrichments

Von Mises stress
[Duarte et al., International Journal Numerical Methods in Engineering, 2007]



Global-Local Enrichment Functions

= Enrichment functions computed from solution of local boundary value
problems: Global-local enrichment functions

Linear FE shape
function

Instead of using analytically defined
functions:

= Enrichment functions are produced
numerically through a global-local analysis

= Use a coarse mesh enriched with global-
local functions

AN LHLSSEET

e

GFEM shape
function

Enrichment = Numerical
solutions of BVP

[Copps et al. 2000],
[Duarte et al. 2005]

- Duarte and Kim, Computer Methods in Applied Mechanics and Engineering, 2008.
- O’'Hara, Duarte and Eason, Computer Methods in Applied Mechanics and Engineering, 2009.
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Construction of Global-Local Enrichments

e Step 1: Apply thermo, mechanical and acoustic loads
to global structural model. Solve using best available FEM

* Step 2: Extract (automatically) local domains from (coarse)
global mesh

Local problem extracted
from global domain

Boundary

& conditions N
Initial global problem Boundary conditions for local problems
0 provided by global solution:
U = solution of global U = 1 l,(() on o,
problem & (




j[ Construction of Global-Local Enrichments

e Step 3: Local problems are solved using Ap GFEM.
Use best available closed-form enrichment functions.

W[, = Solution of local problem

Hp adapted local mesh

 This is just the classical global-local FEM approach

* Major issue:
* Quality of local solutions affected by boundary conditions (global
solutions)
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][ Construction of Global-Local Enrichments

* Defining Step: Global (coarse) mesh is enriched
with local solutions

Enrichment
function

I
i
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s
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Hp adapted local mesh

Boundary

conditions
Initial/Enriched global problem Enrichment of global FEM discretization
with local solution:
- Only few dofs added to global problem Do = Palloc

- Repeat procedure if needed: Update local BCs and enrichment functions g



][ Solution of Enriched Global Problem (Step 4)

~ ()
_ ~ () gl - 0 n79l u
up = u U = IN'N
L " T "~ [ ] [ u 9 ]
fine scale (GFEM) T

coarse scale (FEM)

" = DOFs associate with FEM discretization

u¥ = DOFs associate with G-L (hierarchical) enrichments

dim(u9) << dim(u")

Use, e.g., static condensation of 7y, gl

Strain-displacement matrix is given by
BE — L {N(Z)Ngl} _ [B()Bgl}
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This leads to

KO K(ﬁ),gl
[Kgl‘() Kgl ] [ o

Where

K = / (B)" DBd0)
Q¢

K9 — / (B*)' DBYd}
Q2

loc

Ko - |
;

2Ioc

(B DB
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j[ Benchmark Problem

Temperature on a 500 x 250 x 30 mm plate

Steady-State Heat Eq. ’

~kVu=0Q(xy,2)inQ

Merle & Dolbow

u(x) =70 +sin[%)



][ Why bother resolving this local behavior?

= Errorin solution may be large even far from thermal spike
(numerical pollution)

g Temperature Spike Location

().008 I T I T l

— Smooth Loading + Exponential

== Smooth Loading

% 0.005 b
£ . [ X —y(x—
< u(x) =sin| == |+ e x>
f L
2 00025 i
=
£ . [ TTX
u(x) =sin| —
L
000ty | l(l)() | 2(|)0 | 3(|)0 | 4!)0 | 500

Location (mm)

e (Can not predict local damage and failure if thermo-mechanical effects are
not accurately captured
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j[ Effectiveness of GFEMY' for Benchmark Problem

Initial Global Domain (poorly-resol\w/

Local Domain:
Comp. G-L Enrichment

e Only 12 DOFs added!

Enriched Globa

19
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][ h-Extensions in Local Domains: Effects of BC Quality

e Mesh refine in local domains only
e Three coarse global meshes

Relative Error (energy norm)

T T | X3} |||l| T T T |||1| T T T |||l| T T L
R = e Mesh Ox - 10 elements in x-dir
p T A e ] e Mesh 1x - 20 elements in x-dir
il % A | e Mesh 2x - 40 elements in x-dir
: — 1« Poor or no convergence
i ! in local domain
0.01 = - )
g 1 e Improved convergence in global
| | @ Mesh Ox (Local Domain, IGw/S) i domain
B Mesh Ix (Local Domain. IGw/S)
0.001 | @ Mesh 2x (Local Domain, IGw/S) =
- A--A Mesh 0x (Global Domain, IGw/S) = . . .
2 Mesh Ix (Global Doma:m. IGw/S) \ i lelt tO range Of Convergence n
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100 1000 10000 le+05 let06 AN d M es h 2X

Local dofs

— Local Domain
__________ Enriched Global Domain
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Two-Step Approach to Improve BC'’s

Perform second iteration, i.e. use enriched global solution as initial
global step for a second global-local iteration; proceed as usual

Look more closely at this
local refinement level

Local Domain Enriched Global Domain
1 E — = =
~ L Y =
=} 0.1 « SN — = 0.1 24
g = 5% 3 ] = =
Z & g \‘.\ ¢ E’:
3 A 2
5 =
g ooip - £ 00l . E
= y of = =
g 5
: — F s .
> @ Mesh 0x (IGwW/S) 2 #—® Mesh Ox (IGwW/S)
£ 0001 | A--& Mesh Ox (IGw/S-IT) 3 F 0001 | A--& Mesh Ox (IGw/S-IT) 3
= | B8 Mesh 1x (IGw/S) ] = | B8 Mesh Ix (IGw/S) 3
Mesh 1x (IGw/S-1II) ] L Mesh Ix (IGw/S-1I)
& @ Mesh 2x (IGwW/S) . E @& Mesh 2x (IGw/S)
0.0001 | Mesh 2x (IGw/S-1I) - 0.0001 | Mesh 2x (IGw/S-II) e
| Il Lol 1 Ll Il Lol 1 3 :lllll | | 1 Lol
100 1000 10000 le+05 100 1000 10000 le+05
Local dofs Local dofs
Convergence obtained in local domain. Extended range of convergence in

global domain.

— lteration 1

__________ Iteration 2
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Effect of Local Domain Size

Keeping local refinement fixed, increase size of local domain to
improve BCs. Commonly used in the Global-Local FEM.

[
. N From previous
i1 {IW'\'.} CTT T T T TTAmnTE 17 i .
| “M i Vi .,'[E{t\',u 0.05 slide
LA \ i
m',‘i{,’)."" | LA 5 6 Layers
I | .\ﬁ{ﬁ. i RE \ }[?‘ | | g
RN | 11.\]',"&@"1\',. || 2
ik | 4 AT T Z
\ |v'1()|1 M || ‘ h('ﬁ i 5 0.035
Il .§ll{'\'ll l i "[‘ ;‘{(.I \ K- @@ [.ocal Domain
J,LM’ ' | ‘E{'M | 7': B8 Enriched Global Domain
‘. Ll'f.‘u' J | : lu‘n‘. g
6 i L/"l'cmpcwlurc Spil:c Location ‘ l 1 Layer
0.025 — B — = —m o =
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] 4800 5000
_g Local dofs
52 0.0025
e Numerical pollution generates very poor BCs
across domain.
-0.001

o m o w « Local solution does not improve with increasing
size of local domain.
22



][ Effect of Size of Local Domain on Enriched Global Solution

Error in Energy with varying size of Local Domain

—
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Size of local domain has little effect on the
enriched global solution!
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][ Computational Performance of GFEMY'

e Multiple-site thermal analysis of a stiffened plate

Stiffeners

v Panel subjected to sharp fluxes over
small regions plus a smooth thermal load .,
Plate , 70 °F

v Thermal conductivity: T=70°F

K= 5.5%m0F

v' Dimensions

L =300 mm t=3mm
b=20mm d=50mm h,=3mm

v Reference solution from hp-GFEM
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][ Computational Performance

e Multiple-site thermal analysis — Three spike configurations

Spike 2 (panel,
stiffener interface)

Spike 3
(over stiffener)

Prescribed flux

Solution of initial global problem without thermal spikes

e GFEM/FEM must solve each problem from scratch
e GFEMgI can re-use initial global solution (hierarchical enrich):

e Just add proper global-local enrichment to global problem




][ Computational Performance

e Compute global-local enrichments on the fly

Spike 2 (panel,
stiffener interface)

Local prob. for
Spike 1 (center)

Spike 3
(over stiffener)

Prescribed flux




][ GFEMY Solutions

e Same global mesh used for all three cases




][ Computational Performance

e Hp-GFEM/FEM performance

1500 T T T

Spike | Num DOFs CPU time (s) Internal
epergy.
203,430 331 1.565€7 \| |, oo’
241,492 531 1.564e7 ||z

221,502 465 1.5547
_ 500
TOTAL: (1327) — /

W

Number of Spikes

e GFEM¢Y! performance

_ Internal
Num DOFs CPU time (s) energy

Spike Init Gl Local | Enrich Gl | Init GI | Local | Enrich GI | TOTAL P

1 12,930 Qsz 19) 10 61 71 1.558e7\‘
2 (182,136} 22,220 | 182,205 | 319 36 52 88 1.546e7
\1.555e7

3 20,890 | 182,186 50 57 107
TOTAL: (585 ) —




Strong Form of Governing Equation:

cg—t—KV u=0Q(x,y,2)inQ

Weak Form of Governing Equations:
[M ]{Vn+1}+ [K ]{ n+1 }: {F n+1}

Define the above quantities as:

M = I Co;d€2 (Capacity Matrix)
Qel
KE = j K %%dg (Stiffness Matrix)
] K pa a¢p a ’

F= [Q®thde+ [ F(Xt)dl, (Load Vector)
o r{

Transient Heat Conduction

e Time Integration Scheme: a-Method

Increments in solution/derivative:

d n+1 — d n +Atvn+o¢

O<a<l

Vn+a — (1—OC)Vn +OCVn+1
Solve for d"*! and v™*! at each time step using:

1 M
— M +aAtK ld" = F"™ + —(d" + (1—a )AtV"
aAt[ “ ] (xAt( ( ) )

Vn (dn+1 dn —1—OCV
ocAt (07
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][ GFEMY' for Time-Dependent Problems

Global Domain

Enrichment
Functions

Process repeated
at each time-step

Boundary
Conditions

Local Domain

Same basic concept as in steady-state plus:

* boundary conditions taken from enriched global solution at t"
 enrichment functions generated for enriched global solution at t"*!
* no transient effects considered in local domain

= Use available information to build solution space for next time step
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][ Analysis of Beam Subjected to Laser Heating

« Beam subjected to a laser flux

Flux function defined as:

q=1I *f(t)* . ~*G(x,b,a)

f()=1-exp(- 1)

G(x,b,a)= exp[ (x-b )2]

With constants:
1,=295, a = 0.025, y=10.0,b=9.3
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j[ Analysis of Beam Subjected to Laser Heating

e Internal energy of enriched global problem

4e+051— s ekREERIIEIEIIEE
B v ]
30405 - . | Simulations:
>
5 Base Mesh
3
% 2e+05 - 3 GFEM4
£
— Base Mesh
— 5 x Local Ref
le+05 — ) ¥—x 9 x Local Ref | _
/ *—¥ Reference (hp)
0 A I | I | | | ) | i
0 0.2 0.4 0.6 0.8 1

Time

Global mesh with h, = 1.0”
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j[ Through-the-Thickness Temperature Distribution

e Enriched global problem

350
— 0.025 seconds
— 0.050 seconds
— 0.075 seconds
— 0.100 seconds
300 — 0.300 seconds |
0.650 seconds
— 0.900 seconds
(5]
: (y = 50)
Y
o
£ 250 _
~
200 — _
Increasing t
Location

Non-linear through-the-thickness temperature variations
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j[ Multi-Scale Problems: Computational Challenges

Adaptive FEM Adaptive GFEMY!

\ i

A\ i)
A\ EMI

\ 3}

e Adaptive mesh refinement (AMR) is required in standard FE Methods
e The GFEMY can deliver accurate solutions on coarse meshes

e Most fine scale effects are non-local (pollution effect)
» Standard global-local analysis is not robust in general

e GFEMY' : Account for interactions among non-separable scales
» More robust than global-local FEM at a comparable computational cost
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Application to 3-D Fracture

Global solution
BC for local
nrob.

Local solution

. Global-local enrichment
Enrichment Fns

Initial global solution
Uncracked domain

A/ \/\J
OO

Enriched global solution RO

L AV AV AVAVAT AT

Get quantities of interest e - SR



Questions ?
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