

Multiscale Analysis of Sharp Transient Thermal Gradients Using Coarse Generalized Finite Element Meshes

P. O'Hara, C. Armando Duarte

Dept. Civil and Environmental Engineering University of Illinois at Urbana-Champaign, Urbana, IL

T. Eason

Air Force Research Laboratory WPAFB, Dayton, OH

USNCCM 2009 – Recent Advances in Computational Material Science and Multiscale Material Modeling Columbus, OH, Jul. 16, 2009

Motivation

- Thermal loads on hypersonic aircrafts
- Vehicles in hypersonic flight are subjected to intense thermal loads
- Shock wave impingements cause large thermal gradients
- Experiments are difficult and limited

- Advances in existing computational methods are needed
- Increasing computational power alone is not enough

Dimensions not to scale

Multi-Scale Problems: Computational Challenges

Thermal loads on hypersonic aircrafts

- Adaptive mesh refinement (AMR) is required in standard FE Methods
- AMR requires several solve/adapt cycles in large computational models
- Most fine scale effects are non-local
 - > Standard global-local analysis is not robust in general
- Transient and/or non-linear effects add significant complexity
 - > Fine meshes may require very small time steps for stability/accuracy

Objectives and Outline

- Capture multi-scale phenomena in structural scale FEM meshes
 - No refinement of large scale structural models
- Computational accuracy comparable to AMR but at a much reduced computational cost and complexity

Proposed approach

Generalized FEM with global-local enrichment functions: GFEMgl

Outline

- Generalized finite element methods: Basic ideas
- Global-local enrichments for sharp thermal gradients
- Applications
- Assessment and closing remarks

Early works on Generalized FEMs

- Babuska, Caloz and Osborn, 1994 (Special FEM).
- Duarte and Oden, 1995 (Hp Clouds).
- Babuska and Melenk, 1995 (PUFEM).
- Oden, Duarte and Zienkiewicz, 1996 (Hp Clouds/GFEM).
- Duarte, Babuska and Oden, 1998 (GFEM).
- Belytschko et al., 1999 (Extended FEM).
- Strouboulis, Babuska and Copps, 2000 (GFEM).
- Basic idea:
 - Use a partition of unity to build shape functions
- Recent review paper

Belytschko T., Gracie R. and Ventura G. A review of extended/generalized finite element methods for material modeling, *Mod. Simul. Matl. Sci. Eng.*, 2009

Generalized Finite Element Method

GFEM can be interpreted as a FEM in which shape functions are built using the concept of a partition of unity

Partition of Unity (PoU)

$$\sum_{\alpha} \varphi_{\alpha}(x) = 1 \qquad \forall x \in \Omega$$

• φ_{α} = Linear FEM shape function

Generalized Finite Element Method

GFEM shape function = FE shape function * enrichment function

$$\phi_i^{\alpha} = \varphi_{\alpha} L_{i\alpha} \qquad i \in I(\alpha)$$

- Allows construction of shape functions which represent well the physics of the problem
- Applied to fracture mechanics, boundary and internal layers, moving interfaces, etc.

Modeling Cracks with the GFEM

- Discontinuities modeled via enrichment functions, not the FEM mesh
- Elements faces need not fit crack surfaces as in the std FEM: Elements with good aspect ratio

Nodes with discontinuous enrichments

Von Mises stress

[Duarte et al., International Journal Numerical Methods in Engineering, 2007]

Global-Local Enrichment Functions

Enrichment functions computed from solution of local boundary value problems: Global-local enrichment functions

Enrichment = Numerical solutions of BVP

[Copps et al. 2000], [Duarte et al. 2005]

Instead of using analytically defined functions:

- Enrichment functions are produced numerically through a global-local analysis
- Use a coarse mesh enriched with globallocal functions

- Duarte and Kim, Computer Methods in Applied Mechanics and Engineering, 2008.
- O'Hara, Duarte and Eason, Computer Methods in Applied Mechanics and Engineering, 2009.

Construction of Global-Local Enrichments

- Step 1: Apply thermo, mechanical and acoustic loads to global structural model. Solve using best available FEM
- Step 2: Extract (automatically) local domains from (coarse) global mesh

Initial global problem

 $oldsymbol{u}_{G}^{0}$ = solution of global problem

Boundary conditions for local problems provided by global solution:

$$oldsymbol{u}_{loc} = oldsymbol{u}_G^0 \quad ext{on } \partial\Omega_{loc}$$

Construction of Global-Local Enrichments

• Step 3: Local problems are solved using *hp* GFEM.

Use best available closed-form enrichment functions.

 $oldsymbol{u}_{loc}$ = Solution of local problem

Hp adapted local mesh

- This is just the classical global-local FEM approach
- Major issue:
 - Quality of local solutions affected by boundary conditions (global solutions)

Construction of Global-Local Enrichments

• Defining Step: Global (coarse) mesh is enriched with local solutions

Initial/Enriched global problem

Enrichment of global FEM discretization with local solution:

Only few dofs added to global problem

- $\phi_{\alpha} = \varphi_{\alpha} \boldsymbol{u}_{loc}$
- Repeat procedure if needed: Update local BCs and enrichment functions

Solution of Enriched Global Problem (Step 4)

$$m{u}_E = \underbrace{reve{m{u}}^0}_{ ext{coarse scale (FEM)}} + \underbrace{m{u}^{ ext{gl}}}_{ ext{fine scale (GFEM)}} = m{ig[N^0N^{ ext{gl}}ig]} \left[egin{array}{c} ar{m{u}}^0 \ ar{m{u}}^{ ext{gl}} \end{array}
ight]$$

 $\underline{\tilde{u}}^{\,0} = \mathsf{DOFs}$ associate with FEM discretization

 $\underline{u}^{\mathsf{gl}} = \mathsf{DOFs}$ associate with G-L (hierarchical) enrichments

$$\dim(\underline{u}^{\,\mathsf{gl}}) << \dim(\underline{\tilde{u}}^{\,0})$$

Use, e.g., static condensation of $\,\underline{u}^{\,\mathsf{gl}}$

Strain-displacement matrix is given by

$$oldsymbol{B}_E = oldsymbol{L} \left[oldsymbol{N}^0 oldsymbol{N}^{\mathsf{gl}}
ight] = \left[oldsymbol{B}^0 oldsymbol{B}^{\mathsf{gl}}
ight]$$

This leads to

$$\left[egin{array}{ccc} oldsymbol{K}^0 & oldsymbol{K}^{0,\mathsf{gl}} \ oldsymbol{K}^{\mathsf{gl},0} & oldsymbol{K}^{\mathsf{gl}} \end{array}
ight] \left[egin{array}{ccc} oldsymbol{ ilde{u}}^0 \ oldsymbol{ ilde{u}}^{\mathsf{gl}} \end{array}
ight] = \left[egin{array}{ccc} oldsymbol{F}^0 \ oldsymbol{F}^{\mathsf{gl}} \end{array}
ight]$$

Where

$$\boldsymbol{K}^0 = \int_{\Omega_G} (\boldsymbol{B}^0)^T \boldsymbol{D} \boldsymbol{B}^0 d\Omega$$

$$m{K}^{0, \mathsf{gl}} = \int_{\Omega_{\mathsf{loc}}} (m{B}^0)^T m{D} m{B}^{\mathsf{gl}} d\Omega \qquad m{K}^{\mathsf{gl}} = \int_{\Omega_{\mathsf{loc}}} (m{B}^{\mathsf{gl}})^T m{D} m{B}^{\mathsf{gl}} d\Omega$$

Benchmark Problem

Temperature on a 500 x 250 x 30 mm plate

Why bother resolving this local behavior?

 Error in solution may be large even far from thermal spike (numerical pollution)

 Can not predict local damage and failure if thermo-mechanical effects are not accurately captured

Effectiveness of GFEMgl for Benchmark Problem

h-Extensions in Local Domains: Effects of BC Quality

Mesh refine in local domains only

- Three coarse global meshes
 - Mesh 0x 10 elements in x-dir
 - Mesh 1x 20 elements in x-dir
 - Mesh 2x 40 elements in x-dir
- Poor or no convergence in local domain
- Improved convergence in global domain
- Limit to range of convergence in enriched global domain for Mesh 1x
 and Mesh 2x

Local DomainEnriched Global Domain

Two-Step Approach to Improve BC's

Perform second iteration, i.e. use enriched global solution as initial global step for a second global-local iteration; proceed as usual

Look more closely at this local refinement level

Enriched Global Domain

Convergence obtained in local domain.

Extended range of convergence in global domain.

Iteration 1
Iteration 2

Effect of Local Domain Size

Keeping local refinement fixed, increase size of local domain to improve BCs. Commonly used in the Global-Local FEM.

- Numerical pollution generates very poor BCs across domain.
- Local solution does not improve with increasing size of local domain.

Effect of Size of Local Domain on Enriched Global Solution

Error in Energy with varying size of Local Domain

Size of local domain has little effect on the enriched global solution!

Computational Performance of GFEM^{gl}

Stiffeners

Multiple-site thermal analysis of a stiffened plate

Panel subjected to sharp fluxes over small regions plus a smooth thermal load

$$\kappa = 5.5 \frac{W}{mm^0 F}$$

Dimensions

$$L = 300 \, mm$$
 $t = 3 \, mm$

$$b = 20 mm \qquad d = 5$$

d = 50 mm

$$h_e = 3 mm$$

Reference solution from hp-GFEM

Computational Performance

Multiple-site thermal analysis – Three spike configurations

Solution of initial global problem without thermal spikes

- GFEM/FEM must solve each problem from scratch
- GFEMgl can re-use initial global solution (hierarchical enrich):
 - · Just add proper global-local enrichment to global problem

Prescribed flux

Computational Performance

GFEM^{gl} **Solutions**

Computational Performance

• Hp-GFEM/FEM performance

Spike	Num DOFs	CPU time (s)	Internal energy	
1	203,430	331	1.565e7	
2	241,492	531	1.564e7	
3	221,502	465	1.554e7	
TO	OTAL:	1,327		

• GFEM^{g-I} performance

	Num DOFs			CPU time (s)				Internal energy
Spike	Init GI	Local	Enrich Gl	Init Gl	Local	Enrich GI	TOTAL	
1		12,930	182,196		10	61	71	1.558e7
2	182,136	22,220	182,205	319	36	52	88	1.546e7
3		29,890	182,186		50	57	107	1.555e7
TOTAL:			_			585		

Transient Heat Conduction

Strong Form of Governing Equation:

$$\rho c \frac{\partial u}{\partial t} - \kappa \nabla^2 u = Q(x, y, z) in \Omega$$

Weak Form of Governing Equations:

$$[M]{v^{n+1}} + [K]{d^{n+1}} = {F^{n+1}}$$

Define the above quantities as:

$$M_{ij}^{el} = \int_{\Omega^{el}} c \phi_i \phi_j d\Omega$$
 (Capacity Matrix)

$$K_{ij}^{el} = \int_{\Omega^{el}} \kappa_{pq} \frac{\partial \phi_i}{\partial \phi_p} \frac{\partial \phi_j}{\partial \phi_q} d\Omega \qquad \text{(Stiffness Matrix)}$$

$$F_{i} = \int_{\Omega^{el}} Q(\vec{x}, t) \phi_{i} d\Omega + \int_{\Gamma_{f}^{el}} \bar{f}(\vec{x}, t) \phi_{i} d\Gamma_{f} \quad \text{(Load Vector)}$$

Time Integration Scheme: a-Method
 Increments in solution/derivative:

$$d^{n+1} = d^n + \Delta t v^{n+\alpha}$$
 $0 < \alpha \le 1$

$$v^{n+\alpha} = (1-\alpha)v^n + \alpha v^{n+1}$$

Solve for dⁿ⁺¹ and vⁿ⁺¹ at each time step using:

$$\frac{1}{\alpha \Delta t} \left[M + \alpha \Delta t K \right] d^{n+1} = F^{n+1} + \frac{M}{\alpha \Delta t} \left(d^n + (1 - \alpha) \Delta t v^n \right)$$

$$v^{n+1} = \frac{1}{\alpha \Delta t} \left(d^{n+1} - d^n \right) - \frac{1 - \alpha}{\alpha} v^n$$

GFEM^{gl} for Time-Dependent Problems

Same basic concept as in steady-state plus:

- boundary conditions taken from enriched global solution at tⁿ
- enrichment functions generated for enriched global solution at tn+1
- no transient effects considered in local domain
- Use available information to build solution space for next time step

Analysis of Beam Subjected to Laser Heating

Beam subjected to a laser flux

Flux function defined as:

$$q = I_0 * f(t) * \frac{1}{2\pi a^2} * G(x, b, a)$$

$$f(t) = 1 - \exp(-\gamma * t)$$

$$G(x,b,a) = \exp\left(\frac{-(x-b)^2}{2a^2}\right)$$

With constants:

$$I_0$$
=295, a = 0.025, γ = 10.0, b = 9.3

Analysis of Beam Subjected to Laser Heating

Internal energy of enriched global problem

Global mesh with $h_x = 1.0$ "

Through-the-Thickness Temperature Distribution

Enriched global problem

Non-linear through-the-thickness temperature variations

Multi-Scale Problems: Computational Challenges

- Adaptive mesh refinement (AMR) is required in standard FE Methods
- The GFEM^{gl} can deliver accurate solutions on coarse meshes
- Most fine scale effects are non-local (pollution effect)
 - Standard global-local analysis is not robust in general
- GFEM^{gl}: Account for interactions among non-separable scales
 - ➤ More robust than global-local FEM at a comparable computational cost

Application to 3-D Fracture

Questions?

