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SUMMARY

Several classes of important engineering problems — irc#ss, problems exhibiting sharp thermal gradients
— have solution features spanning multiple spatial scates therefore, necessitate advandgdfinite
element discretizations. Althoudip-FEM is unavailable off-the-shelf in many predominant coenaiel
analysis software packages, the authors herein proposered method to introduce these capabilities
via a generalized finite element method non-intrusively stamdard FEA platform. The methodology is
demonstrated on two verification problems as well as a reptatve, industrial-scale problem. Numerical
results show that the techniques utilized allow for acaurasolution of localized thermal features on
structural-scale meshes withdyt-adaptivity or the ability to account for complex and vergatized loads

in the FEA code itself. This methodology enables the useake tidvantage of all the benefits of bbitr
FEM discretizations and the appealing features of manyahlai CAE/FEA software packages in order to
obtain optimal convergence for challenging multiscaleofgms.
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1. INTRODUCTION

1.1. Background

A growing number of problems encountered in engineeringtpr@today require consideration of
phenomena encompassing multiple spatial scales of intédag example of particular interest —
and which is part of the motivation behind this work — lieshe structural analysis of hypersonic
flight vehicles. At very high airspeeds, rapid variationstlie density and temperature of the
compressible flow lead to shock impingements on the skineoféticle. Interactions between shock
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Figure 1. Measured temperatures on the skin of a North AmeriX-15 spaceplane from an actual
hypersonic flight at Mach 5.0 (cf1]).

waves, typically occurring most severely on the leadingesafithe aircraft wing, have been shown
to lead to very intense, localized thermomechanical loadd characterization of these complicated
effects itself has been an active research topi8]. A comprehensive, historical overview of the
challenges posed by aero-thermal-mechanical effectsperispnic structures and their importance
is given in [1]. In the scope of this paper, however, only the thermal camepo of loadings is
considered.

Based on experimental investigations, intense, localie=t fluxes can be concentrated on an
area just microns in width, or many orders of magnitude snahan the structure. However,
these loadings may have a drastic effect on the overall eha¥t the structure as well as the
neighborhood of the loading itself, and thus the two disigasaales of interest may not in general
be considered separately.

1.2. Present Approaches & Limitations

In current design practice, commercial finite element asialfFEA) software packages are
commonly used to predict the response of the hypersonicheshof interest, as well as other
complex structures exhibiting multiscale behavior. Ogitiirfinite element discretizations for this
class of problems require state-of-the-art localized,ptda mesh refinement combined with
high-order polynomial approximation®,[10]. Unfortunately, performing suchp-adaptivity in
commercially available FEA software is often prohibitiyadifficult or, in many cases, even
impossible. Additionally, treatment of sharp, localizeédrimal loads requires special attention and
cannot in general be computed automatically in conventiBE& software. More importantly, if
these loadings are applied on meshes designed to captyrtherglobal response of the structure,
the error of the finite element solution may be large evenviayafrom the localized features due
to so-called pollution errord[1, 12].

Problems involving multiple spacial scales of interest @aglitionally handled in engineering
practice by global-local or submodeling analysi8,[L4]. The global-local FEM procedure involves
two steps. First, the solution of the problem is computed ocnase, global, quasi-uniform mesh.
Next, small subdomains containing local features of irgelike cracks or other stress raisers are
extracted from the global domain and analyzed using theajls@lution as boundary conditions.
The use of the crude global solution as boundary condition®tal problems is a key point in the
procedure, as it may lead to local solutions with large arfos).

Several authors have proposed improvements to the globaljrocedure aiming at addressing
the issue of local errorlp-20]. In the Generalized Finite Element Method (GFEM) proposed
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 3

[21,22], this issue is addressed by going one step further in a global analysis; the local solution
is used as an enrichment function for the global problerhgrethan the final solution. This enriched
global problem is solved again using the factorization coteg in the first step of the global-
local analysis23]. This methodology is denoted a GFEM with global-local ehment functions
(GFEM?"). Numerical and mathematical analysis of the GFENave shown 12, 15,22-24] that
the solution of the enriched global problem has an accuramparable to a direct simulation of the
problem with fine-scale features discretized in the globabfem.

1.3. Contributions of this Paper

In a standard global-local analysis different softwaresvan different methodologies can be used
to solve the global and local problems. This flexibility, rewer, is lost when solving the enriched
global problem in the GFEM approach discussed above, which requires special enrithme
functions and thus prevents the use of available commeF&#a software to solve the usually
large and complex global problem and specialibpeadaptive software to solve local problems.
To address this issue, the authors propose in this paper algevithm enabling the solution of
the enriched global problem in the GFEMThe resulting methodology effectively introdudgs
adaptive capabilities to an existing FEA platform withony @ode modifications. The methodology
is demonstrated here using the commercial software Abadush was chosen due to its popularity
in the engineering community, its heat transfer capaéditand its robust scripting interface. The
method used, however, is quite general and can be appliedaiety of FEA software.

This non-intrusive GFEM approach offers many benefits, circumventing the needhfer
adaptivity in standard FEA codes and enabling accurate atatipn of sharp thermal loads on
structural-scale meshes. As a result, it will be shown tédydgtimal convergence for this class of
problems. Additionally, an example will demonstrate tiet inethodology is able to provide a great
deal of flexibility in handling a variety of multiscale analg cases for the same structural model
of interest. While this work focuses on intense, localizedtrsources, the methodology is relevant
to a much broader range of problems exhibiting multiscaknpimena without modifications to the
overall approach.

2. PROBLEM DEFINITION

Consider a domai c R3 with boundarydQ = rvurfure, wherervnrf=0,rynrc=0, and
renrf =o0. The strong form of the governing partial differentiabiatjon is given by Poisson’s
equation,

O(kOu)=-Q(x) in Q, (1)

given the physical interpretation of heat transfer, whepe = u(x,y, z) is the temperature field,
K is the thermal conductivity tensor, alfg(x) = Q(x,y,2) is the internal heat source. Boundary
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conditions prescribed o#Q are given by

u=u on I
—kOu-n=f on If 2)

—kOu-n=0a(u—U,) on T°

wheren is the outward unit normal vector fo' andr¢, and f anduare prescribed normal heat flux
and temperature, respectively. Parametés the convection coefficient, and, is the free-stream
temperature for convective conditions.

3. GENERALIZED FEM AND THE GFEM'

3.1. GFEM Approximations

The generalized finite element method (GFEM)5{29] is a Galerkin method based on
discretization spaces defined using the concept of a partdaf unity (PoU). Partition of unity
methods originated from the work of Bafka et al. 5, 26, 30] as well as Duarte and Oden
[28,31-34]. The extended finite element method, or X-FEM, is anothangxe of a method based
uponPoU concepts with many similarities to the GFENH 36]. The usefulness of the GFEM
hinges on the idea that the partition of unity can be enricloeccombined with local function
approximation spaces built arouagbriori knowledge about the solution of a given problem.

In the GFEM, standard finite element shape functippsare chosen as the partition of unity,
since¢,, a =1,...,N, in a mesh covering a domaihwith N nodes are such thgﬂ}‘zl Pa(X)=1
forall xin Q. A GFEM shape functio,i is then computed as the product of the FBO ¢, and
an enrichment functiohg;,

Goi (X) = Pa (X)Lgi (X) (no summation om ), 3

whereaq is a node in the FE mesh. Figuzéllustrates shape function construction for various types
of enrichments.

3.2. GFEMY

Although special GFEM enrichment functions may be desiganedcommodate analytical solution
characteristics, for instance, in the case of fracture meicls B7] or modeling of polycrystalline
structures 38|, in many cases priori knowledge of the solution behavior is limited. Moreover,
especially in large problems, performihg-adaptivity on a structural-scale mesh in order to account
for localized solution features may add many degrees ofitreeto the problem and, thus, may
prove much too computationally expensive.

The GFEM with global-local enrichment functions (GFEIM[12, 22], however, allows for on-
the-fly, numerical creation of custom enrichments via thieitean of smaller,hp-adapted local
problems which enclose features of interest in the strat&oale (global) domain. Thus, expensive
mesh refinements and localized, high-order polynomiatbnments need not be done in the global
domain itself, and only a few degrees of freedom are addduketglbbal problem as a result of the
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 5

(@ (b)

Figure 2. Construction of a GFEM shape function — from topdtidm, ¢, the FEM patrtition of unityl 4,
an enrichment function, ang;, the resulting shape function for (a) a polynomial enrichtfanction, and
(b) a custom, non-polynomial enrichment.

numerically-built enrichment functions. The most basid&M@' solution procedure is comprised of
three primary steps — a coarse-scale initial solutionaexiwn and solution of local problems, and
enrichment and reanalysigZ, 23] of the global problem based on local solutions.

Initial Global (IG) Problem An initial coarse-scale analysis is first performed on thebgl
problem onQg = Qg U dQg, yielding initial solutionu®. The initial global problem is formulated
as, for alv® € X(Qg), find u® € Xg(Qg) such that

/ DuOKDvon+n/ uwOOdr + [ au®Pdr
Qg r”G r&

= / qudQ+/f f_vodr+r7/ u_vodr+/ auVPdr, (4)
Qg s I'g I'g

wheren is a predetermined penalty parameter for enforcement oftidat boundary conditions,
andXg(Qg) is a GFEM discretization dfi1(Qg).

Local Problem(s) The initial global solution resulting from the linear systef equations implied
by (4) is then used directly as a Dirichlet boundary condition ifoeal problem. Convective
boundary conditions can also be us@@][ The local domain is comprised @ = Q UdQ,

a subdomain of)g, which in practice is taken to be a user-specified, smallefLdifinite elements
extracted (copied) from the global problem upon whipkadaptivity may be performed. However,
the local domain may be selected and mesh refinements doamaidally usinga posteriori
error estimates on the initial global solutiai?, The local problem is formulated as follows: for
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6 J. PLEWS, C.A. DUARTE, AND T. EASON

all v € X (Qu), findu, € X (Q) such that

/ Ou kOvp dQ+n ] U|_V|_dr+/ au v dr
Jo, Q\(0QLNT ) JoQLnrg
- n/ Wvdr +n Jder+/ qv._dQ+/ fwdr
dQL\(dQLﬁdQG) deI’% Q. (7Q|_ﬂ|—G
+ AUV dl, )

0Q|_mr‘é

whereX, (Qy ) is again a GFEM discretization &f*(Q/ ). The initial global and local problem steps
comprise a procedure akin to the familiar global-local FEIN, [L4, 39].

Enriched Global (EG) Problem In general, the local problem may not provide a satisfactory
estimate of the actual global solution, due in large part dorpboundary conditions on local
problems from the initial, coarse-scale analysis. Thusntathe global-local analysis one step
further, the solution, yielded by the local problem is used in the GF& Ko build so-called global-
local shape functions

@ (%) = pa (X)uL (%) (6)

numerically, which are in turn added to the global approxioraspace and utilized to enrich and
re-solve the global problem as defined4i. (This step is termed the enriched glob&a) problem,
the solution of which is denoted hereaftér.

Extensive numerical and mathematical analysis present§tRj 22—-24] demonstrates that the
accuracy ofiF is close to that provided by a direct simulation of the prabieith fine scale features
discretized in the global problem. Since in the GFMe local solution is used as an enrichment
function for the EG problem, it only needs to capture the egalution up to a constant. This is the
case if the local boundary conditions are provided by the FEikke the FEM solution oscillates
around the exact solution. Further details on this analyaisbe found inZ4]. The convergence
study presented in Sectidn2.1shows that the proposed algorithm enjoys this same profety
Figurell).

An a priori error estimate for the GFEW accounting for the effect of inexact boundary
conditions at local problem is presented @[ Two strategies to control this effect are also
presented in that study, the first of which is based on the @isebmffer or over-sampling zone
in the local problems. This strategy is adopted in this papéerdescribed in more detail in Section
5.1 The second strategy analyzed 4] and originally proposed inlZ], is based on multiple
global-local iterations.

4. ANON-INTRUSIVE GFEM' ALGORITHM FOR USE IN A FE SOLVER

As previously discussed, the extension of this globallecdution strategy to a legacy FEA
platform is nontrivial due to the enriched global step, vhiitroduces custom enrichment functions
into the global approximation space. In recent years, mtnusive methodologies such as the one
proposed here have been actively investigated in orderadblera smooth transition of advanced
GFEM/X-FEM discretizations to application in popular areherable commercial FEA codes. For
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 7

instance, Giner et al4[)], Shi et al. B1,42], and Xu and Yuan43, 44] propose implementing X-

FEM for fracture mechanics applications in a commercial Fide, Abaqus, by using customized
elements. However, prior to each analysis, the user mustatigirselect elements in the global
model which will possess X-FEM enrichments, which is a proenit disadvantage of this strategy,
since the global model must then be altered for each sepamatgsis case or crack configuration.
This complication could prove extremely inconvenient whealing with very large global models.

Gendre et al. 45, 46] propose a non-intrusive algorithm implementing nonln€&M in a
standard FE solver which is somewhat similar to the GFEM odtlogy introduced here, where
a patch of elements containing a localized plastic zone tefést is “exactly” extracted from the
global problem by a Schur complement method. However, is ¢hse, the local patch boundary
must exactly match the global problem mesh where the lodahpa to be inserted, so that no
refinement can be performed along the local boundary. Beaafuthe partition of unity approach,
this is not an issue in the GFE\lwhich is demonstrated on a sample mesh in Figurlso, the
Schur complement of thiecal degrees of freedom — as opposed to the global degrees obfreed
the approach adopted here — is computed, which in genergbrizes many degrees of freedom
and thus proves very expensive for large global problemstqswoid this issue, a procedure to
approximate the Schur complement is adopted).

The procedure which will be described here takes a diffeapptoach from the aforementioned
philosophies. In this case, the proposed algorithm usestaval-alone codes — a standard FE solver,
and another stand-alone, in-house GFEM code. The G¥Bution is partitioned, and portions
are solved in each code separately (explained further itiddet 1). Thus, the only communication
which takes place between the two is controlled by a convedge (detailed in Appendik). The
approach proposed herein is perhaps most similar to Borthd/@ran (7] and is in a sense the
“inverse” procedure to the Schur complement method foresbaldging described in Gendre et
al. [45,46], which will be explained much further in the following sewut.

It is important to note, also, that when using the proposeutageh, anyhp-FEM code could
theoretically be used instead of a GFEM code in the local lprobsince the only unique aspect
of the GFEM which is used here is the partition of unity to gedscales between global and local
solutions. This is because only polynomial enrichments -special, analytical GFEM/X-FEM
enrichment functions — are present. This is in stark cohteefsacture mechanics problems, where
special GFEM step and branch function enrichments are usezptesent the behavior of cracks
in the domain. In this case, using Ap-FEM solver in the local problem would not be possible,
since the local mesh would need to be designed to fit the caackihus the local mesh could not in
general be nested inside the global mesh. This would makeatecmumerical integration of special
enrichment functions around, for example, a crack fronteewely difficult.

4.1. Partitioned System of Equations

The GFEM! by its very nature is readily extensible to an approach usindfiple-solvers; one
standard FE solver (referred to hereFds-S) is made to handle the coarse-scale, global problem,
and another GFEM solveGFE-S) orchestrates the analysis by handling the local and esdich
global problem aspects. The essence of the proposed aigastas follows: The GFEM solution
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Figure 3. A demonstration of the possibility for arbitrgrilefined meshes at the local domain boundary,

irrespective of the matching global problem mesh. The ughefocal solution as an enrichment function,

sewn together with the global problem approximation by &fg@m of unity, allows for much more flexibility

than, for example, “exact” extraction and solution of a lama subset of the domain. Figudéa) shows the

corresponding mesh faces in the global and the local domespectively, while (b) and (¢) show a zoom-in
on the difference in mesh refinement between the two.

of the enriched global probleraf, can be partitioned as

UE =09 = [ NO NY ] )

whereN® has standard FEM shape functions MNfi has the global-local shape functions defined
in (6). Vectorsii® andu? have global and global-local enrichment degrees of freedespectively.
Then, the gradient of the temperature field is defined as

QO

o= BB |

(8)
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 9

The resulting system of equations in the enriched globablpro, as formulated in and implied by
(4), KU = f may then also be partitioned as

KO KO,gl QO fO
where
KO:= [ (B%' kB%Q
Qg
is computed byrE-S, and
KoY = / (89" kBYdQ
QL
: T
KI — / (B%) «kB9 do
QL

are computed IGFE-S. The solution to Systen®] can then be found by static condensation on
u?, since, in generatlim(i®) > dim(u%'). From the first equation in Systers)(
0o _ (KO)*lfO_ (KO)*lKO.gIggI
— QO _ Soagl ggl , (10)

[[=
|

whereK®9' are known as “pseudo-loads,”
9= (k) KO
are known as “pseudo-solutions” corresponding to the pséoads, and
0 0y—1c0
u’= (K% °f

is the initial, coarse-scale solution. B9 andu® may be computed bfE-S using forward and
backward substitution on a factorization of the coarséesgiabal stiffness matrix(°. Becaus&®
does not change between initial global and enriched glotmddlpms, the factorization d€° may
also, if possible, be stored FE-S after the initial global problem step and reused in the dc
global problem in order to reduce computational cost as aellsolution timé. Substituting
Equation (0) in the second equation in Systef) é&nd rearranging,

(Kgl _ Kgl.oso,g|) ggl — 9 _ Kgl.0207 (11)
N————
Rg fo

TThe FE solver used for numerical examples in this paper, Ahdwsslimitations on reuse of the factorized global
matrix. Thus, the factorization must be computed multipleerper analysis. This limitation has also been addressed

in [45).
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GFEM Code
Local Problem

FEM Code Initial Solution
Global Problem (BCs for local problem)

"Pseudo-loads"
(Global-local enrichments)

"Pseudo-solutions"
(from multiple RHS) e

Enriched Global Problem

Figure 4. lllustration of non-intrusive algorithm — exclgenof “pseudo-loads” and “pseudo-solutions”
between FEM and GFEM codes.

so the solution corresponding to global-local degreesa#dom comes directly from the solution
of
RYyd — 3¢

whereK? can be interpreted as the Schur complemei¢ bf

Thus, the static condensation algorithm requires only ¥oh@nge of pseudo-loads and pseudo-
solutions betweeRE-S andGFE-S, making this approach extensible to almost any FEA software
package. The algorithm described here is also illustrataghgcally in Figure4. A detailed, step-
by-step description of the procedure used to implementaligisrithm in the FEA code chosen for
this paper, Abaqus, is given in Appendix

4.2. Treatment of Rough Loads

Standard FEM solvers cannot typically handle sharp heaed$lapplied on meshes designed to
capture only the coarse-scale component of the solutiorth&umore, application of such sharp
loadings on coarse meshes may cause error in the finite elesokition to propagate even far
from the localized feature (so-called “error pollutiond)1] 12]. Thus, the authors also propose an
improved strategy for handling sharp loadings within tha-rgrusive framework.

The global load vectorf® above, is decomposed as

£O— 3+ 3,

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 11

wheref% is the “rough,” sharp, localized portion of the load, af&lis the remaining “smooth”
portion. AlthoughFE-Siis able to computd 2 without difficulty, the additional sharp loaff; must
be numerically integrated usigFE-S.

As was examined in1[Z], it will be shown that applyingnly the smooth loadingf?, in the
initial global problem not only gives a satisfactory estieaf the solution to develop local problem
boundary conditions but also eliminates aforesaid errtiufion effects.

However, theotal global load, including sharp features, must somehow be atedpaccurately
and applied in the enriched global problem. Taking advantaginformation available from the
local problem step, the highly refinelsh-adapted local domain elements may be used as so-called
integration elements in the global problem, coupled witliggotorder numerical quadrature rule, to
recompute the total load?, in GFE-S just prior to the enriched global problem. The new global
load vector is then passed K-S alongside the pseudo-loads, and this right hand side i®dolv
during the enriched global problem phase (further explanatf this procedure can be found in
Appendix A). The results of this “improved” global analysis effectivsupersede the solution
obtained from the coarse-scale, initial global step andigeel in place of the initial global solution
in the static condensation algorithm for the enriched dlsbhution.

This so-called rebuilding of the global load vector sereprovide a more accurate estimate of
the coarse-scale, global degrees of freedSpwhich is critical to obtaining optimal convergence
in the enriched global solution. The effects of these ggiageon numerical results will be shown
for a sample problem in Sectidn2

In typical FEA software, even finding a way to apply the propkarp loading — analytically
defined or otherwise — can be a nontrivial task. It will be dasimted further in Sectioh.2
that standard, commercial finite element codes may not sarBshave any built-in protocol for
handling sharp, user-defined loadings on coarse meshegjipgadditional benefit to the proposed
approach.

4.3. Adoption of a Quadratic Tetrahedron Partition of Unity

Even when using global-local enrichments, on a coarseafjtolksh, a linear approximation of the
global solution to many classes of problems often may ndtysatisfactory error levels. In the
GFEM, it is common practice to choose a linear partition dfyuand enrich these “hat” functions
with higher-order polynomials in order to improve globapapximations £7,28]. Similarly, in the
state-of-the-arhp-version of the finite element method, arbitrarily high-erdhape functions may
be hierarchically added to elements in a FE mé&§h [

However, in many available 3D commercial FEA codes, useionptfor the order of the
approximation are often quite limitéd Moreover, higher-order — in this case, quadratic — element
are generally implemented through standard Lagrangiate fadement shape functions, by adding
additional nodes to the tetrahedral element. Thus, théiparof unity used in the GFEM enriched
global model must similarly accommodate the ten-noded muimdetrahedral element. In GFEM
local problems, however, ten-noded quadratic elements fie global problem may be directly
converted to equivalent linear tetrahedral elements uguohvhp-adaptivity may be performed just

*In the commercial code Abaqus, used for numerical examplessptper, only linear “TET4” or quadratic “TET10”
tetrahedral elements are implemented for heat transfer simsatio

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
Prepared using nmeauth.cls DOI: 10.1002/nme



12 J. PLEWS, C.A. DUARTE, AND T. EASON

as before. Some examples of the improvement in enricheabottutions and convergence results
thanks to the use of a quadratic global approximation in adsted FE solver will be shown in
Section5.

5. NUMERICAL EXAMPLES

5.1. L-shaped Domain

The non-intrusive GFEM algorithm, here implemented using the commercial code Abaas
the FE solver (henceforth Abaqus+GFEM was verified by solving a small, three-dimensional
L-shaped domain of overall dimensions 20Q00x 10 mm, illustrated in Figur&. The global
domain was meshed with linear (TET4) and quadratic (TET&®abhedral elements 10 mm in size.
Inhomogeneous temperature boundary conditions of@%Mhd -150C were applied to the top and
right faces of the domain, respectively, with the rest oftibandary remaining insulated. Thus, the
problem exhibits a sharp heat flux singularity at the reemicarner without the need to compute a
sharp load vector, making it an ideal verification problem.

0°C

Figure 5. L-shaped domain verification problem. The enddjiebal temperature field is illustrated here on
the structured tetrahedral mesh used in Abaqus.

Using the GFEM' methodology, the local problem was chosen as a neighboraamnchd the
interior corner,Q. = {x]|20< x < 80; 20< y < 80; 0< z< 10}, while the corresponding global-
local enrichment zone on the global domain was chosen toigktlgl smaller, enclosing only
the first layer of nodes around the cornefa |40 < x4 < 60; 40<yy < 60; 0< z; < 10}. The
difference in size between the local domain and correspgngliobal-local enrichment region in
this case serves to ameliorate the effect of inaccuratedsyitonditions on the local domaig].
Global and local domains for this problem are shown in Figure

A reference solutiomes was also generated usimgp-GFEM (the GFEM analog ofip-FEM)
with 7 levels of global mesh refinement, overall polynomialer p = 3, and 25 levels of geometric
mesh refinement about the reentrant corner in the domaintiGe$ from Abaqus+GFEM were
compared against thep-GFEM reference solution. Tableshows the relative error levels in the
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Figure 6. The global mesh (left) and local domain extractedhfthe global mesh (right) are illustrated here.

Geometric mesh refinement is demonstrated in the local dorbaits on the global domain represent the

chosen global-local enrichment zone in the enriched glpbatblem. Note that the local domain is larger

than the corresponding enrichment zone — this serves teeestuor due to inaccurate boundary conditions
from the coarse-scale global solutidi¥].

solution resulting from simulations using both TET4 and THTlobal meshes. Here, relative error
in the energy norm of each finite element solutigns computed as

g wB(uref,uref)—B(uh,um!. (12)

|B (Uref ) Uref) |

While linear TET4 results are poor, the solution can be drally improved by taking advantage
of quadratic TET10 elements in the Abaqus global problenseBaon these results, the corner

Table I. L-shaped domain results for TET4 and TET10 globashmes, 22 levels ofocal domain mesh

refinement about the reentrant corner. Energy norm egforis computed with respect to ttgp-GFEM

reference solution. In both cases, the number of additigiodlal-local enrichment dofs is small relative to
the global problem size.

dofs g
€] Local EG IG EG
TET4 | 192 42,560 192+ 16| 11.95% 5.46%
TET10| 1,023 42,560 1,023+63 4.95% 0.44%

singularity is resolved very effectively by using Abaqus#9' with only local domain mesh
refinement, while adding just a few additional degrees oédmem to the global problem. For
qualitative comparison, Figuré shows the heat flux fields corresponding to initial global and
enriched global solutions, respectively, on the TET10 mesh

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Figure 7. Heat flux field on an L-shaped domain (1,023 glob#&)doorresponding to (a) Abaqus coarse-

scale initial global solution and (b) Abaqus+GFEMnriched global solution. The sharp flux resolution
possible on a coarse mesh in Abaqus+GREbalso demonstrated here.

5.2. Beam Subjected to Localized Laser Heating
In this example, a sharp, steady-state Gaussian laser fleamaied to the front surface of a small

aluminum beam of dimensions ¥20.5 x 0.24 inches, illustrated in Figui&

Figure 8. Temperature field on a beam subjected to a shamphleagng. The coarse-scale tetrahedral mesh
used in Abaqus is also shown. Note that the sharp heatimg &ligned with an element edge in the global

mesh.
The expression for the flux is given by
— 1
f(x)= Io*ﬂ*G(x,b,a), 8.0<x< 100, (13)
with 5
B —(x—Db)
G(x,b,a) = exp ( a2 . (14)

Here, parametelp = 295 is the laser flux intensitya = 0.025in is the laser focus, or width,
andb = 9.3in dictates thex-coordinate of the center of the flux. The analytical sharp flunction

is shown in Figured. Convective conditions were applied on the remainder ofbihwendary, with
convection coefficientr = 1152~ and free-stream temperaturg = 0°C.
5.2.1. Convergence Sudy Convergence behavior of the proposed non-intrusive G¥Elgproach
was investigated using this sample problem. A referenagtisol was developed usingp-GFEM
with heavy mesh refinement and uniform polynomial ornder 3 resulting in 736,990 total degrees
of freedom. Error was computed as relative error in the gneagm just as in Equatiorl@) using
Copyright®© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
DOI: 10.1002/nme
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Figure 9. Analytical function representing the sharp, Gaurslaser heating applied to the front surface of
the beam plotted over a small interval on the domain.

the internal energies of the Abaqus+GF#Mnriched global antip-GFEM reference solutions,
respectively.

The global domain in Abaqus was meshed with TET4 and, sulesglguTET10 elements. In
each case, the global mesh remained constant, with unifetrahiedral elements 0.5 inches in
size (shown in Figure), corresponding to 100 dofs in the TET4 global mesh, and 4§ oh
the TET10 case. The local domain and corresponding enrichzmne also remained a constant
size of 2x 0.5 x 0.24 inches surrounding the sharp flux, where uniform locaypamial order
p = 3 was used. A series of mesh refinements was performed in tiaé pooblem, and global-
local enrichments in all cases added a mere 20 dofs to the Gb4l problem and 91 dofs to the
TET10 global problem; thus, only 20 (TET4) or 91 (TET10) pdeloads and pseudo-solutions
were exchanged between FEM and GFEM solvers for each meskmedit level.

For comparison, convergence results were also obtainewd) tke optimal methodologyp-
GFEM. Each “equivalenthp-GFEM solution resulted from successively refining the mesér
the localized laser heating, analogously to what is donéhénGFEM' local problem, with a
uniform polynomial ordep = 3 throughout. Figuré O illustrates the coarse global mesh used in
Abaqus+GFEM' simulations compared to the very refined global mesh nee¢ssibyhp-GFEM
solutions.

@ (b)

Figure 10. Global meshes corresponding to (a) Abaqus+GEBN (b)hp-GFEM. The enriched global

problem in Abaqus+GFEM consists of just 120 dofs for the TET4 mesh, or 532 dofs in tA& 10 case,

whereas thdp-GFEM global mesh wittp = 3 and heavy localized mesh refinement results in a total of
189,290 dofs.

Figurel1compares convergence of Abaqus+GFEMainst théyp-GFEM. Relative error in the
energy normg, is plotted here against local domain mesh refinement (ingaAsaGFEM') or

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Figure 11. Convergence of non-intrusive GF¥MlIgorithm using FE solver Abaqus visp-GFEM with

respect to minimum local domain mesh size. Error is computed. a reference solution with 736,990

dofs. Asymptotic convergence rates and error levels argynieentical for Abaqus+GFEM (TET10) and

hp-GFEM. The dashed line shows relative error in the initiabgll solution, i.e., without any global-local

enrichment, on a coarse TET4 mesh using coarse-scale ruaniategration of the sharp laser flux (76%
error).

localized global mesh refinement (in thp-GFEM). It should be noted, however, that refinement
was only performed in the local domain in the Abaqus+GF¥Mase, and that the size of the
enriched global problem remained exactly the same for aiimrefinement levels — 100+20 and
441+91 dofs for TET4 and TET10 meshes, respectively. Resuin the non-intrusive GFEM
methodology are very similar to those obtained usingh&FEM itself. The convergence rate
of the Abaqus+GFEM TET10 case is quite near optimal, around the polynomial oedehe
approximationp = 3. To illustrate the dramatic benefit of using the GF¥:Nhe figure also shows
the error in the solution obtained from Abaqus using onlydbarse initial global TET4 mesh with
no global-local enrichment.

Point-wise error of the temperature field over the front acefof the beam with respect to the
reference solution is shown in Figut€. It is important to note that error of the local problem
solution is large at the local domain boundaty«8.5 in). However, reanalysis of the global problem
in Abaqus using this solution as an enrichment function oups the quality of the global solution
even at locations were the local solution is not accuratis.ista key difference between this method
and traditional global-local analysi$Z, 24].

5.2.2. Effect of Special Treatment of the Sharp Loading Figure 13 illustrates the importance of
using the GFEM local problem information and high-order numerical quad@rules available
only in GFE-S to improve accuracy of the global load vector. Convergerselts here are given
for analyses run in which only coarse-scale computatiomefsharp loading on the global mesh
was used, and also for cases in which the recomputation guoedcf. Sectiont.2) was used. In
both cases, the sharp loading was applied in the global dorhus, optimal convergence would

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Figure 12. Point-wise error in temperature of GF¥Molutions with respect to thep-GFEM reference
solution. The local problem boundary is locatecat 8.5. Although error of the local problem solution is
large at the boundary, the enriched global solution is ofigmaality.

in fact not nearly be possible without using this scheme éoueately recomputing the global load
vector.

10°
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Figure 13. Effect of rebuilding the global load vector ustBGEM solver with fine-scale computation of the

sharp load on convergence behavior. Convergence in thgyenerm is brought to a halt as the mesh is

refined when inaccurate, coarse-scale computation of tng $bading is performed because representation

of the global load is poor, and thus the solution correspundd global degrees of freedom is similarly
unsatisfactory.

Furthermore, an investigation was performed to compareatioeiracy of computation of the
sharp Gaussian laser flux on a coarse mesh in Abaqus, veratseestale computation of the
load using a high-order numerical quadrature rule in the BRi6de, versus the recomputation

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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approach described in Sectidn2, where a high-order quadrature rule is paired with the use of
highly-refined local domain elements for integration. Tésuiting internal energies and error levels
are summarized in Tablé. Results are shown for both initial and enriched global @ols. Here,
internal energy is computed Blg = 1/2xB(up, Uy).

Table Il. Error levels resulting from various approachesdamputing the global sharp load vector on the

coarse, global mesh. Abaqus and GFEM coarse-scale congmstatere performed on the initial global

problem, using the initial, coarse mesh. A higher-ordedgature rule was used in the GFEM computation.

Recomputation using highly-refined local elements wasie@mout in the lastG case. Enriched global

results corresponding to 13 levels of local domain meshesfant are also shown for each load computation
case.

TET4 mesh TET10 mesh

Method used Int. Energy g Int. Energy g
Abaqus|G, coarse-scale 4.036x 10° 92.67%| 3.539x 10° 48.84%
GFEM, IG, coarse-scale 5.672x 10° 89.53%| 1.430x 10° 70.68%
GFEM, IG, fine-scale recomputation5.568x 10° 89.73%| 1.439x 10° 70.47%
Abaqus+GFEM', EG, coarse-scale 2.850x 10° 5.25% | 2.860x 10° 2.95%
Abaqus+GFEM', EG, fine-scale recomputation2.857x 10°  0.91% | 2.857x10°  0.37%

In the case of the initial global problem in Abaqus, while TH€T4 mesh results seem reasonable
compared to th6&FE-Sresults, the energy of the TET10 analysis case is vastlestienated, since
the global load vector is also overestimated, and from tligsavident that computation of the sharp
loading on a coarse mesh in Abaqus is unreliable. In enrighazhl results, on the other hand, it is
shown that an accurate estimate of the actual global loavEcnecessary to better approximate
the solution corresponding to global dofs and obtain aat#eterror levels.

Finally, Figurel14 illustrates the effects on the enriched global solutionmflging versusot
applying the coarse-scale, sharp load at all in the initiabgl problem. Here, the difference in

X104

3.0

251 R

20 R

15} R

%,Ioad‘%,noload

05} R

0.0 R

-05 . .
102 10t
Locd Element Size(in)

Figure 14. The difference in energy norm error of the enuchkbal problem solution between the case
where a sharp loading i§({ ;5,4 Versus is note , ., applied on the coarse, initial global TET10 beam

mesh is shown. As the local mesh reaches high levels of reinemollution error due to the shal@®
problem flux dominates the case where the initial sharp lsagplied.
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relative error in the energy norm of the enriched global obsolution between the case where
the sharp loading is and is not applied is plotted againstlldomain mesh refinement, with the
enriched global problem remaining exactly the same sizzaritbe observed that as discretization
error is reduced as a result of high levels of local mesh neferg, the effect of pollution error
(and some integration error) from applying the sharp fluxtendoarse, initial mesh dominates. As
shown in Tabldl, however, the initial solution on a coarse mesh may not ivp@s a result of
decreased integration error.

5.3. Large Stiffened Panel

In the final sample problem presented, an attempt is madenmmlgtrate the adaptability of the
proposed non-intrusive methodology in handling a variétgifferent multiscale analysis cases for
the same global model of interest. This nice feature of theintrusive implementation allows the
user to insert localized problem information anywhere initfhe global model, using capabilities
of the GFEM' alone to handle these localized features, and not requarigghanges to the model
itself.

The problem of interest is taken to be a representative, atatipnally large stiffened panel
section of dimensions 600600x 3 cm with stiffener beams of cross-section:2@0 cm attached
underneath the panel near each edge. The panel was sulifeatemhstant, steady-state surface heat
flux as well as intense, localized Gaussian laser heatingsr@mius locations. The sharp, analytical
flux function used to represent the localized heating ist@tbin Figurels.

[}
g 8 8
f, flux function o

B
o
o

0.8

10
Xem) 12

14

Figure 15. A sample depiction of the intense Gaussian laserfplied to the top surface of the stiffened
panel, plotted over a very small interval on the domain. Hsel heating covers an area of approximately
0.1 x 30 cm on the global domain in all cases.

Adopting the partitioning strategy foi® discussed in Sectiof.2, localized laser heatings were
introducedonly in local and enriched global problems, and in all cases, #rg game Abaqus
global problem was used, upon which only the smooth (cotigtantion of the surface heating was
applied. ThusGFE-S alone was tasked with handling all computations involvimeplized effects.
In each case, the sharp flux was placed slightly to the lefightt,ror above or below an element
edge, but never directly in line with one, so that the quaityhe GFEM!' solution is dependent
mostly upon the quality of the global-local enrichment ftioies. This was done to represent the
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20 J. PLEWS, C.A. DUARTE, AND T. EASON

most general possible analysis case, where the mesh magceestsarily be designed to account for
the location and configuration of the sharp loading.

The global domain was meshed with linear TET4 elements|tieguin 45,534 initial global
degrees of freedom. Temperature boundary conditionsGfWere applied to the left and right
faces of the panel with the boundary insulated elsewhere tiitee chosen locations for the laser
heating are illustrated in Figutks, along with the general panel geometry. As usual, in each, cas

600 mm
/_
>

< 600 mm >

23 mmi

-
20 mm

Figure 16. Geometry of the stiffened panel and locationgpfiad intense, localized surface laser heating:
location A, around the center of the panel; location B, ovearel-stiffener junction; and location C, along
the axis of an edge stiffenéMote: drawing not to scale.

a local domain was chosen to cover a small neighborhood dbttadly-applied, sharp laser flux.
Necessary mesh refinements and polynomial enrichmentstalese care of bysFE-S only in the
local problem.

The initial global temperature field corresponding to a sthpoonstant flux over the top surface
of the panel is shown in FigurE/. Note that because the global model remains unchangeddbr ea
sharp load case (only the constant surface flux is appliddt@ae), this same initial global solution
may be utilized repeatedly for multiple sharp flux cases asled, saving some computational cost
when many analysis cases are required. Computational datath sharp flux case is listed in
Tablelll. The corresponding enriched global solutions exhibithmggharp solution characteristics
are shown graphically in Figurés, 19, and20.

While the argument may be made that meshes consisting oflinwensional plate and one-
dimensional beam elements may be used in the elastic anallysitructures of a similar nature
to this plate in order to reduce computational cost and sfynphallenging three-dimensional
meshing requirements, in general these types of meshesiohég used in heat transfer analyses.
As illustrated by Figurel9, the sharp flux of interest applied near the edge of the padmbits
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Figure 17. Temperature field on a stiffened panel from thegdibanitial global solution (only a constant
surface flux applied). The Abaqus TET4 mesh and temperatunedary conditions are also illustrated here.

Table 1l. Abaqus+GFEM numerical results for the stiffened panel problem. The &edous savings

stemming from use of the GFEmethodology with respect to additional enriched globabfem degrees

of freedom is evident here. Whil& and local solutions underestimate the true solution (@bt in some
cases), the enriched global problem is much better ableptui@true, sharp solution characteristics.

dofs Internal Energy
Flux Loc. IG Local EG IG Local EG
A | 45534 46,680 45,534 +554.389x 1(°F 8912x 10* 5.575x 10°
B | 45,534 197,000 45,534+ 854.389x 10° 2.455x 10’ 1.188x 1(°
C | 45,534 342,520 45,534+ 854.389x 10° 1.850x 10’ 1.145x 108

Figure 18. Enriched global problem temperature field on fiestd panel from the Abaqus+GFEM

solution, sharp flux location A, on the center of the panel.obm-in on the sharp feature of interest is

also shown. The sharp flux is slightly skewed to the right @f lihe of a global mesh edge, so that the
quality of the sharp global solution features relies stipiog the quality of global-local enrichments.
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Figure 19. Temperature field on a stiffened panel for shaxldlcation B. Here, the laser heating intersects

a stiffener beam near the edge of the panel. The effectigasfebe 3D structural-scale model in accounting

for through-the-thickness effects due to the stiffenerident here. The sharp flux is slightly skewed to the

right of the line of a global mesh edge, so that the qualithef¢harp global solution features relies strongly
on the quality of global-local enrichments.

Figure 20. Temperature field on a stiffened panel correspgrtd sharp flux location C, in which case the

flux is concentrated entirely over a stiffener beam. Thesffiax is applied slightly above the line of a

global mesh edge, so that the quality of the sharp globatisal@eatures relies strongly on the quality of
global-local enrichments.

significant through-the-thickness effects due to the presef a stiffener beam underneath. Thus,
a full three-dimensional analysis is crucial for predigtactual thermal behavior.

It should be noted that in problems of this nature — largergsgntative, structural-scale problems
which necessitate fine global meshes in order to accuragglesent complicated geometry — it
would be computationally infeasible to perfotmp-adaptivity on the global mesh to capture local
solution features. The GFE¥circumvents this issue entirely, sinbg-adaptivity need only be
performed on a comparatively small subset of the global dionviithout the capability for such
hp-adaptivity, coarse scale computation of the sharp flux ergtbbal mesh might provide limited
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prediction of the intense temperature field surroundingsttap flux on the panel, but the localized
sharp solution characteristics could not be capturedfaataily.

The immense flexibility of the methodology is also demoristieby the fact that a localized
feature can be placed arbitrarily within the global problefthout making any changes to the
global model itself, which, as aforementioned, is a sigaificlimitation of approaches using
single element-based enrichments. Not only can differecdlized features be inserted into the
global problem of interest, but any combination of localizffects can similarly be considered
simultaneously via the extraction and solution of multipleal problems from the global domain.

Finally, this problem was used to study the computationfdrefequired for the proposed
methodology in terms of CPU time. Talllé shows total factorization and solution times for each
panel flux case solved usidgp-GFEM discretizations. Tablg gives corresponding factorization
and solution times using Abaqus+GFEMThe non-intrusive GFER! framework has a distinct
advantage ovenp-GFEM, since the initial global problem phase needs to beesbbnly once for
all three load cases. Usirgp-GFEM, on the other hand, the entire global stiffness matrust
be reassembled and re-factorized for each analysis case.U ti@s required for factorization

Table IV.hp-GFEM CPU times for factorization and solution of the stiféel panel problem.

Flux Loc. | CPU Time (s)| Internal Energy

A 15.86 5.577x 10°
B 354.99 1.195x 108
C 999.02 1.149x 108

Total: 1369.87

Table V. Abaqus+GFEM CPU times for factorization and solution of the stiffenedggproblem.

CPU Time (s)
Flux Loc.| IG  Local EG Total | Internal Energy
Abaqus nRHS GFEM static cond.
A 15.14 34.70 0.10 50.51] 5.570x 10°
B | 0.67 320.51 54.02 0.18 375.2 1.188x10°
C 947.77 51.25 0.19 999.69 1.145x 10°
Total: 1425.40

and solution are comparable for both cases (4% differenciiproblem). Due to a limitation of
Abaqus heat transfer analysis, however, the stiffnessxraftthe coarse-scale global problem was
re-factorized for each pseudo-load in the enriched gloteddlpm solution phase. Thus, computation
of pseudo-solutions in Abaqus (Abaqus NRHS in the abovesYakbuld be substantially faster
were this limitation of heat transfer analysis resolvedstead of re-factorizing the global matrix,
a forward/backward substitution would be sufficient. Fderence, each global factorization in
Abaqus takes about 0.6 seconds, while each forward/badksudnstitution takes only 0.1 seconds,
though the difference between the two grows quickly withbtem size. This study shows that
despite these limitations, the proposed methodology brihg benefits dfip-adaptivity to existing
software like Abaqus at only a modest CPU overhead.

The data in Table/ shows that the main overhead of the proposed methodolody redpect
to a standard global-local analysis comes from pseuddisnloomputations in Abaqus, while the
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CPU time required for static condensation of enrichmenteegof freedom is minimal. The total
CPU time for a standard global-local analysis of this probis about 1284.76 seconds. While this
is about a 10% reduction in CPU time compared to the propogedithm, the error of the local
solutions is, in general, significantly greater than in threthod proposed here as discussed earlier
and demonstrated in, e.g19. In contrast, the internal energy computed with AbaqusE@F
differs by less than 1% from tHgp-GFEM values.

6. CONCLUSIONS

The methods demonstrated have been shown to prdypdinite element discretizations to a
standard, commercial FEA code without the need for code fications, via the generalized finite
element method with global-local enrichment functions E&@'). Moreover, the proposed non-
intrusive approach has been successfully applied to pmablgith localized features of interest,
subjected to very intense, localized thermal loadings, iai@monstrates several characteristics
which are very effective in handling problems of this natier instance,

(i) the GFEM introduces adaptive mesh refinement and high-order polial@pproximations
on only a small, local subset of the structural-scale, dldloaain, resulting in only a few
extra degrees of freedom, which is especially beneficialnnthe global model of interest is
extremely large, as in the presence of complicated geometry

(i) the method improves upon traditional global-local authmodeling techniques for multiscale
problems already available in current FEA platforms by gdoctal solutions as enrichment
functions on the global domain, rather than the final sotytgreatly reducing the effect of
important local error due to poor boundary conditions;

(iii) even with existing limitations on reuse of the globéffaess matrix, the CPU overhead of the
proposed methodology is modest. The benefitspa@idaptivity includes reduced user time in
model preparation which in practice is much more costly {GRW time;

(iv) extraction of local problems and adaptive mesh refinemeay be automated kyyposteriori
error estimates on initial coarse-scale, global solutiongnimizing the need for user
intervention in the GFEM code;

(v) adaptive mesh refinement can be performed in a local domatn when a higher-order
partition of unity (higher-order element) is used in the bglb model, which has been
demonstrated here using a quadratic tetrahedral globdi,mbes a similar methodology has
also been successfully applied to 8-, 20-, and 27-nodedheekal elementsig];

(vi) the methodology provides a means of computing extrgrabhrp, localized loadings, even
on a coarse-scale mesh — and it has been shown that attertgptiognpute sharp loadings
similarly in a standard FE solver alone may not be possibileawit incurring very large errors
in the solution.

Therefore, the non-intrusive implementation introducedehfeatures several capabilities which
have not been identified by the authors as being availabléh#r gomparable methodologies:
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(i) the method deliversptimal convergence as well as error levels competitive with standard
hp-FEM approximations, which have been recognized as optiorathe class of problems
investigated in this pape®]10];

(ii) numerical experiments demonstrate that the methogetslhigh accuracy on local quantities
like point-wise temperature fields at regions with largerhed gradients. This has also been
demonstrated for elasticit@f] and transient heat transfer problerS]f

(i) the implementation allows for arbitrarily many loé¢zéd features of interest to be introduced
to the very same global structural model via the extractiod solution of multiple local
problems, providing excellent flexibility when many anadysases are necessary.
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A. IMPLEMENTATION DETAILS OF THE NON-INTRUSIVE ALGORITHM

The following gives particulars of the procedure used to-imrusively implement the GFEMin a standard
FE solver — in this case, Abaqus, which was used for all nuzakeixamples given — which is described in
general in Sectio#d.

Each analysis using the non-intrusive implementation ef GFEM' in Abaqus (Abaqus+GFEM) is
orchestrated bysFE-S, which executes continuously throughout the process. Xbkamge of the initial
global solution, pseudo-loads, and pseudo-solutionsdeivibaqus an@FE-Sis facilitated by a converter
code written in a combination of Python (the scripting laage of Abaqus/CAEH0,51]) and C++. Because
the two codes are otherwise isolated from each other, icglobal models, or job files, must be present
for both Abaqus anGFE-S. Two model files must be written for Abaqus: one for the iniglmbal analysis
(henceforthabaqus . inp), and another for the enriched global problem, which wilht@in pseudo-loads
(abaqus_nRHS. inp). Abaqus/CAE is utilized here for itdb binary output database format, which contains
all user-requested output in a very conveniently organibegtarchical data structure and can be read and
converted directly by an Abaqus Python script (referredeietas the Python converter code).

A.l. Initial Global Problem

The procedure for the initial global problem step is as foo
(i) Call Abaqus fromGFE-Sto execute model filabaqus . inp via Python script.

(i) When problem is done executing, execute Python corverde to write initial global results® from
the . odb file to output file readable b@FE-S.

(iif) Read initial solution inGFE-S.

A.2. Local Problem(s)

Once the initial global problem solution is read GFE-S, execution continues, and local problems can
subsequently be extracted and solved, as specified. Thedanazfor a local problem is as follows:
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(i) Extract a local domaif), (selected by the user or yposteriori error estimates on®), and apply
initial solutionu® from Abaqus as a Dirichlet boundary condition.

(i) Performhp-adaptivity as necessary and solve local problem.

(iif) Using local solutionu,, compute global-local shape functioqxg as in Equation®), and use these
to assemblK? and f¢ corresponding to global-local dofs, a9, pseudo-loads to be passed to
Abaqus, as defined in SectidnlL

(iv) Recompute total global load vectéf using refined local elements for integration.

(v) Write out pseudo-loads and recomputed global load véetoluding the sharp load features) to a file.

A.3. Enriched Global Problem

The enriched global problem requires multiple communicetibetweeltsFE-S and Abaqus. In this step,
because in general multiple pseudo-loKd$' will be present, Abaqus’s built-in capability to solve niple
right hand sides as part of the same job is utilized. The kadglobal procedure is done as follows:

(i) Read pseudo-loads and global load vector fil@FE-S in converter code, and write each right hand
side therein to a separate analysis step in an input file sadable by Abaqus.

(i) Call Abaqus and execute enriched global modehqus nRHS.inp (written prior to the analysis),
including file containing multiple right hand side®o{ known prior to the analysis) written above.

(i) When problem is done executing, execute Python caeverode to write resulting pseudo-solutions
9" and recomputed global solutiad from the . odb file to output file readable b@FE-S.

(iv) Read output file inGFE-S and compute the global degrees of freedd@fhas in Equation 10), the
Schur complement of the global stiffness matfb?! as in EquationX1), as well ast?.

(v) Compute the solution for global-local degrees of freadi¥' as in Equation11) and total solutionu®
as in Equation?).

After the final step, any post-processed quantities whiatewequested by the user@FE-S are computed,
and Abaqus initial global an@FE-Slocal and enriched global solutions may also be visualiez@cution

of the program completes, and all requested output fromrihiereed global solution is available to the user
from GFE-S.
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