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SUMMARY

Several classes of important engineering problems – in thiscase, problems exhibiting sharp thermal gradients
– have solution features spanning multiple spatial scales and, therefore, necessitate advancedhp finite
element discretizations. Althoughhp-FEM is unavailable off-the-shelf in many predominant commercial
analysis software packages, the authors herein propose a novel method to introduce these capabilities
via a generalized finite element method non-intrusively in astandard FEA platform. The methodology is
demonstrated on two verification problems as well as a representative, industrial-scale problem. Numerical
results show that the techniques utilized allow for accurate resolution of localized thermal features on
structural-scale meshes withouthp-adaptivity or the ability to account for complex and very localized loads
in the FEA code itself. This methodology enables the user to take advantage of all the benefits of bothhp-
FEM discretizations and the appealing features of many available CAE/FEA software packages in order to
obtain optimal convergence for challenging multiscale problems.
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1. INTRODUCTION

1.1. Background

A growing number of problems encountered in engineering practice today require consideration of

phenomena encompassing multiple spatial scales of interest. One example of particular interest –

and which is part of the motivation behind this work – lies in the structural analysis of hypersonic

flight vehicles. At very high airspeeds, rapid variations inthe density and temperature of the

compressible flow lead to shock impingements on the skin of the vehicle. Interactions between shock
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2 J. PLEWS, C.A. DUARTE, AND T. EASON

Figure 1. Measured temperatures on the skin of a North American X-15 spaceplane from an actual
hypersonic flight at Mach 5.0 (cf. [1]).

waves, typically occurring most severely on the leading edge of the aircraft wing, have been shown

to lead to very intense, localized thermomechanical loads,and characterization of these complicated

effects itself has been an active research topic [2–8]. A comprehensive, historical overview of the

challenges posed by aero-thermal-mechanical effects in hypersonic structures and their importance

is given in [1]. In the scope of this paper, however, only the thermal component of loadings is

considered.

Based on experimental investigations, intense, localizedheat fluxes can be concentrated on an

area just microns in width, or many orders of magnitude smaller than the structure. However,

these loadings may have a drastic effect on the overall behavior of the structure as well as the

neighborhood of the loading itself, and thus the two disparate scales of interest may not in general

be considered separately.

1.2. Present Approaches & Limitations

In current design practice, commercial finite element analysis (FEA) software packages are

commonly used to predict the response of the hypersonic vehicles of interest, as well as other

complex structures exhibiting multiscale behavior. Optimal finite element discretizations for this

class of problems require state-of-the-art localized, adaptive mesh refinement combined with

high-order polynomial approximations [9, 10]. Unfortunately, performing suchhp-adaptivity in

commercially available FEA software is often prohibitively difficult or, in many cases, even

impossible. Additionally, treatment of sharp, localized thermal loads requires special attention and

cannot in general be computed automatically in conventional FEA software. More importantly, if

these loadings are applied on meshes designed to capture only the global response of the structure,

the error of the finite element solution may be large even far away from the localized features due

to so-called pollution error [11,12].

Problems involving multiple spacial scales of interest aretraditionally handled in engineering

practice by global-local or submodeling analysis [13,14]. The global-local FEM procedure involves

two steps. First, the solution of the problem is computed on acoarse, global, quasi-uniform mesh.

Next, small subdomains containing local features of interest like cracks or other stress raisers are

extracted from the global domain and analyzed using the global solution as boundary conditions.

The use of the crude global solution as boundary conditions for local problems is a key point in the

procedure, as it may lead to local solutions with large errors [15].

Several authors have proposed improvements to the global-local procedure aiming at addressing

the issue of local error [16–20]. In the Generalized Finite Element Method (GFEM) proposedin
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[21,22], this issue is addressed by going one step further in a global-local analysis; the local solution

is used as an enrichment function for the global problem, rather than the final solution. This enriched

global problem is solved again using the factorization computed in the first step of the global-

local analysis [23]. This methodology is denoted a GFEM with global-local enrichment functions

(GFEMgl). Numerical and mathematical analysis of the GFEMgl have shown [12, 15, 22–24] that

the solution of the enriched global problem has an accuracy comparable to a direct simulation of the

problem with fine-scale features discretized in the global problem.

1.3. Contributions of this Paper

In a standard global-local analysis different softwares oreven different methodologies can be used

to solve the global and local problems. This flexibility, however, is lost when solving the enriched

global problem in the GFEMgl approach discussed above, which requires special enrichment

functions and thus prevents the use of available commercialFEA software to solve the usually

large and complex global problem and specializedhp-adaptive software to solve local problems.

To address this issue, the authors propose in this paper a newalgorithm enabling the solution of

the enriched global problem in the GFEMgl. The resulting methodology effectively introduceshp-

adaptive capabilities to an existing FEA platform without any code modifications. The methodology

is demonstrated here using the commercial software Abaqus,which was chosen due to its popularity

in the engineering community, its heat transfer capabilities, and its robust scripting interface. The

method used, however, is quite general and can be applied to avariety of FEA software.

This non-intrusive GFEMgl approach offers many benefits, circumventing the need forhp-

adaptivity in standard FEA codes and enabling accurate computation of sharp thermal loads on

structural-scale meshes. As a result, it will be shown to yield optimal convergence for this class of

problems. Additionally, an example will demonstrate that the methodology is able to provide a great

deal of flexibility in handling a variety of multiscale analysis cases for the same structural model

of interest. While this work focuses on intense, localized heat sources, the methodology is relevant

to a much broader range of problems exhibiting multiscale phenomena without modifications to the

overall approach.

2. PROBLEM DEFINITION

Consider a domainΩ ⊂R
3 with boundary∂Ω = Γu ∪Γ f ∪Γc, whereΓu ∩Γ f = /0, Γu ∩Γc = /0, and

Γc ∩Γ f = /0. The strong form of the governing partial differential equation is given by Poisson’s

equation,

∇(κκκ∇u) =−Q(xxx) in Ω, (1)

given the physical interpretation of heat transfer, whereu(xxx) ≡ u(x,y,z) is the temperature field,

κκκ is the thermal conductivity tensor, andQ(xxx) ≡ Q(x,y,z) is the internal heat source. Boundary
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conditions prescribed on∂Ω are given by

u = ū on Γu

−κκκ∇u ·nnn = f̄ on Γ f (2)

−κκκ∇u ·nnn = α (u−u∞) on Γc

wherennn is the outward unit normal vector toΓ f andΓc, and f̄ andū are prescribed normal heat flux

and temperature, respectively. Parameterα is the convection coefficient, andu∞ is the free-stream

temperature for convective conditions.

3. GENERALIZED FEM AND THE GFEMgl

3.1. GFEM Approximations

The generalized finite element method (GFEM) [25–29] is a Galerkin method based on

discretization spaces defined using the concept of a partition of unity (PoU). Partition of unity

methods originated from the work of Babuška et al. [25, 26, 30] as well as Duarte and Oden

[28,31–34]. The extended finite element method, or X-FEM, is another example of a method based

upon PoU concepts with many similarities to the GFEM [35, 36]. The usefulness of the GFEM

hinges on the idea that the partition of unity can be enriched, or combined with local function

approximation spaces built arounda priori knowledge about the solution of a given problem.

In the GFEM, standard finite element shape functionsϕα are chosen as the partition of unity,

sinceϕα , α = 1, . . . ,N, in a mesh covering a domainΩ with N nodes are such that∑N
α=1 ϕα(xxx) = 1

for all xxx in Ω. A GFEM shape functionφα i is then computed as the product of the FEMPoU ϕα and

an enrichment functionLα i,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (3)

whereα is a node in the FE mesh. Figure2 illustrates shape function construction for various types

of enrichments.

3.2. GFEMgl

Although special GFEM enrichment functions may be designedto accommodate analytical solution

characteristics, for instance, in the case of fracture mechanics [37] or modeling of polycrystalline

structures [38], in many casesa priori knowledge of the solution behavior is limited. Moreover,

especially in large problems, performinghp-adaptivity on a structural-scale mesh in order to account

for localized solution features may add many degrees of freedom to the problem and, thus, may

prove much too computationally expensive.

The GFEM with global-local enrichment functions (GFEMgl) [12, 22], however, allows for on-

the-fly, numerical creation of custom enrichments via the solution of smaller,hp-adapted local

problems which enclose features of interest in the structural-scale (global) domain. Thus, expensive

mesh refinements and localized, high-order polynomial enrichments need not be done in the global

domain itself, and only a few degrees of freedom are added to the global problem as a result of the
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(a) (b)

Figure 2. Construction of a GFEM shape function – from top to bottom,ϕα , the FEM partition of unity,Lα i,
an enrichment function, andφα i, the resulting shape function for (a) a polynomial enrichment function, and

(b) a custom, non-polynomial enrichment.

numerically-built enrichment functions. The most basic GFEMgl solution procedure is comprised of

three primary steps – a coarse-scale initial solution, extraction and solution of local problems, and

enrichment and reanalysis [22,23] of the global problem based on local solutions.

Initial Global (IG) Problem An initial coarse-scale analysis is first performed on the global

problem onΩ̄G = ΩG ∪ ∂ΩG, yielding initial solutionu0. The initial global problem is formulated

as, for allv0 ∈ XG(ΩG), find u0 ∈ XG(ΩG) such that

∫

ΩG

∇u0κκκ∇v0dΩ+η
∫

Γu
G

u0v0dΓ+

∫

Γc
G

αu0v0dΓ

=

∫

ΩG

qv0dΩ+

∫

Γ f
G

f̄ v0dΓ+η
∫

Γu
G

ūv0dΓ+

∫

Γc
G

αu∞v0dΓ, (4)

whereη is a predetermined penalty parameter for enforcement of Dirichlet boundary conditions,

andXG(ΩG) is a GFEM discretization ofH1(ΩG).

Local Problem(s) The initial global solution resulting from the linear system of equations implied

by (4) is then used directly as a Dirichlet boundary condition in alocal problem. Convective

boundary conditions can also be used [23]. The local domain is comprised of̄ΩL = ΩL ∪ ∂ΩL,

a subdomain ofΩG, which in practice is taken to be a user-specified, small subset of finite elements

extracted (copied) from the global problem upon whichhp-adaptivity may be performed. However,

the local domain may be selected and mesh refinements done automatically usinga posteriori

error estimates on the initial global solution,u0. The local problem is formulated as follows: for
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6 J. PLEWS, C.A. DUARTE, AND T. EASON

all vL ∈ XL(ΩL), find uL ∈ XL(ΩL) such that

∫

ΩL

∇uLκκκ∇vLdΩ+η
∫

∂ ΩL\(∂ ΩL∩Γ f
G)

uLvLdΓ+

∫

∂ ΩL∩Γc
G

αuLvLdΓ

= η
∫

∂ ΩL\(∂ ΩL∩∂ ΩG)
u0vLdΓ+η

∫

∂ ΩL∩Γu
G

ūvLdΓ+

∫

ΩL

qvLdΩ+

∫

∂ ΩL∩Γ f
G

f̄ vLdΓ

+

∫

∂ ΩL∩Γc
G

αu∞vLdΓ, (5)

whereXL(ΩL) is again a GFEM discretization ofH1(ΩL). The initial global and local problem steps

comprise a procedure akin to the familiar global-local FEM [13,14,39].

Enriched Global (EG) Problem In general, the local problem may not provide a satisfactory

estimate of the actual global solution, due in large part to poor boundary conditions on local

problems from the initial, coarse-scale analysis. Thus, taking the global-local analysis one step

further, the solutionuL yielded by the local problem is used in the GFEMgl to build so-called global-

local shape functions

φ gl
α (xxx) = ϕα(xxx)uL(xxx) (6)

numerically, which are in turn added to the global approximation space and utilized to enrich and

re-solve the global problem as defined in (4). This step is termed the enriched global (EG) problem,

the solution of which is denoted hereafteruE .

Extensive numerical and mathematical analysis presented in [12, 22–24] demonstrates that the

accuracy ofuE is close to that provided by a direct simulation of the problem with fine scale features

discretized in the global problem. Since in the GFEMgl the local solutionuL is used as an enrichment

function for the EG problem, it only needs to capture the exact solution up to a constant. This is the

case if the local boundary conditions are provided by the FEM, since the FEM solution oscillates

around the exact solution. Further details on this analysiscan be found in [24]. The convergence

study presented in Section5.2.1shows that the proposed algorithm enjoys this same property(cf.

Figure11).

An a priori error estimate for the GFEMgl accounting for the effect of inexact boundary

conditions at local problem is presented in [24]. Two strategies to control this effect are also

presented in that study, the first of which is based on the use of a buffer or over-sampling zone

in the local problems. This strategy is adopted in this paperand described in more detail in Section

5.1. The second strategy analyzed in [24] and originally proposed in [12], is based on multiple

global-local iterations.

4. A NON-INTRUSIVE GFEMgl ALGORITHM FOR USE IN A FE SOLVER

As previously discussed, the extension of this global-local solution strategy to a legacy FEA

platform is nontrivial due to the enriched global step, which introduces custom enrichment functions

into the global approximation space. In recent years, non-intrusive methodologies such as the one

proposed here have been actively investigated in order to enable a smooth transition of advanced

GFEM/X-FEM discretizations to application in popular and venerable commercial FEA codes. For

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 7

instance, Giner et al. [40], Shi et al. [41,42], and Xu and Yuan [43,44] propose implementing X-

FEM for fracture mechanics applications in a commercial FEAcode, Abaqus, by using customized

elements. However, prior to each analysis, the user must manually select elements in the global

model which will possess X-FEM enrichments, which is a prominent disadvantage of this strategy,

since the global model must then be altered for each separateanalysis case or crack configuration.

This complication could prove extremely inconvenient whendealing with very large global models.

Gendre et al. [45, 46] propose a non-intrusive algorithm implementing nonlinear FEM in a

standard FE solver which is somewhat similar to the GFEM methodology introduced here, where

a patch of elements containing a localized plastic zone of interest is “exactly” extracted from the

global problem by a Schur complement method. However, in this case, the local patch boundary

must exactly match the global problem mesh where the local patch is to be inserted, so that no

refinement can be performed along the local boundary. Because of the partition of unity approach,

this is not an issue in the GFEMgl, which is demonstrated on a sample mesh in Figure3. Also, the

Schur complement of thelocal degrees of freedom – as opposed to the global degrees of freedom,

the approach adopted here – is computed, which in general comprises many degrees of freedom

and thus proves very expensive for large global problems (soto avoid this issue, a procedure to

approximate the Schur complement is adopted).

The procedure which will be described here takes a differentapproach from the aforementioned

philosophies. In this case, the proposed algorithm uses twostand-alone codes – a standard FE solver,

and another stand-alone, in-house GFEM code. The GFEMgl solution is partitioned, and portions

are solved in each code separately (explained further in Section 4.1). Thus, the only communication

which takes place between the two is controlled by a converter code (detailed in AppendixA). The

approach proposed herein is perhaps most similar to Bordas and Moran [47] and is in a sense the

“inverse” procedure to the Schur complement method for scale-bridging described in Gendre et

al. [45,46], which will be explained much further in the following section.

It is important to note, also, that when using the proposed approach, anyhp-FEM code could

theoretically be used instead of a GFEM code in the local problem, since the only unique aspect

of the GFEM which is used here is the partition of unity to bridge scales between global and local

solutions. This is because only polynomial enrichments – nospecial, analytical GFEM/X-FEM

enrichment functions – are present. This is in stark contrast to fracture mechanics problems, where

special GFEM step and branch function enrichments are used to represent the behavior of cracks

in the domain. In this case, using anhp-FEM solver in the local problem would not be possible,

since the local mesh would need to be designed to fit the crack,and thus the local mesh could not in

general be nested inside the global mesh. This would make accurate numerical integration of special

enrichment functions around, for example, a crack front extremely difficult.

4.1. Partitioned System of Equations

The GFEMgl by its very nature is readily extensible to an approach usingmultiple-solvers; one

standard FE solver (referred to here asFE-S) is made to handle the coarse-scale, global problem,

and another GFEM solver (GFE-S) orchestrates the analysis by handling the local and enriched

global problem aspects. The essence of the proposed algorithm is as follows: The GFEM solution

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Local domain

Global domain

(a)

(b) (c)

Figure 3. A demonstration of the possibility for arbitrarily refined meshes at the local domain boundary,
irrespective of the matching global problem mesh. The use ofthe local solution as an enrichment function,
sewn together with the global problem approximation by a partition of unity, allows for much more flexibility
than, for example, “exact” extraction and solution of a localized subset of the domain. Figure3(a)shows the
corresponding mesh faces in the global and the local domain,respectively, while (b) and (c) show a zoom-in

on the difference in mesh refinement between the two.

of the enriched global problem,uE , can be partitioned as

uE = ũ0+ugl =
[

NNN0 NNNgl
]
[

ũuu0

uuugl

]

, (7)

whereNNN0 has standard FEM shape functions andNNNgl has the global-local shape functions defined

in (6). Vectorsũuu0 anduuugl have global and global-local enrichment degrees of freedom, respectively.

Then, the gradient of the temperature field is defined as

∇uE =
[

BBB0 BBBgl
]
[

ũuu0

uuugl

]

. (8)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 9

The resulting system of equations in the enriched global problem, as formulated in and implied by

(4), KKKuuuE = fff may then also be partitioned as

[

KKK0 KKK0,gl

KKKgl,0 KKKgl

][

ũuu0

uuugl

]

=

[

fff 0

fff gl

]

, (9)

where

KKK0 :=
∫

ΩG

(
BBB0)T κκκBBB0dΩ

is computed byFE-S, and

KKK0,gl :=
∫

ΩL

(
BBB0)T κκκBBBgldΩ

KKKgl :=
∫

ΩL

(

BBBgl
)T

κκκBBBgl dΩ

are computed inGFE-S. The solution to System (9) can then be found by static condensation on

uuugl , since, in general,dim
(
ũuu0
)
≫ dim

(
uuugl

)
. From the first equation in System (9),

ũuu0 =
(
KKK0)−1

fff 0−
(
KKK0)−1

KKK0,gluuugl

= uuu0−SSS0,gluuugl , (10)

whereKKK0,gl are known as “pseudo-loads,”

SSS0,gl :=
(
KKK0)−1

KKK0,gl

are known as “pseudo-solutions” corresponding to the pseudo-loads, and

uuu0 =
(
KKK0)−1

fff 0

is the initial, coarse-scale solution. BothSSS0,gl anduuu0 may be computed byFE-S using forward and

backward substitution on a factorization of the coarse-scale global stiffness matrix,KKK0. BecauseKKK0

does not change between initial global and enriched global problems, the factorization ofKKK0 may

also, if possible, be stored inFE-S after the initial global problem step and reused in the enriched

global problem in order to reduce computational cost as wellas solution time†. Substituting

Equation (10) in the second equation in System (9) and rearranging,

(

KKKgl −KKKgl,0SSS0,gl
)

︸ ︷︷ ︸

K̂KKgl

uuugl = fff gl −KKKgl,0uuu0
︸ ︷︷ ︸

f̂ff gl

, (11)

†The FE solver used for numerical examples in this paper, Abaqus, has limitations on reuse of the factorized global
matrix. Thus, the factorization must be computed multiple times per analysis. This limitation has also been addressed
in [45].
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10 J. PLEWS, C.A. DUARTE, AND T. EASON

FEM Code

Global Problem

GFEM Code

Local Problem

Initial Solution

(BCs for local problem)

"Pseudo-loads"

(Global-local enrichments)

"Pseudo-solutions"

(from multiple RHS)

Enriched Global Problem

Figure 4. Illustration of non-intrusive algorithm – exchange of “pseudo-loads” and “pseudo-solutions”
between FEM and GFEM codes.

so the solution corresponding to global-local degrees of freedom comes directly from the solution

of

K̂KK
gl

uuugl = f̂ff
gl
,

whereK̂KK
gl

can be interpreted as the Schur complement ofKKK0.

Thus, the static condensation algorithm requires only the exchange of pseudo-loads and pseudo-

solutions betweenFE-S andGFE-S, making this approach extensible to almost any FEA software

package. The algorithm described here is also illustrated graphically in Figure4. A detailed, step-

by-step description of the procedure used to implement thisalgorithm in the FEA code chosen for

this paper, Abaqus, is given in AppendixA.

4.2. Treatment of Rough Loads

Standard FEM solvers cannot typically handle sharp heat fluxes applied on meshes designed to

capture only the coarse-scale component of the solution. Furthermore, application of such sharp

loadings on coarse meshes may cause error in the finite element solution to propagate even far

from the localized feature (so-called “error pollution”) [11,12]. Thus, the authors also propose an

improved strategy for handling sharp loadings within the non-intrusive framework.

The global load vector,fff 0 above, is decomposed as

fff 0 = fff 0
R + fff 0

S,

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 11

where fff 0
R is the “rough,” sharp, localized portion of the load, andfff 0

S is the remaining “smooth”

portion. AlthoughFE-S is able to computefff 0
S without difficulty, the additional sharp loadfff 0

R must

be numerically integrated usingGFE-S.

As was examined in [12], it will be shown that applyingonly the smooth loading,fff 0
S, in the

initial global problem not only gives a satisfactory estimate of the solution to develop local problem

boundary conditions but also eliminates aforesaid error pollution effects.

However, thetotal global load, including sharp features, must somehow be computed accurately

and applied in the enriched global problem. Taking advantage of information available from the

local problem step, the highly refined,hp-adapted local domain elements may be used as so-called

integration elements in the global problem, coupled with a high-order numerical quadrature rule, to

recompute the total load,fff 0, in GFE-S just prior to the enriched global problem. The new global

load vector is then passed toFE-S alongside the pseudo-loads, and this right hand side is solved

during the enriched global problem phase (further explanation of this procedure can be found in

Appendix A). The results of this “improved” global analysis effectively supersede the solution

obtained from the coarse-scale, initial global step and areused in place of the initial global solution

in the static condensation algorithm for the enriched global solution.

This so-called rebuilding of the global load vector serves to provide a more accurate estimate of

the coarse-scale, global degrees of freedomuuu0, which is critical to obtaining optimal convergence

in the enriched global solution. The effects of these strategies on numerical results will be shown

for a sample problem in Section5.2.

In typical FEA software, even finding a way to apply the propersharp loading – analytically

defined or otherwise – can be a nontrivial task. It will be demonstrated further in Section5.2

that standard, commercial finite element codes may not necessarily have any built-in protocol for

handling sharp, user-defined loadings on coarse meshes, providing additional benefit to the proposed

approach.

4.3. Adoption of a Quadratic Tetrahedron Partition of Unity

Even when using global-local enrichments, on a coarse, global mesh, a linear approximation of the

global solution to many classes of problems often may not yield satisfactory error levels. In the

GFEM, it is common practice to choose a linear partition of unity and enrich these “hat” functions

with higher-order polynomials in order to improve global approximations [27,28]. Similarly, in the

state-of-the-arthp-version of the finite element method, arbitrarily high-order shape functions may

be hierarchically added to elements in a FE mesh [9].

However, in many available 3D commercial FEA codes, user options for the order of the

approximation are often quite limited‡. Moreover, higher-order – in this case, quadratic – elements

are generally implemented through standard Lagrangian finite element shape functions, by adding

additional nodes to the tetrahedral element. Thus, the partition of unity used in the GFEMgl enriched

global model must similarly accommodate the ten-noded quadratic tetrahedral element. In GFEMgl

local problems, however, ten-noded quadratic elements from the global problem may be directly

converted to equivalent linear tetrahedral elements upon whichhp-adaptivity may be performed just

‡In the commercial code Abaqus, used for numerical examples in this paper, only linear “TET4” or quadratic “TET10”
tetrahedral elements are implemented for heat transfer simulations.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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12 J. PLEWS, C.A. DUARTE, AND T. EASON

as before. Some examples of the improvement in enriched global solutions and convergence results

thanks to the use of a quadratic global approximation in a standard FE solver will be shown in

Section5.

5. NUMERICAL EXAMPLES

5.1. L-shaped Domain

The non-intrusive GFEMgl algorithm, here implemented using the commercial code Abaqus as

the FE solver (henceforth Abaqus+GFEMgl), was verified by solving a small, three-dimensional

L-shaped domain of overall dimensions 100× 100× 10 mm, illustrated in Figure5. The global

domain was meshed with linear (TET4) and quadratic (TET10) tetrahedral elements 10 mm in size.

Inhomogeneous temperature boundary conditions of 150◦C and -150◦C were applied to the top and

right faces of the domain, respectively, with the rest of theboundary remaining insulated. Thus, the

problem exhibits a sharp heat flux singularity at the reentrant corner without the need to compute a

sharp load vector, making it an ideal verification problem.

100 mm

1
0
0
 m

m

Figure 5. L-shaped domain verification problem. The enriched global temperature field is illustrated here on
the structured tetrahedral mesh used in Abaqus.

Using the GFEMgl methodology, the local problem was chosen as a neighborhoodaround the

interior corner,ΩL = {xxx |20< x < 80; 20< y < 80; 0< z < 10}, while the corresponding global-

local enrichment zone on the global domain was chosen to be slightly smaller, enclosing only

the first layer of nodesα around the corner,{α |40≤ xα ≤ 60; 40≤ yα ≤ 60; 0≤ zα ≤ 10}. The

difference in size between the local domain and corresponding global-local enrichment region in

this case serves to ameliorate the effect of inaccurate boundary conditions on the local domain [24].

Global and local domains for this problem are shown in Figure6.

A reference solutionure f was also generated usinghp-GFEM (the GFEM analog ofhp-FEM)

with 7 levels of global mesh refinement, overall polynomial order p = 3, and 25 levels of geometric

mesh refinement about the reentrant corner in the domain. Solutions from Abaqus+GFEMgl were

compared against thehp-GFEM reference solution. TableI shows the relative error levels in the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Global Domain

Local Domain

Figure 6. The global mesh (left) and local domain extracted from the global mesh (right) are illustrated here.
Geometric mesh refinement is demonstrated in the local domain. Dots on the global domain represent the
chosen global-local enrichment zone in the enriched globalproblem. Note that the local domain is larger
than the corresponding enrichment zone – this serves to reduce error due to inaccurate boundary conditions

from the coarse-scale global solution [24].

solution resulting from simulations using both TET4 and TET10 global meshes. Here, relative error

in the energy norm of each finite element solutionuh is computed as

er
U =

√∣
∣B

(
ure f ,ure f

)
−B(uh,uh)

∣
∣

∣
∣B

(
ure f ,ure f

)∣
∣

. (12)

While linear TET4 results are poor, the solution can be drastically improved by taking advantage

of quadratic TET10 elements in the Abaqus global problem. Based on these results, the corner

Table I. L-shaped domain results for TET4 and TET10 global meshes, 22 levels oflocal domain mesh
refinement about the reentrant corner. Energy norm error,er

U , is computed with respect to thehp-GFEM
reference solution. In both cases, the number of additionalglobal-local enrichment dofs is small relative to

the global problem size.

dofs er
U

IG Local EG IG EG
TET4 192 42,560 192 + 16 11.95% 5.46%

TET10 1,023 42,560 1,023 + 63 4.95% 0.44%

singularity is resolved very effectively by using Abaqus+GFEMgl with only local domain mesh

refinement, while adding just a few additional degrees of freedom to the global problem. For

qualitative comparison, Figure7 shows the heat flux fields corresponding to initial global and

enriched global solutions, respectively, on the TET10 mesh.
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14 J. PLEWS, C.A. DUARTE, AND T. EASON

(a) (b)

Figure 7. Heat flux field on an L-shaped domain (1,023 global dofs) corresponding to (a) Abaqus coarse-
scale initial global solution and (b) Abaqus+GFEMgl enriched global solution. The sharp flux resolution

possible on a coarse mesh in Abaqus+GFEMgl is also demonstrated here.

5.2. Beam Subjected to Localized Laser Heating

In this example, a sharp, steady-state Gaussian laser flux was applied to the front surface of a small

aluminum beam of dimensions 12×0.5×0.24 inches, illustrated in Figure8.

Figure 8. Temperature field on a beam subjected to a sharp laser heating. The coarse-scale tetrahedral mesh
used in Abaqus is also shown. Note that the sharp heating isnot aligned with an element edge in the global

mesh.

The expression for the flux is given by

f̄ (xxx) = I0∗
1

2πa2 ∗G(xxx,b,a) , 8.0≤ x ≤ 10.0, (13)

with

G(xxx,b,a) = exp

(
−(x−b)2

2a2

)

. (14)

Here, parameterI0 = 295ft-lbf
s is the laser flux intensity,a = 0.025in is the laser focus, or width,

andb = 9.3in dictates thex-coordinate of the center of the flux. The analytical sharp flux function

is shown in Figure9. Convective conditions were applied on the remainder of theboundary, with

convection coefficientα = 11 lbf
ft-s-◦C and free-stream temperatureu∞ = 0◦C.

5.2.1. Convergence Study Convergence behavior of the proposed non-intrusive GFEMgl approach

was investigated using this sample problem. A reference solution was developed usinghp-GFEM

with heavy mesh refinement and uniform polynomial orderp = 3 resulting in 736,990 total degrees

of freedom. Error was computed as relative error in the energy norm just as in Equation (12) using
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Figure 9. Analytical function representing the sharp, Gaussian laser heating applied to the front surface of
the beam plotted over a small interval on the domain.

the internal energies of the Abaqus+GFEMgl enriched global andhp-GFEM reference solutions,

respectively.

The global domain in Abaqus was meshed with TET4 and, subsequently, TET10 elements. In

each case, the global mesh remained constant, with uniform tetrahedral elements 0.5 inches in

size (shown in Figure8), corresponding to 100 dofs in the TET4 global mesh, and 441 dofs in

the TET10 case. The local domain and corresponding enrichment zone also remained a constant

size of 2× 0.5× 0.24 inches surrounding the sharp flux, where uniform local polynomial order

p = 3 was used. A series of mesh refinements was performed in the local problem, and global-

local enrichments in all cases added a mere 20 dofs to the TET4global problem and 91 dofs to the

TET10 global problem; thus, only 20 (TET4) or 91 (TET10) pseudo-loads and pseudo-solutions

were exchanged between FEM and GFEM solvers for each mesh refinement level.

For comparison, convergence results were also obtained using the optimal methodology,hp-

GFEM. Each “equivalent”hp-GFEM solution resulted from successively refining the meshnear

the localized laser heating, analogously to what is done in the GFEMgl local problem, with a

uniform polynomial orderp = 3 throughout. Figure10 illustrates the coarse global mesh used in

Abaqus+GFEMgl simulations compared to the very refined global mesh necessitated byhp-GFEM

solutions.

(a) (b)

Figure 10. Global meshes corresponding to (a) Abaqus+GFEMgl and (b)hp-GFEM. The enriched global
problem in Abaqus+GFEMgl consists of just 120 dofs for the TET4 mesh, or 532 dofs in the TET10 case,
whereas thehp-GFEM global mesh withp = 3 and heavy localized mesh refinement results in a total of

189,290 dofs.

Figure11compares convergence of Abaqus+GFEMgl against thehp-GFEM. Relative error in the

energy norm,er
U , is plotted here against local domain mesh refinement (in Abaqus+GFEMgl) or
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Figure 11. Convergence of non-intrusive GFEMgl algorithm using FE solver Abaqus vs.hp-GFEM with
respect to minimum local domain mesh size. Error is computedw.r.t. a reference solution with 736,990
dofs. Asymptotic convergence rates and error levels are nearly identical for Abaqus+GFEMgl (TET10) and
hp-GFEM. The dashed line shows relative error in the initial global solution, i.e., without any global-local
enrichment, on a coarse TET4 mesh using coarse-scale numerical integration of the sharp laser flux (76%

error).

localized global mesh refinement (in thehp-GFEM). It should be noted, however, that refinement

was only performed in the local domain in the Abaqus+GFEMgl case, and that the size of the

enriched global problem remained exactly the same for all mesh refinement levels – 100+20 and

441+91 dofs for TET4 and TET10 meshes, respectively. Results from the non-intrusive GFEMgl

methodology are very similar to those obtained using thehp-GFEM itself. The convergence rate

of the Abaqus+GFEMgl TET10 case is quite near optimal, around the polynomial order of the

approximation,p = 3. To illustrate the dramatic benefit of using the GFEMgl, the figure also shows

the error in the solution obtained from Abaqus using only thecoarse initial global TET4 mesh with

no global-local enrichment.

Point-wise error of the temperature field over the front surface of the beam with respect to the

reference solution is shown in Figure12. It is important to note that error of the local problem

solution is large at the local domain boundary (x=8.5 in). However, reanalysis of the global problem

in Abaqus using this solution as an enrichment function improves the quality of the global solution

even at locations were the local solution is not accurate. This is a key difference between this method

and traditional global-local analysis [12,24].

5.2.2. Effect of Special Treatment of the Sharp Loading Figure 13 illustrates the importance of

using the GFEMgl local problem information and high-order numerical quadrature rules available

only in GFE-S to improve accuracy of the global load vector. Convergence results here are given

for analyses run in which only coarse-scale computation of the sharp loading on the global mesh

was used, and also for cases in which the recomputation procedure (cf. Section4.2) was used. In

both cases, the sharp loading was applied in the global domain. Thus, optimal convergence would

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
Prepared using nmeauth.cls DOI: 10.1002/nme



NON-INTRUSIVE G-L APPROACH FOR SHARP THERMAL GRADIENTS 17

8.5 9.0 9.5 10.0 10.5
x (in)

−20

−10

0

10

20

30

40

A
bs

.E
rr

or
in

Te
m

pe
ra

tu
re

(◦
C

)

GFEMgl , IG

GFEMgl, Local

GFEMgl , EG

hp-GFEM

Figure 12. Point-wise error in temperature of GFEMgl solutions with respect to thehp-GFEM reference
solution. The local problem boundary is located atx = 8.5. Although error of the local problem solution is

large at the boundary, the enriched global solution is of good quality.

in fact not nearly be possible without using this scheme for accurately recomputing the global load

vector.
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Figure 13. Effect of rebuilding the global load vector usingGFEM solver with fine-scale computation of the
sharp load on convergence behavior. Convergence in the energy norm is brought to a halt as the mesh is
refined when inaccurate, coarse-scale computation of the sharp loading is performed because representation
of the global load is poor, and thus the solution corresponding to global degrees of freedom is similarly

unsatisfactory.

Furthermore, an investigation was performed to compare theaccuracy of computation of the

sharp Gaussian laser flux on a coarse mesh in Abaqus, versus coarse-scale computation of the

load using a high-order numerical quadrature rule in the GFEM code, versus the recomputation
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18 J. PLEWS, C.A. DUARTE, AND T. EASON

approach described in Section4.2, where a high-order quadrature rule is paired with the use of

highly-refined local domain elements for integration. The resulting internal energies and error levels

are summarized in TableII . Results are shown for both initial and enriched global problems. Here,

internal energy is computed asUh = 1/2∗B(uh,uh).

Table II. Error levels resulting from various approaches tocomputing the global sharp load vector on the
coarse, global mesh. Abaqus and GFEM coarse-scale computations were performed on the initial global
problem, using the initial, coarse mesh. A higher-order quadrature rule was used in the GFEM computation.
Recomputation using highly-refined local elements was carried out in the lastIG case. Enriched global
results corresponding to 13 levels of local domain mesh refinement are also shown for each load computation

case.

TET4 mesh TET10 mesh
Method used Int. Energy er

U Int. Energy er
U

Abaqus,IG, coarse-scale 4.036×105 92.67% 3.539×106 48.84%
GFEM, IG, coarse-scale 5.672×105 89.53% 1.430×106 70.68%

GFEM, IG, fine-scale recomputation5.568×105 89.73% 1.439×106 70.47%
Abaqus+GFEMgl, EG, coarse-scale 2.850×106 5.25% 2.860×106 2.95%

Abaqus+GFEMgl, EG, fine-scale recomputation2.857×106 0.91% 2.857×106 0.37%

In the case of the initial global problem in Abaqus, while theTET4 mesh results seem reasonable

compared to theGFE-S results, the energy of the TET10 analysis case is vastly overestimated, since

the global load vector is also overestimated, and from this it is evident that computation of the sharp

loading on a coarse mesh in Abaqus is unreliable. In enrichedglobal results, on the other hand, it is

shown that an accurate estimate of the actual global load vector is necessary to better approximate

the solution corresponding to global dofs and obtain acceptable error levels.

Finally, Figure14 illustrates the effects on the enriched global solution of applying versusnot

applying the coarse-scale, sharp load at all in the initial global problem. Here, the difference in
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Figure 14. The difference in energy norm error of the enriched global problem solution between the case
where a sharp loading is (er

U,load) versus is not (er
U,no load) applied on the coarse, initial global TET10 beam

mesh is shown. As the local mesh reaches high levels of refinement, pollution error due to the sharpIG
problem flux dominates the case where the initial sharp load is applied.
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relative error in the energy norm of the enriched global problem solution between the case where

the sharp loading is and is not applied is plotted against local domain mesh refinement, with the

enriched global problem remaining exactly the same size. Itcan be observed that as discretization

error is reduced as a result of high levels of local mesh refinement, the effect of pollution error

(and some integration error) from applying the sharp flux on the coarse, initial mesh dominates. As

shown in TableII , however, the initial solution on a coarse mesh may not improve as a result of

decreased integration error.

5.3. Large Stiffened Panel

In the final sample problem presented, an attempt is made to demonstrate the adaptability of the

proposed non-intrusive methodology in handling a variety of different multiscale analysis cases for

the same global model of interest. This nice feature of the non-intrusive implementation allows the

user to insert localized problem information anywhere within the global model, using capabilities

of the GFEMgl alone to handle these localized features, and not requiringany changes to the model

itself.

The problem of interest is taken to be a representative, computationally large stiffened panel

section of dimensions 600×600×3 cm with stiffener beams of cross-section 20×20 cm attached

underneath the panel near each edge. The panel was subjectedto a constant, steady-state surface heat

flux as well as intense, localized Gaussian laser heatings atvarious locations. The sharp, analytical

flux function used to represent the localized heating is plotted in Figure15.
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Figure 15. A sample depiction of the intense Gaussian laser flux applied to the top surface of the stiffened
panel, plotted over a very small interval on the domain. The laser heating covers an area of approximately

0.1×30 cm on the global domain in all cases.

Adopting the partitioning strategy for̄f 0 discussed in Section4.2, localized laser heatings were

introducedonly in local and enriched global problems, and in all cases, the very same Abaqus

global problem was used, upon which only the smooth (constant) portion of the surface heating was

applied. Thus,GFE-S alone was tasked with handling all computations involving localized effects.

In each case, the sharp flux was placed slightly to the left or right, or above or below an element

edge, but never directly in line with one, so that the qualityof the GFEMgl solution is dependent

mostly upon the quality of the global-local enrichment functions. This was done to represent the
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most general possible analysis case, where the mesh may not necessarily be designed to account for

the location and configuration of the sharp loading.

The global domain was meshed with linear TET4 elements, resulting in 45,534 initial global

degrees of freedom. Temperature boundary conditions of 0◦C were applied to the left and right

faces of the panel with the boundary insulated elsewhere. The three chosen locations for the laser

heating are illustrated in Figure16, along with the general panel geometry. As usual, in each case,

6
0

0
 m

m

600 mm

C
B

A

23 mm

20 mm

Figure 16. Geometry of the stiffened panel and locations of applied intense, localized surface laser heating:
location A, around the center of the panel; location B, over apanel-stiffener junction; and location C, along

the axis of an edge stiffener.Note: drawing not to scale.

a local domain was chosen to cover a small neighborhood of thelocally-applied, sharp laser flux.

Necessary mesh refinements and polynomial enrichments weretaken care of byGFE-S only in the

local problem.

The initial global temperature field corresponding to a smooth, constant flux over the top surface

of the panel is shown in Figure17. Note that because the global model remains unchanged for each

sharp load case (only the constant surface flux is applied each time), this same initial global solution

may be utilized repeatedly for multiple sharp flux cases as needed, saving some computational cost

when many analysis cases are required. Computational data for each sharp flux case is listed in

TableIII . The corresponding enriched global solutions exhibiting the sharp solution characteristics

are shown graphically in Figures18, 19, and20.

While the argument may be made that meshes consisting of two-dimensional plate and one-

dimensional beam elements may be used in the elastic analysis of structures of a similar nature

to this plate in order to reduce computational cost and simplify challenging three-dimensional

meshing requirements, in general these types of meshes maynot be used in heat transfer analyses.

As illustrated by Figure19, the sharp flux of interest applied near the edge of the panel exhibits
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Figure 17. Temperature field on a stiffened panel from the Abaqus initial global solution (only a constant
surface flux applied). The Abaqus TET4 mesh and temperature boundary conditions are also illustrated here.

Table III. Abaqus+GFEMgl numerical results for the stiffened panel problem. The tremendous savings
stemming from use of the GFEMgl methodology with respect to additional enriched global problem degrees
of freedom is evident here. WhileIG and local solutions underestimate the true solution (drastically in some

cases), the enriched global problem is much better able to capture true, sharp solution characteristics.

dofs Internal Energy
Flux Loc. IG Local EG IG Local EG

A 45,534 46,680 45,534 + 554.389×106 8.912×104 5.575×106

B 45,534 197,000 45,534 + 854.389×106 2.455×107 1.188×108

C 45,534 342,520 45,534 + 854.389×106 1.850×107 1.145×108

5 cm

Figure 18. Enriched global problem temperature field on a stiffened panel from the Abaqus+GFEMgl

solution, sharp flux location A, on the center of the panel. A zoom-in on the sharp feature of interest is
also shown. The sharp flux is slightly skewed to the right of the line of a global mesh edge, so that the

quality of the sharp global solution features relies strongly on the quality of global-local enrichments.
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Figure 19. Temperature field on a stiffened panel for sharp flux location B. Here, the laser heating intersects
a stiffener beam near the edge of the panel. The effectiveness of the 3D structural-scale model in accounting
for through-the-thickness effects due to the stiffener is evident here. The sharp flux is slightly skewed to the
right of the line of a global mesh edge, so that the quality of the sharp global solution features relies strongly

on the quality of global-local enrichments.

Figure 20. Temperature field on a stiffened panel corresponding to sharp flux location C, in which case the
flux is concentrated entirely over a stiffener beam. The sharp flux is applied slightly above the line of a
global mesh edge, so that the quality of the sharp global solution features relies strongly on the quality of

global-local enrichments.

significant through-the-thickness effects due to the presence of a stiffener beam underneath. Thus,

a full three-dimensional analysis is crucial for predicting actual thermal behavior.

It should be noted that in problems of this nature – large, representative, structural-scale problems

which necessitate fine global meshes in order to accurately represent complicated geometry – it

would be computationally infeasible to performhp-adaptivity on the global mesh to capture local

solution features. The GFEMgl circumvents this issue entirely, sincehp-adaptivity need only be

performed on a comparatively small subset of the global domain. Without the capability for such

hp-adaptivity, coarse scale computation of the sharp flux on the global mesh might provide limited
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prediction of the intense temperature field surrounding thesharp flux on the panel, but the localized

sharp solution characteristics could not be captured satisfactorily.

The immense flexibility of the methodology is also demonstrated by the fact that a localized

feature can be placed arbitrarily within the global problemwithout making any changes to the

global model itself, which, as aforementioned, is a significant limitation of approaches using

single element-based enrichments. Not only can different localized features be inserted into the

global problem of interest, but any combination of localized effects can similarly be considered

simultaneously via the extraction and solution of multiplelocal problems from the global domain.

Finally, this problem was used to study the computational effort required for the proposed

methodology in terms of CPU time. TableIV shows total factorization and solution times for each

panel flux case solved usinghp-GFEM discretizations. TableV gives corresponding factorization

and solution times using Abaqus+GFEMgl. The non-intrusive GFEMgl framework has a distinct

advantage overhp-GFEM, since the initial global problem phase needs to be solved only once for

all three load cases. Usinghp-GFEM, on the other hand, the entire global stiffness matrixmust

be reassembled and re-factorized for each analysis case. CPU times required for factorization

Table IV.hp-GFEM CPU times for factorization and solution of the stiffened panel problem.

Flux Loc. CPU Time (s) Internal Energy
A 15.86 5.577×106

B 354.99 1.195×108

C 999.02 1.149×108

Total: 1369.87

Table V. Abaqus+GFEMgl CPU times for factorization and solution of the stiffened panel problem.

Flux Loc.
CPU Time (s)

Internal EnergyIG Local EG Total
Abaqus nRHS GFEM static cond.

A
0.67

15.14 34.70 0.10 50.51 5.570×106

B 320.51 54.02 0.18 375.2 1.188×108

C 947.77 51.25 0.19 999.69 1.145×108

Total: 1425.40

and solution are comparable for both cases (4% difference for this problem). Due to a limitation of

Abaqus heat transfer analysis, however, the stiffness matrix of the coarse-scale global problem was

re-factorized for each pseudo-load in the enriched global problem solution phase. Thus, computation

of pseudo-solutions in Abaqus (Abaqus nRHS in the above table) would be substantially faster

were this limitation of heat transfer analysis resolved – instead of re-factorizing the global matrix,

a forward/backward substitution would be sufficient. For reference, each global factorization in

Abaqus takes about 0.6 seconds, while each forward/backward substitution takes only 0.1 seconds,

though the difference between the two grows quickly with problem size. This study shows that

despite these limitations, the proposed methodology brings the benefits ofhp-adaptivity to existing

software like Abaqus at only a modest CPU overhead.

The data in TableV shows that the main overhead of the proposed methodology with respect

to a standard global-local analysis comes from pseudo-solution computations in Abaqus, while the
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CPU time required for static condensation of enrichment degrees of freedom is minimal. The total

CPU time for a standard global-local analysis of this problem is about 1284.76 seconds. While this

is about a 10% reduction in CPU time compared to the proposed algorithm, the error of the local

solutions is, in general, significantly greater than in the method proposed here as discussed earlier

and demonstrated in, e.g., [15]. In contrast, the internal energy computed with Abaqus+GFEMgl

differs by less than 1% from thehp-GFEM values.

6. CONCLUSIONS

The methods demonstrated have been shown to providehp finite element discretizations to a

standard, commercial FEA code without the need for code modifications, via the generalized finite

element method with global-local enrichment functions (GFEMgl). Moreover, the proposed non-

intrusive approach has been successfully applied to problems with localized features of interest,

subjected to very intense, localized thermal loadings, andit demonstrates several characteristics

which are very effective in handling problems of this nature. For instance,

(i) the GFEMgl introduces adaptive mesh refinement and high-order polynomial approximations

on only a small, local subset of the structural-scale, global domain, resulting in only a few

extra degrees of freedom, which is especially beneficial when the global model of interest is

extremely large, as in the presence of complicated geometry;

(ii) the method improves upon traditional global-local andsubmodeling techniques for multiscale

problems already available in current FEA platforms by using local solutions as enrichment

functions on the global domain, rather than the final solution, greatly reducing the effect of

important local error due to poor boundary conditions;

(iii) even with existing limitations on reuse of the global stiffness matrix, the CPU overhead of the

proposed methodology is modest. The benefits ofhp-adaptivity includes reduced user time in

model preparation which in practice is much more costly thanCPU time;

(iv) extraction of local problems and adaptive mesh refinement may be automated bya posteriori

error estimates on initial coarse-scale, global solutions, minimizing the need for user

intervention in the GFEM code;

(v) adaptive mesh refinement can be performed in a local domain even when a higher-order

partition of unity (higher-order element) is used in the global model, which has been

demonstrated here using a quadratic tetrahedral global mesh, but a similar methodology has

also been successfully applied to 8-, 20-, and 27-noded hexahedral elements [48];

(vi) the methodology provides a means of computing extremely sharp, localized loadings, even

on a coarse-scale mesh – and it has been shown that attemptingto compute sharp loadings

similarly in a standard FE solver alone may not be possible without incurring very large errors

in the solution.

Therefore, the non-intrusive implementation introduced here features several capabilities which

have not been identified by the authors as being available in other comparable methodologies:
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(i) the method deliversoptimal convergence as well as error levels competitive with standard

hp-FEM approximations, which have been recognized as optimalfor the class of problems

investigated in this paper [9,10];

(ii) numerical experiments demonstrate that the method delivers high accuracy on local quantities

like point-wise temperature fields at regions with large thermal gradients. This has also been

demonstrated for elasticity [23] and transient heat transfer problems [49];

(iii) the implementation allows for arbitrarily many localized features of interest to be introduced

to the very same global structural model via the extraction and solution of multiple local

problems, providing excellent flexibility when many analysis cases are necessary.
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A. IMPLEMENTATION DETAILS OF THE NON-INTRUSIVE ALGORITHM

The following gives particulars of the procedure used to non-intrusively implement the GFEMgl in a standard
FE solver – in this case, Abaqus, which was used for all numerical examples given – which is described in
general in Section4.

Each analysis using the non-intrusive implementation of the GFEMgl in Abaqus (Abaqus+GFEMgl) is
orchestrated byGFE-S, which executes continuously throughout the process. The exchange of the initial
global solution, pseudo-loads, and pseudo-solutions between Abaqus andGFE-S is facilitated by a converter
code written in a combination of Python (the scripting language of Abaqus/CAE [50,51]) and C++. Because
the two codes are otherwise isolated from each other, identical global models, or job files, must be present
for both Abaqus andGFE-S. Two model files must be written for Abaqus: one for the initial global analysis
(henceforthabaqus.inp), and another for the enriched global problem, which will contain pseudo-loads
(abaqus nRHS.inp). Abaqus/CAE is utilized here for its.odb binary output database format, which contains
all user-requested output in a very conveniently organized, hierarchical data structure and can be read and
converted directly by an Abaqus Python script (referred to here as the Python converter code).

A.1. Initial Global Problem

The procedure for the initial global problem step is as follows:

(i) Call Abaqus fromGFE-S to execute model fileabaqus.inp via Python script.

(ii) When problem is done executing, execute Python converter code to write initial global resultsuuu0 from
the.odb file to output file readable byGFE-S.

(iii) Read initial solution inGFE-S.

A.2. Local Problem(s)

Once the initial global problem solution is read inGFE-S, execution continues, and local problems can
subsequently be extracted and solved, as specified. The procedure for a local problem is as follows:
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(i) Extract a local domainΩL (selected by the user or bya posteriori error estimates onu0), and apply
initial solutionu0 from Abaqus as a Dirichlet boundary condition.

(ii) Performhp-adaptivity as necessary and solve local problem.

(iii) Using local solutionuL, compute global-local shape functionsφ gl
α as in Equation (6), and use these

to assembleKKKgl and fff gl corresponding to global-local dofs, andKKK0,gl , pseudo-loads to be passed to
Abaqus, as defined in Section4.1.

(iv) Recompute total global load vectorfff 0 using refined local elements for integration.

(v) Write out pseudo-loads and recomputed global load vector (including the sharp load features) to a file.

A.3. Enriched Global Problem

The enriched global problem requires multiple communications betweenGFE-S and Abaqus. In this step,
because in general multiple pseudo-loadsKKK0,gl will be present, Abaqus’s built-in capability to solve multiple
right hand sides as part of the same job is utilized. The enriched global procedure is done as follows:

(i) Read pseudo-loads and global load vector fromGFE-S in converter code, and write each right hand
side therein to a separate analysis step in an input file stub readable by Abaqus.

(ii) Call Abaqus and execute enriched global modelabaqus nRHS.inp (written prior to the analysis),
including file containing multiple right hand sides (not known prior to the analysis) written above.

(iii) When problem is done executing, execute Python converter code to write resulting pseudo-solutions
SSS0,gl and recomputed global solutionuuu0 from the.odb file to output file readable byGFE-S.

(iv) Read output file inGFE-S and compute the global degrees of freedom,ũuu0 as in Equation (10), the

Schur complement of the global stiffness matrix,K̂KK
gl

as in Equation (11), as well aŝfff
gl

.

(v) Compute the solution for global-local degrees of freedom uuugl as in Equation (11) and total solutionuE

as in Equation (7).

After the final step, any post-processed quantities which were requested by the user inGFE-S are computed,
and Abaqus initial global andGFE-S local and enriched global solutions may also be visualized.Execution
of the program completes, and all requested output from the enriched global solution is available to the user
from GFE-S.
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21. Duarte C, Kim DJ, Babǔska I. Chapter: A global-local approach for the construction of enrichment functions for the
generalized fem and its application to three-dimensional cracks. Advances in Meshfree Techniques, Computational
Methods in Applied Sciences, vol. 5, Leit̃ao V, Alves C, Duarte C (eds.), Springer: The Netherlands, 2007. ISBN
978-1-4020-6094-6.

22. Duarte C, Kim DJ. Analysis and applications of a generalized finite element method with global-local enrichment
functions.Computer Methods in Applied Mechanics and Engineering 2008;197(6-8):487–504, doi:10.1016/j.cma.
2007.08.017.

23. Kim DJ, Pereira J, Duarte C. Analysis of three-dimensional fracture mechanics problems: A two-scale approach
using coarse generalized FEM meshes.International Journal for Numerical Methods in Engineering 2010;
81(3):335–365, doi:10.1002/nme.2690.

24. Gupta V, Kim DJ, Duarte C. Analysis and improvements of the global-local enrichment functions for the generalized
finite element method.Computer Methods in Applied Mechanics and Engineering 2011; To be submitted.
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50. Dassault Systèmes Simulia Corporation, Providence, RI, USA.Abaqus Scripting User’s Manual 2010.
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