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Abstract

This paper investigates the heat equation for domains subjected to an internal source with a sharp

spatial gradient. The solution is first approximated using linear finite elements, and sufficiently

small time-step sizes to yield stable simulations. The mainarea of interest is then in the ability

to approximate the solution using Generalized Finite Elements, and again explore the time-step

limitations required for stable simulations. Both high order elements, as well as elements with

special enrichments are used to generate solutions. When compared to linear finite elements, the

high order elements deliver better accuracy at a given levelof mesh refinement, but do not offer

an increase in critical time-step size. When special enrichment functions are used, the solution

can be approximated accurately on very coarse meshes, whileyielding solutions which are both

accurate and computationally efficient. The major conclusion of interest is that the significantly

larger element size yields larger allowable time-step sizes while still maintaining stability of the

time-stepping algorithm.

∗Corresponding author. E-mail: caduarte@illinois.edu
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1 Introduction

There are many application areas in engineering practice which involve the analysis of structure which

have multiple spatial scales of interest. In this work, the desired application area is in the transient

analysis of structures which are subjected to localized thermal loadings. Welding [28, 50] and laser

forming of metal plates [51, 52] are two possible applications areas exhibiting localizedheating events.

The motivation for this particular study is the localized heating experienced by hypersonic flight vehicles

due to the effects of shock impingement on the skin of the aricraft [10, 20, 21, 34, 42, 46, 47, 49].

The analysis of this type of problem has been the emphasis of many previous investigations [9, 27, 32,

45, 48], and in the 3D case, using standard finite elements, an excessively large number of degrees-of-

freedom is required [39], making efficient analyses very difficult. These difficulties are further amplified

when transient simulations involving many time-steps are required, and the excessively large system of

equations needs to be solved at each time step.

Adaptive meshing in the transient setting is possible, but it can also prove to be computationally expen-

sive, and the mapping of time-dependent solutions between successive meshes is a non-trivial process.

Even in a parallel computing environment, effective dynamic load balancing, and thus good parallel

efficiency is also non-trivial to achieve.

The high refinement levels required by the FEM to achieve suitable accuracy further complicates the

situation through the requirement of excessively small time steps. There have been many investigations

similar to the one presented in this paper which have focusedon the alleviation of the infeasibly small

time step requirements.

There is a growing body of literature addressing explicit time-integration for dynamic fracture within

the X-FEM framework. Menouillard, et al. [30] propose a mass lumping technique which enhances

the allowable time-step size in dynamic X-FEM simulations.The authors note the problem with the

allowable time-step size tending to zero as the crack approaches a support boundary when a consistent

mass matrix is used. They develop their lumping strategy which allows for feasible allowable time-steps.

The allowable step size does not tend to zero as the crack approaches a support boundary, and remains

on the order of magnitude of allowable time-steps obtained using standard finite elements of the same

size. The authors note that the X-FEM and FEM critical time-step sizes are related by1√
2
.

Menouillard, et al. further extend the idea of mass lumping for the X-FEM in [31]. In this work the mass-

lumping technique combined with a straight-forward transformation of crack-front coordinates results

in a block-diagonal mass matrix yielding allowable time-step sizes which again do not tend toward zero
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as the crack approaches a node, and remain on the order of allowable time-steps using standard finite

elements of the same size.

Elguedj, et al. [19] extend the mass-lumping work of Menouillard, et al. [31] to be used with arbitrary

enrichments, and not solely for enrichments used for fracture mechanics applications. They adopt the

same basic lumping strategy for arbitrary enrichments and are once again able to obtain critical time-

steps that are on the order of those obtained with standard FEM. The authors note that the allowable

time step size is dependent on where the discontinuity is located relative to support boundaries. They

note that the most stringent allowable time-step can be one half of that obtained for standard FEM

and as such put forth this rule of thumb to be used for dynamic X-FEM simulations utilizing arbitrary

enrichments. In part two [23] of the previous paper the authors then propose a stable-explicit/explicit

dynamic scheme, based on a stable-explicit scheme proposedby Chang [6–8]. The method as posed

by Chang is unconditionally stable, and second order accurate. The method requires the use of a more

sophisticated analysis on an element-by-element basis which produces the end result of allowable time-

steps which are identical to those obtained for standard FEM, regardless of the crack front location

relative to a nodal support boundary.

Mesh partitioning methods are similar to the stable-explicit/explicit dynamic scheme proposed by Chang

and utilized by Elguedj, et al. in that they allow for different time-integration schemes in different por-

tions of the mesh [4, 5, 25, 26, 35]. This class of methods often uses implicit-explicit mesh partitioning

so as to allow for the use of implicit time-integration with significantly larger time-step sizes for a portion

of the mesh, and do not have the entire simulation bound by themore stringent time step size required for

stability in the explicit partition. While this class of methods is aimed at more efficient time-integration,

they are of less interest to the research presented in this paper as they do not directly seek toincreasethe

allowable time step size.

In this work we aim to relax meshing requirements while stillachieving a high level of accuracy through

the use of special enrichment functions. To this end, the GFEM relies on a-priori knowledge of the

solution to obtain analytically defined enrichment functions. While these enrichments are able to de-

liver accurate solutions on relatively coarse meshes, we seek in this work to investigate how the larger

elements used will impact the magnitude of the allowable time-step size.

The outline of this paper is as follows. In the next section wepresent the formulation for 3D heat transfer,

followed by a description of the model problem to be used for analysis in Section 3. A brief description

of GFEM approximations is presented in Section 4. Section 5 discusses the discretization in both space
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and time, along with the stability requirements for numerically approximating the heat equation. Section

6 presents an analysis of the model problem with the use of both polynomial, and exponential enrichment

functions, and compares the methods in terms of computational cost and relative accuracy. Conclusions

are then provided in Section 7.

2 Problem Formulation

Consider a domainΩ ⊂ IR3 with boundary∂ Ω decomposed as∂ Ω = Γu ∪Γ f with Γu∩Γ f = /0. The

strong form of the governing equation is given by the 3D heat equation

ρc
∂u
∂ t

= ∇(κκκ∇u)+Q in Ω (1)

whereu(xxx, t) is the temperature field,κκκ is the thermal conductivity tensor,ρc is the volumetric heat

capacity, andQ(xxx, t) is the internal heat source.

The following boundary conditions are prescribed on∂ Ω

u = ū on Γu (2)

−κκκ∇u·nnn = f̄ on Γ f (3)

wherennn is the outward unit normal vector toΓ f and f̄ andū are prescribed normal heat flux and tem-

perature, respectively.

The initial conditions must also be satisfied

u(xxx,0) = u0(xxx) at t0 (4)

whereu0(xxx) is the prescribed temperature field at timet = t0.

3 Model Problem

The problem selected for analysis is taken from [32], and it involves a sharp spatial gradient in the

temperature field (5), as well as in the resulting source term (6). There is also a temporal gradient, but it
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is smooth in nature. This model problem is selected because it is similar to the type of severe, localized

thermal loading which can be experienced by hypersonic flight vehicles.

u(x, t) =
(

exp−γ(x−xf ront(t))2
+sin

(πx
L

))

∗exp(−t) (5)

Q(x, t) = ρc
∂u
∂ t

(x, t)−κ
∂ 2u
∂x2 (x, t), (6)

xf ront(t) = x0 +Vt (7)

The initial and boundary conditions are given in (8) and (9), respectively.

u(x,0) = exp−γ(x−x0)
2
+sin

(πx
L

)

, (8)

u(0, t) = u(L, t) = 0, (9)

In the above equations,x0 = 125mm, L = 500mm, V = 250mm
sec and γ is a parameter controlling the

roughness of the solution. Unless otherwise indicated, thevalue of γ is taken as 1.0. The material

properties are taken as thermal conductivity,κ = 1 and volumetric heat capacity,ρc =
(π

L

)2
. The

reference solution (5) is plotted in Figure1 and the initial condition (8) is plotted in Figure2. As can be

seen, from the spatial standpoint, the thermal spike moves from L
4 to 3L

4 in 1sec(t0 = 0sec, t f = 1sec).

From the temporal standpoint, the solution undergoes a smooth, exponential decay in time.

(a) Reference solution in space and time.
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Figure 1: Shows the temperature field described in (5).
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Figure 2: Initial conditions as described in (8).

4 Generalized FEM Approximations

The generalized FEM [1, 2, 14, 36, 44] is an instance of the partition of unity method, which has its

origins in the works of Babǔska et al. [1, 2, 29] and Duarte and Oden [12, 16–18, 36]. Many meshfree

methods recently proposed can also be viewed as special cases of the partition of unity method.

The key feature of these methods is the use of a partition of unity (POU), which is a set of functions

whose values sum to the one at any point in a domain. Additional methods based on the partition of

unity concept are, for example, [11, 24, 33, 43].

In the GFEM, a discretization space is built using the concept of a partition of unity along with local

spaces that are generated based on a-priori knowledge aboutthe solution of a problem. A GFEM shape

function,φα i , is computed as the product of a linear finite element shape function,ϕα , and an enrichment

function,Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (10)

whereα is a node in the finite element mesh. The linear finite element shape functionsϕα , α = 1, . . . ,N,

in a finite element mesh withN nodes constitute a partition of unity, i.e.,∑N
α=1 ϕα(xxx) = 1 for all xxx in a

domainΩ covered by the finite element mesh. Figure3 illustrates the construction of a GFEM shape

function.
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Figure 3: Construction of a generalized FEM shape function using a non-polynomial enrichment. Here,
ϕα is the function at the top, the enrichment function,Lα i , is the function in the middle, and the gener-
alized FE shape function,φα i, is shown at the bottom.

Enrichment functions The GFEM has been successfully applied to the simulation of boundary layers

[13], dynamic propagating fractures [15], line singularities [14], acoustic problems with high wave

number [3], polycrystalline microstructures [41], porous materials [44], etc. These applications have all

relied on closed-form enrichment functions that are known to approximate well the underlying physics

of the problem investigated. These special enrichment functions are able to provide more accurate and

robust simulations than the polynomial functions traditionally used in the standard FEM, while at the

same time relaxing some meshing requirements of the FEM.

In this particular work we use knowledge of the solution to select our special enrichment function (11).

The special, exponential enrichment functions are only applied to the nodes whose supports contain the

thermal spike. All other nodes have only polynomial enrichments. The GFEM framework is what allows

us to use (11) as our enrichment function, and we note the enrichment function is time dependent.

Lα i(x, t) = exp−γ(x−xf ront(t))2
(11)

wherexf ront(t) = x0 +Vt. The variablesx0 andV are defined as in Section 3. It should be again noted

that the location of the exponential spike in the enrichmentfunction is known beforehand from the

analytical solution. If this was not the case, one would needto use information from the gradients in the

loading function, or from a global error indicator in order to properly center the exponential enrichment

function; both of which are beyond the scope of this paper.
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5 Discrete Equations and Time-Integration

In this paper, we use the transient Formulation 2, as derivedin detail in [38], with the time-stepping

parameterα = 0.0, yielding the conditionally stable, Forward Euler algorithm. Substitutingα = 0.0

into (33) from [38] leads to the following linear system of equations

1
∆t

Mn+1uuun+1 =

[

1
∆t

Mn+1,n−Kn+1,n
]

uuun + fff n+1,n (12)

where

Mn+1 =
∫

L
ρcφφφn+1(

φφφn+1)T
dx (13)

Mn+1,n =
∫

L
ρcφφφn+1 (φφφn)T dx (14)

Kn+1,n =
∫

L
∇φφφn+1κ (∇φφφn)T dx (15)

fff n+1,n =
∫

L
Qnφφφn+1dx (16)

In the previous equationsφφφ is the vector of finite element shape functions,Ω is the domain,Q is the

internal source,ρc is the volumetric heat capacity, andκ is the thermal conductivity of the material.

uuun+1 is the solution vector attn+1, anduuun is a known quantity from timetn.

5.1 Generalized Eigenvalue Analysis to Determine Stability Requirements

For the conditionally stable Forward Euler algorithm, special care must be taken in selection of the

time-step size (∆t) such that stability is maintained throughout the simulation. We solve the generalized

eigenvalue problem arising from the global system of equations, as posed in (17) to determine the mag-

nitude of the dominant eigenvalue,λmax. The critical time-step size(∆tcr) is then related to the dominant
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eigenvalue as in (18). More discussion of this stability criterion can be found in [40].

(K−λM)xxx = 0 (17)

∆tcr =
2

λmax
(18)

In (17), when time-dependent shape functions are used,M = Mn+1 as defined in (13) andK = Kn+1,

defined as

Kn+1 =
∫

L
∇φφφn+1κ

(

∇φφφn+1)T
dx (19)

When time-dependent shape functions are not used, the distinction is inconsequential becauseM =

Mn+1 = Mn+1,n, and similarly forK.

6 GFEM Analysis of Model Problem

6.1 Calculation of Critical Time-Step Sizes for Stable Simulations

In this section, (17) is solved for a series of uniform meshes, with different element sizes and polyno-

mial orders. Table1 summarizes the results of the generalized eigenvalue problem resulting from each

discretization. The results for each type of element are investigated in more detail in subsequent sec-

tions. For the elements containing exponential enrichments (11), the eigenvalues need to be calculated

at multiple time-steps due to the changing discretization,and then the most stringent∆tcr is selected

to yield a stable simulation. The elements with exponentialenrichments will henceforth be referred to

as exponential elements. In the table, Linear Exponential refers to elements with only a linear shape

function, and an exponential enrichment; whereas Quadratic Exponential refers to elements with both a

quadratic, as well as an exponential enrichment. As a result, a Linear Exponential element has only a

linear and an exponential shape function; whereas a Quadratic Exponential element has linear, quadratic

and exponential shape functions. It may be noted that the value of∆tcr is very similar for both the Linear

and Quadratic Exponential elements as the magnitude of the lead eigenvalueλmax is essentially governed

by the presence of the sharp, exponential enrichment function. The calculation of the critical time-steps

for each discretization used is performed separately from the simulations run in subsequent sections. As
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such, CPU times reported in the following sections do not reflect the time required for the calculation of

the∆tcr.

Table 1: Summary of Output for Calculation of∆tcr.

Shape Function Type p-order hx (width) λmax ∆tcr

Linear 1 1.250 196910 1.02e-5
Linear 1 0.625 787402 2.54e-6

Polynomial 2 2.500 246130 8.13e-6
Polynomial 2 1.250 985222 2.03e-6
Polynomial 2 0.625 3938400 5.08e-7
Polynomial 4 5.000 389910 5.13e-6
Polynomial 4 2.500 1559300 1.28e-6
Polynomial 4 1.250 6242700 3.20e-7

Linear Exponential - 100 128205 1.56e-5
Quadratic Exponential - 100 125786 1.59e-5

6.2 Analysis of Model Problem Using Polynomial Enrichment Functions

Linear Elements In this section, we further investigate the results obtained for linear elements. In

this, and subsequent sections, the accuracy of the solution, as well as CPU time required to produce

the solution are examined. For the CPU Time shown in the subsequent tables, both the assembly and

solution times are considered. For polynomial elements, the stiffness matrix is only assembled once,

whereas for the exponential elements, with time-dependentshape functions, the assembly is performed

at each time-step. Since the exponential elements do cause this slight inconvenience, it is appropriate

that the CPU Times recorded are reflective of the minor drawback.

For the plots provided dealing with internal energy, the internal energy at time-stepn (Un), is defined

as the inner product of the flux and temperature gradient vectors, as shown in (20). Since the analytical

solution is known, an exact curve for the internal energy as afunction of time can be generated and

plotted as a means for comparison. To put a single number which can serve to tell how well the curves

match up, a discreteL2-norm for the error is calculated as in (21) where the summation is performed

over each time-step along the curve.

Un =

∫

Ω
(κ∇un) · (∇un)dΩ (20)
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LError
2 =

√

√

√

√

√

Σ
{

(Uexact−UFE)2
n

}

Σ
{

(Uexact)2
n

} (21)

The output for linear elements is summarized in Table2. As expected, with a more refined mesh as

well as a smaller time step, greater accuracy is obtained, but at a severe cost in CPU Time. The internal

energy is plotted as a function of time in Figure4. As can be seen, there is a lot of noise in the solution

due to its poor quality. As the mesh is refined, and the time-step size is reduced to maintain stability, it

can be seen that the noise in the solution seems to damp out andthe oscillations become smaller. Not

surprisingly, greater accuracy is also achieved. The same data is then plotted in Figure5 where a least

squares fit is used to smooth out the noise in the data.

Table 2: Summary of Output for Linear Elements.

∆t Stability hx (width) NumberTimeSteps LError
2 CPU Time

1.015e-5 Yes 1.250 98500 0.3231 1.842e5
1.03e-5 No 1.250 97087 - -
2.53e-6 Yes 0.625 396000 0.0909 1.611e6
2.56e-6 No 0.625 390000 - -
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Figure 4: Internal Energy as a function of time for linear elements.

High Order Polynomial Elements This section contains output for simulations run using higher order

polynomial elements. Elements with quadratic(p= 2) and quartic(p= 4) are selected for analysis. Due

to the excessive number of time steps required for stability, only a percentage of the entire simulation is
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Figure 5: Internal Energy as a function of time for linear elements, using Least Squares to smooth out
data.

run. For quadratic elements the simulation is run to 0.5 seconds, and for quartic elements the simulation

is only run to 0.25 seconds. The projected CPU Time is then taken as the time to run a percentage of the

simulation, then divided by that percentage. While this CPUTime will not be exact, it is representative

of the time that would be required to run the entire simulation. In order to determine if theLError
2

values are valid for comparison, Table3 shows the values obtained for linear elements when only certain

percentages of the simulation are considered. From this table it is apparent that theLError
2 values are

relatively insensitive to the percentage of the simulationdata considered. As such it is not unreasonable

to directly compare the values obtained for the high order elements and shorter simulations with those

obtained for linear and exponential shape functions corresponding to the entire simulation.

Table 3: Comparison ofLError
2 for differentt f . (Linear elements)

t f hx (width) LError
2

0.25 1.25 0.3228
0.50 1.25 0.3230
1.00 1.25 0.3231

Tables4 and5 summarize the data for quadratic and quartic elements, respectively. The internal energy

is then plotted as a function of time in Figures6 and8. In both cases, we again see noise in the data

which is damped out as the element size and time-step size areboth reduced. Once again we also obtain

better accuracy in the solution, but still at a severe cost inCPU Time. Figures7 and9 have plots of the

data for which a least squares fit has been used in order to smooth out the data.
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Table 4: Summary of Output for Quadratic Elements.

∆t Stability hx (width) NumberTimeSteps LError
2 CPU Time (projected)

8.10e-6 Yes 2.50 123400 0.2851 1.213e5
8.15e-6 No 2.50 122700 - -
1.99e-6 Yes 1.25 502000 0.0437 1.237e6
2.05e-6 No 1.25 487800 - -

Table 5: Summary of Output for Quartic Elements.

∆t Stability hx (width) NumberTimeSteps LError
2 CPU Time (projected)

5.10e-6 Yes 5.00 196000 0.2978 2.049e6
5.15e-6 No 5.00 194000 - -

0 0.2 0.4
Time (sec)

0

0.5

1

In
te

rn
al

 E
ne

rg
y

Exact
h = 2.5
h = 1.25

Figure 6: Internal energy as a function of time for quadraticelements.
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Figure 7: Internal energy as a function of time for quadraticelements, using least squares to smooth out
data.
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Figure 8: Internal energy as a function of time for quartic elements.
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Figure 9: Internal energy as a function of time for quartic elements, using least squares to smooth out
data.

6.3 Analysis of Model Problem Using Special Enrichment Functions

This section contains output for simulations for elements enriched with exponential functions (11). Ta-

ble 6 summarizes the data for each run. The internal energy is thenplotted as a functions of time in

Figure10. Again, Linear Exponential refers to elements with only a linear shape function, and an ex-

ponential shape function; whereas Quadratic Exponential refers to elements with linear and quadratic

shape functions, as well as an exponential shape function.

The output for the exponential elements is summarized in Table 6. As can be seen, very good accuracy

is obtained with the use of the special enrichment functions. The internal energy is plotted as a function

of time in Figure10. From looking at the plot we can see that there is no noise in the data, and that

there is no discernable difference between the curves. In order to see a difference in the curves, Figure

11 shows a significantly zoomed-in view of the curves. Again, noleast squares fit was required for the

special elements since the quality of the solution is very good, and there is no noise in the data.

Table 6: Summary of Output for Elements Enriched with Exponential Functions.

∆t Stability hx (width) NumberTimeSteps LError
2 CPU Time

Linear Exponential
1.54e-5 Yes 100 65000 2.90e-4 2.756e4
1.62e-5 No 100 61800 - -

Quadratic Exponential
1.54e-5 Yes 100 65000 1.92e-4 2.789e4
1.62e-5 No 100 61800 - -
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Figure 10: Internal energy as a function of time for exponential elements.
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Figure 11: Internal energy as a function of time for exponential elements. Zoomed in to see a difference
in the curves.
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Due to the fact that the spike is moving throughout the courseof the simulation, the∆tcr may be different

at each time-step, depending on the location of the spike with respect to a given node. It is noted

in [30, 31], for fracture applications with standard FEA, a term in thestiffness matrix is∼ 1
hx

(hx is

the element size) whereas the corresponding term in the massmatrix is ∼ hx, yielding an infinitely

small time-step requirement to maintain stability. For fracture applications with X-FEM’s use of the

discontinuous Heaviside enrichment, the mass matrix becomes singular as the crack front approaches

the edge of an elemental support, again yielding an infinitely small time-step requirement to maintain

stability [30, 31]. For the present application, the enrichment functions used do not have this property as

the spike location nears the edge of an elemental support, sothe stability requirement does not become

infeasible. There is some dependency upon the location of the spike with respect to the location within

the nodal support, but it is not as dramatic as that seen in theapplication to fracture. Table7 shows the

value for∆tcr as it is affected by the location of the spike with respect to anodal support. Distance refers

to the distance between the node with the special enrichment, and the location of the moving, thermal

front.

Table 7: Effect of Spike Location on∆tcr.

Distance ∆tcr
∆tmax

cr
∆tcr

0 7.01e-5 1
hx
2 2.60e-5 2.70

≈ hx 1.56e-5 4.50

6.4 Comparison of Polynomial and Exponential Enrichments

Before comparing the different element types, several general conclusions can be made. Not surpris-

ingly, increasing mesh refinement for a given polynomial order yields a betterLError
2 value, but does so

at a significant increase in CPU time. Likewise, for the exponential elements, raising the polynomial

order of the elements at a fixed level of refinement also yielded betterLError
2 values, but at only a slightly

higher requirement for CPU Time. In regards to the accuracy of the ∆tcr produced from the generalized

eigenvalue problem: for each discretization analyzed, thevalues of∆tcr proved to be very reliable.

For the sake of an easy comparison, the pertinent data collected is summarized in Table8. With the

data summarized here we can better determine if the exponential elements offer a significant reduction

in CPU Time spent in order to achieve a given level of error. From comparing the data in the table, it is

quite clear that the exponential enrichments offer superior performance when compared to polynomial
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enrichments. The exponential enrichments offer extreme reductions in both the error values, as well

as the CPU time required to generate the data. The exponential enrichments also yield results which

do not show any noise in the data. The overall conclusion to bemade is that for the case of explicit

time-stepping with a parabolic PDE, the exponential enrichments do in fact offer far superior behavior

in regards to: time-step size required for stability, accuracy of solution, and CPU Time required.

Table 8: Summary of Simulation Data.

Shape Function Type hx (width) LError
2 CPU Time

Linear 1.250 0.3231 1.842e5
Linear 0.625 0.0909 1.611e6

Quadratic 2.50 0.2851 1.213e5
Quadratic 1.25 0.0437 1.237e6
Quartic 5.00 0.2978 2.049e6

Linear Exponential 100 2.90e-4 2.756e4
Quadratic Exponential 100 1.92e-4 2.789e4

Figure 12: Comparison of element sizes for exponential and polynomial discretizations.

6.5 Effect of Volumetric Heat Capacity Magnitude

In this section we investigate the effect of the magnitude ofthe volumetric heat capacity,ρc. We ana-

lyze a problem very similar to the model problem, but in this instance the spike remains stationary, as

indicated by the reference solution

u(x, t) =
(

exp−γ(x−x0)
2
+sin

(πx
L

))

∗exp
( −t

t f inal
)

0 < x < L (22)

where again, the internal source is derived as

Q(x, t) = ρc
du
dt

(x, t)−κ
d2u
dx2 (x, t), (23)
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The initial and boundary conditions are the same as those applied to the original model problem, (8) and

(9). A plot of the reference solution is shown in Figure13, where the solution is seen to undergo the

same decay in time, with the spike remaining stationary in space, with a fixedx0 = 125mm. For larger

values ofρc, the critical time-steps become larger. As such, longer simulations are run, but the reference

solution is now parameterized byt f inal , so only one reference curve is required.
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Figure 13: Reference solution for simulations involving larger values ofρc, described by (22).

Simulation data is presented in Table9 for simulations with and without the time-dependent exponential

enrichment (24) applied to nodes which contain the thermal spike. For analyses utilizing (24), simula-

tions are run with 110 time-steps, and elements of sizehx = 100mm. Simulations run without (24) have

1400 time steps, and quadratic elements withhx = 1.25mm.

Lα i =

{

1,exp−(x−x0)
2 ∗exp

−t
t f inal

}

(24)

As can be seen from the table, the exponential enrichment functions once again deliver much higher

levels of accuracy, with smaller requirements in terms of CPU time. Figure14 shows time-slices of the

solutions generated using the exponential enrichment, andas would be expected, the solutions generated

match up very nicely with the reference solution shown in Figure 13. Figure15 shows time-slices of

the solutions generated using quadratic elements. The solutions are also in good agreement with the

reference solution, but in this case there is a much greater cost in terms of CPU time required to generate

the solutions.
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Table 9: Simulation Data for Varying Magnitudes ofρc.

ρc tf inal ∆tcr ∆t Lerror
2 CPU Time

Exponential Basis Functions
0.1 7 0.0667 0.0636 3.63e-3 3.672
0.5 35 0.3333 0.3182 3.63e-3 3.701
1.0 70 0.6667 0.6364 3.63e-3 3.764
5.0 350 3.3333 3.1818 3.64e-3 3.731
10 700 6.6667 6.3636 3.67e-3 3.814

Polynomial Basis Functions
0.1 7 0.0052 0.0050 0.0678 1.03e3
0.5 35 0.0260 0.0250 0.0678 1.06e3
1.0 70 0.0521 0.0500 0.0678 9.87e2
5.0 350 0.2604 0.2500 0.0679 1.01e3
10 700 0.5208 0.5000 0.0681 1.03e3
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(a) ρc = 0.5
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(b) ρc = 5

Figure 14: Simulation results generated using the enrichment in (24).

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x Position

u(
x,

t)

 

 

t=0.0

t=0.2t
f

t=0.4t
f

n=0.6t
f

t=0.8t
f

t=t
f

(a) ρc = 0.5
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(b) ρc = 5

Figure 15: Simulation results generated using only quadratic, polynomial shape functions.

20



7 Conclusions

In this work we investigate the potential gains in computational efficiency that the GFEM with special

enrichments can provide for transient simulations due to its ability to produce accurate results on coarse

meshes. The alleviation in mesh density leads to less stringent stability requirements on the time-step

size. The end result is that fewer time-steps are required for a simulation, and the system of equations

is also smaller at each time-step. As such, the CPU time requirements are greatly reduced when com-

pared to simulations run with the use of standard finite elements. In the parabolic case, the use of the

exponential enrichment functions led to not only more efficient simulations, but also to more accurate

simulations as well, since the enrichment was selected specifically to capture the fine-scale portion of

the solution.

The results presented here suggest that if the proper enrichment functions are available, larger time-step

sizes may be used without negatively impacting the accuracyof the results. However, since this is not

the case for most problems of interest involving multi-scale or non-linear phenomena, we are currently

developing numerically generated enrichment functions, as a transient extension of [37].
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Appendix A. Discrete Equations

A brief summary of the temporal and spatial discretization processes is presented here. For more details,

and a more in-depth discussion of the discretization process the reader is referred to [38].

We start with the strong form of the heat equation

ρc
∂u
∂ t

= ∇ ·κ∇u+Q (25)

Equation (25) is multiplied by a weighting function,w, and integrated over the domain,Ω, yielding the

variational form
∫

Ω
wρc

∂u
∂ t

dΩ =
∫

Ω
(w∇ ·κ∇u+wQ)dΩ (26)

Integration by parts is used on the first term of the right-hand-side, and the domain integral is moved

to the left-hand-side of the equation. The boundary term is left on the right-hand-side with the applied

source term.

∫

Ω

(

wρc
∂u
∂ t

+∇w·κ∇u

)

dΩ =
∫

∂Ω
wκ

∂u
∂n

dΓ+
∫

Ω
wQdΩ (27)

The temporal discretization is performed first, and standard finite differencing is used, in the form of the

α-method, in which the following approximations are used

∂u
∂ t

=
un+1−un

∆t
(28)

un+α = (1−α)un +αun+1 (29)

Plugging (28) and (29) into (27) yields the temporally discretized equation

∫

Ω

(

wρc
un+1−un

∆t
+∇w·κ

[

α∇un+1 +(1−α)∇un]
)

dΩ

=
∫

Ω
w

[

αQn+1 +(1−α)Qn]dΩ+
∫

∂Ω
wκ

[

α
∂un+1

∂n
+(1−α)

∂un

∂n

]

dΓ (30)

Boundary terms must be expanded out, and then (30) can be rearranged such that terms involvingun+1

are moved to the left-hand-side, and all known terms (those not dependent uponun+1) are moved to the
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right-hand-side.

1
∆t

∫

Ω
wρcun+1dΩ+α

∫

Ω
∇w·κ∇un+1dΩ =

1
∆t

∫

Ω
ρcwundΩ−

(1−α)
∫

Ω
∇w·κ∇undΩ+α

∫

Ω
wQn+1dΩ+(1−α)

∫

Ω
wQndΩ

+α
∫

Γ f

wf̄ n+1dΓ+(1−α)

∫

Γ f

wf̄ ndΓ (31)

At this point, we have our system of equations fully discretized in time. Generalized finite element shape

functions are used for the spatial discretization, with special care being taken for the discretization of

w. The weighting function,w, is discretized using finite element shape functions at timetn+1, as is

discussed by Fries and Zilian [22].

With the spatial discretization performed, we can pose the fully discretized system of equations as

[

1
∆t

Mn+1 +αKn+1
]

uuun+1 =

[

1
∆t

Mn+1,n− (1−α)Kn+1,n
]

uuun

+α fff n+1
Q +(1−α) fff n+1,n

Q +α fff n+1
N +(1−α) fff n+1,n

N (32)

Plugging inα = 0.0, and dropping the terms related to applied fluxes (in this work the model problem

is 1-D with Dirichlet boundary conditions at both ends), we obtain

[

1
∆t

Mn+1
]

uuun+1 =

[

1
∆t

Mn+1,n−Kn+1,n
]

uuun + fff n+1,n
Q

which is the same as (12), and where(·)(n+1,n) indicates a quantity which requires information from time

stepstn andtn+1.
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