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Abstract

This paper investigates the heat equation for domains stgloi¢éo an internal source with a sharp
spatial gradient. The solution is first approximated usingdr finite elements, and sufficiently
small time-step sizes to yield stable simulations. The naa@a of interest is then in the ability
to approximate the solution using Generalized Finite Eletisieand again explore the time-step
limitations required for stable simulations. Both high erctlements, as well as elements with
special enrichments are used to generate solutions. Whrapared to linear finite elements, the
high order elements deliver better accuracy at a given levetesh refinement, but do not offer
an increase in critical time-step size. When special em@tft functions are used, the solution
can be approximated accurately on very coarse meshes, yibitBng solutions which are both
accurate and computationally efficient. The major conolusif interest is that the significantly
larger element size yields larger allowable time-stepssizhile still maintaining stability of the

time-stepping algorithm.
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1 Introduction

There are many application areas in engineering practi¢ehvihivolve the analysis of structure which
have multiple spatial scales of interest. In this work, tlesiced application area is in the transient
analysis of structures which are subjected to localizednEloadings. Welding48, 50] and laser
forming of metal platesi1, 52 are two possible applications areas exhibiting localizedting events.
The motivation for this particular study is the localize@tieg experienced by hypersonic flight vehicles

due to the effects of shock impingement on the skin of thea&ftif10, 20, 21, 34, 42, 46, 47, 49].

The analysis of this type of problem has been the emphasisny mrevious investigation8[27, 32,

45, 48], and in the 3D case, using standard finite elements, an gixegslarge number of degrees-of-
freedom is required39], making efficient analyses very difficult. These difficakiare further amplified
when transient simulations involving many time-steps anplired, and the excessively large system of

equations needs to be solved at each time step.

Adaptive meshing in the transient setting is possible, tcam also prove to be computationally expen-
sive, and the mapping of time-dependent solutions betweeressive meshes is a non-trivial process.
Even in a parallel computing environment, effective dymafoad balancing, and thus good parallel

efficiency is also non-trivial to achieve.

The high refinement levels required by the FEM to achieveabigtaccuracy further complicates the
situation through the requirement of excessively smaletgteps. There have been many investigations
similar to the one presented in this paper which have focosetthe alleviation of the infeasibly small

time step requirements.

There is a growing body of literature addressing expliciteiintegration for dynamic fracture within
the X-FEM framework. Menouillard, et al.3(] propose a mass lumping technique which enhances
the allowable time-step size in dynamic X-FEM simulatiofhe authors note the problem with the
allowable time-step size tending to zero as the crack appeasaa support boundary when a consistent
mass matrix is used. They develop their lumping strateggkvailows for feasible allowable time-steps.
The allowable step size does not tend to zero as the crackhages a support boundary, and remains
on the order of magnitude of allowable time-steps obtairsdgustandard finite elements of the same

size. The authors note that the X-FEM and FEM critical titepsizes are related b%

Menouillard, et al. further extend the idea of mass lumpaorglie X-FEM in [31]. In this work the mass-
lumping technique combined with a straight-forward transfation of crack-front coordinates results

in a block-diagonal mass matrix yielding allowable timepssizes which again do not tend toward zero



as the crack approaches a node, and remain on the orderwibl®time-steps using standard finite

elements of the same size.

Elgued;], et al. 19 extend the mass-lumping work of Menouillard, et @1]to be used with arbitrary
enrichments, and not solely for enrichments used for fraatuechanics applications. They adopt the
same basic lumping strategy for arbitrary enrichments aadace again able to obtain critical time-
steps that are on the order of those obtained with standaktl FEe authors note that the allowable
time step size is dependent on where the discontinuity stéatrelative to support boundaries. They
note that the most stringent allowable time-step can be atfeoh that obtained for standard FEM
and as such put forth this rule of thumb to be used for dynamikEK1 simulations utilizing arbitrary
enrichments. In part two2[3] of the previous paper the authors then propose a stablesigébgxplicit
dynamic scheme, based on a stable-explicit scheme profgs€tiang $—8]. The method as posed
by Chang is unconditionally stable, and second order ateufidne method requires the use of a more
sophisticated analysis on an element-by-element baswvpmoduces the end result of allowable time-
steps which are identical to those obtained for standard Felyardless of the crack front location

relative to a nodal support boundary.

Mesh partitioning methods are similar to the stable-exgdixplicit dynamic scheme proposed by Chang
and utilized by Elguedj, et al. in that they allow for diffetdime-integration schemes in different por-

tions of the mesh4, 5, 25, 26, 35]. This class of methods often uses implicit-explicit mesintgioning

so as to allow for the use of implicit time-integration wiigsificantly larger time-step sizes for a portion

of the mesh, and do not have the entire simulation bound bytire stringent time step size required for
stability in the explicit partition. While this class of nietds is aimed at more efficient time-integration,
they are of less interest to the research presented in thes pa they do not directly seekitwreasethe

allowable time step size.

In this work we aim to relax meshing requirements while siihieving a high level of accuracy through
the use of special enrichment functions. To this end, the NbF&lies on a-priori knowledge of the
solution to obtain analytically defined enrichment funaio While these enrichments are able to de-
liver accurate solutions on relatively coarse meshes, &k iethis work to investigate how the larger

elements used will impact the magnitude of the allowabletstep size.

The outline of this paper is as follows. In the next sectiorpnesent the formulation for 3D heat transfer,
followed by a description of the model problem to be used f@lysis in Section 3. A brief description

of GFEM approximations is presented in Section 4. Sectioiséudses the discretization in both space



and time, along with the stability requirements for numalficapproximating the heat equation. Section
6 presents an analysis of the model problem with the use bfgmynomial, and exponential enrichment
functions, and compares the methods in terms of computtomst and relative accuracy. Conclusions

are then provided in Section 7.

2 Problem Formulation

Consider a domaif2 ¢ R® with boundarydQ decomposed a8Q = rUurf with r'nrf =o. The

strong form of the governing equation is given by the 3D hegagéon

pc%:D(KDu)+Q in Q Q)

whereu(x,t) is the temperature field is the thermal conductivity tensopc is the volumetric heat

capacity, and)(x,t) is the internal heat source.

The following boundary conditions are prescribeddodn

u=u on 2

—kOu-n=f on rf (3)

wheren is the outward unit normal vector ©f and f anduare prescribed normal heat flux and tem-

perature, respectively.

The initial conditions must also be satisfied

u(x,0)=w(x) at t° (4)

whereu’(x) is the prescribed temperature field at time t°.

3 Modd Problem

The problem selected for analysis is taken frasd]] and it involves a sharp spatial gradient in the

temperature field), as well as in the resulting source ter@).(There is also a temporal gradient, but it



is smooth in nature. This model problem is selected becaissimilar to the type of severe, localized

thermal loading which can be experienced by hypersonictflighicles.

_ —YO—Xtront ()2 i [ TX —t)
u(x,t) = (exp +S|n< i )) * exp (5)
Qet) = pe )~ kYt ©)
A A VAR
Xfront(t) =Xp+Vt (7)

The initial and boundary conditions are given 8 &nd @), respectively.

u(x,0) = exp Y ) L sin (nTX) , (8)

u(0,t) = u(L,t) =0, 9)

In the above equationgp = 125mm L = 500mm V = 2502" and y is a parameter controlling the

sec

roughness of the solution. Unless otherwise indicatedvéhee of y is taken as D. The material

properties are taken as thermal conductivity= 1 and volumetric heat capacitpc = (’f)z

The
reference solutiorf] is plotted in Figurel and the initial condition&) is plotted in Figure. As can be
seen, from the spatial standpoint, the thermal spike moms% to 374'- in 1sec(t® = Osec, t’ = 1seq.

From the temporal standpoint, the solution undergoes agmexponential decay in time.
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(a) Reference solution in space and time. (b) Time slices of reference solution.

Figure 1: Shows the temperature field described)n (
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Figure 2: Initial conditions as described i) (

4 Generalized FEM Approximations

The generalized FEM]] 2, 14, 36, 44] is an instance of the partition of unity method, which has it
origins in the works of Balika et al. [, 2, 29 and Duarte and Oderip, 16-18, 36]. Many meshfree

methods recently proposed can also be viewed as special a&tde partition of unity method.

The key feature of these methods is the use of a partition by JROU), which is a set of functions
whose values sum to the one at any point in a domain. Additimethods based on the partition of

unity concept are, for examplel 1, 24, 33, 43).

In the GFEM, a discretization space is built using the cohoém partition of unity along with local
spaces that are generated based on a-priori knowledge thigoslution of a problem. A GFEM shape
function, @i, is computed as the product of a linear finite element shapsifun, ¢, and an enrichment
function, L,

@i (X) = P (X)Lgi (X) (no summation om ), (10)

whereaq is a node in the finite element mesh. The linear finite elenteaqpes functiong,, a =1,...,N,
in a finite element mesh witN nodes constitute a partition of unity, i.§§:1 o (X) =1 forallxina
domainQ covered by the finite element mesh. Fig@rélustrates the construction of a GFEM shape

function.



Figure 3: Construction of a generalized FEM shape functgingia non-polynomial enrichment. Here,
¢4 is the function at the top, the enrichment functitg;, is the function in the middle, and the gener-
alized FE shape functioi, is shown at the bottom.

Enrichment functions The GFEM has been successfully applied to the simulatiomohbary layers
[13], dynamic propagating fracturedq], line singularities 14], acoustic problems with high wave
number B], polycrystalline microstructuregl]l], porous materials44], etc. These applications have all
relied on closed-form enrichment functions that are knowagproximate well the underlying physics
of the problem investigated. These special enrichmenttifmme are able to provide more accurate and
robust simulations than the polynomial functions tradiéithy used in the standard FEM, while at the

same time relaxing some meshing requirements of the FEM.

In this particular work we use knowledge of the solution tleseour special enrichment functioh).
The special, exponential enrichment functions are onlyiegpo the nodes whose supports contain the
thermal spike. All other nodes have only polynomial enrieimts. The GFEM framework is what allows

us to use 11) as our enrichment function, and we note the enrichmentiemés time dependent.

Lai (%, t) = exp Vom0 (11)

wherexsront(t) = Xo +Vt. The variablexg andV are defined as in Section 3. It should be again noted
that the location of the exponential spike in the enrichnfanttion is known beforehand from the
analytical solution. If this was not the case, one would rteagse information from the gradients in the
loading function, or from a global error indicator in orderdroperly center the exponential enrichment

function; both of which are beyond the scope of this paper.



5 Discrete Equationsand Time-Integration

In this paper, we use the transient Formulation 2, as deiivetktail in [38], with the time-stepping
parameter = 0.0, yielding the conditionally stable, Forward Euler algiom. Substitutinger = 0.0

into (33) from B8] leads to the following linear system of equations

A_]-tMn+1un+1 — [%M n+ln Kn+17n} un+ fn+1,n (12)
where

M n+1 — /ch¢n+1 (¢n+1)T dx (13)

Mn+1,n _ /ch¢n+1 (¢n)T dx (14)

KN = / Og™ 1k (D) dx (15)

L
fn+1,n _ /Qn‘anrldX (16)
L

In the previous equationg is the vector of finite element shape functiofsjs the domainQ is the
internal sourcepc is the volumetric heat capacity, ardis the thermal conductivity of the material.

u"*! is the solution vector at'"t, andu” is a known quantity from time”.

5.1 Generalized Eigenvalue Analysisto Deter mine Stability Requirements

For the conditionally stable Forward Euler algorithm, spkecare must be taken in selection of the
time-step size/t) such that stability is maintained throughout the simolatiWe solve the generalized
eigenvalue problem arising from the global system of egnatias posed irl{) to determine the mag-

nitude of the dominant eigenvalulyay. The critical time-step siz@\tc ) is then related to the dominant



eigenvalue as inl@). More discussion of this stability criterion can be found40Q].

(K—=AM)x=0 (17)
Atcr = ﬁx (18)

In (17), when time-dependent shape functions are ubke; M"! as defined in13) andK = K™1,

defined as

KMt — / D™k (D™ dx (19)
L

When time-dependent shape functions are not used, thadlisti is inconsequential becaukkt =

MM =M™ and similarly forK.

6 GFEM Analysisof Model Problem

6.1 Calculation of Critical Time-Step Sizesfor Stable Simulations

In this section, 17) is solved for a series of uniform meshes, with differentedat sizes and polyno-
mial orders. Tabld summarizes the results of the generalized eigenvaluegmol#sulting from each
discretization. The results for each type of element arestigated in more detail in subsequent sec-
tions. For the elements containing exponential enrichm@ri), the eigenvalues need to be calculated
at multiple time-steps due to the changing discretizataond then the most stringeit., is selected

to yield a stable simulation. The elements with exponemtisichments will henceforth be referred to
as exponential elements. In the table, Linear Exponerdfers to elements with only a linear shape
function, and an exponential enrichment; whereas Quadexponential refers to elements with both a
quadratic, as well as an exponential enrichment. As a resllinear Exponential element has only a
linear and an exponential shape function; whereas a Quaébgionential element has linear, quadratic
and exponential shape functions. It may be noted that thee\aAt,, is very similar for both the Linear
and Quadratic Exponential elements as the magnitude oé#ukbdigenvalugnayis essentially governed
by the presence of the sharp, exponential enrichment fumclihe calculation of the critical time-steps

for each discretization used is performed separately fr@simulations run in subsequent sections. As



such, CPU times reported in the following sections do noectthe time required for the calculation of

the Atg,.

Table 1. Summary of Output for Calculation Af,.

Shape Function Type  p-order  fwidth) Amax A\

Linear 1 1.250 196910 1.02e-5

Linear 1 0.625 787402 2.54e-6
Polynomial 2 2.500 246130 8.13e-6
Polynomial 2 1.250 985222 2.03e-6
Polynomial 2 0.625 3938400 5.08e-7
Polynomial 4 5.000 389910 5.13e-6
Polynomial 4 2.500 1559300 1.28e-6
Polynomial 4 1.250 6242700 3.20e-7
Linear Exponential - 100 128205 1.56e-5
Quadratic Exponential - 100 125786 1.59e-5

6.2 Analysisof Model Problem Using Polynomial Enrichment Functions

Linear Elements In this section, we further investigate the results obtifte linear elements. In
this, and subsequent sections, the accuracy of the sol@®well as CPU time required to produce
the solution are examined. For the CPU Time shown in the sulese tables, both the assembly and
solution times are considered. For polynomial elements stlifness matrix is only assembled once,
whereas for the exponential elements, with time-deperslaaye functions, the assembly is performed
at each time-step. Since the exponential elements do chissglight inconvenience, it is appropriate

that the CPU Times recorded are reflective of the minor drakba

For the plots provided dealing with internal energy, theiinal energy at time-step(Uy), is defined
as the inner product of the flux and temperature gradienbv&cas shown in0). Since the analytical
solution is known, an exact curve for the internal energy &snation of time can be generated and
plotted as a means for comparison. To put a single numberwvdaio serve to tell how well the curves
match up, a discrete,-norm for the error is calculated as 1) where the summation is performed

over each time-step along the curve.

Un = / (kOW") - (Ou") dQ (20)
Q
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The output for linear elements is summarized in TahleAs expected, with a more refined mesh as
well as a smaller time step, greater accuracy is obtaindgdtlasevere cost in CPU Time. The internal
energy is plotted as a function of time in FiguteAs can be seen, there is a lot of noise in the solution
due to its poor quality. As the mesh is refined, and the tirep-size is reduced to maintain stability, it
can be seen that the noise in the solution seems to damp otih@dcillations become smaller. Not
surprisingly, greater accuracy is also achieved. The satwisd then plotted in Figure where a least

squares fit is used to smooth out the noise in the data.

Table 2: Summary of Output for Linear Elements.

At Stability h (width) NumberTimeSteps 5"  CPU Time

1.015e-5 Yes 1.250 98500 0.3231  1.842e5
1.03e-5 No 1.250 97087 - -
2.53e-6 Yes 0.625 396000 0.0909 1.611e6
2.56e-6 No 0.625 390000 - -

— Exact
-- h=1.25
- h=0.625

Internal Energy

o
3]

i T
it r'frr'ﬁﬁ1vt?'ﬁ‘w'w".’%"ﬁ‘(‘t\’»‘-‘%*z‘?.‘.‘ﬁ?

Time (sec)

Figure 4: Internal Energy as a function of time for lineamedats.

High Order Polynomial Elements This section contains output for simulations run using bigirder
polynomial elements. Elements with quadrdtic= 2) and quartid p= 4) are selected for analysis. Due

to the excessive number of time steps required for stapdlitly a percentage of the entire simulation is

11
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N -- h=0.625 (LS

Internal Energy

o
[
I
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Figure 5: Internal Energy as a function of time for lineameéats, using Least Squares to smooth out
data.

run. For quadratic elements the simulation is run to 0.5s@gcand for quartic elements the simulation
is only run to 0.25 seconds. The projected CPU Time is thesrtalk the time to run a percentage of the
simulation, then divided by that percentage. While this Cide will not be exact, it is representative
of the time that would be required to run the entire simutatidn order to determine if th&5™"
values are valid for comparison, Talllshows the values obtained for linear elements when onlgicert
percentages of the simulation are considered. From this tals apparent that the5™" values are
relatively insensitive to the percentage of the simulatlata considered. As such it is not unreasonable
to directly compare the values obtained for the high ordemeints and shorter simulations with those

obtained for linear and exponential shape functions cpmeding to the entire simulation.

Table 3: Comparison df5"™" for differentts. (Linear elements)

tr hy (width) (£
025 125  0.3228
050 125  0.3230
100 125  0.3231

Tables4 and5 summarize the data for quadratic and quartic elementsecésply. The internal energy

is then plotted as a function of time in Figurégnd8. In both cases, we again see noise in the data
which is damped out as the element size and time-step sizm#reeduced. Once again we also obtain
better accuracy in the solution, but still at a severe co&tfiJ Time. Figure§ and9 have plots of the

data for which a least squares fit has been used in order totsroobthe data.
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Table 4: Summary of Output for Quadratic Elements.

At Stability h (width) NumberTimeSteps 5" CPU Time (projected)

8.10e-6 Yes 2.50 123400 0.2851 1.213e5
8.15e-6 No 2.50 122700 - -
1.99e-6 Yes 1.25 502000 0.0437 1.237e6
2.05e-6 No 1.25 487800 - -

Table 5: Summary of Output for Quartic Elements.

At Stability h (width) NumberTimeSteps 5" CPU Time (projected)
5.10e-6 Yes 5.00 196000 0.2978 2.049e6
5.15e-6 No 5.00 194000 - -

Internal Energy

o
3

0
0.2 0.4
Time (sec)

Figure 6: Internal energy as a function of time for quadrak&nents.
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Figure 7: Internal energy as a function of time for quadrak&ments, using least squares to smooth out

data.
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Figure 8: Internal energy as a function of time for quarteneénts.
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Figure 9: Internal energy as a function of time for quarteneénts, using least squares to smooth out
data.

6.3 Analysisof Model Problem Using Special Enrichment Functions

This section contains output for simulations for elementsobed with exponential functiond ). Ta-

ble 6 summarizes the data for each run. The internal energy isplwted as a functions of time in
Figure10. Again, Linear Exponential refers to elements with onlyreeéir shape function, and an ex-
ponential shape function; whereas Quadratic Exponerdfats to elements with linear and quadratic
shape functions, as well as an exponential shape function.

The output for the exponential elements is summarized iteTabAs can be seen, very good accuracy
is obtained with the use of the special enrichment functidhe internal energy is plotted as a function
of time in Figurel0. From looking at the plot we can see that there is no noisedardtta, and that
there is no discernable difference between the curves.derdo see a difference in the curves, Figure
11 shows a significantly zoomed-in view of the curves. Again|east squares fit was required for the

special elements since the quality of the solution is velydgand there is no noise in the data.

Table 6: Summary of Output for Elements Enriched with Expuia Functions.

At Stability b (width) NumberTimeSteps 5I°  CPU Time
Linear  Exponential
1.54e-5 Yes 100 65000 2.90e-4 2.756e4
1.62e-5 No 100 61800 - -
Quadratic Exponential
1.54e-5 Yes 100 65000 1.92e-4 2.789e4
1.62e-5 No 100 61800 - -
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Figure 10: Internal energy as a function of time for expoizeiements.
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Figure 11: Internal energy as a function of time for expoiz¢eiements. Zoomed in to see a difference
in the curves.
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Due to the fact that the spike is moving throughout the coaf#ige simulation, thét;, may be different

at each time-step, depending on the location of the spike mispect to a given node. It is noted
in [30, 31], for fracture applications with standard FEA, a term in gtéfness matrix is~ h—lx (hy is
the element size) whereas the corresponding term in the mag# is ~ hy, yielding an infinitely
small time-step requirement to maintain stability. Forctuae applications with X-FEM's use of the
discontinuous Heaviside enrichment, the mass matrix bes@imgular as the crack front approaches
the edge of an elemental support, again yielding an infingedall time-step requirement to maintain
stability [30, 31]. For the present application, the enrichment functioresilg®o not have this property as
the spike location nears the edge of an elemental suppdttesstability requirement does not become
infeasible. There is some dependency upon the locatiored$pitke with respect to the location within
the nodal support, but it is not as dramatic as that seen iaghgcation to fracture. Tablé shows the
value forAt; as itis affected by the location of the spike with respectiodal support. Distance refers
to the distance between the node with the special enrichraadtthe location of the moving, thermal

front.

Table 7: Effect of Spike Location ofut,.

Distance At A&fgx
0 7.01e-5 1
Y 2.60e-5 2.70

2
~ hy 1.56e-5 4.50

6.4 Comparison of Polynomial and Exponential Enrichments

Before comparing the different element types, several gémenclusions can be made. Not surpris-
ingly, increasing mesh refinement for a given polynomiakorglelds a betteL5™" value, but does so
at a significant increase in CPU time. Likewise, for the exgial elements, raising the polynomial
order of the elements at a fixed level of refinement also yebltster 5" values, but at only a slightly
higher requirement for CPU Time. In regards to the accur&tlyet., produced from the generalized

eigenvalue problem: for each discretization analyzedy#hges ofAt., proved to be very reliable.

For the sake of an easy comparison, the pertinent data tadlée summarized in Table With the
data summarized here we can better determine if the expahel@ments offer a significant reduction
in CPU Time spent in order to achieve a given level of erroonfrcomparing the data in the table, it is

quite clear that the exponential enrichments offer supg@eoformance when compared to polynomial

17



enrichments. The exponential enrichments offer extrerdaatons in both the error values, as well

as the CPU time required to generate the data. The expohentiahments also yield results which

do not show any noise in the data. The overall conclusion

tomade is that for the case of explicit

time-stepping with a parabolic PDE, the exponential emmiehts do in fact offer far superior behavior

in regards to: time-step size required for stability, aacyrof solution, and CPU Time required.

Table 8: Summary of Simulation Data.

Shape Function Type (lfwidth) L5™"  CPU Time

Linear 1.250 0.3231  1.842e5
Linear 0.625 0.0909 1.611e6
Quadratic 2.50 0.2851  1.213e5
Quadratic 1.25 0.0437 1.237e6
Quartic 5.00 0.2978  2.049e6
Linear Exponential 100 2.90e-4 2.756e4

Quadratic Exponential 100 1.92e-4  2.789e4

h =100 mm

h=25mm

*

* + +
0 20 40 60 80 100 120

+ + +
140 160 180 200

Figure 12: Comparison of element sizes for exponential amghpmial discretizations.

6.5 Effect of Volumetric Heat Capacity Magnitude

In this section we investigate the effect of the magnitudehefvolumetric heat capacitpc. We ana-

lyze a problem very similar to the model problem, but in thistance the spike remains stationary, as

indicated by the reference solution

u(x,t) = <eXp7y(x7X°)2 +sin (%X)) * exp(‘fim )

where again, the internal source is derived as

du d?u
Q(Xat) = pca(xat) - KW(XJ)’

18

O<x<L (22)

(23)



The initial and boundary conditions are the same as thodeedyip the original model problem8) and
(9). A plot of the reference solution is shown in Figur® where the solution is seen to undergo the
same decay in time, with the spike remaining stationary actepwith a fixedy = 125mm For larger
values ofpc, the critical time-steps become larger. As such, longeukitions are run, but the reference

solution is now parameterized byna, SO only one reference curve is required.
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Figure 13: Reference solution for simulations involvinggker values opc, described byZ?2).

Simulation data is presented in TaBléor simulations with and without the time-dependent expdiad
enrichment 24) applied to nodes which contain the thermal spike. For aeslytilizing 24), simula-
tions are run with 110 time-steps, and elements ofgjze 100mm Simulations run without44) have

1400 time steps, and quadratic elements \ujth- 1.25mm

t
Lai = { 1,exp %0’ , expfina } (24)

As can be seen from the table, the exponential enrichmeuwtiturs once again deliver much higher
levels of accuracy, with smaller requirements in terms ofJ@ife. Figureld shows time-slices of the
solutions generated using the exponential enrichmentaamaébuld be expected, the solutions generated
match up very nicely with the reference solution shown inuFédL3. Figurel15 shows time-slices of
the solutions generated using quadratic elements. Théi@muare also in good agreement with the
reference solution, but in this case there is a much greagtircterms of CPU time required to generate

the solutions.
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Table 9: Simulation Data for Varying Magnitudes@d.

pC  tfinat  Atgr At LS™"  CPU Time
Exponential Basis Functions
01 7 0.0667 0.0636 3.63e-3 3.672
05 35 0.3333 0.3182 3.63e-3 3.701
1.0 70 0.6667 0.6364 3.63e-3 3.764
5.0 350 3.3333 3.1818 3.64e-3 3.731
10 700 6.6667 6.3636 3.67e-3 3.814
Polynomial Basis Functions
0.1 7 0.0052 0.0050 0.0678 1.03e3
05 35 0.0260 0.0250 0.0678 1.06e3
1.0 70 0.0521 0.0500 0.0678 9.87e2
5.0 350 0.2604 0.2500 0.0679 1.01e3
10 700 0.5208 0.5000 0.0681 1.03e3
04 //\ 0.4f /\\
(@) pc=0.5 (b) pc=5
Figure 14: Simulation results generated using the enrichimeg24).
04 //\ 04 //\\
(@) pc=0.5 (b) pc=5

Figure 15: Simulation results generated using only quadalynomial shape functions.
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7 Conclusions

In this work we investigate the potential gains in compuotaai efficiency that the GFEM with special

enrichments can provide for transient simulations duestaliility to produce accurate results on coarse
meshes. The alleviation in mesh density leads to less stirgjability requirements on the time-step
size. The end result is that fewer time-steps are requined &mulation, and the system of equations
is also smaller at each time-step. As such, the CPU time remeints are greatly reduced when com-
pared to simulations run with the use of standard finite etémeln the parabolic case, the use of the
exponential enrichment functions led to not only more edfficisimulations, but also to more accurate
simulations as well, since the enrichment was selectedfgg@dly to capture the fine-scale portion of

the solution.

The results presented here suggest that if the proper emgitifunctions are available, larger time-step
sizes may be used without negatively impacting the accuvhtye results. However, since this is not
the case for most problems of interest involving multi-saal non-linear phenomena, we are currently

developing numerically generated enrichment functioas transient extension d3{].
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Appendix A. Discrete Equations
A brief summary of the temporal and spatial discretizatimtpsses is presented here. For more details,

and a more in-depth discussion of the discretization psottesreader is referred t8§.

We start with the strong form of the heat equation

pc% =0-kOu+Q (25)

Equation 25) is multiplied by a weighting functiony, and integrated over the domai®, yielding the

variational form

/ Wpc dQ / (WO - kOu+wQ) dQ (26)

Integration by parts is used on the first term of the rightehaide, and the domain integral is moved
to the left-hand-side of the equation. The boundary terraftson the right-hand-side with the applied

source term.

/ wpc@Jer.KDu dQ:/ WK@dr—i-/WQdQ 27)
0 ot 9 on Q

The temporal discretization is performed first, and stash@laite differencing is used, in the form of the

a-method, in which the following approximations are used

ou un+1 —un

o At (28)
U™ = (1—a)u"+aqu™? (29)
Plugging @8) and @9) into (27) yields the temporally discretized equation
un-&-l —un
/ (wch + 0wk [aOu™ + (1 a)Du”]) dQ

aunJrl oun

_ n+l n _ el
/ [aQ™ 1 (1-a)Q dQ+/ wi | a4 (1-a) der (30)

Boundary terms must be expanded out, and tB&hdan be rearranged such that terms involvifig!

are moved to the left-hand-side, and all known terms (thos@ependent upoa™!) are moved to the
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right-hand-side.

1 1

—/wpcu””dQJra/ Ow- kOu™1dQ = —/ pcwd'dQ —

At Jo Q At Jo

(1—0{)/ DW-KDu”dQ+a/WQ“*ldQ+(1—a)/WQ“dQ

Q Q Q
+a [ wi™ldr+(1—a) [ wfdr (31)
I I

At this point, we have our system of equations fully disaediin time. Generalized finite element shape
functions are used for the spatial discretization, withcgdecare being taken for the discretization of

w. The weighting functionw, is discretized using finite element shape functions at tithé, as is

discussed by Fries and Zilia@7).
With the spatial discretization performed, we can posetlhg éiscretized system of equations as

éMnJrl_’_aKnJrl} un+1 — [éMMLn_ (1_G)Kn+1,n u”

+afdt+ (1— o) f5 T a f T 4 (- a) fTT (32)

Plugging ina = 0.0, and dropping the terms related to applied fluxes (in thigkwioe model problem

is 1-D with Dirichlet boundary conditions at both ends), vixtain

1 n+1|,,n+1 _ 1 n+1,n n+1n| ,,n n+1,n
[A—tM }u _EM —K u" 4 fq

n+1,n)

which is the same adp), and WherQ-)( indicates a quantity which requires information from time

stepg" andt™?.
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