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Abstract

This paper presents a three dimensional (3-D) formulatimhieplementation of a high-order do-
main integral method for the computation of energy release rThe method is derived using surface
and domain formulations of thi&integral and the weighted residual method. Thategral along 3-D
crack fronts is approximated by high-order Legendre patyiads. The proposed implementation is
tailored for the Generalized/eXtended Finite Element Mdtand can handle discontinuities arbitrarily
located within a finite element mesh. The domain integralidations are based on the same integration
elements used for the computation of the stiffness matrigc@ntinuities of the integrands across crack
surfaces and across computational element boundarieslgradcounted for. The proposed method is
able to deliver smooth approximations and to capture thadany layer behavior of the J-integral using
tetrahedral meshes. Numerical simulations of mode-I angédimode benchmark fracture mechanics
examples verify expected convergence rates for the commutergy release rates. The results are also
in good agreement with other numerical solutions availabtae literature.

1 Introduction

The evaluation of accurate fracture parameters in compleetdimensional problems remains a significant
challenge in the area of computational fracture mechar8t®ss intensity factors (SIF’s) and the energy
release rate are among key fracture parameters. Contoutt@andin integral methods have emerged as
viable approaches for the determination of these parameiéeJ-integral is among the most commonly
used fracture parameter and was introduced as a path indiepantegral byrice[1969 to analyze crack

tip strain fields in the context of nonlinear elasticity. T¢twmmputation of the energy release rate orthe
integral using surface or volume domains was initiallyadiced and employed in the works®iiih et al.
[1984, Moran and Shilf1987, andLi et al. [1989. The domain integral method yields pointwise values
of the energy release rate along a three dimensional (3dgplor non-planar crack front. It is commonly
formulated using a weighted mean of théntegral within each extraction domain along a 3-D crackfr
This assumption facilitates the numerical implementa#iod is acceptable when extraction domains are
sufficiently small along the crack front. This approach wascgssfully implemented in the context of the
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finite element method (FEM) and adopted by many commerciakfedlement (FE) packages. Although
not a mathematical requirement, FE implementations arallysione with the aid of structured meshes of
crack front elements. Rings of elements mesh cylindrical@as used in thd-integral calculations. There
are, however, some examples in the literature of implentienggeared towards unstructured FE meshes
[Cervenka and Saoum&997, Nikishkov and Atlurj 1987.

The use of domain integral approaches within recently eatergimerical methods such as the Gener-
alized or eXtended Finite Element Method (G/XFEM) posenifitant challenges to the numerical imple-
mentation especially in three dimensional problems. Thesthods are instances of the partition of unity
method Babuska et al, 1994 Melenk and Babskag 1996 Duarte and Odenl996hal. They overcome
several mesh design and computational issues of the FEMia#ipdor the problems with discontinuities
such as cracks, material interfaces, etc. Early developaéithe GFEM and its implementation for solving
3-D elasticity problems can be found in the works afarte et al[2000 2001]. Recent reviews of Gener-
alized/eXtended FEMs along with a brief history on theirelepment can be found iBElytschko et aj.
2009 Fries and Belytschk@®014.

Three-dimensional stress intensity factor and energyseleate computations in the XFEM were per-
formed using a domain integral approach as introduce8ddyumar et al[200( and Moes et al[2007.
The implementation of domain integrals in the XFEM, howewffers from the standard FEM on the
setup of extraction domains. An alternative approach wheved in these works. A grid of hexahedral
integration elements independent from the finite elemershnreas used to define the extraction domains
and to compute energy release rates. The integrand of thaidamiegrals contains derivatives of the nu-
merical solution and are thus discontinuous across cortipoéd element boundaries. Therefore, accuracy
of numerical integration is not guaranteed in this approach

As an alternative to the domain integral approach commordun FE implementations, the Con-
tour Integral Method (CIM) and the Cutoff Function MethodH@) were adapted for the GFEM
[Pereira and Duarfe2004 2005 2004 to compute fracture parameters. These methods are super-
convergent techniques for the computation of stress iitefectors and energy release rate. Details on
these techniques are presented in the works of Szabo andl&apirabo and Bataka 1988 1991]. In
three dimensional implementations of these methods, thé @es a hollow cylindrical domain to com-
pute SIF's whereas the CIM computes SIF’s using a cylintiseeface enclosing the point of interest along
the crack front. The CFM and CIM are both based on the comipuataf some functionals of the numerical
solution and the so-called extraction functions. The ddtwiction just like the auxiliaryy-functionused in
domain integral methods is defined in such a way that the egfmes to extract stress intensity factors in
the CFM do not contain terms related to the derivatives o3R&M solution. This is particularly desirable
for the implementation of these methods in the GFEM when tii@etion domains are independent from
the finite element mesh around the crack front. The numentedration involves functionals containing
terms from the asymptotic crack tip expansion and GFEM disghents. However, the CFM and the CIM
require the knowledge of the asymptotic expansion of th&tielty solution near the crack front, which may
not be available for inelastic materials such as plasticvéswbelastic. A CFM method based on high-order
polynomial approximations of edge and vertex stress iitiefectors was formulated infndersson et g|.
1999. Stress intensity factors and energy release rate arethnfimactions along a 3-D crack front for
smooth loading and smoothly shaped edgesiersson et gl1995. Thus, polynomial approximations of
these functions are very effective.

In this paper we introduce a high-order domain integral metfor the extraction of energy release
rates along 3-D crack fronts. The method proposed here edbas surface and domain formulations of
the J-integral and thus, in contrast with the cut-off fuostmethod presented infidersson et a/1999,



does not require the knowledge of the asymptotic expanditimecelasticity solution in the neighborhood
of cracks. The method provides an approximation of fhietegral function as a linear combination of
Legendre polynomials. As a result, extracted functionssaneoth which is important when using them
to drive 3-D crack propagation in elastic or inelastic malsr High-order approximations of fracture
parameters are also important near the intersections afrtek front with the boundary of the domain
since these quantities may exhibit strong gradients aetregions due to changes in the singularity order
of the elasticity solution. Fluctuations of numericallytexcted fracture mechanics parameters lead in
general to wrong crack paths. In the proposed high-ordenditation, only a few (three or less in general)
extraction domains need to be defined along a 3-D crack fiidms is in contrast with the current practice
of defining a large number of small extraction domains aloegaak front and using a weighted mean of
the J-integral function within each domain. The potential fotensions of the proposed formulation to
inelastic materials such as viscoelastic or plastic istaradttractive feature of the proposed approach. To
our knowledge, high-order extraction methods are onlylalka for the cut-off function method and have
only been implemented in combination with the p-versiorhef EEM.

We also present an strategy to implement domain integrdi@dstin partition of unity based methods
such as G/XFEM. The domain integral calculations are basd¢tesame integration elements used for the
computation of the stiffness matrix of the original proble@iscontinuities of the integrands across crack
surfaces and across computational element boundarieslprad¢counted for. The proposed approach is
implemented in the GFEM using a domain form of thintegral and an element-by-element integration
scheme like in the standard FEM. The proposed strategytéded automatic definition of extraction do-
mains and facilitates control of integration errors sirtoe integrand is a continuous function within each
integration element. While we focus on the implementatibthe J-integral from GFEM solutions, the
proposed high-order formulation can be used with, e.g.Ftkl and several meshfree methods proposed
in the literature. The proposed implementation strategyatao be used with other extraction techniques
like those based on the CFM or CIM.

The outline of this paper is as follows. In the following sent the derivation of high-order surface
and domain integral methods to compute Jhimtegral are introduced. Secti@dhdescribes the proposed
implementation strategy for the domain integral methodriaflsummary of the GFEM is also presented in
that section along with the proposed auxiligrfunctionand an approach to automatically define extraction
domains. Sectiod includes several numerical examples to demonstrate theeagence and accuracy of
the J-integral obtained using the proposed high-order fornmend implementation. Solutions of mode-

I and mixed mode benchmark fracture mechanics problemsrasepted along with comparisons to the
available numerical solutions from the literature. SetBosummarizes the main conclusions from this
work.

2 A High-Order Surface and Domain Integral Methods for Three
Dimensional Cracks

2.1 Surface Version of the High-Order J-integral

Crack front parameters in 3-D problems are computed alomgridck front. If we consider a poistalong

a crack front, thel-integral can be computed utilizing a contour path enclps$is point. Energy release
rate orJ-integral (used interchangeably herein) is stated as awvétegral Jk, k = 1,2,3) at a points
along the crack fronti et al. [198, Moran and Shiff1987, Shih et al[1984.



X(s) _||m/ HgndC  k=1,2,3 1)

whererl (s) is a contour surrounding a three-dimensional crack frodtJa(s), k = 1,2,3 is the pointwise
value of crack tip integral per unit advance of the crack frionthe direction of crack front unit vectors
(tangential, normal or bi-normal), respectively ami the outward normal vector to the contour path. We
consider a crack front coordinate system with normalaf &), binormal &, or ), and tangentg or n)

as also shown in Figure The energy momentum tensor also referred as Eshelbysrtihigan and Shih
[1987, is given as follows:

Hyj = W — Gij Uik (2)

whereW is the strain energy densit,is the kronecker delta tensar,is the Cauchy stress tensor, ant
the displacement vector.

In three dimensional problems, pointwise value of the enestpase rate is often required to compute
the magnitude of crack front advance. This can be computedada unit crack growth in the direction of a
vectorv defined at the crack front. We considey = —n; along the contour (s) in the following equation
to be compatible with the derivations in the literatur&fan and Shih1987:

3(8) = H(SW(9) = Jim — / Higjmjvi(9)dC @3)

C (binormal)

C(binormal)

E(normal)

Figure 1. A cylindrical extraction volume to compute J-integral witfack front coordinate system.

The surface integral approach computes the weighted meae &fintegral over a front segment of a 3-
D crack front. This assumption is acceptable when the crack 8egment . (defined betwees, < s< )
is sufficiently small. An alternative to this approach is s&@a polynomial approximation for tideintegral,
which is, for smooth loading and smoothly shaped crack &omtsmooth function along the whole crack
front Andersson et a[1995. An approximation of)(s) is given byJy(s) based on Legendre polynomials
in the following equation:

N
= Zo JaLa(S) (4)

N



wherelL4(s), a =0,---,N are Legendre polynomials defined along the crack front limtklg, a =0,--- ,N
are unknown coefficients. It can be realized that the firshtef the approximation is the constant term
(sinceLo(s) = 1) which is also computed using the standard implementatidghe J-integral as demon-
strated below. This approximation removes the restridoothe weighted mean value of tdeintegral and
allows for defining a high-ordel-integral varying along the crack front, as described next.

The weighted residual method is used to extractXMuetegral from Equation3). A residualr(s) is
defined between the exatintegral and the approximation of tleintegral as follows:

_ i . )
= Jh(S) + #ILnO,/r(s) ijmj Vk(S)dC

Employing the method of weighted residuals (by multiplythg residual by a weight functiong(s)
and integrating along a crack front segment):

/ r(s)wg(s)ds=0 B=0,---,N (6)
Me
where the weight function is also formed with the Legendrgmamials as follows:

wherew(s) is a scalar weight function defined along the crack front asdalue is zero a¢ = s, and at
S=S.

Using the definition of the residual given in Equatid) and the weight function in Equatiom)( we
can rewrite Equationg] in the following form:

/ [Jh(s)Jr Iim/ ijmij(S)dC:| wg(s)ds=0  B=0,---,N (8)
JTe r—=0Jr(s)
We can substitutdy, defined in Equationd) in the above equation as follows:

N

z ( - Lo (s)wﬁ(s)ds> Jo = —#iLnO/A3 Hi;jmjvi(s)wp(s)ds 9)

a=0
whereAg is the inside surface of the tubular domain shown in Fidudefined usind ¢ andl (s).
Equation Q) can be rewritten in a compact form as:

N
S Agada = Fp (10)
a=0
where
Aga = /r La(s)W5(s)ds

= | La(S)Lg(s)w(s)ds

(11)



and
Fg = —anO/A3 Hkjmjvk(s)wg(s)dS

(12)
= —lim /A? Himvi(S)Lp (9W(s)dS

The solution to Equationl() yields the coefficients of thé-integral approximation given by Equation
(4). Once the coefficients are obtained, thendtietegral can be computed at any location along the crack
front. In addition, thel-integral obtained using the approximation defined in Eguma{4) is a smooth

function. It can also be noted from Equatid®) ¢hat when the number of the Legendre polynomials is
chosen as 1, we arrive at the following form of the integral:

— lim / Hijm;vi(s)w(s)dS
I — r—0J/As (13)
0 Jrw(s)ds
which represents a weighted meard¢d) alongrlc. If we takew(s) = Wi(S)vk(S) (thenwi(s) = w(s)vk(s)),
the standard definition of thikintegral can be recoverédoran and Shilf1987 as follows:

; im I, kjM; Wi (s)dS
0:

Jr W(s)w(s)ds (14)

2.2 Domain Version of the High-Order J-integral

The surface formulation of thi&integral described in the previous section is not natusalited for a three
dimensional FE implementation. An alternative form is tdirke a domain version of the high-ordér
integral. The domain version is computed in a volume enctptie whole or a portion of the crack front
as shown in Figurd. Derivations of the domain version of the high-order donmategral stem from the
Eshelby’s tensor or energy flux tenddyg; similar to those described in Moran and Shilidran and Ship
1987.

Let

Hk“’ = by in vV (15)

whereV is any domain enclosing the whole or a portion of the cracktfro

A similar procedure to the high-ordérintegral derivations of the surface version is followedrst a
three-dimensional weight functioggy, is defined as

qu(x) = Qk(x) LB(S) B =0,---,N (16)

wherelg(s), B =0,...,N, are Legendre polynomials.

Functionsggy are similar to the functiony, defined for the domain version of the standaruhtegral
Moran and Shilf1987. It possesses the same propertiesjaat the boundaryV and within the domain



V. The auxiliary functiorgk(X) is a smoothly varying vector field defined as follows:

Wi (S) = W(S)Vk(S) onAs
0 ONA1 UA UA, a7
otherwise arbitrary

Ok (X) =

We can also define an auxiliary scalar functagi) as
q(X) = Gk(X)Vk (18)
When the poink is on the crack front, this weight function reduces to théofeing form:

ak(s)Lp(s)
k(S)Lg(s) (19)
(S)Vk(S)Lp(s) = wp(s)Vk(S)

Ak (S)

[
s =

Now, multiplying the high-order weight functions by Equati(15) and integrating over a domalift
|, (Fhi. 10800 =Bgp)) V=0 B=0.---.N (20)
Using the divergence theorem, we arrive at the followingrfor

—[/(Hk,-qﬁk’,-+bkqﬁk)o|v+/{}V HijOpmdS=0  B=0.--.N 21)

wheredV = A1 UA UA3UALUAsU Ag as shown in Figuré. The weight functions vanish ol U Ay U Ay.

If we assume forward crack front advance and planar cradeciwithinV, we can also eliminate the
surface integral contributed by the crack surfadgs) As. Then, we are only left with the contributions
from the inner surface of the tubéd). Recalling the projection of the weight function along tirack
front (Equation 19)), we can simplify the above equation as follows:

—/V(ijq,;k,jerquk) dV—l—/A ijQﬁkmde
3
:_/V (HxjQk j -+ bkapk) dv+//\3 Hijwg (S)vk(s)m;dS (22)

— —/V (ijquJ + bkqﬁk) dv + anO/pe ijWB(S)Vk(S)mde: 0 B=0,--- N

where the second term on the left hand side can be recalledtfie surface version of the high-order
J-integral (Equation9))

- /V (Hijdlgicj + bcipi) AV + im /Aa Hijwg (9)vi()m;d S
N (23)
= —/V (Hqulng + bquk) dv — Z ( . Ly (S)WB(S)dS> Ja=0
a=0 \V'c



Similar to the surface version of the high-ordeintegral, the same compact form introduced in Equation
(10) can be used to represent the terms appearing in Equagidnar(d @5). In the current implementation
for high-order domain integrals, only straight crack fate considered. Therefore, crack front veetor

is assumed constant in the following integrals

Fp=— /V [Hij9 j +bidgi] AV

(24)
== /V [Hij (ajvkbp + vk, ;) + brdipi] dV
Agq = | La(s)wp(s)ds
/r° (25)
= | La(S)Lg(S)w(s)ds

Similarly, when the number of the Legendre polynomials &@sen as 1L( = 1) and if we takew(s) =
Wk (S)Vk(s), then the standard form of the domain version ofdietegral is recoveredyby = gx andJ,(s)
Jo) as follows:

Jo— - [ijQk,j +bqu] av
’ Jr, Wk(S)vk(s)ds

(26)

If the Eshelby’s tensor is assumed to be divergence freebolly force term defined bl cancels in
Equation 24). This assumption is true when there are no body forcegjuakstresses and thermal stresses
[Moran and Shih1987. The high-order formulation of thé-integral presented in this section is fully
compatible with partition of unity based methods (GFEM aEX/A). This approach can provide smoothly
varying crack front parameters such asdhategral, which might be an issue for the computation otkra
front advance in these methods.

3 Numerical Implementation Strategy

The numerical implementation of the domain integral is desiag the GFEM. The GFEM enables model-
ing of arbitrarily located cracks within a FE mesh and abi¢®s the mesh design issues arising in fracture
problems, particularly in 3-D. Some important aspects ef @EM is revisited along with a very brief
introduction. Subsequently, the numerical implemeniatibthe high-order domain integral in the GFEM
is presented.

3.1 A Brief Summary of Generalized Finite Element Method

The generalized FEM is an instance of the so-called pantittd unity [Babiska etal, 1994
Melenk and Babska 1996 Duarte and Odgril996ha] based methods. Some meshless or meshfree meth-
ods are also from the same family of partition of unity basexthods. A partition of unity based ap-
proximation of a scalar scalar fieldx) can be expressed with partition of unity shape functionslacal



approximations as:
N
Un(X) = % @a(X)Uha(X) (27)
a=1

where¢, constitute a partition of unityxgz1 ¢ (X) =1 for allx in the domain of analysi®), a is a node
in the finite element mesh ang, (X), a =1,...,N, are local approximations. In the GFEM, the partition
of unity is provided by low order Lagrangian shape functioh$ocal approximationu,, (X) is given by

DL
Unha (X) = _ZlamLia(x) (no summation om ) (28)

whereaj, andLiq,i =1,...,D., are nodal coefficients and enrichment functions, resgalgtiThe function
Una (X) is a local approximation of the field(x) defined on the support of partition of unity functigg.

This support (also called a cloud)y, denotes a subdomain where the partition of unity functmmah
arbitrary nodex is nonzero. Local approximations belong to the local spasdsllows:

Xa(Wa) = span{Lia(x)}iD:L1 (29)

Details of the theoretical background of the GFEM and partibf unity based methods are described in
[Babiska et al, 1994 Melenk and Babska 1996 Duarte and Oderil996ha, Duarte et al. 200Q 2001].
The enrichment functions are selected such that:

Lig =1 (30)

We can rewrite the partition of unity approximation definedEquation 27) using the local approximation
given by EquationZ8) as follows:

Dy N Dp

N
Un(X) = Zld’a (x) .Zlaia Lia(X) = Zl'zlaia Aa (X) (31)

where@q (X) is called a generalized finite element function and is deffr@d the product of the partition
of unity and a local enrichment function in the following for

@a(X) = da(X)Lia (X) (no summation omr) (32)

The partition of unity functions in Equatior3®) (¢,, a = 1,...,N) in the current implementation of the
GFEM are linear Lagrangian finite element shape functionmesother examples of partition of unity func-
tions are functions derived from moving least squares nustlamd Shepard function®{larie and Odgn
19964 as they are used in meshless methods.

3.2 Numerical evaluation of the high-order domain integral

The numerical implementation of domain integrals in G/XFEkhibits various challenges since their
computation can not be performed using the computatioeahehts in a nicely structured mesh as in the
FEM. Another difficulty is the approximation of the scalaxdiary function (g-functior) representing a
virtual crack advance. These challenges along with thea@mphtation details of the high-order domain
integral formulations are discussed next.



In Section2, the derivations of a high-order and standard formulationghe computation of thé-
integral are described. Both approaches are implementdut iGFEM. Numerical implementation of the
high-order (Equations2d) (25)) and the standard-integral given by Equation2@) slightly differ from
each other only in the selection of extraction domains. Nicakimplementations for the line integration
and volume integrals appearing in these equations areidedan this section.

3.2.1 Construction of extraction domains

The integration domain for the computation of théntegral given by Equations28) or (26) is defined

by layers of elements enclosing the crack front. This volusméormed by adding layers of elements
at selected locations along the crack front where Juetegral needs to be calculated. These elements
are computational elements in which element solution veets computed during the GFEM analysis.
Stresses, displacement vector, and strain energy densitythe GFEM solution can be directly used in
the evaluation of the integral appearing in Equati®f) or Equation 26) after transforming these variables
to the crack front coordinate system.

Construction of integration domain differs for the starland high-orded-integral implementation.
The high-orded-integral approach employs a single or a few extraction dosmenclosing the entire crack
front whereas the standadeintegral is computed in a piecewise manner using suffiiesmball extraction
domains. The crack front in the GFEM is discretized by segmas shown in Figurg. Each segment is
composed of two crack front vertices. In order to constituténtegration domain for the standakihtegral
approach, a fraction of the crack front formed by two segant three vertices are first selected. A crack
front coordinate system is chosen to be at a point in the raidtla straight line connecting the beginning
and end vertices. This point is identically equal to the ri@deertex for straight crack fronts. The entire
crack front should be discretized into sufficiently smatyreents for curved crack fronts in order not to
introduce errors due to crack front geometry approximatidrhen, the elements enclosing this portion of
the crack front (formed by two segments) is automaticaltyembto a list, layer by layer. Finally, a bounding
box is defined to prevent outgrowing of the domain in all di@ts (normal, tangent and binormal at the
crack front). The elements outside this bounding box areoweth from the list. The use of a bounding
box is particularly needed to trim the elements in the tatigkdirection so that a domain enclosing only
two crack front segments can be obtained. This proceduspesated along the crack front to compute the
J-integral pointwise at each vertex except at end verticessidace breaking cracks.

The implementation of the high-ord&fintegral selects all or a large fraction of the crack fragments
and builds a domain around the entire crack front at oncehdrhigh-order implementation the extraction
domain may be composed of a single large domain whereasrndathdomain integral requires the con-
struction of multiple extraction domains that sweep thérerdrack front. Once the extraction domain is
constructed, the computation of the energy release raterisrqmed element by element using integration
elements as discussed in the next section.

3.2.2 Computation of volumeintegral (Fg)

The pointwise value of thé-integral can be composed of components in the directionsraafk front
coordinate system as shown in Equati@n (Each component represents the value of the energy release
for an advance of the crack front in one of the crack frontatioms (normal, bi-normal, or tangential).

In order to simplify the implementation, only one componehthe J-integral is considered in this study.
Numerical implementation is carried out assuming 1, hence considering only crack front advance in

10
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Figure 2: Crack front geometry and selection of the extraction domé&n the standard domain integral method.

the normal direction. This component of tliéntegral is associated with a unit crack front advance in
the normal directiorx; as shown by the crack front coordinate system in Figurdn the absence of
body forces, crack surface tractions, and with the asswmuti crack front extension only in the normal
direction, theJ-integral reduces to a simplified volume integral.

The volume integral appearing in Equatid?d) or in the numerator of Equatior2) is an integral
defined over a domain enclosing a specified portion of thekcfianmt (composed of two segments as
discussed in the previous section) or the whole crack fronttfe high-orded-integral implementation.
Since this domain is the union of finite elements used in tmeprdation of the stiffness matrix, solution
variables such as displacements, stresses, strains,ataeadily be accessed. The auxiligafunction
introduced in Sectio@.2, however, needs to be defined. Tdrunctionis approximated using partition of
unity functions (in this case linear tetrahedral shapetions). Assuming a crack front advance only in the
normal direction@g = gg1), theg-functioncan be defined as follows:

4
QB(E;’%Z): zfpa(E;n;Z)QaLﬁ(s) SEFC? B:O77N (33)
a=1

wheredqy is the value ofg-functionat nodea and¢, is a linear finite element shape function. The nodal
values of they-functionare assigned to nodes automatically during the formatidheoé&xtraction domains.
The values vary from 1 at the crack front to 0 at the outsidenbdaties of the extraction domain. A two-
dimensional version of thg-functiondefined above was reported inipes et al, 1999. The Legendre
polynomials are added to this equation for the computatiothe high-orderJ-integral. This requires

11



mapping from the natural coordinate system of an integnaiement, n, {) to the crack front coordinate
sto compute the contribution of the Legendre polynomial.

The auxiliaryg-functiondoes not have a closed-form mathematical expression. Ivagnfrom do-
main to domain depending on the crack front refinement |eVak effect of differeng-functionson the
computed fracture parameters was studied and it has beem shat theJ-integral values computed from
moderately sized domains are insensitive to the choicg-foinctionShih et al.[1984. Nikishkov and
Atluri Nikishkov and Atluri[1987 also used differeng-functionsn the computation of SIF’'s and obtained
acceptable results for various shapes ofgHanctiondefined in the domain.

The smoothness requirement for téunctionis satisfied in a piecewise linear sense due to linear finite
element shape functions. An example gfF&unctionis shown in Figure for a straight edge crack problem.
This figure shows the variation of tlgefunctionin the extraction domain. As shown, valuesgefunction
are 0 everywhere at the outside boundaries and vary from Onside the domain.

NT11
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+6.667e-01
+5.835%e-01
+5.000e-01
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+2,500e-01
+1.667e-01
+2.332e-02
+0,000e+00

Abaqus/Standar G sodb Abaqus/Sd XY-CrOSS o
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Figure 3: Variation of the g-function in an extraction domain for angeecrack problem. The order of Legendre
polynomials i0.

000
1= v auor: L, 0008400

ale Factort +1,0002+00

Gauss quadrature is applied to the volume integral defindelqumation 24). Each quantity in this
expression needs to be computed at the integration poidtthan transformed to the crack front coordinate
system using transformation matrices built between glahdlcrack front coordinate systems.
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N
aq ou; [ dq
FB = —Z |:W <3—X +QLB’1) — Gij a—Xl (a—XLB +qLB,j>:| det[J]wk (34)
1 1 J &y
whereq = q;. The terms in the bracket are evaluated at each integration §, (k=1,---,N). Lg; =0
since the Legendre polynomials are one dimensional funstaefined along the crack front direction,
det]J] is the determinant of the element Jacobian, &R a integration weight.

3.2.3 Computation of theLineIntegral (Agq)

The line integral defined byg, in Equation @5) requires the values of thg-functionalong the crack
front. Once theg-functionis assigned to the nodes, the values of gheinctionat the crack front itself
can be computed using the finite element approximation ofjthenctionin Equation 83). Independent
discretizations of the crack surface and the 3-D domaingmtssa challenge for finding the crack front
values of theg-function since the crack front is not composed of finite element nagdespart of the finite
element discretization. This difficulty is overcome by cartipg the values of thg-functionwithin each
element cut by the crack surface. EquatiBB8)(is used in the approximation of tlggfunctionalong the
crack front. The procedure is illustrated in Figuyréor the standard-integral implementation. Figuré
also shows how integration points are chosen at the craaok fildhe variation of the-functioncomputed
at these integration points is also shown in the same figuremo mesh refinement levels. The curves
represent a crack front advance in the normal directionclvare used to compute the line integral that
appears in the denominator of Equati@e)(

1. Sample the crack front with a sufficient number of
integration points between s [-1.1];

2. Convert these points to global coordinates;
3. Find the element containing this global point;

4. Use g-field approximation to compute the value of

q (&, G
¥ Integration points (§,, n,, ¢)
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1.00 - 1.00 -1
075 _0.75
L L
“0.50 ©0.50 4

0.25 0.25 4
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1 0.5 0 0.5 1 -1 0.5 0 0.5 1
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Figure 4: Variation of g-function along the crack front of an edge drgaroblem using the standard J-integral
approach. Crack front values of g-function are shown for tiféerent crack front refinement levels.

On the other hand, thg-functionfor the high-order implementation is built along the entirea large
fraction of the crack front. Examples of integrands)L 4 (s)Lg(s) from Equation 25) are shown in Figure
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5. The integrand is sampled along the crack front. Only diajoomponents are shown in the figure. A
numerical integration procedure is followed to computelithe integral. The number of integration points
used to sample thg-functionand the Legendre polynomials are chosen high for accuratg@ue@tion of
the integral.

1.25 1.25 1.25 1.25 4

0.5 1- 0.5 1

W(s)Lo(s)Lo(s) W(s)Ly(S)Ly(s) W(s)Ly(S)La(s) W(s)L(s)La(s)
= 1- 1 1
5 0.75 0.75 0.75
0
} 05 1 05 05
»
*E 0.25 + 0.25 0.25
1 -0.5 0 0.5 11 -0.5 0 0.5 1-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1
S S S S
' | WOLELE) L WEILs(E)Ls(s) ' L WOL(E)LS) ' | WELE)L(s)
> |
g 75 0.75 0.75 - 0.75 1
D
= 54 0.5 05+ 0.5
}/ , 0.25 + 0.25 + 0.25 +
. -0. 1 -0.5 0 0.5 1-
S

0
S

Figure 5: Variation of the integrand from Equatiof25) along the crack front of an edge-crack problem using the
high-order J-integral approach. In the figure, 8 are the degree of the Legendre polynomials.

4 Numerical Examples

In this section, we analyze the accuracy of the proposeduiations and implementation approaches to
compute the energy release rate. Several benchmark feactechanics problems are analyzed in order to
investigate accuracy and robustness of the standard arrdgih@rder formulation of thé-integral using
mode-l and mixed mode examples with straight and curvedkdrants. Convergence analysis is also
performed to verify convergence rates of extracted enexigase rate.

4.1 EdgeCracked Bar

The edge cracked bar is a very commonly used problem in thela@went and verification of new nu-
merical and mathematical strategies to compute energggelete and/or stress intensity factors (SIF’s).
Lietal [1999 solved this problem using the boundary element method. r&ébelts from that study are
used as the reference solution heréinreira et al[20099 solved the same problem using the GFEM with
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the Cut-off Function Method (CFM) and the Contour Integradthbd (CIM). A locally refined mesh with
increasing polynomial approximation order (we refer t@ tapproach aBp-GFEM hereafter) was used in
that study and it has been shown thattipeGFEM can provide very accurate results and fast convemenc
rates for the SIF’s. Details can be found ingreira et a).2009 and [Pereira et a).20093.

The edge crack problem with the same boundary conditions gemmetry [ietal, 1999,
[Pereira et a).20097 is also analyzed in this section. This problem consists téc@angular bar sliced
by a through the thickness crack as shown in Figur&he geometry is taken &gt = 0.875,a/t = 0.5,
andw/t = 1.5. As for the material properties, linear elastic propertéiee used. Young’'s modulus and
Poisson’s ratio are set to 1.0 and 0.3, respectively. Variooal refinement levels are studied to test the
robustness of the proposed formulation and implementétiodifferent crack front meshes. Three ratios
of crack front element size to crack length/a, are usedLe/a = 0.069,Ls/a = 0.035 and.e/a = 0.017.
The results obtained using the standard domain integrdeimgntation are referred to dsin the figures.

o
y

2h

”

rho
b 't\lA w

Figure 6: Edge crack bar subjected to uniform tensile tractions.

The extraction domains along the crack front are built usiregprocedure described in the previous
sections. During the computation &integral with the standard approach, pointwise valuesiefenergy
release rate are computed at the vertices along the craukexoept at the edges. Figufeshows selected
extraction domains used in the computation of energy relea® along the crack front. These domains
are formed by adding 5 layers of elements to the crack frarhehts, the first of which is removed later
on to create a hollow domain. On the other hand, the highranad@ementation can use bigger extraction
domains enclosing the whole or a segment of the crack front.
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Figure 7: Extraction domains along the crack front at vertices 0, 4,dd 16 of an straight edge crack.
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The energy release rate computed along the crack front tisgnstandard formulation of thkintegral
is shown in Tablel along with a comparison to the solution obtained byt al. [199]. In order to
demonstrate path independency of the implementationggmelease rate computed using various domain
sizes are also included in the same table. Energy releasiseamputed using domains built with various
number of layers (from 1 to 5). In all of these domains, the frger of elements selected around the crack

front is removed from the list of elements to create a holl@mdin. The results shown in Tableand
Figure8 were extracted from a GFEM solution computed using poly@bapproximation ordep = 4. As
shown in Figure8 and Tablel, the results are in good agreement with the reference salatid also verify
the path independency of the solution with respect to vardmmain sizes used in this analysis.

Table 1: Energy release rate values computed along the edge crackdrample (p= 4 and Le/a= 0.0174).

Vertex s/w Number of element layers added to domain Rekt al.[1999
1 2 3 4 5

0 -0.5 not calculated at this point

1 -0.444445 0.010348 0.010355 0.010361 0.010366 0.010370
2 -0.388889 0.011293 0.011300 0.011306 0.011311 0.011315
3 -0.333333 0.011648 0.011655 0.011661 0.011667 0.011672
4 -0.277778 0.011826 0.011834 0.011840 0.011846 0.011850
5 -0.222222 0.011922 0.011930 0.011936 0.011942 0.011947
6 -0.166666 0.011977 0.011984 0.011991 0.011996 0.012000
7 -0.111111 0.012004 0.012012 0.012018 0.012024 0.012029
8 -0.055556 0.012019 0.012027 0.012033 0.012038 0.012042
9 0.000000 0.012024 0.012031 0.012037 0.012043 0.012048 012@62
10 0.055556 0.012019 0.012027 0.012033 0.012039 0.012042
11 0.111111 0.012004 0.012012 0.012018 0.012024 0.012029
12 0.166667 0.011976 0.011984 0.011990 0.011996 0.012000
13 0.222222 0.011923 0.011930 0.011937 0.011942 0.011948
14 0.277778 0.011828 0.011835 0.011841 0.011846 0.011850
15 0.333333 0.011648 0.011655 0.011662 0.011667 0.011672
16 0.388889 0.011298 0.011306 0.011312 0.011317 0.011320
17 0.444444 0.010345 0.010351 0.010357 0.010362 0.010367
18 0.5 not calculated at this point

The same problem is also solved using the high-order fortionlaf the J-integral. Figured shows
the results from the solution of the same problem using liglerJ-integral implementation in a domain

enclosing the entire crack front. The order of the Legendignmmials varies from 1 to 7 in these examples
whereas the polynomial order of the GFEM approximation i$He results are compared to the reference
values obtained from the literaturei et al., 1999. As the order of Legendre polynomials increases, the
solution improves and approaches the reference valuesevmyit is important to note the fluctuations in
Figure9 at the center section likely to be caused by the behaviored4integral near the vertices of the
crack front. In order to address this problem and improveeitteacted values at the vertices, the crack front
domain is partitioned into three separate extraction domait the two vertices and at the center. The same
high-order domain integral formulations are used to exeaergy release rate at these domains. FigQ0re
illustrates the results at the center and vertex domaipsyately. The extraction domains used to compute
the J-integral are also shown as inserts to this figure. The orfléregendre polynomials are chosen
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Figure 8: Energy release rates computed using the standard J-intégementation with the results from a refer-
ence solution for the edge crack bar examplet al. [1994.

compatible with the order of approximation at the center diomSince the order of approximation is 4 and
the domain integral integrand contains the derivativediefdolution, the order of Legendre polynomials
is chosen 3 at the center. Higher order Legendre polynoraialsised at the vertices to capture the sharp
gradients of] at that regions. As shown in Figul®, a very good match between the reference solution
and the high-order domain integral is achieved at the camgat the vertex domains. The boundary layer
behavior of thel-integral is clearly captured.

Another objective of this example is to check if optimum cergence rates can be recovered using
the proposed formulation and implementation of the domatiegral method. Convergence analysis with
the GFEM was shown to be exponential for strain energy an Si&eira et al[20094, in which SIF’s
were computed using the CIM and CFM in locally refined mesRetynomial order of the approximation
was increased on strongly graded mestpsapivergence). A very similar approach is also followed in
this study. The mesh is fixed at three crack front refinemamideand the order of the polynomial ap-
proximation is increased fromp = 1 to p = 4. Crack front elements are locally refined to the lelglé&a
ratios around @69, Q035, and W17, respectively. The value of the energy release rate ctad@t the
middle of crack front$/w = 0) is used in the convergence analysis. Since there is ngtar@lsolution
for the problem at hand, an extrapolation procedure basedmiori error estimateSzalp and Babgka
[1997 is used to compute reference values for strain energy ameérergy release rate stw = 0. The
extrapolation is performed using three solutions obtaifmech the finest crack front mesh and approx-
imation ordersp = 2,3,4. Details on the extrapolation procedure are describedzimn and Babaka
[1997. The computed reference value of strain energy and enelgpagse rate arde; = 0.343555489
andJf(0) = 0.01206851. Figurd1demonstrates the results from this convergence exerclse figure
shows the relative error in the strain energy and energwseleate with respect to the number of degrees
of freedom. The slope of the curves are also illustrated aimsert to Figurell Similar convergence
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Figure 9: High-order J-integral computed for the edge crack problesing whole crack front domain (pL : polyno-
mial order of the Legendre polynomials).
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Figure 10: Comparison of high-order J-integral computed for the edggck problem partitioning crack front to
edge and center extraction domains (pL : polynomial ordehefLegendre polynomials).
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patterns repeats itself for the three crack front refinertexals verifying the reliability of the formulation
and implementation.
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Figure 11: Convergence analysis of strain energy and energy releat@exd different crack front refinement levels
(Le/a=0.069 Le/a=0.035 and L,/a = 0.017) for the edge crack example (U: strain energy).

4.2 Center Slanted Crack

The second example consists of a slanted crack insertedniteadize plate. The objective of this example
is to illustrate the capabilities of the GFEM with the propdsiomain integral implementation in solving

a mixed mode fracture problem. Figut@ shows the problem geometry and crack surface used in this
problem. The bar is subjected to uniaxial remote tensilgitras. Young’s modulus and Poisson’s ratio are
taken as 1000 and 0.33, respectively. This problem was algedsby Cisilino and OrtiZisilino and Ortiz
[2005 using a Boundary Element Method.

Locally refined meshes are used for the solution of the problgurel3shows a comparison between
the results obtained from the standard domain integral la@ddference valuesisilino and Ortiz[2009.
Crack front elements are locally refined to the level gfa ratio around 014.

The results from the high-order domain integral formulatiwe also compared to the reference results
found in the literature. Similar to the edge crack example drder of Legendre polynomials are increased
from 1 to 7 to compute thé-integral along the slanted crack fronts. The entire crasktfdomain is used
as extraction domain to compute theéntegral. The results are shown in Figdr¢ The approximation of
J-integral is in good agreement with the reference value® [dst results are obtained when the order of
Legendre polynomials is chosen as 7.

Similar to the edge crack example, the crack front domaitsis partitioned in edge and center extrac-
tion domains to improve the solution at the edges. Fig@idustrates these results. The order of Legendre
polynomials is chosen compatible with the order of appration at the center domain. Legendre polyno-
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Figure 12: Center slanted crack in a plate subjected to uniaxial tens#ctions.

__0.036 -

|

o

o

)

AN
|

= Jo(Le/a=0.014 and p =4)

-o- Ref. (Cisilino & Ortiz, 2005)
0.020 | | |

0.5 0.6 0.7 0.8 0.9 1.0
s/t

Energy Release Rate (N/mm
o o
o o
N w
(00) N

Figure 13: Comparison of the energy release rate computed along thekdrant with the results from a reference
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Figure 14: Comparison of high-order J-integral computed for the cestanted crack problem using whole crack
front domain (pL : polynomial order of the Legendre polynaisi.

mials of higher order are used at the crack front verticeafuure the gradient of that occur there. As
shown in Figurelb, the solution is improved at the vertices similar to the Hsspresented for the edge
crack problem.

A convergence analysis is also performed. The order of thapmial approximation is increased from
p = 1 to p = 3 for various crack front refinement levels. Crack front edes are locally refined to the
levels ofLe/a ratios around @57, 0029, and 14, respectively. The value of the energy release rate
computed at the middle of the crack frostt(= 0.5) is used in the convergence analysis. Reference values
for strain energy and energy release rate are obtained asimgilar approach described in the edge crack
example. The computed reference value of strain energy @) release rate akdes = 0.032271775
andJief(s/t = 0.5) = 18.71918381. Figurd6 shows the results of this convergence analysis. The slope of
the curves are also illustrated as an insert to Figére

4.3 Circular Crack in aFinite Size Domain

In this section, a circular crack of radiaslocated at the center of a finite domain is considered. The
problem geometry and the circular crack are illustratedigufe 17. The objective of this problem is to
test the robustness of the domain integral implementatiom fcurved crack front. The standard domain
integral formulation is used for this example. A curved &rfiont poses a challenge in building extraction
domains which can result in greatly unstructured and ilegmeshes. This problem was also solved by
Lietal. Lietal. [1999. The crack is located at the center of a cube whose widthwis Crack size
proportionality is taken aa/w = 0.5. The domain is subjected to an axial uniform tension,Young’s
modulus and Poisson’s ratio are taken as 1 and 0.3, respkgctiv

The problem is analyzed using the GFEM and the values of gmelgase rate are computed along the
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Figure 15: Comparison of high-order J-integral computed for the cestanted crack problem by partitioning the
crack front to edge and center extraction domains (pL : poigial order of the Legendre polynomials).
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Figure 16: Convergence analysis of strain energy and energy releatieed different crack front refinement levels
(Le/a=0.057, Le/a=0.029 and L/a = 0.014) for the center slanted crack example (U: strain energy).
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Figure 17: Circular crack in a cube subjected to uniform tensile traat.

curved crack front at each vertex. Similar to the procedaliewed in the previous examples, crack front
elements are locally refined to the levels of ratigéa around 00884, 00442, and @M221. The polynomial
order of approximation varies from= 1 to p = 3. The reference solution for stress intensity factor iggiv
by Li et al. [1999 the following:

2.213
T\/ Tao (35)

A reference value for the energy release rate is then comusiag

Klref —

1+k

g (K’ (36)

Jref -

wherek is the Kolosov constant anglis Lame’s constant.

The results obtained from the GFEM solution at the highdstement level./a = 0.0221 and polyno-
mial enrichment ordep = 3 are normalized by this reference solution to obtBides. Extraction domains
are formed by adding three layers of elements to the crack.ffbhe results are illustrated in Figui8.
Selected extraction domains used in the computation ofygnetease rate are also shown in this figure. It
can be observed that the extraction domains can sometikesgday unstructured and irregular shapes. In
spite of that, the results are in good agreement with theaeée solution, demonstrating the robustness of
the methodology used.

The convergence of the energy release rate is also compaitbe strain energy convergence. The
strain energy results and the energy release rate valuedbtai@ed from three refinement levels and the
polynomial order mentioned earlier. The results are shaowRigure19 with respect to the number of

24



-
N

RN
N

AN

- J, (L/a= 0.022, p = 3)
|

60 120 180 240 300 360
0 (deg)

e
o
|

Normalized Energy Release Rate
o

o
®

o
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Figure 19: Convergence analysis of strain energy and energy releatieed different crack front refinement levels
(Le/a=0.088 Le/a= 0.044 and Ls/a= 0.022) for the circular crack example (U: strain energy).

4.4 A Non-Planar Crack Example

The final example consists of a non-planar crack insertedfinite size plate. The objective of this ex-
ample is to illustrate the capabilities of the GFEM with tlregosed domain integral implementation in
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solving a mixed mode fracture problem with non-planar csacks discussed in Sectidh2, our current
implementation neglects the integrals over cracks susfAg@andAg. These integrals are non-zero in the
case of non-planar crack surfaces. However, if the cradiceicurvature is moderate within the extraction
domain, the contributions from these surface integralsbgismall. We test this conjecture in this example.
The extraction domains adopted in the computations arerslgvinserts in Figureadl and22.

Figure 20 shows the problem geometry and crack surface used in thidggno The non-planar crack
has a circular arc shape with radid®, and angle 80 The plate is subjected to uniaxial remote tensile
tractions. Young's modulus and Poisson’s ratio are taket088 and B3, respectively. This problem was
also solved by Cisilino and Ortizisilino and Ortiz[2009 using a Boundary Element Method. Similar to
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/t=2R/3

Figure 20: A non-planar circular arc crack in a plate subjected to umifotensile tractions.

the previous examples, this one is solved using the highratdmain integral formulation. The results
are obtained from the GFEM solution at refinement léygl = 0.0135 and polynomial enrichment order
p = 3. Figure21l illustrates thel-integral computed using the whole crack front as extractiomain. It
shows how the extractetiintegral evolves with increasing order of Legendre polyieds. However, as

in previous examples, thieintegral cannot be captured well near the crack front eddese it exhibits a
strong gradient. Therefore, partitioning the extractiomdin is also required in this example to capture
edge behavior. Figur@2illustrates the results when the extraction domain is apiiit three subdomains;

at the two edges and at the center of the crack. High gradi¢iite edges can now be captured. The order
of Legendre polynomials at the edges is taken as 7 in ordeagtuee the boundary-layer behavior at those
regions. On the other hand, an accurate approximation af-thegral at the center of the crack front can
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be achieved with quadratic polynomials.
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Figure 21: A comparison of the J-integral computed using high-ordendmn integral using varying orders of Leg-
endre polynomials and the whole crack front as extractiomain.

5 Conclusions

A high-order domain integral method is presented. The doimégral method is used as a post processing
technique to compute energy release rates along curvedraighs 3-D crack fronts. The proposed imple-
mentation is compatible with the G/XFEM type of partitionwfity based methods. A high-order domain
integral method is formulated based on an approximatiomefiintegral using Legendre polynomials.
This technique yields thd-integral as a smoothly varying function along the crackfravhich can be
advantageous during propagation of crack fronts in 3-Difir@gproblems. A smooth function representing
the stress intensity factors or energy release rate alorD arack front can facilitate smooth propagation
of the crack front segments. It is shown that the high-ordenain integral reduces to the standard domain
integral method when the order of the Legendre polynomitken as zero.

Special attention is given to the construction of extrattiomains. The extraction domains consist of
existing computational elements in which solution vamgbére already accessible. This implementation
approach, using union of elements for the extraction dojiaiparticularly advantageous and yet chal-
lenging for partition of unity based methods such as GFEMEZNIFsince the crack is independent of the
problem discretization. The proposed implementation aseslement-by-element integration scheme in
which discontinuities of the integrand across computaii@ement boundaries and the crack surface are
fully accounted for.
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The example problems are solved following the standardtendigh-order domain integral formulation.
Several benchmark problems are analyzed in order to exaimnebustness, accuracy, and convergence
of the proposed implementation. prconvergencanalysis is presented for problems with straight and
curved cracks. In order to test the accuracy, results argpaoed to those obtained using other numerical
techniques available in the literature. It is also showrt tha proposed implementation possesses the
property of domain independence.

Partitioning crack front extraction domains into edge agater domains is shown to be useful to capture
the strong gradient of thé-integral near crack front vertices. The number of extactiomains along a
crack frontis, from the proposed formulation point of viarbitrary. The numerical experiments presented
in Section 4 show, however, that if a single extraction densiused, very high order of approximation
for the J-integral must be used. Thus, it is more computationallycieffit to break the crack front in a
few extraction sub-domains in the case of surface breakiagks since thé-integral has, in general, a
strong gradient near the breaking points while being smaataly from them. The selection of the size
of these extractions domains is flexible and a quasi unifarbadivision of the crack front can be used as
demonstrated in the numerical examples presented in &ektio

The J-integral, as presented in this paper, can not extractssinésnsity factors from a mixed mode
problem. Extensions of the current formulation aimed atoming this limitation are under investigation
by our research group and will be reported elsewhere.
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