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Abstract

This paper presents a three dimensional (3-D) formulation and implementation of a high-order do-
main integral method for the computation of energy release rate. The method is derived using surface
and domain formulations of theJ-integral and the weighted residual method. TheJ-integral along 3-D
crack fronts is approximated by high-order Legendre polynomials. The proposed implementation is
tailored for the Generalized/eXtended Finite Element Method and can handle discontinuities arbitrarily
located within a finite element mesh. The domain integral calculations are based on the same integration
elements used for the computation of the stiffness matrix. Discontinuities of the integrands across crack
surfaces and across computational element boundaries are fully accounted for. The proposed method is
able to deliver smooth approximations and to capture the boundary layer behavior of the J-integral using
tetrahedral meshes. Numerical simulations of mode-I and mixed mode benchmark fracture mechanics
examples verify expected convergence rates for the computed energy release rates. The results are also
in good agreement with other numerical solutions availablein the literature.

1 Introduction

The evaluation of accurate fracture parameters in complex three dimensional problems remains a significant
challenge in the area of computational fracture mechanics.Stress intensity factors (SIF’s) and the energy
release rate are among key fracture parameters. Contour anddomain integral methods have emerged as
viable approaches for the determination of these parameters. TheJ-integral is among the most commonly
used fracture parameter and was introduced as a path independent integral byRice[1968] to analyze crack
tip strain fields in the context of nonlinear elasticity. Thecomputation of the energy release rate or theJ-
integral using surface or volume domains was initially introduced and employed in the works ofShih et al.
[1986], Moran and Shih[1987], andLi et al. [1985]. The domain integral method yields pointwise values
of the energy release rate along a three dimensional (3-D) planar or non-planar crack front. It is commonly
formulated using a weighted mean of theJ-integral within each extraction domain along a 3-D crack front.
This assumption facilitates the numerical implementationand is acceptable when extraction domains are
sufficiently small along the crack front. This approach was successfully implemented in the context of the
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finite element method (FEM) and adopted by many commercial finite element (FE) packages. Although
not a mathematical requirement, FE implementations are usually done with the aid of structured meshes of
crack front elements. Rings of elements mesh cylindrical domains used in theJ-integral calculations. There
are, however, some examples in the literature of implementations geared towards unstructured FE meshes
[Cervenka and Saouma, 1997, Nikishkov and Atluri, 1987].

The use of domain integral approaches within recently emerged numerical methods such as the Gener-
alized or eXtended Finite Element Method (G/XFEM) poses significant challenges to the numerical imple-
mentation especially in three dimensional problems. Thesemethods are instances of the partition of unity
method [Babǔska et al., 1994, Melenk and Babǔska, 1996, Duarte and Oden, 1996b,a]. They overcome
several mesh design and computational issues of the FEM especially for the problems with discontinuities
such as cracks, material interfaces, etc. Early developments of the GFEM and its implementation for solving
3-D elasticity problems can be found in the works ofDuarte et al.[2000, 2001]. Recent reviews of Gener-
alized/eXtended FEMs along with a brief history on their development can be found in [Belytschko et al.,
2009, Fries and Belytschko, 2010].

Three-dimensional stress intensity factor and energy release rate computations in the XFEM were per-
formed using a domain integral approach as introduced bySukumar et al.[2000] and Moës et al.[2002].
The implementation of domain integrals in the XFEM, however, differs from the standard FEM on the
setup of extraction domains. An alternative approach was followed in these works. A grid of hexahedral
integration elements independent from the finite element mesh was used to define the extraction domains
and to compute energy release rates. The integrand of the domain integrals contains derivatives of the nu-
merical solution and are thus discontinuous across computational element boundaries. Therefore, accuracy
of numerical integration is not guaranteed in this approach.

As an alternative to the domain integral approach commonly used in FE implementations, the Con-
tour Integral Method (CIM) and the Cutoff Function Method (CFM) were adapted for the GFEM
[Pereira and Duarte, 2004, 2005, 2006] to compute fracture parameters. These methods are super-
convergent techniques for the computation of stress intensity factors and energy release rate. Details on
these techniques are presented in the works of Szabo and Babuska [Szabo and Babuška, 1988, 1991]. In
three dimensional implementations of these methods, the CFM uses a hollow cylindrical domain to com-
pute SIF’s whereas the CIM computes SIF’s using a cylindrical surface enclosing the point of interest along
the crack front. The CFM and CIM are both based on the computation of some functionals of the numerical
solution and the so-called extraction functions. The cutoff function just like the auxiliaryq-functionused in
domain integral methods is defined in such a way that the expressions to extract stress intensity factors in
the CFM do not contain terms related to the derivatives of theGFEM solution. This is particularly desirable
for the implementation of these methods in the GFEM when the extraction domains are independent from
the finite element mesh around the crack front. The numericalintegration involves functionals containing
terms from the asymptotic crack tip expansion and GFEM displacements. However, the CFM and the CIM
require the knowledge of the asymptotic expansion of the elasticity solution near the crack front, which may
not be available for inelastic materials such as plastic andviscoelastic. A CFM method based on high-order
polynomial approximations of edge and vertex stress intensity factors was formulated in [Andersson et al.,
1995]. Stress intensity factors and energy release rate are smooth functions along a 3-D crack front for
smooth loading and smoothly shaped edges [Andersson et al., 1995]. Thus, polynomial approximations of
these functions are very effective.

In this paper we introduce a high-order domain integral method for the extraction of energy release
rates along 3-D crack fronts. The method proposed here is based on surface and domain formulations of
the J-integral and thus, in contrast with the cut-off function method presented in [Andersson et al., 1995],
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does not require the knowledge of the asymptotic expansion of the elasticity solution in the neighborhood
of cracks. The method provides an approximation of theJ-integral function as a linear combination of
Legendre polynomials. As a result, extracted functions aresmooth which is important when using them
to drive 3-D crack propagation in elastic or inelastic materials. High-order approximations of fracture
parameters are also important near the intersections of thecrack front with the boundary of the domain
since these quantities may exhibit strong gradients at these regions due to changes in the singularity order
of the elasticity solution. Fluctuations of numerically extracted fracture mechanics parameters lead in
general to wrong crack paths. In the proposed high-order formulation, only a few (three or less in general)
extraction domains need to be defined along a 3-D crack front.This is in contrast with the current practice
of defining a large number of small extraction domains along acrack front and using a weighted mean of
the J-integral function within each domain. The potential for extensions of the proposed formulation to
inelastic materials such as viscoelastic or plastic is another attractive feature of the proposed approach. To
our knowledge, high-order extraction methods are only available for the cut-off function method and have
only been implemented in combination with the p-version of the FEM.

We also present an strategy to implement domain integral methods in partition of unity based methods
such as G/XFEM. The domain integral calculations are based on the same integration elements used for the
computation of the stiffness matrix of the original problem. Discontinuities of the integrands across crack
surfaces and across computational element boundaries are fully accounted for. The proposed approach is
implemented in the GFEM using a domain form of theJ-integral and an element-by-element integration
scheme like in the standard FEM. The proposed strategy facilitates automatic definition of extraction do-
mains and facilitates control of integration errors since the integrand is a continuous function within each
integration element. While we focus on the implementation of the J-integral from GFEM solutions, the
proposed high-order formulation can be used with, e.g., theFEM and several meshfree methods proposed
in the literature. The proposed implementation strategy can also be used with other extraction techniques
like those based on the CFM or CIM.

The outline of this paper is as follows. In the following section, the derivation of high-order surface
and domain integral methods to compute theJ-integral are introduced. Section3 describes the proposed
implementation strategy for the domain integral method. A brief summary of the GFEM is also presented in
that section along with the proposed auxiliaryq-functionand an approach to automatically define extraction
domains. Section4 includes several numerical examples to demonstrate the convergence and accuracy of
theJ-integral obtained using the proposed high-order formulation and implementation. Solutions of mode-
I and mixed mode benchmark fracture mechanics problems are presented along with comparisons to the
available numerical solutions from the literature. Section 5 summarizes the main conclusions from this
work.

2 A High-Order Surface and Domain Integral Methods for Three-
Dimensional Cracks

2.1 Surface Version of the High-Order J-integral

Crack front parameters in 3-D problems are computed along the crack front. If we consider a pointsalong
a crack front, theJ-integral can be computed utilizing a contour path enclosing this point. Energy release
rate orJ-integral (used interchangeably herein) is stated as a vector integral (Jk, k = 1,2,3) at a points
along the crack frontLi et al. [1985], Moran and Shih[1987], Shih et al.[1986].

3



Jk(s) = lim
Γ→0

∫

Γ(s)
Hk jn jdC k= 1,2,3 (1)

whereΓ(s) is a contour surrounding a three-dimensional crack front and Jk(s), k = 1,2,3 is the pointwise
value of crack tip integral per unit advance of the crack front in the direction of crack front unit vectors
(tangential, normal or bi-normal), respectively andnnn is the outward normal vector to the contour path. We
consider a crack front coordinate system with normal (x1 or ξ ), binormal (x2 or ζ ), and tangent (x3 or η)
as also shown in Figure1. The energy momentum tensor also referred as Eshelby’s tensor Moran and Shih
[1987], is given as follows:

Hk j =Wδk j −σi j ui,k (2)

whereW is the strain energy density,δδδ is the kronecker delta tensor,σσσ is the Cauchy stress tensor, anduuu is
the displacement vector.

In three dimensional problems, pointwise value of the energy release rate is often required to compute
the magnitude of crack front advance. This can be computed due to a unit crack growth in the direction of a
vectorvvv defined at the crack front. We considermj =−n j along the contourΓ(s) in the following equation
to be compatible with the derivations in the literature [Moran and Shih, 1987]:

J(s) = Jk(s)vk(s) = lim
Γ→0

−
∫

Γ(s)
Hk jmjvk(s)dC (3)

Figure 1: A cylindrical extraction volume to compute J-integral withcrack front coordinate system.

The surface integral approach computes the weighted mean oftheJ-integral over a front segment of a 3-
D crack front. This assumption is acceptable when the crack front segmentΓc (defined betweensa < s< sb)
is sufficiently small. An alternative to this approach is to use a polynomial approximation for theJ-integral,
which is, for smooth loading and smoothly shaped crack fronts, a smooth function along the whole crack
front Andersson et al.[1995]. An approximation ofJ(s) is given byJh(s) based on Legendre polynomials
in the following equation:

Jh(s) =
N

∑
α=0

JαLα(s) (4)
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whereLα(s), α = 0, · · · ,N are Legendre polynomials defined along the crack front line andJα , α = 0, · · · ,N
are unknown coefficients. It can be realized that the first term of the approximation is the constant term
(sinceL0(s) = 1) which is also computed using the standard implementationof the J-integral as demon-
strated below. This approximation removes the restrictionfor the weighted mean value of theJ-integral and
allows for defining a high-orderJ-integral varying along the crack front, as described next.

The weighted residual method is used to extract theJ-integral from Equation (3). A residualr(s) is
defined between the exactJ-integral and the approximation of theJ-integral as follows:

r(s) = Jh(s)−J(s)

= Jh(s)+ lim
Γ→0

∫

Γ(s)
Hk jmjvk(s)dC

(5)

Employing the method of weighted residuals (by multiplyingthe residual by a weight functionwβ (s)
and integrating along a crack front segment):

∫

Γc

r(s)wβ (s)ds= 0 β = 0, · · · ,N (6)

where the weight function is also formed with the Legendre polynomials as follows:

wβ (s) = w(s)Lβ (s) β = 0, · · · ,N (7)

wherew(s) is a scalar weight function defined along the crack front and its value is zero ats= sa and at
s= sb.

Using the definition of the residual given in Equation (5) and the weight function in Equation (7), we
can rewrite Equation (6) in the following form:

∫

Γc

[

Jh(s)+ lim
Γ→0

∫

Γ(s)
Hk jmjvk(s)dC

]

wβ (s)ds= 0 β = 0, · · · ,N (8)

We can substituteJh defined in Equation (4) in the above equation as follows:

N

∑
α=0

(

∫

Γc

Lα(s)wβ (s)ds

)

Jα =− lim
Γ→0

∫

A3

Hk jmjvk(s)wβ (s)ds (9)

whereA3 is the inside surface of the tubular domain shown in Figure1 defined usingΓc andΓ(s).
Equation (9) can be rewritten in a compact form as:

N

∑
α=0

AβαJα = Fβ (10)

where

Aβα =
∫

Γc

Lα(s)wβ (s)ds

=
∫

Γc

Lα(s)Lβ (s)w(s)ds
(11)
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and

Fβ =− lim
Γ→0

∫

A3

Hk jmjvk(s)wβ (s)dS

=− lim
Γ→0

∫

A3

Hk jmjvk(s)Lβ (s)w(s)dS
(12)

The solution to Equation (10) yields the coefficients of theJ-integral approximation given by Equation
(4). Once the coefficients are obtained, then theJ-integral can be computed at any location along the crack
front. In addition, theJ-integral obtained using the approximation defined in Equation (4) is a smooth
function. It can also be noted from Equation (9) that when the number of the Legendre polynomials is
chosen as 1, we arrive at the following form of the integral:

J0 =

− lim
Γ→0

∫

A3

Hk jmjvk(s)w(s)dS
∫

Γc
w(s)ds

(13)

which represents a weighted mean ofJ(s) alongΓc. If we takew(s) = wk(s)vk(s) (thenwk(s) = w(s)vk(s)),
the standard definition of theJ-integral can be recoveredMoran and Shih[1987] as follows:

J0 =

− lim
Γ→0

∫

A3

Hk jmjwk(s)dS
∫

Γc
wk(s)vk(s)ds

(14)

2.2 Domain Version of the High-Order J-integral

The surface formulation of theJ-integral described in the previous section is not naturally suited for a three
dimensional FE implementation. An alternative form is to define a domain version of the high-orderJ-
integral. The domain version is computed in a volume enclosing the whole or a portion of the crack front
as shown in Figure1. Derivations of the domain version of the high-order domainintegral stem from the
Eshelby’s tensor or energy flux tensorHk j similar to those described in Moran and Shih [Moran and Shih,
1987].

Let
Hk j, j = bk in V (15)

whereV is any domain enclosing the whole or a portion of the crack front.

A similar procedure to the high-orderJ-integral derivations of the surface version is followed. First, a
three-dimensional weight function,qβk, is defined as

qβk(xxx) = qk(xxx)Lβ (s) β = 0, · · · ,N (16)

whereLβ (s), β = 0, . . . ,N, are Legendre polynomials.

Functionsqβk are similar to the functionqk defined for the domain version of the standardJ-integral
Moran and Shih[1987]. It possesses the same properties asqk at the boundary∂V and within the domain
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V. The auxiliary functionqk(xxx) is a smoothly varying vector field defined as follows:

qk(xxx) =







wk(s) = w(s)vk(s) on A3

0 onA1∪A2∪A4

otherwise arbitrary
(17)

We can also define an auxiliary scalar functionq(xxx) as

q(xxx) = qk(xxx)vk (18)

When the pointxxx is on the crack front, this weight function reduces to the following form:

qβk(s) = qk(s)Lβ (s)

= wk(s)Lβ (s)

= w(s)vk(s)Lβ (s) = wβ (s)vk(s)

(19)

Now, multiplying the high-order weight functions by Equation (15) and integrating over a domainV:
∫

V

(

Hk j, jqβk(xxx)−bkqβk(xxx)
)

dV = 0 β = 0, · · · ,N (20)

Using the divergence theorem, we arrive at the following form:

−
∫

V

(

Hk jqβk, j +bkqβk

)

dV+

∫

∂V
Hk jqβkmjdS= 0 β = 0, · · · ,N (21)

where∂V = A1∪A2∪A3∪A4∪A5∪A6 as shown in Figure1. The weight functions vanish onA1∪A2∪A4.
If we assume forward crack front advance and planar crack surface withinV, we can also eliminate the
surface integral contributed by the crack surfacesA5∪A6. Then, we are only left with the contributions
from the inner surface of the tube (A3). Recalling the projection of the weight function along thecrack
front (Equation (19)), we can simplify the above equation as follows:

−
∫

V

(

Hk jqβk, j +bkqβk

)

dV+
∫

A3

Hk jqβkmjdS

=−
∫

V

(

Hk jqβk, j +bkqβk

)

dV+
∫

A3

Hk jwβ (s)vk(s)mjdS

=−
∫

V

(

Hk jqβk, j +bkqβk

)

dV+ lim
Γ→0

∫

A3

Hk jwβ (s)vk(s)mjdS= 0 β = 0, · · · ,N

(22)

where the second term on the left hand side can be recalled from the surface version of the high-order
J-integral (Equation (9))

−
∫

V

(

Hk jqβk, j +bkqβk

)

dV+ lim
Γ→0

∫

A3

Hk jwβ (s)vk(s)mjdS

=−
∫

V

(

Hk jqβk, j +bkqβk

)

dV−
N

∑
α=0

(

∫

Γc

Lα(s)wβ (s)ds

)

Jα = 0
(23)
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Similar to the surface version of the high-orderJ-integral, the same compact form introduced in Equation
(10) can be used to represent the terms appearing in Equations (24) and (25). In the current implementation
for high-order domain integrals, only straight crack fronts are considered. Therefore, crack front vectorvk

is assumed constant in the following integrals

Fβ =−
∫

V

[

Hk jqβk, j +bkqβk

]

dV

=−
∫

V

[

Hk j
(

q, jvkLβ +qvkLβ , j
)

+bkqβk

]

dV
(24)

Aβα =
∫

Γc

Lα(s)wβ (s)ds

=

∫

Γc

Lα(s)Lβ (s)w(s)ds
(25)

Similarly, when the number of the Legendre polynomials are chosen as 1 (L0 = 1) and if we takew(s) =
w̄k(s)vk(s), then the standard form of the domain version of theJ-integral is recovered (q0k = qk andJh(s) =
J0) as follows:

J0 =
−∫

V

[

Hk jqk, j +bkqk
]

dV
∫

Γc
w̄k(s)vk(s)ds

(26)

If the Eshelby’s tensor is assumed to be divergence free, thebody force term defined bybk cancels in
Equation (24). This assumption is true when there are no body forces, residual stresses and thermal stresses
[Moran and Shih, 1987]. The high-order formulation of theJ-integral presented in this section is fully
compatible with partition of unity based methods (GFEM and XFEM). This approach can provide smoothly
varying crack front parameters such as theJ-integral, which might be an issue for the computation of crack
front advance in these methods.

3 Numerical Implementation Strategy

The numerical implementation of the domain integral is doneusing the GFEM. The GFEM enables model-
ing of arbitrarily located cracks within a FE mesh and alleviates the mesh design issues arising in fracture
problems, particularly in 3-D. Some important aspects of the GFEM is revisited along with a very brief
introduction. Subsequently, the numerical implementation of the high-order domain integral in the GFEM
is presented.

3.1 A Brief Summary of Generalized Finite Element Method

The generalized FEM is an instance of the so-called partition of unity [Babǔska et al., 1994,
Melenk and Babǔska, 1996, Duarte and Oden, 1996b,a] based methods. Some meshless or meshfree meth-
ods are also from the same family of partition of unity based methods. A partition of unity based ap-
proximation of a scalar scalar fieldu(xxx) can be expressed with partition of unity shape functions andlocal
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approximations as:

uh(xxx) =
N

∑
α=1

ϕα(xxx)uhα(xxx) (27)

whereϕα constitute a partition of unity (∑N
α=1 ϕα(xxx) = 1 for all xxx in the domain of analysisΩ), α is a node

in the finite element mesh anduhα(xxx), α = 1, . . . ,N, are local approximations. In the GFEM, the partition
of unity is provided by low order Lagrangian shape functions. A local approximationuhα(xxx) is given by

uhα(xxx) =
DL

∑
i=1

aiαLiα(xxx) (no summation onα) (28)

whereaiα andLiα , i = 1, . . . ,DL, are nodal coefficients and enrichment functions, respectively. The function
uhα(xxx) is a local approximation of the fieldu(xxx) defined on the support of partition of unity functionϕα .
This support (also called a cloud),ωα , denotes a subdomain where the partition of unity function for an
arbitrary nodeα is nonzero. Local approximations belong to the local spacesas follows:

χα(ωα) = span{Liα(xxx)}DL
i=1 (29)

Details of the theoretical background of the GFEM and partition of unity based methods are described in
[Babǔska et al., 1994, Melenk and Babǔska, 1996, Duarte and Oden, 1996b,a, Duarte et al., 2000, 2001].
The enrichment functions are selected such that:

L1α = 1 (30)

We can rewrite the partition of unity approximation defined in Equation (27) using the local approximation
given by Equation (28) as follows:

uh(xxx) =
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

aiαLiα(xxx) =
N

∑
α=1

DL

∑
i=1

aiαφiα(xxx) (31)

whereφiα(xxx) is called a generalized finite element function and is definedfrom the product of the partition
of unity and a local enrichment function in the following form:

φiα(xxx) = ϕα(xxx)Liα(xxx) (no summation onα) (32)

The partition of unity functions in Equation (32) (ϕα , α = 1, ...,N) in the current implementation of the
GFEM are linear Lagrangian finite element shape functions. Some other examples of partition of unity func-
tions are functions derived from moving least squares methods and Shepard functions [Duarte and Oden,
1996a] as they are used in meshless methods.

3.2 Numerical evaluation of the high-order domain integral

The numerical implementation of domain integrals in G/XFEMexhibits various challenges since their
computation can not be performed using the computational elements in a nicely structured mesh as in the
FEM. Another difficulty is the approximation of the scalar auxiliary function (q-function) representing a
virtual crack advance. These challenges along with the implementation details of the high-order domain
integral formulations are discussed next.
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In Section2, the derivations of a high-order and standard formulationsfor the computation of theJ-
integral are described. Both approaches are implemented inthe GFEM. Numerical implementation of the
high-order (Equations (24) (25)) and the standardJ-integral given by Equation (26) slightly differ from
each other only in the selection of extraction domains. Numerical implementations for the line integration
and volume integrals appearing in these equations are described in this section.

3.2.1 Construction of extraction domains

The integration domain for the computation of theJ-integral given by Equations (24) or (26) is defined
by layers of elements enclosing the crack front. This volumeis formed by adding layers of elements
at selected locations along the crack front where theJ-integral needs to be calculated. These elements
are computational elements in which element solution vector was computed during the GFEM analysis.
Stresses, displacement vector, and strain energy density from the GFEM solution can be directly used in
the evaluation of the integral appearing in Equation (24) or Equation (26) after transforming these variables
to the crack front coordinate system.

Construction of integration domain differs for the standard and high-orderJ-integral implementation.
The high-orderJ-integral approach employs a single or a few extraction domains enclosing the entire crack
front whereas the standardJ-integral is computed in a piecewise manner using sufficiently small extraction
domains. The crack front in the GFEM is discretized by segments as shown in Figure2. Each segment is
composed of two crack front vertices. In order to constitutean integration domain for the standardJ-integral
approach, a fraction of the crack front formed by two segments and three vertices are first selected. A crack
front coordinate system is chosen to be at a point in the middle of a straight line connecting the beginning
and end vertices. This point is identically equal to the middle vertex for straight crack fronts. The entire
crack front should be discretized into sufficiently small segments for curved crack fronts in order not to
introduce errors due to crack front geometry approximations. Then, the elements enclosing this portion of
the crack front (formed by two segments) is automatically added to a list, layer by layer. Finally, a bounding
box is defined to prevent outgrowing of the domain in all directions (normal, tangent and binormal at the
crack front). The elements outside this bounding box are removed from the list. The use of a bounding
box is particularly needed to trim the elements in the tangential direction so that a domain enclosing only
two crack front segments can be obtained. This procedure is repeated along the crack front to compute the
J-integral pointwise at each vertex except at end vertices ofsurface breaking cracks.

The implementation of the high-orderJ-integral selects all or a large fraction of the crack front segments
and builds a domain around the entire crack front at once. In the high-order implementation the extraction
domain may be composed of a single large domain whereas in standard domain integral requires the con-
struction of multiple extraction domains that sweep the entire crack front. Once the extraction domain is
constructed, the computation of the energy release rate is performed element by element using integration
elements as discussed in the next section.

3.2.2 Computation of volume integral (Fβ )

The pointwise value of theJ-integral can be composed of components in the directions ofcrack front
coordinate system as shown in Equation (3). Each component represents the value of the energy released
for an advance of the crack front in one of the crack front directions (normal, bi-normal, or tangential).
In order to simplify the implementation, only one componentof theJ-integral is considered in this study.
Numerical implementation is carried out assumingk = 1, hence considering only crack front advance in
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Figure 2: Crack front geometry and selection of the extraction domains for the standard domain integral method.

the normal direction. This component of theJ-integral is associated with a unit crack front advance in
the normal directionx1 as shown by the crack front coordinate system in Figure1. In the absence of
body forces, crack surface tractions, and with the assumption of crack front extension only in the normal
direction, theJ-integral reduces to a simplified volume integral.

The volume integral appearing in Equation (24) or in the numerator of Equation (26) is an integral
defined over a domain enclosing a specified portion of the crack front (composed of two segments as
discussed in the previous section) or the whole crack front for the high-orderJ-integral implementation.
Since this domain is the union of finite elements used in the computation of the stiffness matrix, solution
variables such as displacements, stresses, strains, etc. can readily be accessed. The auxiliaryq-function
introduced in Section2.2, however, needs to be defined. Theq-functionis approximated using partition of
unity functions (in this case linear tetrahedral shape functions). Assuming a crack front advance only in the
normal direction (qβ ≡ qβ1), theq-functioncan be defined as follows:

qβ (ξ ,η ,ζ ) =
4

∑
α=1

ϕα(ξ ,η ,ζ )q̂αLβ (s) s∈ Γc, β = 0, · · · ,N (33)

whereq̂α is the value ofq-functionat nodeα andϕα is a linear finite element shape function. The nodal
values of theq-functionare assigned to nodes automatically during the formation ofthe extraction domains.
The values vary from 1 at the crack front to 0 at the outside boundaries of the extraction domain. A two-
dimensional version of theq-functiondefined above was reported in [Moës et al., 1999]. The Legendre
polynomials are added to this equation for the computation of the high-orderJ-integral. This requires
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mapping from the natural coordinate system of an integration element (ξ ,η ,ζ ) to the crack front coordinate
s to compute the contribution of the Legendre polynomial.

The auxiliaryq-functiondoes not have a closed-form mathematical expression. It canvary from do-
main to domain depending on the crack front refinement level.The effect of differentq-functionson the
computed fracture parameters was studied and it has been shown that theJ-integral values computed from
moderately sized domains are insensitive to the choice ofq-functionShih et al.[1986]. Nikishkov and
Atluri Nikishkov and Atluri[1987] also used differentq-functionsin the computation of SIF’s and obtained
acceptable results for various shapes of theq-functiondefined in the domain.

The smoothness requirement for theq-functionis satisfied in a piecewise linear sense due to linear finite
element shape functions. An example of aq-functionis shown in Figure3 for a straight edge crack problem.
This figure shows the variation of theq-functionin the extraction domain. As shown, values ofq-function
are 0 everywhere at the outside boundaries and vary from 0 to 1inside the domain.

XY-cross

section
YZ-cross

section

X

Y

Z

Figure 3: Variation of the q-function in an extraction domain for an edge-crack problem. The order of Legendre
polynomials is0.

Gauss quadrature is applied to the volume integral defined inEquation (24). Each quantity in this
expression needs to be computed at the integration points and then transformed to the crack front coordinate
system using transformation matrices built between globaland crack front coordinate systems.

12



Fβ =−
N

∑
k

[

W

(

∂q
∂x1

+qLβ ,1

)

−σi j
∂ui

∂x1

(

∂q
∂x j

Lβ +qLβ , j

)]

ξξξ k

det[J]wk (34)

whereq≡ q1. The terms in the bracket are evaluated at each integration point ξξξ k (k= 1, · · · ,N). Lβ ,1 = 0
since the Legendre polynomials are one dimensional functions defined along the crack front direction,
det[J] is the determinant of the element Jacobian, andwk is a integration weight.

3.2.3 Computation of the Line Integral (Aβα )

The line integral defined byAβα in Equation (25) requires the values of theq-functionalong the crack
front. Once theq-functionis assigned to the nodes, the values of theq-functionat the crack front itself
can be computed using the finite element approximation of theq-functionin Equation (33). Independent
discretizations of the crack surface and the 3-D domain presents a challenge for finding the crack front
values of theq-function, since the crack front is not composed of finite element nodesas a part of the finite
element discretization. This difficulty is overcome by computing the values of theq-functionwithin each
element cut by the crack surface. Equation (33) is used in the approximation of theq-functionalong the
crack front. The procedure is illustrated in Figure4 for the standardJ-integral implementation. Figure4
also shows how integration points are chosen at the crack front. The variation of theq-functioncomputed
at these integration points is also shown in the same figure for two mesh refinement levels. The curves
represent a crack front advance in the normal direction, which are used to compute the line integral that
appears in the denominator of Equation (26).
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Figure 4: Variation of q-function along the crack front of an edge crack problem using the standard J-integral
approach. Crack front values of q-function are shown for twodifferent crack front refinement levels.

On the other hand, theq-functionfor the high-order implementation is built along the entireor a large
fraction of the crack front. Examples of integrandsw(s)Lα(s)Lβ (s) from Equation (25) are shown in Figure
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5. The integrand is sampled along the crack front. Only diagonal components are shown in the figure. A
numerical integration procedure is followed to compute theline integral. The number of integration points
used to sample theq-functionand the Legendre polynomials are chosen high for accurate computation of
the integral.
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Figure 5: Variation of the integrand from Equation(25) along the crack front of an edge-crack problem using the
high-order J-integral approach. In the figure,α ,β are the degree of the Legendre polynomials.

4 Numerical Examples

In this section, we analyze the accuracy of the proposed formulations and implementation approaches to
compute the energy release rate. Several benchmark fracture mechanics problems are analyzed in order to
investigate accuracy and robustness of the standard and thehigh-order formulation of theJ-integral using
mode-I and mixed mode examples with straight and curved crack fronts. Convergence analysis is also
performed to verify convergence rates of extracted energy release rate.

4.1 Edge Cracked Bar

The edge cracked bar is a very commonly used problem in the development and verification of new nu-
merical and mathematical strategies to compute energy release rate and/or stress intensity factors (SIF’s).
Li et al. [1998] solved this problem using the boundary element method. Theresults from that study are
used as the reference solution herein.Pereira et al.[2009a] solved the same problem using the GFEM with
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the Cut-off Function Method (CFM) and the Contour Integral Method (CIM). A locally refined mesh with
increasing polynomial approximation order (we refer to this approach ashp-GFEM hereafter) was used in
that study and it has been shown that thehp-GFEM can provide very accurate results and fast convergence
rates for the SIF’s. Details can be found in [Pereira et al., 2009b] and [Pereira et al., 2009a].

The edge crack problem with the same boundary conditions andgeometry [Li et al., 1998],
[Pereira et al., 2009a] is also analyzed in this section. This problem consists of arectangular bar sliced
by a through the thickness crack as shown in Figure6. The geometry is taken ash/t = 0.875,a/t = 0.5,
andw/t = 1.5. As for the material properties, linear elastic properties are used. Young’s modulus and
Poisson’s ratio are set to 1.0 and 0.3, respectively. Various local refinement levels are studied to test the
robustness of the proposed formulation and implementationfor different crack front meshes. Three ratios
of crack front element size to crack length,Le/a, are used:Le/a= 0.069,Le/a= 0.035 andLe/a= 0.017.
The results obtained using the standard domain integral implementation are referred to asJo in the figures.

X

Y

Z

X

Y

Z

w
t

2h

a

 

Figure 6: Edge crack bar subjected to uniform tensile tractions.

The extraction domains along the crack front are built usingthe procedure described in the previous
sections. During the computation ofJ-integral with the standard approach, pointwise values of the energy
release rate are computed at the vertices along the crack front except at the edges. Figure7 shows selected
extraction domains used in the computation of energy release rate along the crack front. These domains
are formed by adding 5 layers of elements to the crack front elements, the first of which is removed later
on to create a hollow domain. On the other hand, the high-order implementation can use bigger extraction
domains enclosing the whole or a segment of the crack front.
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vertex_0 vertex_4

vertex_12 vertex_16

Figure 7: Extraction domains along the crack front at vertices 0, 4, 12, and 16 of an straight edge crack.
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The energy release rate computed along the crack front usingthe standard formulation of theJ-integral
is shown in Table1 along with a comparison to the solution obtained byLi et al. [1998]. In order to
demonstrate path independency of the implementation, energy release rate computed using various domain
sizes are also included in the same table. Energy release rate is computed using domains built with various
number of layers (from 1 to 5). In all of these domains, the first layer of elements selected around the crack
front is removed from the list of elements to create a hollow domain. The results shown in Table1 and
Figure8 were extracted from a GFEM solution computed using polynomial approximation orderp= 4. As
shown in Figure8 and Table1, the results are in good agreement with the reference solution and also verify
the path independency of the solution with respect to various domain sizes used in this analysis.

Table 1: Energy release rate values computed along the edge crack front example (p= 4 and Le/a= 0.0174).

Vertex s/w Number of element layers added to domain Ref.Li et al. [1998]

1 2 3 4 5
0 -0.5 not calculated at this point
1 -0.444445 0.010348 0.010355 0.010361 0.010366 0.010370
2 -0.388889 0.011293 0.011300 0.011306 0.011311 0.011315
3 -0.333333 0.011648 0.011655 0.011661 0.011667 0.011672
4 -0.277778 0.011826 0.011834 0.011840 0.011846 0.011850
5 -0.222222 0.011922 0.011930 0.011936 0.011942 0.011947
6 -0.166666 0.011977 0.011984 0.011991 0.011996 0.012000
7 -0.111111 0.012004 0.012012 0.012018 0.012024 0.012029
8 -0.055556 0.012019 0.012027 0.012033 0.012038 0.012042
9 0.000000 0.012024 0.012031 0.012037 0.012043 0.012048 0.012052
10 0.055556 0.012019 0.012027 0.012033 0.012039 0.012042
11 0.111111 0.012004 0.012012 0.012018 0.012024 0.012029
12 0.166667 0.011976 0.011984 0.011990 0.011996 0.012000
13 0.222222 0.011923 0.011930 0.011937 0.011942 0.011948
14 0.277778 0.011828 0.011835 0.011841 0.011846 0.011850
15 0.333333 0.011648 0.011655 0.011662 0.011667 0.011672
16 0.388889 0.011298 0.011306 0.011312 0.011317 0.011320
17 0.444444 0.010345 0.010351 0.010357 0.010362 0.010367
18 0.5 not calculated at this point

The same problem is also solved using the high-order formulation of theJ-integral. Figure9 shows
the results from the solution of the same problem using high-orderJ-integral implementation in a domain
enclosing the entire crack front. The order of the Legendre polynomials varies from 1 to 7 in these examples
whereas the polynomial order of the GFEM approximation is 4.The results are compared to the reference
values obtained from the literature [Li et al., 1998]. As the order of Legendre polynomials increases, the
solution improves and approaches the reference values. However, it is important to note the fluctuations in
Figure9 at the center section likely to be caused by the behavior of the J-integral near the vertices of the
crack front. In order to address this problem and improve theextracted values at the vertices, the crack front
domain is partitioned into three separate extraction domains: at the two vertices and at the center. The same
high-order domain integral formulations are used to extract energy release rate at these domains. Figure10
illustrates the results at the center and vertex domains, separately. The extraction domains used to compute
the J-integral are also shown as inserts to this figure. The order of Legendre polynomials are chosen
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Figure 8: Energy release rates computed using the standard J-integral implementation with the results from a refer-
ence solution for the edge crack bar exampleLi et al. [1998].

compatible with the order of approximation at the center domain. Since the order of approximation is 4 and
the domain integral integrand contains the derivatives of the solution, the order of Legendre polynomials
is chosen 3 at the center. Higher order Legendre polynomialsare used at the vertices to capture the sharp
gradients ofJ at that regions. As shown in Figure10, a very good match between the reference solution
and the high-order domain integral is achieved at the centerand at the vertex domains. The boundary layer
behavior of theJ-integral is clearly captured.

Another objective of this example is to check if optimum convergence rates can be recovered using
the proposed formulation and implementation of the domain integral method. Convergence analysis with
the GFEM was shown to be exponential for strain energy and SIF’s Pereira et al.[2009a], in which SIF’s
were computed using the CIM and CFM in locally refined meshes.Polynomial order of the approximation
was increased on strongly graded meshes (p-convergence). A very similar approach is also followed in
this study. The mesh is fixed at three crack front refinement levels and the order of the polynomial ap-
proximation is increased fromp= 1 to p= 4. Crack front elements are locally refined to the levelsLe/a
ratios around 0.069, 0.035, and 0.017, respectively. The value of the energy release rate computed at the
middle of crack front (s/w= 0) is used in the convergence analysis. Since there is no analytical solution
for the problem at hand, an extrapolation procedure based ona-priori error estimatesSzab́o and Babǔska
[1991] is used to compute reference values for strain energy and the energy release rate ats/w = 0. The
extrapolation is performed using three solutions obtainedfrom the finest crack front mesh and approx-
imation ordersp = 2,3,4. Details on the extrapolation procedure are described inSzab́o and Babǔska
[1991]. The computed reference value of strain energy and energy release rate areUref = 0.343555489
andJref(0) = 0.01206851. Figure11 demonstrates the results from this convergence exercise. The figure
shows the relative error in the strain energy and energy release rate with respect to the number of degrees
of freedom. The slope of the curves are also illustrated as aninsert to Figure11. Similar convergence
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Figure 9: High-order J-integral computed for the edge crack problem using whole crack front domain (pL : polyno-
mial order of the Legendre polynomials).
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Figure 10: Comparison of high-order J-integral computed for the edge crack problem partitioning crack front to
edge and center extraction domains (pL : polynomial order ofthe Legendre polynomials).
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patterns repeats itself for the three crack front refinementlevels verifying the reliability of the formulation
and implementation.
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Figure 11: Convergence analysis of strain energy and energy release atthree different crack front refinement levels
(Le/a= 0.069, Le/a= 0.035, and Le/a= 0.017) for the edge crack example (U: strain energy).

4.2 Center Slanted Crack

The second example consists of a slanted crack inserted in a finite size plate. The objective of this example
is to illustrate the capabilities of the GFEM with the proposed domain integral implementation in solving
a mixed mode fracture problem. Figure12 shows the problem geometry and crack surface used in this
problem. The bar is subjected to uniaxial remote tensile tractions. Young’s modulus and Poisson’s ratio are
taken as 1000 and 0.33, respectively. This problem was also solved by Cisilino and OrtizCisilino and Ortiz
[2005] using a Boundary Element Method.

Locally refined meshes are used for the solution of the problem. Figure13shows a comparison between
the results obtained from the standard domain integral and the reference valuesCisilino and Ortiz[2005].
Crack front elements are locally refined to the level ofLe/a ratio around 0.014.

The results from the high-order domain integral formulation are also compared to the reference results
found in the literature. Similar to the edge crack example, the order of Legendre polynomials are increased
from 1 to 7 to compute theJ-integral along the slanted crack fronts. The entire crack front domain is used
as extraction domain to compute theJ-integral. The results are shown in Figure14. The approximation of
J-integral is in good agreement with the reference values. The best results are obtained when the order of
Legendre polynomials is chosen as 7.

Similar to the edge crack example, the crack front domain is also partitioned in edge and center extrac-
tion domains to improve the solution at the edges. Figure15illustrates these results. The order of Legendre
polynomials is chosen compatible with the order of approximation at the center domain. Legendre polyno-
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Figure 12: Center slanted crack in a plate subjected to uniaxial tensile tractions.
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Figure 13: Comparison of the energy release rate computed along the crack front with the results from a reference
solution for the center slanted crack exampleCisilino and Ortiz[2005].

21



0.020

0.024

0.028

0.032

0.036

0.5 0.6 0.7 0.8 0.9 1.0
s/t

E
n
e
rg

y
 R

e
le

a
s
e
 R

a
te

 (
N

/m
m

)

Ref. (Cisilino and Ortiz, 2005)

pL = 1

pL = 3

pL = 5

pL = 7

Figure 14: Comparison of high-order J-integral computed for the center slanted crack problem using whole crack
front domain (pL : polynomial order of the Legendre polynomials).

mials of higher order are used at the crack front vertices to capture the gradient ofJ that occur there. As
shown in Figure15, the solution is improved at the vertices similar to the results presented for the edge
crack problem.

A convergence analysis is also performed. The order of the polynomial approximation is increased from
p = 1 to p = 3 for various crack front refinement levels. Crack front elements are locally refined to the
levels ofLe/a ratios around 0.057, 0.029, and 0.014, respectively. The value of the energy release rate
computed at the middle of the crack front (s/t = 0.5) is used in the convergence analysis. Reference values
for strain energy and energy release rate are obtained usinga similar approach described in the edge crack
example. The computed reference value of strain energy and energy release rate areUref = 0.032271775
andJref(s/t = 0.5) = 18.71918381. Figure16 shows the results of this convergence analysis. The slope of
the curves are also illustrated as an insert to Figure16.

4.3 Circular Crack in a Finite Size Domain

In this section, a circular crack of radiusa located at the center of a finite domain is considered. The
problem geometry and the circular crack are illustrated in Figure17. The objective of this problem is to
test the robustness of the domain integral implementation for a curved crack front. The standard domain
integral formulation is used for this example. A curved crack front poses a challenge in building extraction
domains which can result in greatly unstructured and irregular meshes. This problem was also solved by
Li et al. Li et al. [1998]. The crack is located at the center of a cube whose width is 2w. Crack size
proportionality is taken asa/w = 0.5. The domain is subjected to an axial uniform tension,σ . Young’s
modulus and Poisson’s ratio are taken as 1 and 0.3, respectively.

The problem is analyzed using the GFEM and the values of energy release rate are computed along the
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Figure 15: Comparison of high-order J-integral computed for the center slanted crack problem by partitioning the
crack front to edge and center extraction domains (pL : polynomial order of the Legendre polynomials).
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Figure 16: Convergence analysis of strain energy and energy release atthree different crack front refinement levels
(Le/a= 0.057, Le/a= 0.029, and Le/a= 0.014) for the center slanted crack example (U: strain energy).
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Figure 17: Circular crack in a cube subjected to uniform tensile tractions.

curved crack front at each vertex. Similar to the procedure followed in the previous examples, crack front
elements are locally refined to the levels of ratiosLe/a around 0.0884, 0.0442, and 0.0221. The polynomial
order of approximation varies fromp= 1 to p= 3. The reference solution for stress intensity factor is given
by Li et al. [1998] the following:

Kref
I =

2.213
π

√
πaσ (35)

A reference value for the energy release rate is then computed using

Jref =
1+κ
8µ

(Kref
I )2 (36)

whereκ is the Kolosov constant andµ is Lame’s constant.

The results obtained from the GFEM solution at the highest refinement levelLe/a= 0.0221 and polyno-
mial enrichment orderp= 3 are normalized by this reference solution to obtainJ/Jref. Extraction domains
are formed by adding three layers of elements to the crack front. The results are illustrated in Figure18.
Selected extraction domains used in the computation of energy release rate are also shown in this figure. It
can be observed that the extraction domains can sometimes take very unstructured and irregular shapes. In
spite of that, the results are in good agreement with the reference solution, demonstrating the robustness of
the methodology used.

The convergence of the energy release rate is also compared to the strain energy convergence. The
strain energy results and the energy release rate values areobtained from three refinement levels and the
polynomial order mentioned earlier. The results are shown in Figure19 with respect to the number of
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Figure 18: Normalized energy release rate along the crack front for thecircular crack example.
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Figure 19: Convergence analysis of strain energy and energy release atthree different crack front refinement levels
(Le/a= 0.088, Le/a= 0.044, and Le/a= 0.022) for the circular crack example (U: strain energy).

4.4 A Non-Planar Crack Example

The final example consists of a non-planar crack inserted in afinite size plate. The objective of this ex-
ample is to illustrate the capabilities of the GFEM with the proposed domain integral implementation in
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solving a mixed mode fracture problem with non-planar cracks. As discussed in Section2.2, our current
implementation neglects the integrals over cracks surfaces A5 andA6. These integrals are non-zero in the
case of non-planar crack surfaces. However, if the crack surface curvature is moderate within the extraction
domain, the contributions from these surface integrals will be small. We test this conjecture in this example.
The extraction domains adopted in the computations are shown as inserts in Figures21 and22.

Figure20 shows the problem geometry and crack surface used in this problem. The non-planar crack
has a circular arc shape with radius,R, and angle 80◦. The plate is subjected to uniaxial remote tensile
tractions. Young’s modulus and Poisson’s ratio are taken as1000 and 0.33, respectively. This problem was
also solved by Cisilino and OrtizCisilino and Ortiz[2005] using a Boundary Element Method. Similar to
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Figure 20: A non-planar circular arc crack in a plate subjected to uniform tensile tractions.

the previous examples, this one is solved using the high-order domain integral formulation. The results
are obtained from the GFEM solution at refinement levelLe/a= 0.0135 and polynomial enrichment order
p= 3. Figure21 illustrates theJ-integral computed using the whole crack front as extraction domain. It
shows how the extractedJ-integral evolves with increasing order of Legendre polynomials. However, as
in previous examples, theJ-integral cannot be captured well near the crack front edgeswhere it exhibits a
strong gradient. Therefore, partitioning the extraction domain is also required in this example to capture
edge behavior. Figure22 illustrates the results when the extraction domain is splitinto three subdomains;
at the two edges and at the center of the crack. High gradientsat the edges can now be captured. The order
of Legendre polynomials at the edges is taken as 7 in order to capture the boundary-layer behavior at those
regions. On the other hand, an accurate approximation of theJ-integral at the center of the crack front can
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be achieved with quadratic polynomials.
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Figure 21: A comparison of the J-integral computed using high-order domain integral using varying orders of Leg-
endre polynomials and the whole crack front as extraction domain.

5 Conclusions

A high-order domain integral method is presented. The domain integral method is used as a post processing
technique to compute energy release rates along curved and straight 3-D crack fronts. The proposed imple-
mentation is compatible with the G/XFEM type of partition ofunity based methods. A high-order domain
integral method is formulated based on an approximation of the J-integral using Legendre polynomials.
This technique yields theJ-integral as a smoothly varying function along the crack front, which can be
advantageous during propagation of crack fronts in 3-D fracture problems. A smooth function representing
the stress intensity factors or energy release rate along a 3-D crack front can facilitate smooth propagation
of the crack front segments. It is shown that the high-order domain integral reduces to the standard domain
integral method when the order of the Legendre polynomial istaken as zero.

Special attention is given to the construction of extraction domains. The extraction domains consist of
existing computational elements in which solution variables are already accessible. This implementation
approach, using union of elements for the extraction domain, is particularly advantageous and yet chal-
lenging for partition of unity based methods such as GFEM/XFEM since the crack is independent of the
problem discretization. The proposed implementation usesan element-by-element integration scheme in
which discontinuities of the integrand across computational element boundaries and the crack surface are
fully accounted for.
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Figure 22: A comparison of the J-integral computed using high-order domain integral using varying orders of Leg-
endre polynomials and partitioned crack front as extraction domains.

28



The example problems are solved following the standard and the high-order domain integral formulation.
Several benchmark problems are analyzed in order to examinethe robustness, accuracy, and convergence
of the proposed implementation. Ap-convergenceanalysis is presented for problems with straight and
curved cracks. In order to test the accuracy, results are compared to those obtained using other numerical
techniques available in the literature. It is also shown that the proposed implementation possesses the
property of domain independence.

Partitioning crack front extraction domains into edge and center domains is shown to be useful to capture
the strong gradient of theJ-integral near crack front vertices. The number of extraction domains along a
crack front is, from the proposed formulation point of view,arbitrary. The numerical experiments presented
in Section 4 show, however, that if a single extraction domain is used, very high order of approximation
for the J-integral must be used. Thus, it is more computationally efficient to break the crack front in a
few extraction sub-domains in the case of surface breaking cracks since theJ-integral has, in general, a
strong gradient near the breaking points while being smoothaway from them. The selection of the size
of these extractions domains is flexible and a quasi uniform sub-division of the crack front can be used as
demonstrated in the numerical examples presented in Section 4.

The J-integral, as presented in this paper, can not extract stress intensity factors from a mixed mode
problem. Extensions of the current formulation aimed at overcoming this limitation are under investigation
by our research group and will be reported elsewhere.
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