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Abstract

This paper investigates the application of the Generalizeile Element Method with global-local
enrichmentsGFEM?') to problems of transient heat transfer involving localifeatures. Th&FEM?!
is utilized in order to numerically construct general, spliy-tailored shape functions yielding high lev-
els of accuracy on coarse FEM meshes. The use of time-depiesitpe functions requires that the
system of equations be discretized temporally first, and gpatially in order to properly account for
the time-dependency. The standardnethod is used for the time integration scheme. The trahsie
three-dimensionaBFEM?' is then applied to a laser heating example in order to denatrsts ability
to resolve localized, transient features on a fixed, coamsghmConvergence analysis of the proposed
method and as well as applications to heterogeneous niatexial moving heat sources are also pro-
vided.

1 Introduction

Many applications areas in engineering practice invoheahalysis of structural behavior with multiple
scales of interest. The analysis of structures subjectiadignse, time-dependent, localized thermal loadings
is the subject of interest in this work. The motivation foistiparticular investigation is the analysis of
localized heat sources on the skin of hypersonic flight tekicPossible interactions of shock waves can
cause severe, localized thermal loadings, exhibitingmsbeadients. The characterization of the resulting
thermal loadings and pressure distributions, as well asffeet of these loadings on the aeroelastic behavior
of the vehicle itself has been an active topic of researcledemt yearsl, 21, 22, 30, 39, 40, 43]. The
most severe potential shock wave interference patterreigtimey Type IV shock wave interaction, which
is a bow shock/cowl shock interaction which may occur on &aegling edge of a wing.

While hypersonic flight vehicles is the motivating case fastwork, the methodology proposed here may
be applied to any of a number of practical situations invavintense, and highly localized heat sources.
Numerical modeling of laser heating4, 46] of metal plates and the resulting thermo-mechanical &ffec
of the intense localized heat source is another potentabfapplication. Computational weld mechanics
[26, 44] is yet another potential application area of interest, ol only a small portion of a much larger



structural element is subjected to a very localized heatcgouln the afore-mentioned application areas
the use of highly refined meshes is required to resolve thaifml temperature fields, resulting in active
research into methods which are more computationally efftqjparticularly for fully 3-D simulations), and
do not require the immense computational resources to rmnlations requiring excessively high mesh
density.

We propose to use the Generalized Finite Element Methodghathal-local enrichment function&SEEM?')

[14] to circumvent the need for highly refined meshes, and restble sharp localized gradients on fixed,
coarse meshes, thus making the 3-D transient analysis lossenarios more computationally feasible. The
work presented in this paper is an extension of the methggaeveloped in32], extended for the analysis
of time-dependent problems.

The proposed method is not unique in the use of time-depéstape functions, as numerous other methods
also allow for the evolution of shape functions in time. Thee functions used ir2§] evolve to follow

a thermal spike as it propagates throughout the domain. @aMder et al. 41] use time-dependent shape
functions for geothermal applications involving sharpdieats. Two methods, one based on a simplified
analytic solution, and the other, an iterative optimizatiwethod to properly parameterize a Gaussian shape
function are presented in order to construct speciallpitadl shape functions to solve large-scale problems
that involve very localized behavior. In this way, their bysés is similar to those presented in this research,
but a major difference is found in the construction of thecggdeenrichment functions. In this work we
numerically build appropriate enrichment functions basethe solution of local boundary value problems;

a procedure which may be used when no a-priori knowledgetabesolution is available.

Time-dependent shape functions are also utilized by Waisamal Belytchsko42] to efficiently solve
boundary layer problems by adapting the shape functiongftect the underlying physics of the prob-
lem that is to be solved. Chessa and Belytscl#{sdlve the problem of axisymmetric two-phase flow in
which a time-dependent level-set function is used in ordérack the moving interface between the fluids.
Time-dependent level-sets are again used by Chessa ansg@gdy P] within a space-time finite element
context in order to solve the linear wave equation as well@g&’s equation. Fries and ZiliadJ] offer

a detailed formulation for the use of time-dependent ennight functions in a semi-discrete finite element
context. They solve Burger's equation along with the adweeetliffusion equation using both space-time
finite elements as well as the semi-discrete finite elemettodeutilizing time-dependent shape functions.
Fries and Zilian offer a detailed convergence analysis véfipect to spatial as well as temporal errors.

In the next section, we discuss the formulation of the gawgrequations, i.e. the heat equation. A brief
presentation of generalized finite eleme@FEM) approximations3, 4, 15, 31, 3§] is provided in Section

3. Section4 presents the discrete system of equations to be solved basatbk time integration algorithm
used. Sectioi provides a detailed account of the model problem to be ifgagstd in this paper. Output
obtained from standarBlEM [34, 47] is presented along with data obtained fréFEM analyses of the
same problem. Motivated by the potential to solve the prmohlising specially-designed, but more general
shape functions, we present the formulation of the Germm@lFinite Element Method with global-local
enrichmentsGFEM?) for time-dependent heat transfer problems in SediiocBection? provides detailed
analyzes of the model problem and two other numerical exasnpbking th&FEM?' to study the method’s
ability to effectively control the error in the solution. &lfinal section then provides the main conclusions
and future directions for the current investigation.



2 Problem Formulation

Consider a domaif ¢ R® with boundarydQ decomposed a8Q = ¢ Ul s with T¢I = 0. The strong
form of the governing equation is given by the 3-D heat equati

Jdu :
peo = O(kOu) +Q(x,t) in Q 1)
whereu(x,t) is the temperature fielgyc is the volumetric heat capacity af@g{x,t) is the internal heat
source. In the general cagejs the thermal conductivity tensor, but in this paper, oslytiopic materials
are considered, therefore the thermal conductivity is ipexescalark = k (X), and the material need not
be homogeneous.

We consider convective and Neumann boundary conditionscpleed onl ¢ andT ¢, respectively. The
boundarydQ =TI andl ¢\ = 0. At any timet, the normal flux is prescribed as

Jdu _
—K%:r}(u—u) on TI¢ (2)
Ju —
- %:f on rf (3)

whereu andn are the prescribed fluid temperature and convective caaificiespectively.

Dirichlet boundary conditions can be treated as a limitiagecof convective boundary conditions by select-
ing a large value for the convective coefficientThis leads to the well known penalty meth@j. [

The initial conditions must also be satisfied

u(x,0) =w’(x) at t° (4)

whereu’(x) is the prescribed temperature field at time t°.

3 Generalized FEM Approximations

Historically, polynomials have been used to approximatefions and it has been shown that they have
good approximation properties. Methods based on polynspeeg., the Finite Element Metho&EM),
have been successfully used to approximate solutions adustypes of PDEs. Nonetheless, classical
methods like the FEM require extremely refined meshes tooxjpate the solution of the class of problems
considered in this paper. In contrast, the GeneralizeddiElement MethodGFEM) is a Galerkin method
that allows the use of non-polynomial approximating fumes. These approximating functions can be
carefully chosen to mimic the properties of the unknown fiomcto be approximated. ThH8FEM [3, 15,

31, 38] is an instance of the partition of unity method which hasitigins in the works of Balika et al.

[3, 4, 28] (under the names “special finite element methods”, “gdirafinite element method” and “finite
element partition of unity method”) and Duarte and OdE®) [L8-20, 31] (under the namedip clouds” and
“cloud-basedpfinite element method”). Several meshfree methods can alormulated as special cases
of the partition of unity method.

The construction of the approximation space (i.e., théspace) to be used in tHeFEM consists of three
components — (a) patches or clouds, (b) a partition of unaitg (c) the local approximation spaces. We
describe these components as follows:

(a) Patches or Clouds:For a parameteh > 0, let {wa}'g,'(:h% be sub-domains of the underlying domain



Q c RY of interest. We assume that for each valud,of
Q == Uzl:lwa,

and that any € Q belongs to at modtl of the setsw,, whereM is independent oh. The sub-domains
wq are called patches or clouds. In the generalized finite elémethod, aw, is given by the union of the
finite elements sharing nodeof the finite element mesh coverity Clearly,{wo,}g:1 is an open cover of
Q, and each patcty, intersects with at mos¥l of other patchesy, .

(b) Partition of Unity: Let { @4 ’j\‘:l be piecewis€! functions defined 0@ satisfying

N
«X) =1, VxeQ
a;¢ (x) XC

Itis clear that{ ¢4 }N_, is a partition of unity with respect to the open coyes }_; .
(c) Local Approximation Space3o each patclw,, we associate am,-dimensional spacg, of functions
defined onw,, namely,

Xa =spafLqi, 1<i<my, Lai € HY(wq)}-
XaS are called local approximation spaces. We assume that)gaclntains constant functions. The
functions iny, are also known asnrichment functions
The trial space for th&FEM is given by

N
SFEMQ) = S PaXa = spar{ i = Palai, 1<i <mg, 1< a <N}
a=1

The function
Gai (X) = P (X)Lai(X) (no summation omr), (5)

wherea is a node in the finite element mesh, is calleGREM shape function. Figuré illustrates the
construction ofGFEM shape functions in a two-dimensional domain.

Enrichment functions We first note that the role of the partition of unity is to “pasbgether” the func-
tions in x4, which are defined locally only omy, to obtain a global function it*(Q). The enrichment
functions inx, are chosen carefully to mimic the properties of the functmbe approximated, locally in
wy. This is often done by using the available information onapproximated function. Choosing suitable
local approximation spaces for a particular problem isreg it the approximation property &FEM. This

is particularly clear from the main approximation resulGFEM [3, 4, 28], which could also be stated as

(see p]):
Theorem: Let ue H(Q). Then there is y, € S°FEM such that

N
2 ; 2
[Ju—Unpllizq) < Cazzlulg(a U= Ua[F1qyy)

It is clear from the above result that the quality of the glady@proximationun, of u is governed by the
quality of the local approximation af by the functions iny, .

The GFEM has been successfully applied to the simulation of bounidgmers [L3], dynamic propagating
fractures 6], singularities [L5], acoustic problems with high wave numbér;, R7], polycrystalline mi-



(@) (b)

Figurel: Construction of a generalized FEM shape function using supaiial (a) and a non-polynomial enrichment
(b). Here, ¢, are the functions at the top, the enrichment functiong, hre the functions in the middle, and the
generalized FE shape functiong,i, are the resulting bottom functions.

crostructures36], porous materialsJ7], etc. All these applications rely on enrichment functiomsy,
derived analytically using a-priori knowledge about thedtions to be approximated. These so-called cus-
tom enrichment functions are able to provide more accunaterabust simulations than the polynomial
functions traditionally used in the standard FEM while xa&ig some meshing requirements of the FEM.
However, for many classes of problems—like those consitiarthis paper —enrichment functions with good
approximation properties are, in general, not amenabl@abytical derivation. In this papewe propose

to remove the limitations of existing generalized finitaredat methods for the solution of time-dependent
problems exhibiting highly localized sharp, transientrthal gradients Details are provided in Sectidh

4 Timelntegration and Discrete Equations

In this section we discretiz&)in a finite element context. In the first formulation we detcre the equations
first in space, and then in time. With this formulation stggtethe algorithm is appropriate for analyses
which do notinclude time-dependencies in the shape functions. Fordke with time-dependent shape-
functions it is important to discretize the equations finstime, and then in space, as is discusse®,2,
41]. The formulation for time-dependent shape functions lsssguently presented 2

4.1 Formulation 1: Discretizing Heat Equation Spatially, then Temporally

A standard formulation for time-integration of first ordpgrabolic equations can be found in many finite
element method books, one such instancei$. [ The formulation in B5], given by Reddy starts with a
system of spatially discretized equations asan &nd utilizes the finite difference assumption . (

M |'_|”+1 + Kun+1 _ fn+1 (6)



™t = u" At [au™ (1 a) U] 7)

Equation 7) is used to eliminaté&™! from (6), yielding the discrete system of equations used for time-
integration:
M+ aAK]u™™ = M — (1— o) AK]u" + At [ar £ 4 (1—a) £7] (8)

where terms associated with convective boundary conditeoa omitted. The potential draw-back of this
particular formulation is that it starts from a spatiallisctetized system, in which the quantities have pre-
viously been defined as

M = /Q @oc () dQ 9)
K :/ Dok (D)7 dQ (10)
Q
=5+ 3 (11)

where@ is the vector of finite element shape functiofisis the domain of interest anaf* is the solution
vector att =t"1 = (n+ 1)At. In (11) the quantities are defined as

n: n dQ

Q /QQ‘P

fl= [ f edr
I

whereQ" = Q(x,t") and fn= f_(x,t”).
The previous formulation is the widely usedmethod, suitable for transient heat transfer simulatibos
the formulation is in no way modified to incorporate the uséroe-dependent shape functions.

4.2 Formulation 2: Discretizing Heat Equation Temporally, then Spatially

In this section we discretize the heat equation first in tithen in spacef, 23, 41]. With this formulation,
the algorithm is appropriate for the use of time-dependeaps functions. We start our formulation with
the strong form of the governing equation:

pC%ZD-KDU—FQ (12)

We then multiply the equation by a weighting functiew,and integrate over the domai,
Ju
/ wpc—dQ = / (wO- kOu+wQ)dQ (13)
Ja ot Ja

We perform integration by parts on the first term of the rightid-side, and move the domain integral to
the left-hand-side of the equation. The boundary term isolefthe right-hand-side with the applied source
term.

/ WpC@—I—DW-KDU dQ = WK@dr—l—/WQdQ (14)
Q ot o  0On Q

We now discretize the equation above in time. To this end wkuse the following finite difference



approximations, yielding the generalized trapezoidal rafa-method, used for our time-marching scheme.

ou un—»—l —un

o M (15)
U™ = (1—a)u"+ aqu™? (16)
Plugging (L5) and (L6) into (14) yields the temporally discretized equation
un+1_ un
/ <WPCA—t + 0wk [a0Ou™ + (1 a)Du”]) dQ
Q
n+1 n do ‘ dun+l ou" d
= 1-—- 1—-a)—|dlr 17
fwla@ s a-a@oa [ wela®s @] a7)
We will first consider, in detail, the boundary termsa@@ = ' as follows:
utt ou" = T
/ WK |a +(l—a)—} dr =a [ wi™dr+@1—a)/ widr+a /[ wno™idr
Fle} on I M Me
—a [ wpu™ldr +(1—a) [ wnu'dr —(1—a) [ wnu'dlr (18)
Me e Me

We now rearrangel(?) with the proper boundary terms§) such that terms involving™* are moved to the
left-hand-side, and all known terms (those not dependemt up!) are moved to the right-hand-side.

i/Wpcu”“dQJror/ Ow- kOu™dQ+a [ wnuidr
At Q Q le

= i/ pcwd“dQ—(l—a)/ DW-KDu”dQ+a/WQ“*ldQ+(1—a)/WQ”dQ
At Jg Q Q Q

+a [ wi™ldr 4+ (1—a) ‘Wf_”dr+a/ wnu™dr +(1—a) [ wna'dr
I I e e

—(1—a) [ wnu'dr (19)
e

At this point, we have our system of equations fully disaedi in time. For the spatial discretization, we
use generalized finite element shape functions which mag tiae-dependencies. At any given ting,

we defineu” (x,t") = @" (x,t") - u" (t"), whereu" (t") is the vector of degrees of freedom, apti(x,t") is

the vector of finite element shape functiong"atDue to the potential time-dependent nature of the shape
functions, it is very important to properly select the déttration for the weight functiony [23, 41]. In

our implementation, we neeas to be consistent across each term Od)( To this end, we discretize the
weighting functionw using finite element shape functions at titfiel. In the afore mentioned equations,
w=w (x,t1) = @M (x, tM) . wH (t1). We will now discretize {9) on a term-by-term basis using
the previous discretizations.

/QpCV\PHu”HdQ _ (Wn+1)T /Q ¢n+1pc (¢n+1)T dount! — (Wn+1)T M LgnL (20)

/QpCV\PHundQ _ (Wn+1)T/Q¢n+1pc(¢n)T dou" — (wn+1)T ML (21)



/ WL kOu™ido — (Wn+1)T/ D™k (D(pn+1)T dou™! — (wn+1)T K g+l (22)
Q Q

/Q OW L kOu'dQ = (W) T /Q g™ ik (D" dQu” = (W) T KLy 23)
/QWnHQanQ _ (W”H)T/Qtp”“Q”“dQ _ (w”*l)T ot (24)

/Q wiQld = (whh)T /Q g = (wth)T £ (25)

/r‘f WL — (\N”“)T i @1 gr = (\N”“)T frd (26)

5 wHLFRdr = (W) 5 @HHdr = (W) T o 27)

5 WL = (w”*l)T /rc @i (‘pn+1)T dru™?! — (W”H)T MLy (28)
A W LWdr = (w”*l)T /rc @ n (¢")Tdru’ = (w”*l)T ML (29)

/rc AW = (wn+1)T /rc @l G idr = (V\P“)T fot (30)

[ nwrar = (wr )T /r C @ andr = (W) e (31)

Since equation1(9) must hold for any admissible weight functiow it must hold also for anw™?!. As
such, we can pose the fully discretized system of equati®ns a

[AitM”’Ll%—aKnH%-OIMQH} Ul [AitMn-&-l,n_ (1— a)K™0_ (1— q)MIFLn | g

+afd (- o) f5 M af (- a) T o (1 a) £ (32)

More concisely, we can re-write the above equation as:

{A_ltMnJrl_'_ aRn+1:| Un+l _ [éMn+l’n B (1_ a)Rn+1,n:| Un+ a'f*n+1+ (1_ CT) fn-&-l,n (33)
where A~ - -
KT =K M7t (34)
RnJan _ Kn+1,n + M2+1,n (35)
fn+1 _ fg-i-l_'_ f&+1_|_ f2+1 (36)
fn-i—l,n _ an+1,n+ f&+1,n_|_ f(r:1+1,n (37)



In all of the above equations! are known values obtained from the solutiotfatt is noted that if the shape
functions are not time-dependeM™?! = M™10 = M, KL = KMLn =K fg“’” — 2, fR" = £ and
f01N — £0 it is further noted that if the convective boundary termsamitted, 83) is equivalent to§).

For the analyzes presented in the subsequent sectiongltteeofa is taken asr = 1, yielding the uncon-
ditionally stable, Backward Euler algorithm. As such, otilg non-symmetric capacity matrikj " is
required, and it need not be assembled directly. The veetorM "*1"u" can be computed as

whereu" = (¢")" u", is theGFEM solution from time step”.

5 Modd Problem

The problem selected for verification of ti#-EM involves a sharp spatial gradient in the temperature field
(39), as well as in the resulting source ter#@). There is also a temporal gradient, but it is smooth in reatur
This particular problem is taken fro@ 9], with the modification that we are assuming a stationaryrtiad
spike.

u(x,t) = (exp*V("”‘O)2 +sin (%)) sexpV  O0<x<L (39)
Q1) = peac )~k Ta(x), (40)
The initial and boundary conditions are given #i) and @2), respectively.
u(x,0) = exp "* ) 4 sin (T[Tx> , (41)
u(0,t) = u(L,t) =0, (42)

In the above equationgy = 125mm L = 500mmandy is a parameter controlling the roughness of the
solution. Unless otherwise indicated, the valueya$ taken as D. The material properties are taken as

thermal conductivityk = 1 and volumetric heat capacifyc = (g)2 The one-dimensional solutio9) is
plotted in Figure2. The parametex, defines the location of a thermal spike. From the temporabgtaint,
the solution undergoes a smooth, exponential decay in time.

Below, the heat equation witQ given by @0), initial and boundary conditions given idX) and @2),
respectively, is solved using 1-, 2- and 3dF-EM discretizations.

The exact internal energy,(t), in the solution domai is given by
U(t) = / (kOu) - (Ou) dQ, (43)
Q
while the internal energy of th@ FEM solution at timd" is given by

Unplt") = [ (KDWY (0u) 402 (44)
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(a) Reference solution in space and time. (b) Time slices of reference solution at increasing titne,
Figure 2: Temperature field described {89).
The discretd_ norm ofU (t),t € [0, tsnal, is defined as
) 1/2
ol ={3 a2} (45)
n

where the summation is performed over each time 8tep |0, tinail-
The relative error obpp(t) in the discretd, norm is given by

) 2y /2
LEMT (U (1)) = [[Uexac(t) — Unp(t)||2 _ {Zn (Uexac(t") —Unp(t")) } (46)

HUexad(t)HZ Xn (Uexacl(tn))z
This quantity can serve to tell how well tl&FEM and exact curves for internal energy versus time match
up.
5.1 GFEM Simulations Using Special Enrichment Functions

In this section we present results for simulations of the @pdoblem using special, exponential enrichment
functions. The set of enrichment functions applied to nodesse support intersect the spikexat xg is

Lai = {1, * ,eXp‘(X‘X")Z} (47)
hq

wherex, is the x-coordinate of the node and, is a scaling parameter equal to the size of the largest
element sharing the nodéq, 31]. The resultingGFEM shape functions built using) and @7) arenot
time-dependent. Nodes whose support do not intersect tke ape enriched with

X — Xg
Lai:{l, h } (48)

which leads to quadrati@FEM shape functions in the—direction.
For the 1-D discretizations, a coarse mesh consisting d®nimlong elements and a fine mesh with 200,

10



2.5 mmlong elements are used. A comparison of element sizes fee tmeshes is shown in Figuse The
coarse mesh uses enrichments)(and has only 14 degrees of freedom while the fine mesh uség (on
enrichments48) and has 402 degrees of freedom.

h =100 mm

h=25mm

0 20 40 60 80 100 120 140 160 180 200
mm

Figure 3: Comparison of element sizes for 1-D meshes with and withqpatreential enrichment.

For the 2-D discretizations, a coarse and a fine mesh withesligsrof length Gnmand 25 mmin the
x—direction, respectively, are used. In the 3-D case, theseodine) mesh has elementsndn(3.125mm)

in thex—direction near the spike, but 20min thex—direction in regions far from the spike in order to save
some computational effort. Nodes of the 2-D and 3-D coarsshe®whose support intersect the thermal
spike are enriched with functiong?) while nodes of the fine meshes uses (only) enrichmei@s (

The simulation results are compared in Tabla order to illustrate the benefit of the special enrichménts
terms of accuracy and efficiency. As can be seen in the tdi#des is a significant reduction in CPU Time,
as well as in the relative errdcg™" (U (t)), for the meshes that use exponential enrichments, eveglthou
the elements are larger than in the meshes without expahentichments. It should also be noted that the
size of the elements in the 2- and 3-D discretizations wito@ential enrichments is restricted mainly due
to our ability to accurately integrate the sharply varyingree terms, as well as the exponential term in the
shape functions. Internal energy versus time curves attedlm Figure4 for 1-, 2- and 3-D simulations.

Table 1: Comparison of output for discretizations with and withoxp@nential enrichment functions. In the tablg, h
stands for element size in the-direction.

Exponential Enrich.  fimm) L§™"(U(t)) CPU Time (sec) Dimension

Yes 100 5.58e-5 0.0203 1-D
No 2.5 0.1979 4.5097 1-D
Yes 6 0.0019 1.640 2-D
No 2.5 0.1974 15.580 2-D
Yes 6 0.0076 1.230 3-D
No 3.125 0.1874 10.455 3-D

5.1.1 Effect of Volumetric Heat Capacity Magnitude

The previous results correspond to a volumetric heat cgpaci= (77/L)?, yielding a value opc = 3.9e— 5

for the model used here. With a very small valugoofthe transient effects are kept to a minimum. In this
section, the effect of larger values@t on the accuracy of the internal energy is investigated. freigshows
the internal energy versus time curves for discretizatimiisg exponential enrichments, for larger values of
pc. Table2 summarizes the relative erras5"™" (U (t)), obtained for larger values @fc for discretizations
with and without the use of the exponential enrichment fiamst For each value gfc investigated it is
seen that the addition of the special, exponential enrictifumction greatly improves the error levels by

11
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—— 1D, Exponential Enrichment, h = 100 nj

—— 2D, Exponential Enrichment, h = 6 mm
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Figure 4: Plot of internal energy versus time for the 1-, 2-, and 3-Dcoktizations with exponential enrichments.

inserting the necessary information into the solution epanabling a high degree of accuracy on a relatively
coarse mesh. The accuracy, however, decreases asd the transient effects, increase.

) I I
N -
N\,
N
\_ @@ Exact
- b B 1D, pc = 3.9e-5
1
\p\ &9 1D, pc=10
\ A—A 3D, pc = 3.9e-5
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Figure 5: Internal energy versus time curves generated with exp@iamtrichment functions and increasing values

of volumetric heat capacity .

Time
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Table 2: Effect of volumetric heat capacity magnitude.

Exponential Enrich.  E™"(U(t)), pc= ’fz LS™"(U(t)), pc=10 Dimension

Yes 5.58e-5 0.0115 1-D
No 0.9920 0.9920 1-D
Yes 0.0076 0.0250 3-D
No 0.8772 0.8654 3-D

5.2 GFEM Simulations Using Special, Time-Dependent Enrichment Functions

In this section, the same problem as in the previous sedisalved, but now a time-dependency is inserted
into the exponentidbFEM shape functions through the use of the following enrichnbaisis

Lai = {l, X; Xa Lexp ) wexpt } (49)
a

With time-dependency inserted in the shape functions,dbbees important to distinguish which formula-
tion, described in Sectio#, is being used. We first investigate the use of time-depérsteape functions
with Formulation 1 in which the heat equation is first disiaed spatially, and then temporally (cf. Section
4.7). In other words, we seek to investigate the effect on smhugiccuracy of using the standardmethod
as commonly formulated with no specific modifications to aeowdate for shape functions evolving in
time.

Figure6 shows the internal energy versus time curves for variousegabfpc using Formulation 1. As can
be seen, as the value pt is increased, the changes in the capacity matrix due to taegihg enrichment
functions become more significant. With very small valuepothe problem behaves similarly to solving
a series of steady-state problems, with no real thermatiheffects being evident. It is seen from the
plots that the time-dependency causes a deterioratiomibghavior of the algorithm for large valuesg.
Therefore, Formulation 1 isot appropriate for time-dependent shape functions.

With the previous results in mind, the performance of Foatiah 2 (cf. Sectiont.?) is investigated. With
the Transient Formulation 2, we see significantly improvelddvior in the internal energy versus time curves
for 1-D simulations with large values pt, as shown in Figuré. Table3 shows the significant improvement
of the L5™"(U(t)) for each value opc investigated. Figur® shows the dramatic improvement obtained
using Formulation 2 in 1- and 3-D simulations.

Table 3: Output for Elements with Time-Dependent Exponential Emmient Functions.

Dimension pc L§™"(U(t)) Form. 2 L§™"(U(t)) Form. 1

1-D 10 0.0115 0.5537
1-D 50 0.0121 0.5584
1-D 100 0.0122 0.5590
3-D 10 0.0250 0.4139

From the previous analysis it is convincing that accuraselts can be generated for transient simulations
involving localized heat sources on coarse meshes. In gernbis is only possible provided that an en-
richment function with good approximation properties igiable, and the proper transient formulation is
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Figure 6: Internal energy versus time curves generated with 1-D ar?l iBeshes enriched with time-dependent

exponential enrichment functions and Formulation 1.
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Figure 7: Internal energy versus time curves generated with 1-D tiiggendent exponential enrichment functions,
large values opc, and Transient Formulation 2.
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Figure 8: Internal energy versus time curves generated with 1- and t8¥i2-dependent exponential enrichment
functions.

used. In the general case, no such enrichment functionsnasgrka priori. As such, we propose to gen-
erate enrichment functions on the fly via the solution of ldz@aundary value problems as in tiGFEM
with global-local enrichmentl@FEMY). The transient formulation for th@FEM?' is provided in the next
section.

6 GFEMY for Time-Dependent Problems

In this section, we present a procedure to build enrichmemdtfons for the class of problems governed by
the heat equatiori}, subjected to boundary conditior§ @nd @) and initial conditions4). A formulation

for the GFEMY' for steady-state heat transfer, along with applicatiomsbeafound in B2]. The formulation
and application of th6&FEM?' to three-dimensional elasticity equations can be founddn7, 25).

In the GFEMY for time-dependent problems, we assume that an approximadi *(x) of the solution
u(x,t) at timet =t""1 = (n— 1)At is available. An approximationd(x) of u(x,t") is computed using
Formulation 2 of Sectiod.2. Equation (9) with a = 1.0 leads to the following problem:

Findu € £TEM"(Q) c HY(Q) such thaty wR, € SoFEY"(Q)

pc / WALULAQ + / (OW2)TKOIURdQ + / Uwidr =
At Q Q le

pe / WUl 1do + / fadr +n / wadr + / WAQ'dQ (50)
At Jo Jry e Q

whereSgr EM"(Q) c HY(Q) is the generalized FEM space at time stepThe enrichment functions in
QFEM’”(Q) are defined in local spaces and have to be computed; we descfibe-scale problem in the
next subsection to achieve this goal. Note that the samezippaition space is used for tii&-EM solution
ug and the weight function as discussed in Secti@n2. The mesh used to solve proble&t) is typically

a coarse quasi-uniform meskyen when the solution is not smodroblem 60) leads to a system of linear
equations for the unknown degrees of freedorngpf
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6.1 Fine-Scale Problemsat Timet"

The propose@GFEM? involves the solution of a fine-scale boundary value probdefined in a neighbor-
hood Q_ of thermal spikes, where strong solution gradients develldpe local domair2, is composed
of the union of cloudswv, of the open covel{wo,}’g,':1 of Q that intersect or are close to a thermal spike.
A-posteriori error estimate measures can be used to d@firmit that is beyond the scope of this paper.

Having the global approximatiouf; at timet", we compute the following fine-scale problem@p to find
enrichment functions for the spagg™ ="""(Q):

Findu? € S°7EM"(Q) c HY(QL) such thaty w? € STFEM(Q))

/ (OuD)T KOWPdQ + 1 uPwidr —
Jo, 0QL\(0QLNT )

n / wwidr +n @ lwddr +
ﬂQL\(dQLﬂdg) 0Q, Nl

/ QM widQ + flandr (51)
JQu JOQLNT ¢

where °75M"(Q, ) is a discretization ofi1(Q, ) using, e.g., standa@FEM shape functions. It is possible,
however, to use other methods, like the standard FEM or thm@&ary Element Method, to solve fine-scale
problems.The proposed methodology enables one to select the maghafimethod for the particular class
of fine scale problem considered. Thus, the methodologgidyhilexible and general

A key aspect of problent(l) is the use of the coarse-scale solution at time 8tgy, as boundary condition

on dQ\(dQ.NaQ). In the numerical experiments presented in Secfiothe parameten is taken as a

penalty number. Thus Dirichlet boundary conditions areossgd ondQ( \(dQ. NT¢). Exact boundary

conditions are prescribed on portionsd®_ that intersect eithelr; or I'1. Another key point of problem

(52) is that no transient effects are considered. However,ahecs functionQ, and the boundary conditions
ondQ. NlcanddQ, NT; are computed at time stép. The rationale for this is thaf is used to define

the global solution space at tif&™1, as described in the section below.

6.2 Scale-Bridging with Global-L ocal Enrichment Functions

The solutiony, of the fine-scale problem defined above is used to build géined FEM shape functions
defined on a coarse global mesh:

@ (%) = a (X)uf (x) (52)

where the partition of unity functionp,, is provided by a globalcoarse FE mesh andi has the role

of an enrichment or basis function for the patch spggéw,). Hereafter,ul' is denoted alobal-local
enrichment functionThe globalGFEM space containing shape functiogg* is denotedsa’ ~"""(Q).
The coarse scale probler() is solved forug+1 € ﬁFEM’”H(Q) and the procedure is repeated at each
time step. Th&&FEM? for time-dependent problems is illustrated in Fig@rd he global solution provides
boundary conditions for fine-scale problems while localisohs are used as enrichment functions for the
coarse problem through the partition of unity frameworkrefGFEM.

Let us point out thabnly a few degrees of freedom are added to the global (coscake) discretization even

if the computation of the fine-scale solution requires savilousands of degrees of freedsinceu; is a
known function at time steff"*1. The global problem is solved on tlwearseglobal mesh enriched with
the shape functions defined iBd). These functions are hierarchically added to the FE digetion, and
thus, a few entries are added to element matrices while kgepiisting ones associated with standard FE
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Functions

Boundary
Conditions,

Figure 9: lllustration of theGFEM®' for time-dependent problems. The global domain is diszeeltivith a coarse
mesh, even if the solution is not smooth. The coarse-scalggmn at f provides boundary conditions for local
problems containing sharp thermal spikes. The solutiome$é problems are used to build approximation spaces for
the coarse-scale problem at tim& .

shape functions. The hierarchical nature of the globakllearichments can be exploited in the solution of
the global problem and avoid the solution of the problem femmatch at every time step. This is in contrast
with available adaptive finite element methods.

Iterative Improvement of Global-L ocal Enrichment Functions A key feature of the methodology de-
scribed above is the use of available information at a sitimriastept” to build the solution space for the
next time step, i.e., th&FEM spaceE‘éFEM’”*l(Q) containing the GFEM solutioug“. The coarse-scale
solution at time step’, ug, is used as boundary condition 8@\ (9Q. N dQg) for the fine-scale problem
(5) instead of the unknown exact solution at titfie. As a result, the error af! depends not only on the
discretization used in the local domdn, but, also on how much the solution of the problem changes at
2Q\(0QLNIQc) between time steps. The effect of the inexact boundary tiondion the accuracy of

u can be addressed by repeating the above procedure at eachieim

(i) Use the solution of the global problenf* € SE"="""1(Q) as boundary conditions for the fine-scale
problem £1) at timet";

(if) update global shape functiors?j and global solution spatﬁFEM*”“(Q).
(iii) solve the coarse scale problefd) for u% ™ € Sg =M (Q).

(iv) Go to step (i) if the accuracy (MQ_;+1 is not acceptable; proceed to the next time step otherwise.

In Section7.2.1, the effect of time-step size on the accuracy of @EM? is investigated.

The performance of th&FEMY when solving transient heat transfer problems with sohstiexhibiting
highly localized sharp thermal gradients is investigateithe next section. As a note, a quasi-static solution
is obtained at time” to enforce the initial conditions}(). This is simply the solution of Poisson’s equation
since no time-dependency is required. Again, more detéithe formulation for steady-stat8FEMY!
analysis can be found ir3f].
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7 Numerical Experiments Using GFEMY

7.1 Numerical Experiment 1: Model Problem Utilizing GFEMY in 3-D

In this section we apply the transieBFEM? to the model problem as posed in Sect@nWe use the
same mesh as was used for the simulations with exponentighament functions, i.e. elements with a
width of 6mmin the x-direction. With this approach we can be assured that the difference between
the two analyses is the actual shape function itself, whethee analytic or numerically generated. The
local domain, in this instance, is selected to be the entiraan, a very poor choice in the general case,
but it ensures the use of exact Neumann boundary conditiotisei local domain, free of any potential
numerical pollution. The goal of this example is to verifyafisient Formulation 2 with th6 FEMY'. The
local domains are subjected lieextensions, in which high levels of refinement are used twdglly in the
region of the spike, resulting in highly graded local meshils a uniform, orthotropic polynomial order of
(pX7 Py pz) = (47 1, l)'

Figure 10 shows global internal energy(t), versus time curves. In Figurk, as well as subsequent
figures, one level of mesh refinement indicates one localizesh refinement cycle in which the marked-
edge algorithm1, 7] is used for the bisection of the tetrahedral elements. Thewetric heat capacityc,

is taken as de— 5. Transient Formulations 1 and 2 provide nearly identieallts in this case and only
curves computed with Formulation 1 are shown. The effectdiray global-local enrichment functions is
significant. The figure shows that the errorld(t) can be controlled through mesh refinement in the local
problem, thus avoiding refinement of the global mesken when no a-priori knowledge about the exact
solution is used

I I
@@ Initial Global Mesh Lﬂ

B 7 levels of localized refinemen
& 11 levels of localized refineme|

8000 A—A Exact
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Figure 10: Plots of internal energy versus time f6BFEM?' solutions with increasing levels of mesh refinementin local
problem. The volumetric heat capacity is takernpas= 3.9e— 5. All curves computed with Transient Formulation 1.

As was the case in Sectidn2, we now increase the value pt and analyze its impact on the behavior
of the solution. As is shown in Figurgl, we again see that as the valuegf is increased, the quality

of results provided by Transient Formulation 1 deterigdiecause of the time-dependency of the shape
functions used in th&FEMY. Results obtained fro8FEM?' simulations and Transient Formulation 2 are
also shown. From the curve corresponding to Formulationcgn be seen that the time-dependency of the
shape functions are once again properly accounted fodiggeimuch more accurate results. The relative
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error in internal energy for Formulations 1 and 2 &6™" (U(t)) = 0.4266 andL5™" (U(t)) = 0.0271,
respectively, whemc = 10.

10000,
@@ pc =3.9e-5, L2 Error =0.0193 B
| pc =10, L2 Error = 0.4266 (Formulation|1
8000 ¢ pc =10, L2 Error = 0.0272 (Formulation|2]
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Figure 11: Plot of internal energy versus time for GFEMsolutions in 3-D forpc = 3.9e— 5 and pc = 10. For
pc = 10 both transient formulations are investigated. The curvelie exact solution is given $9) and (43), and

is independent gbc.
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7.2 Numerical Experiment 2: Beam Subjected to Stationary Laser Flux

In this section, the transie@®FEM?' is applied to a beam subjected to a normal, surface flux. Wy &pp
methodology first to an Aluminur¢Al) beam, and then to a Silicon Carbit&C)beam, both subjected to a
Gaussian laser fluxs@), the shape of which is shown in Figuté.

Flux
oo [ N w £ o o ~ [oe]

\\\\\\\\\\\\\\\\\\\\\
~

o“‘“‘

0.6

Location
Figure 12: Spatial and temporal variation of the Gaussian lasge(10).

The applied Gaussian laser flux is modeled ad.ij, [taking the form:

f(x,t) = lox f(t) = 2—nlaz +G(x,b,a) (53)
f(t) =1—exp—yxt) (54)
G(x,b,a) = exp<_();a_2b)2) (55)

In the above equations, the constants take the valu%Z95w a=0.025n, y=10.0s"1, b= 9.3in.

From this analysis we seek to determine the effect of theevafwc for simulations in which the beam has
material parameters similar to those of an actual engingenaterial. Tabld shows the values used for the
material parameters in the numerical simulations.

Table 4: Material Parameters.

Material K(ftﬁl@bf) pc(ft—lbf)

sin-°F in3.°F
Al 2.92 18.3
SiC 1.32 15.6

The beam itself is of dimension 220.5 x 0.24 inches, in thex—, y— andz—direction, respectively, and
the global mesh is shown in Figui&. Flux boundary conditions given b¥8) are applied to a portion of
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the top surface of the beam aD& x < 10.0, 0 <y < 0.5, z= 0.24, as noted in the figure. The rest of
the boundary is subjected to convection boundary conditfpn with n = 11/-PL andu= 70°F. In this
example we seek to simulate a situation in which the appbtedihg evolves to a steady-state localized,

sharp, surface flux as time progresses.

Figure 13: Global mesh used for the beam model. Flux boundary conditioa denoted by red arrows.

Steady-State Convergence Analysis We first analyze the steady-state version of the problenmrithest
above. In this case we apply the maximum value of the lase(iflerx the value off (x,t) whent — ), and
solve Poisson’s equation for steady-state heat conduction

A reference internal energy value is obtained using a semuehsixhp-GFEM discretizations. Thép-
GFEM is based on polynomial enrichments only and mesh refinerhenthe relative difference in internal
energy between two successive solutions,l.zf,{%*yL anduﬂ“p, be given by
m m-1
yDiffm . [Yip—Ynp |
Unp

whereum;1 andU{f;) are the internal energy of thg-GFEM solutionsu~* andu™ , respectively.

hp hp?
Figure 14 shows the relative difference in internal energh?™™  versus problem size of discretization
m. The last discretization in the sequenu?gf’, has 821412 dofs, a uniform polynomial order @f = 3,

andUP™m=5 — (1076). Based on these results, the reference internal energken et = Um):5 =
2.85756.

Figure15 shows the relative error in the energy norm igeGFEM and GFEM? solutions. In the case of
the GFEMY' the horizontal axis shows the element size inlteal domain The global mesh is the one
shown in Figurel3. As a result, th&sFEMY' discretization has, D20 dofs regardless of the local problem
size In contrast, the number of dofs in the-GFEM is in the rangd1,000— 190,000. For this problem,
only one global-local iteration is required, as the bougidamnditions in the local domain are sufficiently
accurate, and a second iteration did not appreciably ingotios error level achieved. It may be noted that
in all numerical examples presented in this paper, no itaratbetween global and local problems aimed
at improving the enrichment functions are required. Basethe results presented i87] it is reasonable

to assume that if additional iterations are required, iikisly that they will only be needed at the first time
step to take care of numerical pollution effects. No itenagito select the local domain size are performed
either. In fact, as demonstrated B], increasing the size of the local domain does not necdgsaprove
the quality of enrichment functions for the class of proldesonsidered in this paper.

As was the case with thep-GFEM, a uniform polynomial order op = 3 is used in thé&SFEMY analysis.
As can be seen from the plot, the-GFEM achieves a convergence ratef»f 3.07, as compared to the
optimum convergence rate @, = 3.0. TheGFEMY' achieves a slightly lower, yet comparable conver-
gence rate o = 2.61. In both cases, a sufficiently refined mesh must be usedler tw approach optimal
convergence rates. This is due to the roughness of the@oluti
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Figure 14: Relative difference in energy between any two successi@HEM solutions, ™M, versus problem size
of discretization m. Analysis performed to determine eiee value for steady-state internal energy.

In the discretizations used in this paper, btpeGFEM solution spaces contain the global-local enrichment
functions used in the definition @FEM?' solution spaces. However, most of the enrichment functisesl

in the definition ofhp-GFEM spaces do not belong ®@FEM?' solution spaces. As a result, the convergence
rate of theGFEMY' may be lower than the one in thg-GFEM when the same element sizes are used in
the local problems and in thg-GFEM discretizations. Figuré5 shows a representative behavior of these
methods. Not only the convergence rate but also the errtveieergy norm of th€ FEM?' is comparable

to thehp-GFEM when the same element size and polynomial order are use@ hptBFEM and in the
local problem for thaSFEMY'.
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Figure 15: Convergence of the relative error in the energy norm. Cogeece rates off = 3.07 and3 = 2.61 are
obtained for hp6FEM and GFEM?' analyzes, respectively.
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Transient Analysis. Determination of Reference Solution A reference solution for the transient case is
obtained using the same approach as in the steady-statetase thehp-GFEM discretizations use high
levels of local refinement and a non-uniform, non-isotrgpanrichment strategy in which the entire global
domain has g-order of (px, py, pz) = (3,3,3) with a local region around the laser flux withy, py, pz) =
(4,3,4). The relative difference in thie, norm of the internal energy between two successive solsiteay
upn *(t) andufi(t), is computed using

: um(t) —Uum™ Lt
L2Dn°f,m(U )= I hP(HLr%(thh( )2

whereum;l(t) andUyi(t) are the internal energy of the-GFEM solutionsuhmgl(t) andup,(t), respec-
tively, and the discretk, norm is defined in45).

(56)

Figure16 shows the relative difference in the norm of the internal energjagiﬂ'm (U(t)), versus problem

size of discretizatiom. The last discretization in the sequemﬁﬂ has 359003 dofs andL?”f'm:7 U()) =
0(1077). Based on these results, the reference internal energyes tele(t) = Ur’]TF‘,:7(t).
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Figure 16: Relative difference in the discrete horm of the internal energy,zqi_ﬁ'm(u (t)), versus problem size of
discretization m. Solutions are computed using the3EM.

With a reference curve for the internal energy defined, we analyze theAl beam. All of the results
presented from this point forward are generated using T@ahBormulation 2 since the shape functions of
the GFEM? are time-dependent. THBFEM?' solutions are generated using meshes with ond2@ dofs
and solution accuracy is improved through the usé-ektensions in the local domain. Figut& shows
local meshes with increasing levels of refinement aroundaser flux. The local domains are generated
as described in32], with seed nodes selected from a bounding box from mif8.2, 0.0, 0.0] to max

= [10.6, 0.5, 0.24], and localized refinement used in a bounding box from mif8.7, 0.0, 0.0] to max
=[9.7,0.5,0.24]. It may be noted that the dimension of the local domain remairchanged, and merely
the levels of localized refinement is increased.

Results obtained for thél beam generated with tf@FEM?' are plotted in Figuré8. This figure shows that
the internal energy versus time curves converge to the preference curve as the global-local enrichments
are improved through mesh refinement in the local domairmihe figure, it is also apparent that the time-
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(b) 5 levels of local mesh refinement.
(a) 3 levels of local mesh refinement.

(c) 7 levels of local mesh refinement. (d) 9 levels of local mesh refinement.

Figure 17: Local meshes used f@FEM? simulations, increasing levels of local refinement are used

dependency of the enrichment functions is properly acemlifdr.
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Figure 18: Internal energy versus time curves for Al. Solutions comguiith GFEM?' on a fixed global mesh and
h-extensions in the local domain.

Figure 19 shows the convergence in th™" norm of the internal energy for tteFEMY andhp-GFEM.
The error normL§™" is computed using4©) and the reference internal enerfdy¢(t). It should be noted
that in the case of thep-GFEM, the shape functions are not time-dependent. The measooefutational
effort is taken as the “element size”, referring to the widtthex-direction,hy, of the elements in the region
of high refinement. For thiep-GFEM “element size” of course refers to elements in the globalaiapwhile
for the GFEMY' “element size” refers to the width of the elements used indbel problems, because the
width of the elements in the global domain remains constant 0.5in. As can be seen from the plot, at
a given element size, thg-GFEM produces solutions with slightly better accuracy, but ieslso at the
increase in the number of dofs used in the simulation. Thebmuraf dofs in thehp-GFEM is in the range
[10,000— 30,000 while the GFEM?' discretization has,D20 dofs. The convergence ratgs,and error
levels are very comparable for both methods. This behasigeiy similar to the steady-state case shown
in Figure15. The p-enrichment strategy for thep-GFEM is (py, py, Pz) = (3,3,3) globally, with a local
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region around = b where(py, py, pz) = (4,3,3). For theGFEM? simulations(py, py, pz) = (3,3,3) in the
global domain, andpy, py, pz) = (4,2,2) in the local domain.
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Figure19: Convergence in§™" (U (t)) for internal energy versus time curves generated witlf&iEM andGFEMY',

Figures20and21 show the convergence in the relative error in the energy ribrirfor a single point along
the curveUpp(t), at timest = 0.5secandt = 1.0seg respectively. Again, we see that in the lower error
ranges, théxp-GFEM delivers slightly better accuracy at a given element sizetimet = 0.5secwe see
that both thenp-GFEM andGFEM? deliver the same convergence rai@sand at timet = 1.0secthe hp-
GFEM has a higher convergence rate, but the rate is still com[gaveth that obtained with th&FEMY',
This behavior is, again, very similar to the steady-stase cown in Figurés.

[Unp(t) — Uret (t)|lE B Unp(t) — Uret (1) 1/2
luert)le ( Uref(t) ) (57)

Analysisof Beam with Material Heterogeneity \We now apply the transie@FEM? with Transient For-
mulation 2 to simulations involving material heterogene8everal different beam materials are investigated
for the same beam model. In the first case, the beam is assorbedrtade entirely dAl. In the second case,
the beam is assumed to be made entirelgi@. In the third case, the beam is assumed to be a composite
made up ofAl and SiC, with the volume fraction oSiC, Vsic, taken to be constant through the thickness
of the beam, withVsic = 0.5. Cases 4 and 5 assume a variatioWgt through the thickness of the beam,
according to the following power law

AR
Vsic = V&' o™+ (Vé?cp - sbi%“om) (ﬁ) (58)

whereV2otom andv P are the volume fraction of silicon carbide at the top anddsotfaces of the beam,
respectively, taken a‘s(é?é’ = 1.0,V§i%“°m: 0.0; y is they-coordinate of the material point, ardis the
height of the beant) = 0.24in. Simulations are run using= 1,3, corresponding to through-the-thickness
variations ofVsijc shown in Figure22. A summary of the material composition of each case analized
provided in Tableb.
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Figure 20: Convergence in energy norm for IGFEM and GFEM?' solutions at t= 0.5sec.
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Figure 21: Convergence in energy norm for IGFEM and GFEM?' solutions at t= 1.0sec.

Table 5: Material Composition for Each Case.

Case Material Yic
1 Al 0.0
2 SiC 1.0
3 Al-SiC 0.5
4 Al-SIC  Power Law (g=1)
5 AlI-SiC  Power Law (g =3)
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Figure 22: lllustrates the through-the-thickness variation gfdfor the values of q used in the simulations.
For the cases in which the beam is assumed to be a Functigdi@tjed Material (FGM) (cases 4 and 5),

the values of the effective material propertigsg).; ; andker s are homogenized using the rule-of-mixtures
(59) and the Mori-Tanaka metho@(), respectively 10, 24].

(PC)ett = Vsic* (PC)sic+ (1 —Vsic) (PC) (59)

(Kal — Ksic) * (1 —Vsic)

Kal —Ksi
1+Vsic g <

(60)

Ketf = Ksic+

In all cases, reference solutions are computed using the pamcedure described earlier for tAebeam.
Results obtained using tt8FEMY' for Cases 1 and 2A( and SiC), the two base materials selected for
analysis are plotted in Figu8. The figure shows the convergence in H§€°" norm of the internal energy
for the GFEMY. As can be seen from the figure, good convergence behavibtaied for Cases 1 and 2.

Figure 24 shows the internal energy versus time curves for the firstdages. As we would expect, the
material with a smaller thermal conductivity has steepadgmnts in the solution, and thus more internal
energy. In the figure, th&FEMY curves are not visible in the plot because they fall on toppGFEM
reference curves.

Results for the through-the-thickness temperature Higions are provided in Figui&s. The figure shows
the convergence in tHg™"**™u(x)) value for the through-the-thickness temperature distiobs attfia)
for Cases 1 and 2, as defined below

errortemp _ HU(X, Y, Zn) - Uhp(X, yvzn)HZ
) = T e

where then temperature values are taken(aty,z) = (9.3,0.25,2"), with 2" = [0.0, 0.2, ..., 0.24], and|.||2

is the discretd, norm defined in45). From the figure, it is apparent that good convergence hehiss
obtained for this error parameter. Figweshows the actual through-the-thickness temperaturetiarga
attsina for each of the 5 cases. For each of the plots provided, sokd Indicate reference curves generated
with the hp-GFEM, and glyphs indicat6&FEM?' data. TheGFEM?' data fall on top of the referendep-
GFEM curves.

(61)
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Figure 23: Convergence in §'(U(t)) norm of the internal energy for theFEM?' as applied to Case 1 (Al) and
Case 2 (SiC).
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Figure 24: Internal energy versus time curves for Case 1 (Al) and CassiQ)(computed wittGFEM?' and hp-
GFEM. Reference curves generated using@BEM are shown using solid lines while tt@FEM?' data are shown

using glyphs.
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Figure 25: Convergence in thednorm of through-the-thickness temperature distributifmishe GFEM?' as applied
to Case 1 (Al) and Case 2 (SiC).
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Figure 26: Through-the-thickness temperature distributions:gtt for each of the 5 Cases. For each of the plots,
solid lines indicate reference curves generated with th&REM, and glyphs indicat&FEM?' data.
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Table 6 summarizes th&5"™" norm of the internal energynp(t), as well as the through-the-thickness
temperature distributions &, for each of the 5 Cases. As can be seen from the GEEM?' results are

in good agreement with the referertgg GFEM results for each of the five cases in terms of internal energy
versus time as well as for through-the-thickness temperaiurves atsing.

Table 6: L5™" values for each trial investigated 51°" (Temp) is computed afital-

Case Material Type £ (Temp) L™ (Internal Energy))

1 Al 1.15e-3 4.18e-4
2 siCc 1.34e-3 7.31e-4
3 Vsic=0.5 1.26e-3 5.07e-4
4 q=1 1.76e-3 1.12e-2
5 q=3 2.42e-3 1.53e-2

7.2.1 Effect of Time-Step Size

In this section we analyze the beam with material proped@sesponding t&\l, or Case 1, and varying
time step sizesit. For theGFEMY simulations, there is a lag in the boundary conditions agpio the
local domain due to the fact that in the generation of theclmmient function used at the global domain at
time t"*1, the Dirichlet BCs are taken from the global solution froméit", whereas the Neumann BCs
and heat source are taken from the prescribed data at'titheAs such it is reasonable to investigate the
accuracy of th6&FEMY results relative to those generated withGFEM for different time-step sizes, so as
to investigate whether or not the lag in the boundary conulitiresulting from the size @t has a negative
impact of theGFEM?' solution quality. Figure@7 shows the value df5''" for the GFEM andhp-GFEM
simulations. In this instance we are not plotting tempoaaivergence with respect to the size/f as for
each point on the plot, the time-step size is the same foGFEMY simulation considered, as well as for
thehp-GFEM simulation used as reference.

0.005

0.00375— _

L2 Diff

0.0025 _

0.00125— _

| | | |
0 0.0125 0.025 0.05 0.1 0.12¢
At

Figure 27: Plot of L2Diff for hp-GFEM and GFEM?' simulations with different sizt.
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In this instance, we define the valueL@jff as

| Diff _ [[Unp(t) —Ugi (1) ]2
2 [Unp(t)]|2

(62)

whereUpp(t) andUg(t) are the internal energy computed with thie GFEM and GFEMY, respectively,
and|. . is the discrete., norm defined in45). Both thehp-GFEM andGFEMY curves are generated on
meshes with 7 levels of refinement around the laser flux looatrom the plot it can be seen that ttféff
value is, at least for this problem, relatively insensitivéhe time step size used, and the lag in the boundary
conditions applied to the local problem from the global soluatt" do not cause a problem in terms of the
quality of the local solution, even when a largéris used.

It is reasonable to assume that there &t aialue which is large enough to deteriorate the local boyndar
condition quality and to significantly impact the accuratthe GFEM?' solution. It is not obvious however,
how this At value governing the severity of the boundary condition laghpares with the value aofit
required for sufficient accuracy of the transient simulaticegardless of whether tt@FEM? or the hp-
GFEM is used. This type of convergence study is beyond the scofieafurrent work, but will likely be
the focus of future investigation.

7.2.2 Effect of Time-Rise Constant, y

We now seek to investigate the effect of the time-rise carsjeon the ability of the transiefBFEM? to
deliver accurate results. The material properties usetisrsection correspond #l, referred to previously
as Case 1. Figurg8 shows the spatial and temporal variations for the Gaussiamfheny = 50.

x 10

I
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‘QR{e\\:me\\\‘&\\&\\eM\\m\‘&m\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Flux
oo - N w > (4] (2] ~ o]

Time

Location

Figure 28: Spatial and temporal variation of the Gaussian laser flyx=(50).

In this instance, the intensity of the flux ramps up much mareldy in time as compared to Figure,
resulting in a larger gradient in the internal energy vetsug reference curve for the model problem, as
shown in Figure29. In the figure, a reference curve generated usipFEM is shown using a solid line
while the GFEMY' data are shown using glyphs. TEBFEM?' data fory = 50 once again falls on top of
the reference curve. The curves corresponding+ol0 are also provided to illustrate the difference in the
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evolution of the internal energy with respect to an incraasg In both instancesy = 10 andy = 50, 9
levels of localized refinement are used.
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— y=50- hp-GFEM
B vy =50-GFEMAg
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Internal Energy

le+06
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Figure 29: Internal energy vs time curves for solutions obtained wittetrise constany = 10andy = 50. Reference
curves generated using (BFEM are shown using solid lines while ti@&EM?' data are shown using glyphs.

The convergence in tH&™" norm of the internal energy is shown in Figi@for y = 10 andy = 50. From
the plots it can be seen that in both cases good convergehegibeis obtained, with differences only at
very low error values. In both cases ™" value is driven below one percent relative difference.
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Figure 30: Convergence in thes™" norm of the internal energy for GFE®as a function of element size in local
problem.

The convergence in tH&" norm of the through-the-thickness temperature distritouis shown in Figure
31for y= 10 andy = 50. The temperatures are taken from the same location ampsvnoted. From
the plots it is again seen that good convergence behavidttésned, with differences only at very low error
values. In both cases th§"" value is once again driven below one percent.

The evolution of the through-the-thickness temperatus&itutions in time are shown in Figur82 and
33for y = 10,50, respectively. From the figures it can be seen thay fer50 the temperature distributions
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Figure 31: Convergence in theS'™® norm of through-the-thickness temperature distributibtxiaa as a function of
element size in local problem.

att = 0.3,0.65 seconds are closer to the steady-state curves than tht@eeal withy = 10, as would be
expected.
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Figure 32: Evolution of the through-the-thickness temperature itigtion for the beam witly = 10.
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Figure 33: Evolution of the through-the-thickness temperature itigtion for the beam witty = 50.
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7.3 Numerical Experiment 3: Beam Subjected to Moving Laser Flux

In this section we analyze the same beam model as in the psewigth material properties corresponding
to Al, or Case 1 in the previous section. In this example, the egdiser flux increases in time, as well as
moves in space, as shown in Figa#

Location Time

Figure 34: Flux applied to the beam.

The applied Gaussian laser flux function now takes the form:

Fxt) = I+ f () # 27ia2 £GXb(t), a) (63)
f(t) =1—exp—yxt) (64)

(v 2
G(x,b(t),a) = exp<%) (65)
b(t) = bo+Vt (66)

In the above equations, the constants take the values295%, a=0.025n, y=10.0s"1, bp = 9.25in
andVv = 0.5;—2(:. The reference solution in this section is generated ugn@FEM with high levels of local
refinement and cubic shape functions, resulting in a model 483 635 dofs. TheGFEM?' solutions are
once again generated using meshes with on02Q@ dofs and solution accuracy is again improved through
the use oh-extensions in the local problem.

Figure35 shows the internal energy versus time curves foilGREM?' simulation as well as thep-GFEM
reference curve. ThREFEMY curve is again difficult to see because it falls on top of tiferemce curve.
Nine levels of mesh refinement were applied to the local roblised with th&SFEMS' The L§™" error
norm of the internal energy for t@FEM? simulation is 601e— 4, indicating excellent agreement between

the GFEMY' solution and the referen¢e-GFEM solution.
Figures36 and37 show snhap-shots of the solution at different times througtite simulation foGFEM?'
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Figure 35: Internal energy vs time curves for solutions obtained with@ving source.

solutions andhp-GFEM solutions, respectively. It is of greatest interest to hgitt the ability of the
GFEMY' to resolve the transient, moving, thermal spike on elemeish are significantly larger than
the width of the spike itself, as shown in Figusé. By contrast, Figure37 illustrates the ability of the
hp-GFEM to resolve the moving spike as well, but with the requirenera significant increase in the
mesh density. As such, there is great potential for a sigmifilmcrease in the computational efficiency for
transient simulations using ti@&FEMY',

(a) t=0.05 (b) t=0.35

(c) t=0.65 (d) t=0.95

Figure 36: Snap-shots in time for the transieBEFEM?' simulation for the beam with a moving laser flux.
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(a) t=0.05 (b) t=0.35
(c) t=0.65 (d) t=0.95

Figure 37: Snap-shots in time for the transient F~EM simulation for the beam with a moving laser flux.
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8 Conclusions

In this paper, the generalized FEM with global-local enmemts GFEM9') [14, 17, 25, 37] is formulated

for transient heat transfer problems with solutions exhigihighly-localized, sharp thermal gradients. The
proposed method enables the analysis of this class of pnsllsing uniform, coarse, global meshes. This
has several computational implications as discussed itidBet

() the possibility of capturing localized, transient sixdun features using uniform, coarse, global meshes.
This removes, for example, the need to refine global meslk¢sith usually complex and very large,
the re-meshing of which is non-trivial between subsequerg-steps;

(i) no transient effects need to be considered in the looalains;

(iii) with the proper discretization order (temporal, Sphtthe GFEM?' produces results which are in very
good agreement with the reference curves generated hpiBFEM and significantly more degrees
of freedom;

(iv) the GFEMY delivers accurate results in terms of the evolution of therimal energy as a function
of time, as well as in the resulting through-the-thicknessserature distributions. The latter of
which is important for design considerations, particyldirthermo-mechanical coupling is consid-
ered. Thermo-mechanical coupling, while not addressekigwork, is a topic to be investigated in
future work;

(v) the size of the enriched global problem does not depertti®size or discretization used in the local
problems;

(vi) the accuracy of th6&6FEM? s relatively insensitive to the time-rise constant of tipgleed surface
flux;

(vii) the GFEM?' uses a large amount of information which can be calculated and re-used at each sub-
sequent time-step, yielding the potential for significampiovement in the computational efficiency.
This potential increase in efficiency is the current focusrughe completion of this work;

(viii) the accuracy of th&&FEM? is relatively insensitive to the size Af, and the resulting lag in Dirichlet
boundary conditions applied in the local problems;
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