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Abstract

This paper investigates the application of the GeneralizedFinite Element Method with global-local
enrichments (GFEMgl) to problems of transient heat transfer involving localized features. TheGFEMgl

is utilized in order to numerically construct general, specially-tailored shape functions yielding high lev-
els of accuracy on coarse FEM meshes. The use of time-dependent shape functions requires that the
system of equations be discretized temporally first, and then spatially in order to properly account for
the time-dependency. The standardα-method is used for the time integration scheme. The transient
three-dimensionalGFEMgl is then applied to a laser heating example in order to demonstrate its ability
to resolve localized, transient features on a fixed, coarse mesh. Convergence analysis of the proposed
method and as well as applications to heterogeneous materials, and moving heat sources are also pro-
vided.

1 Introduction

Many applications areas in engineering practice involve the analysis of structural behavior with multiple
scales of interest. The analysis of structures subjected tointense, time-dependent, localized thermal loadings
is the subject of interest in this work. The motivation for this particular investigation is the analysis of
localized heat sources on the skin of hypersonic flight vehicles. Possible interactions of shock waves can
cause severe, localized thermal loadings, exhibiting sharp gradients. The characterization of the resulting
thermal loadings and pressure distributions, as well as theeffect of these loadings on the aeroelastic behavior
of the vehicle itself has been an active topic of research in recent years [11, 21, 22, 30, 39, 40, 43]. The
most severe potential shock wave interference pattern is the Edney Type IV shock wave interaction, which
is a bow shock/cowl shock interaction which may occur on the leading edge of a wing.

While hypersonic flight vehicles is the motivating case for this work, the methodology proposed here may
be applied to any of a number of practical situations involving intense, and highly localized heat sources.
Numerical modeling of laser heating [45, 46] of metal plates and the resulting thermo-mechanical effects
of the intense localized heat source is another potential are of application. Computational weld mechanics
[26, 44] is yet another potential application area of interest, in which only a small portion of a much larger
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structural element is subjected to a very localized heat source. In the afore-mentioned application areas
the use of highly refined meshes is required to resolve the localized temperature fields, resulting in active
research into methods which are more computationally efficient (particularly for fully 3-D simulations), and
do not require the immense computational resources to run simulations requiring excessively high mesh
density.

We propose to use the Generalized Finite Element Method withglobal-local enrichment functions (GFEMgl)
[14] to circumvent the need for highly refined meshes, and resolve the sharp localized gradients on fixed,
coarse meshes, thus making the 3-D transient analysis of such scenarios more computationally feasible. The
work presented in this paper is an extension of the methodology developed in [32], extended for the analysis
of time-dependent problems.

The proposed method is not unique in the use of time-dependent shape functions, as numerous other methods
also allow for the evolution of shape functions in time. The shape functions used in [29] evolve to follow
a thermal spike as it propagates throughout the domain. van der Meer et al. [41] use time-dependent shape
functions for geothermal applications involving sharp gradients. Two methods, one based on a simplified
analytic solution, and the other, an iterative optimization method to properly parameterize a Gaussian shape
function are presented in order to construct specially-tailored shape functions to solve large-scale problems
that involve very localized behavior. In this way, their analysis is similar to those presented in this research,
but a major difference is found in the construction of the special enrichment functions. In this work we
numerically build appropriate enrichment functions basedon the solution of local boundary value problems;
a procedure which may be used when no a-priori knowledge about the solution is available.

Time-dependent shape functions are also utilized by Waisman and Belytchsko [42] to efficiently solve
boundary layer problems by adapting the shape functions to reflect the underlying physics of the prob-
lem that is to be solved. Chessa and Belytschko [8] solve the problem of axisymmetric two-phase flow in
which a time-dependent level-set function is used in order to track the moving interface between the fluids.
Time-dependent level-sets are again used by Chessa and Belytschko [9] within a space-time finite element
context in order to solve the linear wave equation as well as Burger’s equation. Fries and Zilian [23] offer
a detailed formulation for the use of time-dependent enrichment functions in a semi-discrete finite element
context. They solve Burger’s equation along with the advection-diffusion equation using both space-time
finite elements as well as the semi-discrete finite element method utilizing time-dependent shape functions.
Fries and Zilian offer a detailed convergence analysis withrespect to spatial as well as temporal errors.

In the next section, we discuss the formulation of the governing equations, i.e. the heat equation. A brief
presentation of generalized finite element (GFEM) approximations [3, 4, 15, 31, 38] is provided in Section
3. Section4 presents the discrete system of equations to be solved as well as the time integration algorithm
used. Section5 provides a detailed account of the model problem to be investigated in this paper. Output
obtained from standardFEM [34, 47] is presented along with data obtained fromGFEM analyses of the
same problem. Motivated by the potential to solve the problem using specially-designed, but more general
shape functions, we present the formulation of the Generalized Finite Element Method with global-local
enrichments (GFEMgl) for time-dependent heat transfer problems in Section6. Section7 provides detailed
analyzes of the model problem and two other numerical examples, using theGFEMgl to study the method’s
ability to effectively control the error in the solution. The final section then provides the main conclusions
and future directions for the current investigation.
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2 Problem Formulation

Consider a domainΩ ⊂ IR3 with boundary∂ Ω decomposed as∂ Ω = Γc∪Γ f with Γc∩Γ f = /0. The strong
form of the governing equation is given by the 3-D heat equation

ρc
∂u
∂ t

= ∇(κκκ∇u)+Q(xxx, t) in Ω (1)

whereu(xxx, t) is the temperature field,ρ c is the volumetric heat capacity andQ(xxx, t) is the internal heat
source. In the general case,κκκ is the thermal conductivity tensor, but in this paper, only isotropic materials
are considered, therefore the thermal conductivity is merely a scalar,κ = κ (xxx), and the material need not
be homogeneous.

We consider convective and Neumann boundary conditions prescribed onΓc and Γ f , respectively. The
boundary∂ Ω = Γc

⋃

Γ f andΓc
⋂

Γ f = /0. At any timet, the normal flux is prescribed as

−κ
∂u
∂n

= η (ū−u) on Γc (2)

−κ
∂u
∂n

= f̄ on Γ f (3)

whereū andη are the prescribed fluid temperature and convective coefficient, respectively.

Dirichlet boundary conditions can be treated as a limiting case of convective boundary conditions by select-
ing a large value for the convective coefficientη . This leads to the well known penalty method [2].

The initial conditions must also be satisfied

u(xxx,0) = u0(xxx) at t0 (4)

whereu0(xxx) is the prescribed temperature field at timet = t0.

3 Generalized FEM Approximations

Historically, polynomials have been used to approximate functions and it has been shown that they have
good approximation properties. Methods based on polynomials, e.g., the Finite Element Method (FEM),
have been successfully used to approximate solutions of various types of PDEs. Nonetheless, classical
methods like the FEM require extremely refined meshes to approximate the solution of the class of problems
considered in this paper. In contrast, the Generalized Finite Element Method (GFEM) is a Galerkin method
that allows the use of non-polynomial approximating functions. These approximating functions can be
carefully chosen to mimic the properties of the unknown function to be approximated. TheGFEM [3, 15,
31, 38] is an instance of the partition of unity method which has itsorigins in the works of Babǔska et al.
[3, 4, 28] (under the names “special finite element methods”, “generalized finite element method” and “finite
element partition of unity method”) and Duarte and Oden [12, 18–20, 31] (under the names “hpclouds” and
“cloud-basedhpfinite element method”). Several meshfree methods can also be formulated as special cases
of the partition of unity method.

The construction of the approximation space (i.e., the trial space) to be used in theGFEM consists of three
components – (a) patches or clouds, (b) a partition of unity,and (c) the local approximation spaces. We
describe these components as follows:

(a) Patches or Clouds:For a parameterh > 0, let {ωα}
N(h)
α=1 be sub-domains of the underlying domain
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Ω ⊂ R
d of interest. We assume that for each value ofh,

Ω = ∪N
α=1ωα ,

and that anyxxx ∈ Ω belongs to at mostM of the setsωα , whereM is independent ofh. The sub-domains
ωα are called patches or clouds. In the generalized finite element method, aωα is given by the union of the
finite elements sharing nodeα of the finite element mesh coveringΩ. Clearly,{ωα}

N
α=1 is an open cover of

Ω, and each patchωα intersects with at mostM of other patchesωα .

(b) Partition of Unity: Let {ϕα}
N
j=1 be piecewiseC1 functions defined onΩ satisfying

N

∑
α=1

ϕα(xxx) = 1, ∀ xxx∈ Ω

It is clear that{ϕα}
N
α=1 is a partition of unity with respect to the open cover{ωα}

N
α=1.

(c) Local Approximation Spaces:To each patchωα , we associate anmα -dimensional spaceχα of functions
defined onωα , namely,

χα = span{Lα i , 1≤ i ≤ mα , Lα i ∈ H1(ωα)}.

χαs are called local approximation spaces. We assume that eachχα contains constant functions. The
functions inχα are also known asenrichment functions.

The trial space for theGFEM is given by

SGFEM(Ω) ≡
N

∑
α=1

ϕα χα = span{φα i := ϕαLα i , 1≤ i ≤ mα , 1≤ α ≤ N}

The function
φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (5)

whereα is a node in the finite element mesh, is called aGFEM shape function. Figure1 illustrates the
construction ofGFEM shape functions in a two-dimensional domain.

Enrichment functions We first note that the role of the partition of unity is to “paste together” the func-
tions in χα , which are defined locally only onωα , to obtain a global function inH1(Ω). The enrichment
functions inχα are chosen carefully to mimic the properties of the functionto be approximated, locally in
ωα . This is often done by using the available information on theapproximated function. Choosing suitable
local approximation spaces for a particular problem is central to the approximation property ofGFEM. This
is particularly clear from the main approximation result ofGFEM [3, 4, 28], which could also be stated as
(see [6]):

Theorem: Let u∈ H1(Ω). Then there is uhp ∈ SGFEM such that

‖u−uhp‖
2
H1(Ω) ≤C

N

∑
α=1

inf
uα∈χα

‖u−uα‖
2
H1(ωα )

It is clear from the above result that the quality of the global approximationuhp of u is governed by the
quality of the local approximation ofu by the functions inχα .

TheGFEM has been successfully applied to the simulation of boundarylayers [13], dynamic propagating
fractures [16], singularities [15], acoustic problems with high wave number [5, 27], polycrystalline mi-
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(a) (b)

Figure 1: Construction of a generalized FEM shape function using a polynomial (a) and a non-polynomial enrichment
(b). Here,ϕα are the functions at the top, the enrichment functions, Lα i , are the functions in the middle, and the
generalized FE shape functions,φα i , are the resulting bottom functions.

crostructures [36], porous materials [37], etc. All these applications rely on enrichment functionsin χα
derived analytically using a-priori knowledge about the functions to be approximated. These so-called cus-
tom enrichment functions are able to provide more accurate and robust simulations than the polynomial
functions traditionally used in the standard FEM while relaxing some meshing requirements of the FEM.
However, for many classes of problems–like those considered in this paper –enrichment functions with good
approximation properties are, in general, not amenable to analytical derivation. In this paper,we propose
to remove the limitations of existing generalized finite element methods for the solution of time-dependent
problems exhibiting highly localized sharp, transient thermal gradients. Details are provided in Section6.

4 Time Integration and Discrete Equations

In this section we discretize (1) in a finite element context. In the first formulation we discretize the equations
first in space, and then in time. With this formulation strategy, the algorithm is appropriate for analyses
which do not include time-dependencies in the shape functions. For the case with time-dependent shape-
functions it is important to discretize the equations first in time, and then in space, as is discussed in [8, 23,
41]. The formulation for time-dependent shape functions is subsequently presented in4.2.

4.1 Formulation 1: Discretizing Heat Equation Spatially, then Temporally

A standard formulation for time-integration of first order,parabolic equations can be found in many finite
element method books, one such instance is [35]. The formulation in [35], given by Reddy starts with a
system of spatially discretized equations as in (6), and utilizes the finite difference assumption in (7).

Mu̇uun+1 +Kuuun+1 = fff n+1 (6)
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uuun+1 = uuun +∆t
[

α u̇uun+1 +(1−α) u̇uun] (7)

Equation (7) is used to eliminatėuuun+1 from (6), yielding the discrete system of equations used for time-
integration:

[M+α∆tK]uuun+1 = [M− (1−α)∆tK]uuun +∆t
[

α fff n+1 +(1−α) fff n] (8)

where terms associated with convective boundary conditions are omitted. The potential draw-back of this
particular formulation is that it starts from a spatially-discretized system, in which the quantities have pre-
viously been defined as

M =
∫

Ω
φφφρc(φφφ)T dΩ (9)

K =
∫

Ω
∇φφφκ (∇φφφ)T dΩ (10)

fff n = fff n
Q + fff n

N (11)

whereφφφ is the vector of finite element shape functions,Ω is the domain of interest anduuun+1 is the solution
vector att = tn+1 = (n+1)∆t. In (11) the quantities are defined as

fff n
Q =

∫

Ω
QnφφφdΩ

fff n
N =

∫

Γ f

f̄ nφφφdΓ

whereQn = Q(xxx, tn) and f̄ n = f̄ (xxx, tn).

The previous formulation is the widely usedα-method, suitable for transient heat transfer simulations, but
the formulation is in no way modified to incorporate the use oftime-dependent shape functions.

4.2 Formulation 2: Discretizing Heat Equation Temporally, then Spatially

In this section we discretize the heat equation first in time,then in space [8, 23, 41]. With this formulation,
the algorithm is appropriate for the use of time-dependent shape functions. We start our formulation with
the strong form of the governing equation:

ρc
∂u
∂ t

= ∇ ·κ∇u+Q (12)

We then multiply the equation by a weighting function,w, and integrate over the domain,Ω.

∫

Ω
wρc

∂u
∂ t

dΩ =
∫

Ω
(w∇ ·κ∇u+wQ)dΩ (13)

We perform integration by parts on the first term of the right-hand-side, and move the domain integral to
the left-hand-side of the equation. The boundary term is left on the right-hand-side with the applied source
term.

∫

Ω

(

wρc
∂u
∂ t

+∇w·κ∇u

)

dΩ =
∫

∂Ω
wκ

∂u
∂n

dΓ+
∫

Ω
wQdΩ (14)

We now discretize the equation above in time. To this end we will use the following finite difference
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approximations, yielding the generalized trapezoidal rule, orα-method, used for our time-marching scheme.

∂u
∂ t

=
un+1−un

∆t
(15)

un+α = (1−α)un +αun+1 (16)

Plugging (15) and (16) into (14) yields the temporally discretized equation

∫

Ω

(

wρc
un+1−un

∆t
+∇w·κ

[

α∇un+1 +(1−α)∇un]
)

dΩ

=
∫

Ω
w

[

αQn+1 +(1−α)Qn]dΩ+
∫

∂Ω
wκ

[

α
∂un+1

∂n
+(1−α)

∂un

∂n

]

dΓ (17)

We will first consider, in detail, the boundary terms on∂ Ω = Γc
⋃

Γ f as follows:

∫

∂Ω
wκ

[

α
∂un+1

∂n
+(1−α)

∂un

∂n

]

dΓ = α
∫

Γ f

wf̄ n+1dΓ+(1−α)
∫

Γ f

wf̄ ndΓ+α
∫

Γc

wη ūn+1dΓ

−α
∫

Γc

wηun+1dΓ+(1−α)
∫

Γc

wη ūndΓ− (1−α)
∫

Γc

wηundΓ (18)

We now rearrange (17) with the proper boundary terms (18) such that terms involvingun+1 are moved to the
left-hand-side, and all known terms (those not dependent uponun+1) are moved to the right-hand-side.

1
∆t

∫

Ω
wρcun+1dΩ+α

∫

Ω
∇w·κ∇un+1dΩ+α

∫

Γc

wηun+1dΓ

=
1
∆t

∫

Ω
ρcwundΩ− (1−α)

∫

Ω
∇w·κ∇undΩ+α

∫

Ω
wQn+1dΩ+(1−α)

∫

Ω
wQndΩ

+α
∫

Γ f

wf̄ n+1dΓ+(1−α)
∫

Γ f

wf̄ ndΓ+α
∫

Γc

wη ūn+1dΓ+(1−α)
∫

Γc

wη ūndΓ

−(1−α)
∫

Γc

wηundΓ (19)

At this point, we have our system of equations fully discretized in time. For the spatial discretization, we
use generalized finite element shape functions which may have time-dependencies. At any given time,tn,
we defineun(xxx, tn) = φφφn(xxx, tn) ·uuun(tn), whereuuun(tn) is the vector of degrees of freedom, andφφφn(xxx, tn) is
the vector of finite element shape functions attn. Due to the potential time-dependent nature of the shape
functions, it is very important to properly select the discretization for the weight function,w [23, 41]. In
our implementation, we needw to be consistent across each term of (19). To this end, we discretize the
weighting function,w using finite element shape functions at timetn+1. In the afore mentioned equations,
w= wn+1

(

xxx, tn+1
)

= φφφn+1(

xxx, tn+1
)

·wwwn+1
(

tn+1
)

. We will now discretize (19) on a term-by-term basis using
the previous discretizations.

∫

Ω
ρcwn+1un+1dΩ =

(

wwwn+1)T
∫

Ω
φφφn+1ρc

(

φφφn+1)T
dΩuuun+1 =

(

wwwn+1)T
Mn+1uuun+1 (20)

∫

Ω
ρcwn+1undΩ =

(

wwwn+1)T
∫

Ω
φφφn+1ρc(φφφn)T dΩuuun =

(

wwwn+1)T
Mn+1,nuuun (21)

7



∫

Ω
∇wn+1 ·κ∇un+1dΩ =

(

wwwn+1)T
∫

Ω
∇φφφn+1κ

(

∇φφφn+1)T
dΩuuun+1 =

(

wwwn+1)T
Kn+1uuun+1 (22)

∫

Ω
∇wn+1 ·κ∇undΩ =

(

wwwn+1)T
∫

Ω
∇φφφn+1κ (∇φφφn)T dΩuuun =

(

wwwn+1)T
Kn+1,nuuun (23)

∫

Ω
wn+1Qn+1dΩ =

(

wwwn+1)T
∫

Ω
φφφn+1Qn+1dΩ =

(

wwwn+1)T
fff n+1

Q (24)

∫

Ω
wn+1QndΩ =

(

wwwn+1)T
∫

Ω
φφφ n+1QndΩ =

(

wwwn+1)T
fff n+1,n

Q (25)

∫

Γ f

wn+1 f̄ n+1dΓ =
(

wwwn+1)T
∫

Γ f

φφφn+1 f̄ n+1dΓ =
(

wwwn+1)T
fff n+1

N (26)

∫

Γ f

wn+1 f̄ ndΓ =
(

wwwn+1)T
∫

Γ f

φφφn+1 f̄ ndΓ =
(

wwwn+1)T
fff n+1,n

N (27)

∫

Γc

ηwn+1un+1dΓ =
(

wwwn+1)T
∫

Γc

φφφn+1η
(

φφφn+1)T
dΓuuun+1 =

(

wwwn+1)T
Mn+1

c uuun+1 (28)

∫

Γc

ηwn+1undΓ =
(

wwwn+1)T
∫

Γc

φφφn+1η (φφφn)T dΓuuun =
(

wwwn+1)T
Mn+1,n

c uuun (29)

∫

Γc

ηwn+1ūn+1dΓ =
(

wwwn+1)T
∫

Γc

φφφn+1η ūn+1dΓ =
(

wwwn+1)T
fff n+1

c (30)

∫

Γc

ηwn+1ūndΓ =
(

wwwn+1)T
∫

Γc

φφφn+1η ūndΓ =
(

wwwn+1)T
fff n+1,n

c (31)

Since equation (19) must hold for any admissible weight functionw, it must hold also for anywwwn+1. As
such, we can pose the fully discretized system of equations as

[

1
∆t

Mn+1 +αKn+1 +αMn+1
c

]

uuun+1 =

[

1
∆t

Mn+1,n− (1−α)Kn+1,n− (1−α)Mn+1,n
c

]

uuun

+α fff n+1
Q +(1−α) fff n+1,n

Q +α fff n+1
N +(1−α) fff n+1,n

N +α fff n+1
c +(1−α) fff n+1,n

c (32)

More concisely, we can re-write the above equation as:
[

1
∆t

Mn+1 +αK̂
n+1

]

uuun+1 =

[

1
∆t

Mn+1,n− (1−α)K̂
n+1,n

]

uuun +α f̂ff
n+1

+(1−α) f̂ff
n+1,n

(33)

where
K̂

n+1
= Kn+1 +Mn+1

c (34)

K̂
n+1,n

= Kn+1,n +Mn+1,n
c (35)

f̂ff
n+1

= fff n+1
Q + fff n+1

N + fff n+1
c (36)

f̂ff
n+1,n

= fff n+1,n
Q + fff n+1,n

N + fff n+1,n
c (37)
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In all of the above equations,uuun are known values obtained from the solution attn. It is noted that if the shape
functions are not time-dependent,Mn+1 = Mn+1,n = M, Kn+1 = Kn+1,n = K, fff n+1,n

Q = fff n
Q, fff n+1,n

N = fff n
N and

fff n+1,n
c = fff n

c. It is further noted that if the convective boundary terms are omitted, (33) is equivalent to (8).

For the analyzes presented in the subsequent sections, the value ofα is taken asα = 1, yielding the uncon-
ditionally stable, Backward Euler algorithm. As such, onlythe non-symmetric capacity matrix,Mn+1,n is
required, and it need not be assembled directly. The vector termMn+1,nuuun can be computed as

Mn+1,nuuun =
∫

Ω
φφφn+1ρc(φφφn)T uuundΩ =

∫

Ω
ρcφφφn+1undΩ (38)

whereun = (φφφn)T uuun, is theGFEM solution from time steptn.

5 Model Problem

The problem selected for verification of theGFEM involves a sharp spatial gradient in the temperature field
(39), as well as in the resulting source term (40). There is also a temporal gradient, but it is smooth in nature.
This particular problem is taken from [29], with the modification that we are assuming a stationary thermal
spike.

u(x, t) =
(

exp−γ(x−x0)
2
+sin

(πx
L

))

∗exp(−t) 0 < x < L (39)

Q(x, t) = ρc
du
dt

(x, t)−κ
d2u
dx2 (x, t), (40)

The initial and boundary conditions are given in (41) and (42), respectively.

u(x,0) = exp−γ(x−x0)
2
+sin

(πx
L

)

, (41)

u(0, t) = u(L, t) = 0, (42)

In the above equations,x0 = 125mm, L = 500mmandγ is a parameter controlling the roughness of the
solution. Unless otherwise indicated, the value ofγ is taken as 1.0. The material properties are taken as
thermal conductivity,κ = 1 and volumetric heat capacity,ρc =

(π
L

)2
. The one-dimensional solution (39) is

plotted in Figure2. The parameterx0 defines the location of a thermal spike. From the temporal standpoint,
the solution undergoes a smooth, exponential decay in time.

Below, the heat equation withQ given by (40), initial and boundary conditions given in (41) and (42),
respectively, is solved using 1-, 2- and 3-DGFEM discretizations.

The exact internal energy,U(t), in the solution domainΩ is given by

U(t) =
∫

Ω
(κ∇u) · (∇u)dΩ, (43)

while the internal energy of theGFEM solution at timetn is given by

Uhp(t
n) =

∫

Ω
(κ∇un) · (∇un)dΩ (44)
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Figure 2: Temperature field described in(39).

The discreteL2 norm ofU(t), t ∈ [0, tfinal], is defined as

‖U(t)‖2 =

{

∑
n

(U(tn))2
}1/2

(45)

where the summation is performed over each time steptn,∈ [0, tfinal].

The relative error ofUhp(t) in the discreteL2 norm is given by

LError
2 (U(t)) =

‖Uexact(t)−Uhp(t)‖2

‖Uexact(t)‖2
=

{

∑n

(

Uexact(tn)−Uhp(tn)
)2

∑n(Uexact(tn))2

}1/2

(46)

This quantity can serve to tell how well theGFEM and exact curves for internal energy versus time match
up.

5.1 GFEM Simulations Using Special Enrichment Functions

In this section we present results for simulations of the model problem using special, exponential enrichment
functions. The set of enrichment functions applied to nodeswhose support intersect the spike atx = x0 is

Lα i =

{

1,
x−xα

hα
,exp−(x−x0)

2
}

(47)

wherexα is the x-coordinate of the node andhα is a scaling parameter equal to the size of the largest
element sharing the node [15, 31]. The resultingGFEM shape functions built using (5) and (47) arenot
time-dependent. Nodes whose support do not intersect the spike are enriched with

Lα i =

{

1,
x−xα

hα

}

(48)

which leads to quadraticGFEM shape functions in thex−direction.

For the 1-D discretizations, a coarse mesh consisting of 5, 100mmlong elements and a fine mesh with 200,
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2.5 mmlong elements are used. A comparison of element sizes for these meshes is shown in Figure3. The
coarse mesh uses enrichments (47) and has only 14 degrees of freedom while the fine mesh uses (only)
enrichments (48) and has 402 degrees of freedom.

Figure 3: Comparison of element sizes for 1-D meshes with and without exponential enrichment.

For the 2-D discretizations, a coarse and a fine mesh with elements of length 6mm and 2.5 mm in the
x−direction, respectively, are used. In the 3-D case, the coarse (fine) mesh has elements 6mm(3.125mm)
in thex−direction near the spike, but 20mmin thex−direction in regions far from the spike in order to save
some computational effort. Nodes of the 2-D and 3-D coarse meshes whose support intersect the thermal
spike are enriched with functions (47) while nodes of the fine meshes uses (only) enrichments (48).

The simulation results are compared in Table1 in order to illustrate the benefit of the special enrichmentsin
terms of accuracy and efficiency. As can be seen in the table, there is a significant reduction in CPU Time,
as well as in the relative error,Lerror

2 (U(t)), for the meshes that use exponential enrichments, even though
the elements are larger than in the meshes without exponential enrichments. It should also be noted that the
size of the elements in the 2- and 3-D discretizations with exponential enrichments is restricted mainly due
to our ability to accurately integrate the sharply varying source terms, as well as the exponential term in the
shape functions. Internal energy versus time curves are plotted in Figure4 for 1-, 2- and 3-D simulations.

Table 1: Comparison of output for discretizations with and without exponential enrichment functions. In the table, hx

stands for element size in the x−direction.

Exponential Enrich. hx(mm) Lerror
2 (U(t)) CPU Time (sec) Dimension

Yes 100 5.58e-5 0.0203 1-D
No 2.5 0.1979 4.5097 1-D
Yes 6 0.0019 1.640 2-D
No 2.5 0.1974 15.580 2-D
Yes 6 0.0076 1.230 3-D
No 3.125 0.1874 10.455 3-D

5.1.1 Effect of Volumetric Heat Capacity Magnitude

The previous results correspond to a volumetric heat capacity ρc= (π/L)2, yielding a value ofρc= 3.9e−5
for the model used here. With a very small value ofρc the transient effects are kept to a minimum. In this
section, the effect of larger values ofρc on the accuracy of the internal energy is investigated. Figure5 shows
the internal energy versus time curves for discretizationsusing exponential enrichments, for larger values of
ρc. Table2 summarizes the relative error,Lerror

2 (U(t)), obtained for larger values ofρc for discretizations
with and without the use of the exponential enrichment functions. For each value ofρc investigated it is
seen that the addition of the special, exponential enrichment function greatly improves the error levels by

11
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Figure 4: Plot of internal energy versus time for the 1-, 2-, and 3-D discretizations with exponential enrichments.

inserting the necessary information into the solution space, enabling a high degree of accuracy on a relatively
coarse mesh. The accuracy, however, decreases asρc, and the transient effects, increase.
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Figure 5: Internal energy versus time curves generated with exponential enrichment functions and increasing values
of volumetric heat capacity .
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Table 2: Effect of volumetric heat capacity magnitude.

Exponential Enrich. Lerror
2 (U(t)), ρc = π

L
2 Lerror

2 (U(t)), ρc = 10 Dimension
Yes 5.58e-5 0.0115 1-D
No 0.9920 0.9920 1-D
Yes 0.0076 0.0250 3-D
No 0.8772 0.8654 3-D

5.2 GFEM Simulations Using Special, Time-Dependent Enrichment Functions

In this section, the same problem as in the previous section is solved, but now a time-dependency is inserted
into the exponentialGFEM shape functions through the use of the following enrichmentbasis

Lα i =

{

1,
x−xα

hα
,exp−(x−x0)

2
∗exp−t

}

(49)

With time-dependency inserted in the shape functions, it becomes important to distinguish which formula-
tion, described in Section4, is being used. We first investigate the use of time-dependent shape functions
with Formulation 1 in which the heat equation is first discretized spatially, and then temporally (cf. Section
4.1). In other words, we seek to investigate the effect on solution accuracy of using the standardα-method
as commonly formulated with no specific modifications to accommodate for shape functions evolving in
time.

Figure6 shows the internal energy versus time curves for various values ofρc using Formulation 1. As can
be seen, as the value ofρc is increased, the changes in the capacity matrix due to the changing enrichment
functions become more significant. With very small values ofρc the problem behaves similarly to solving
a series of steady-state problems, with no real thermal inertial effects being evident. It is seen from the
plots that the time-dependency causes a deterioration in the behavior of the algorithm for large values ofρc.
Therefore, Formulation 1 isnot appropriate for time-dependent shape functions.

With the previous results in mind, the performance of Formulation 2 (cf. Section4.2) is investigated. With
the Transient Formulation 2, we see significantly improved behavior in the internal energy versus time curves
for 1-D simulations with large values ofρc, as shown in Figure7. Table3 shows the significant improvement
of the Lerror

2 (U(t)) for each value ofρc investigated. Figure8 shows the dramatic improvement obtained
using Formulation 2 in 1- and 3-D simulations.

Table 3: Output for Elements with Time-Dependent Exponential Enrichment Functions.

Dimension ρc Lerror
2 (U(t)) Form. 2 Lerror

2 (U(t)) Form. 1
1-D 10 0.0115 0.5537
1-D 50 0.0121 0.5584
1-D 100 0.0122 0.5590
3-D 10 0.0250 0.4139

From the previous analysis it is convincing that accurate results can be generated for transient simulations
involving localized heat sources on coarse meshes. In general, this is only possible provided that an en-
richment function with good approximation properties is available, and the proper transient formulation is
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Figure 6: Internal energy versus time curves generated with 1-D and 3-D meshes enriched with time-dependent
exponential enrichment functions and Formulation 1.
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Figure 7: Internal energy versus time curves generated with 1-D time-dependent exponential enrichment functions,
large values ofρc, and Transient Formulation 2.
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Figure 8: Internal energy versus time curves generated with 1- and 3-Dtime-dependent exponential enrichment
functions.

used. In the general case, no such enrichment functions are known a priori. As such, we propose to gen-
erate enrichment functions on the fly via the solution of local boundary value problems as in theGFEM
with global-local enrichments (GFEMgl). The transient formulation for theGFEMgl is provided in the next
section.

6 GFEMgl for Time-Dependent Problems

In this section, we present a procedure to build enrichment functions for the class of problems governed by
the heat equation (1), subjected to boundary conditions (2) and (3) and initial conditions (4). A formulation
for theGFEMgl for steady-state heat transfer, along with applications can be found in [32]. The formulation
and application of theGFEMgl to three-dimensional elasticity equations can be found in [14, 17, 25].

In the GFEMgl for time-dependent problems, we assume that an approximation un−1
G (xxx) of the solution

u(xxx, t) at time t = tn−1 = (n− 1)∆t is available. An approximationun
G(xxx) of u(xxx, tn) is computed using

Formulation 2 of Section4.2. Equation (19) with α = 1.0 leads to the following problem:

Findun
G ∈ SGFEM,n

G (Ω) ⊂ H1(Ω) such that,∀ wn
G ∈ SGFEM,n

G (Ω)

ρc
∆t

∫

Ω
wn

Gun
GdΩ+

∫

Ω
(∇wn

G)Tκ∇un
GdΩ+η

∫

Γc

un
Gwn

GdΓ =

ρc
∆t

∫

Ω
wn

Gun−1
G dΩ+

∫

Γ f

f̄ nwn
GdΓ+η

∫

Γc

ūnwn
GdΓ+

∫

Ω
wn

GQndΩ (50)

whereSGFEM,n
G (Ω) ⊂ H1(Ω) is the generalized FEM space at time stepn. The enrichment functions in

SGFEM,n
G (Ω) are defined in local spaces and have to be computed; we describe a fine-scale problem in the

next subsection to achieve this goal. Note that the same approximation space is used for theGFEM solution
un

G and the weight functionwn
G as discussed in Section4.2. The mesh used to solve problem (50) is typically

a coarse quasi-uniform mesh,even when the solution is not smooth. Problem (50) leads to a system of linear
equations for the unknown degrees of freedom ofun

G.
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6.1 Fine-Scale Problems at Time tn

The proposedGFEMgl involves the solution of a fine-scale boundary value problemdefined in a neighbor-
hoodΩL of thermal spikes, where strong solution gradients develop. The local domainΩL is composed
of the union of cloudsωα of the open cover{ωα}

N
α=1 of Ω that intersect or are close to a thermal spike.

A-posteriori error estimate measures can be used to defineΩL but that is beyond the scope of this paper.

Having the global approximationun
G at timetn, we compute the following fine-scale problem onΩL to find

enrichment functions for the spaceSGFEM,n+1
G (Ω):

Findun
L ∈ SGFEM,n

L (ΩL) ⊂ H1(ΩL) such that,∀ wn
L ∈ SGFEM,n

L (ΩL)

∫

ΩL

(∇un
L)

T κ∇wn
LdΩ+η

∫

∂ΩL\(∂ΩL∩Γ f )
un

Lwn
LdΓ =

η
∫

∂ΩL\(∂ΩL∩∂Ω)
un

Gwn
LdΓ+η

∫

∂ΩL∩Γc

ūn+1wn
LdΓ+

∫

ΩL

Qn+1wn
LdΩ+

∫

∂ΩL∩Γ f

f̄ n+1wn
LdΓ (51)

where,SGFEM,n
L (ΩL) is a discretization ofH1(ΩL) using, e.g., standardGFEMshape functions. It is possible,

however, to use other methods, like the standard FEM or the Boundary Element Method, to solve fine-scale
problems.The proposed methodology enables one to select the most effective method for the particular class
of fine scale problem considered. Thus, the methodology is highly flexible and general.

A key aspect of problem (51) is the use of the coarse-scale solution at time steptn, un
G, as boundary condition

on ∂ ΩL\(∂ ΩL ∩ ∂ Ω). In the numerical experiments presented in Section7, the parameterη is taken as a
penalty number. Thus Dirichlet boundary conditions are enforced on∂ ΩL\(∂ ΩL ∩Γ f ). Exact boundary
conditions are prescribed on portions of∂ ΩL that intersect eitherΓc or Γ f . Another key point of problem
(51) is that no transient effects are considered. However, the source function,Q, and the boundary conditions
on ∂ ΩL ∩Γc and∂ ΩL ∩Γ f are computed at time steptn+1. The rationale for this is thatun

L is used to define
the global solution space at timetn+1, as described in the section below.

6.2 Scale-Bridging with Global-Local Enrichment Functions

The solution,un
L, of the fine-scale problem defined above is used to build generalized FEM shape functions

defined on a coarse global mesh:
φn+1

α i (xxx) := ϕα(xxx)un
L(xxx) (52)

where the partition of unity function,ϕα , is provided by a global,coarse, FE mesh andun
L has the role

of an enrichment or basis function for the patch spaceχα(ωα). Hereafter,un
L is denoted aglobal-local

enrichment function. The globalGFEM space containing shape functionsφn+1
α i is denotedSGFEM,n+1

G (Ω).
The coarse scale problem (50) is solved forun+1

G ∈ SGFEM,n+1
G (Ω) and the procedure is repeated at each

time step. TheGFEMgl for time-dependent problems is illustrated in Figure9. The global solution provides
boundary conditions for fine-scale problems while local solutions are used as enrichment functions for the
coarse problem through the partition of unity framework of theGFEM.

Let us point out thatonly a few degrees of freedom are added to the global (coarse-scale) discretization even
if the computation of the fine-scale solution requires several thousands of degrees of freedomsinceun

L is a
known function at time steptn+1. The global problem is solved on thecoarseglobal mesh enriched with
the shape functions defined in (52). These functions are hierarchically added to the FE discretization, and
thus, a few entries are added to element matrices while keeping existing ones associated with standard FE
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Figure 9: Illustration of theGFEMgl for time-dependent problems. The global domain is discretized with a coarse
mesh, even if the solution is not smooth. The coarse-scale problem at tn provides boundary conditions for local
problems containing sharp thermal spikes. The solution of these problems are used to build approximation spaces for
the coarse-scale problem at time tn+1.

shape functions. The hierarchical nature of the global-local enrichments can be exploited in the solution of
the global problem and avoid the solution of the problem fromscratch at every time step. This is in contrast
with available adaptive finite element methods.

Iterative Improvement of Global-Local Enrichment Functions A key feature of the methodology de-
scribed above is the use of available information at a simulation steptn to build the solution space for the
next time step, i.e., theGFEM spaceSGFEM,n+1

G (Ω) containing the GFEM solutionun+1
G . The coarse-scale

solution at time steptn, un
G, is used as boundary condition on∂ ΩL\(∂ ΩL ∩∂ ΩG) for the fine-scale problem

(51) instead of the unknown exact solution at timetn+1. As a result, the error ofun
L depends not only on the

discretization used in the local domainΩL, but, also on how much the solution of the problem changes at
∂ ΩL\(∂ ΩL ∩ ∂ ΩG) between time steps. The effect of the inexact boundary conditions on the accuracy of
un

L can be addressed by repeating the above procedure at each time step:

(i) Use the solution of the global problemun+1
G ∈ SGFEM,n+1

G (Ω) as boundary conditions for the fine-scale
problem (51) at timetn;

(ii) update global shape functions (52) and global solution spaceSGFEM,n+1
G (Ω).

(iii) solve the coarse scale problem (50) for un+1
G ∈ SGFEM,n+1

G (Ω).

(iv) Go to step (i) if the accuracy ofun+1
G is not acceptable; proceed to the next time step otherwise.

In Section7.2.1, the effect of time-step size on the accuracy of theGFEMgl is investigated.

The performance of theGFEMgl when solving transient heat transfer problems with solutions exhibiting
highly localized sharp thermal gradients is investigated in the next section. As a note, a quasi-static solution
is obtained at timet0 to enforce the initial conditions (41). This is simply the solution of Poisson’s equation
since no time-dependency is required. Again, more details of the formulation for steady-stateGFEMgl

analysis can be found in [32].
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7 Numerical Experiments Using GFEMgl

7.1 Numerical Experiment 1: Model Problem Utilizing GFEMgl in 3-D

In this section we apply the transientGFEMgl to the model problem as posed in Section5. We use the
same mesh as was used for the simulations with exponential enrichment functions, i.e. elements with a
width of 6mm in the x-direction. With this approach we can be assured that the only difference between
the two analyses is the actual shape function itself, whether it be analytic or numerically generated. The
local domain, in this instance, is selected to be the entire domain, a very poor choice in the general case,
but it ensures the use of exact Neumann boundary conditions in the local domain, free of any potential
numerical pollution. The goal of this example is to verify Transient Formulation 2 with theGFEMgl. The
local domains are subjected toh-extensions, in which high levels of refinement are used onlylocally in the
region of the spike, resulting in highly graded local mesheswith a uniform, orthotropic polynomial order of
(px, py, pz) = (4,1,1).

Figure 10 shows global internal energy,U(t), versus time curves. In Figure10, as well as subsequent
figures, one level of mesh refinement indicates one localizedmesh refinement cycle in which the marked-
edge algorithm [1, 7] is used for the bisection of the tetrahedral elements. The volumetric heat capacity,ρc,
is taken as 3.9e−5. Transient Formulations 1 and 2 provide nearly identical results in this case and only
curves computed with Formulation 1 are shown. The effect of adding global-local enrichment functions is
significant. The figure shows that the error onU(t) can be controlled through mesh refinement in the local
problem, thus avoiding refinement of the global mesheven when no a-priori knowledge about the exact
solution is used.
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Figure 10: Plots of internal energy versus time forGFEMgl solutions with increasing levels of mesh refinement in local
problem. The volumetric heat capacity is taken asρc = 3.9e−5. All curves computed with Transient Formulation 1.

As was the case in Section5.2, we now increase the value ofρc and analyze its impact on the behavior
of the solution. As is shown in Figure11, we again see that as the value ofρc is increased, the quality
of results provided by Transient Formulation 1 deteriorates because of the time-dependency of the shape
functions used in theGFEMgl. Results obtained fromGFEMgl simulations and Transient Formulation 2 are
also shown. From the curve corresponding to Formulation 2, it can be seen that the time-dependency of the
shape functions are once again properly accounted for, yielding much more accurate results. The relative
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error in internal energy for Formulations 1 and 2 areLError
2 (U(t)) = 0.4266 andLError

2 (U(t)) = 0.0271,
respectively, whenρc = 10.
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Figure 11: Plot of internal energy versus time for GFEMgl solutions in 3-D forρc = 3.9e− 5 and ρc = 10. For
ρc = 10 both transient formulations are investigated. The curve for the exact solution is given by(39) and (43), and
is independent ofρc.
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7.2 Numerical Experiment 2: Beam Subjected to Stationary Laser Flux

In this section, the transientGFEMgl is applied to a beam subjected to a normal, surface flux. We apply the
methodology first to an Aluminum(Al) beam, and then to a Silicon Carbide(SiC)beam, both subjected to a
Gaussian laser flux (53), the shape of which is shown in Figure12.
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Figure 12: Spatial and temporal variation of the Gaussian laser (γ = 10).

The applied Gaussian laser flux is modeled as in [10], taking the form:

f̄ (xxx, t) = I0∗ f (t)∗
1

2πa2 ∗G(xxx,b,a) (53)

f (t) = 1−exp(−γ ∗ t) (54)

G(xxx,b,a) = exp

(

−(x−b)2

2a2

)

(55)

In the above equations, the constants take the values:I0 = 295f t−lb f
s , a = 0.025in, γ = 10.0s−1, b = 9.3in.

From this analysis we seek to determine the effect of the value of ρc for simulations in which the beam has
material parameters similar to those of an actual engineering material. Table4 shows the values used for the
material parameters in the numerical simulations.

Table 4: Material Parameters.

Material κ
(

f t−lb f
s·in·◦F

)

ρc
(

f t−lb f
in3·◦F

)

Al 2.92 18.3
SiC 1.32 15.6

The beam itself is of dimension 12×0.5×0.24 inches, in thex−, y− andz−direction, respectively, and
the global mesh is shown in Figure13. Flux boundary conditions given by (53) are applied to a portion of
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the top surface of the beam at 8.0 ≤ x ≤ 10.0, 0 ≤ y ≤ 0.5, z= 0.24, as noted in the figure. The rest of
the boundary is subjected to convection boundary conditions (2), with η = 11 f t−lb f

s·in2·◦F andū = 70 ◦F. In this
example we seek to simulate a situation in which the applied loading evolves to a steady-state localized,
sharp, surface flux as time progresses.

x

y
z

Figure 13: Global mesh used for the beam model. Flux boundary conditions are denoted by red arrows.

Steady-State Convergence Analysis We first analyze the steady-state version of the problem described
above. In this case we apply the maximum value of the laser flux(i.e., the value off̄ (xxx, t) whent → ∞), and
solve Poisson’s equation for steady-state heat conduction.

A reference internal energy value is obtained using a sequence of sixhp-GFEM discretizations. Thehp-
GFEM is based on polynomial enrichments only and mesh refinement.Let the relative difference in internal
energy between two successive solutions, sayum−1

hp andum
hp, be given by

UDiff,m :=
|Um

hp−Um−1
hp |

|Um
hp|

whereUm−1
hp andUm

hp are the internal energy of thehp-GFEM solutionsum−1
hp andum

hp, respectively.

Figure 14 shows the relative difference in internal energy,UDiff,m , versus problem size of discretization
m. The last discretization in the sequence,um=5

hp , has 821,412dofs, a uniform polynomial order ofp = 3,

andUDiff,m=5 = O(10−6). Based on these results, the reference internal energy is taken asUre f = Um=5
hp =

2.8575e6.

Figure15 shows the relative error in the energy norm forhp-GFEM andGFEMgl solutions. In the case of
the GFEMgl the horizontal axis shows the element size in thelocal domain. The global mesh is the one
shown in Figure13. As a result, theGFEMgl discretization has 1,020 dofs,regardless of the local problem
size. In contrast, the number of dofs in thehp-GFEM is in the range[1,000−190,000]. For this problem,
only one global-local iteration is required, as the boundary conditions in the local domain are sufficiently
accurate, and a second iteration did not appreciably improve the error level achieved. It may be noted that
in all numerical examples presented in this paper, no iterations between global and local problems aimed
at improving the enrichment functions are required. Based on the results presented in [32] it is reasonable
to assume that if additional iterations are required, it is likely that they will only be needed at the first time
step to take care of numerical pollution effects. No iterations to select the local domain size are performed
either. In fact, as demonstrated in [33], increasing the size of the local domain does not necessarily improve
the quality of enrichment functions for the class of problems considered in this paper.

As was the case with thehp-GFEM, a uniform polynomial order ofp = 3 is used in theGFEMgl analysis.
As can be seen from the plot, thehp-GFEM achieves a convergence rate ofβ = 3.07, as compared to the
optimum convergence rate ofβopt = 3.0. TheGFEMgl achieves a slightly lower, yet comparable conver-
gence rate ofβ = 2.61. In both cases, a sufficiently refined mesh must be used in order to approach optimal
convergence rates. This is due to the roughness of the solution.
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Figure 14: Relative difference in energy between any two successive hp-GFEMsolutions, UDiff,m, versus problem size
of discretization m. Analysis performed to determine reference value for steady-state internal energy.

In the discretizations used in this paper, thehp-GFEM solution spaces contain the global-local enrichment
functions used in the definition ofGFEMgl solution spaces. However, most of the enrichment functionsused
in the definition ofhp-GFEM spaces do not belong toGFEMgl solution spaces. As a result, the convergence
rate of theGFEMgl may be lower than the one in thehp-GFEM when the same element sizes are used in
the local problems and in thehp-GFEM discretizations. Figure15 shows a representative behavior of these
methods. Not only the convergence rate but also the error in the energy norm of theGFEMgl is comparable
to thehp-GFEM when the same element size and polynomial order are used in the hp-GFEM and in the
local problem for theGFEMgl.
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Figure 15: Convergence of the relative error in the energy norm. Convergence rates ofβ = 3.07 andβ = 2.61 are
obtained for hp-GFEM andGFEMgl analyzes, respectively.
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Transient Analysis: Determination of Reference Solution A reference solution for the transient case is
obtained using the same approach as in the steady-state case. Here, thehp-GFEM discretizations use high
levels of local refinement and a non-uniform, non-isotropicp-enrichment strategy in which the entire global
domain has ap-order of(px, py, pz) = (3,3,3) with a local region around the laser flux with(px, py, pz) =
(4,3,4). The relative difference in theL2 norm of the internal energy between two successive solutions, say
um−1

hp (t) andum
hp(t), is computed using

LDiff,m
2 (U(t)) =

‖Um
hp(t)−Um−1

hp (t)‖2

‖Um
hp(t)‖2

(56)

whereUm−1
hp (t) andUm

hp(t) are the internal energy of thehp-GFEM solutionsum−1
hp (t) andum

hp(t), respec-
tively, and the discreteL2 norm is defined in (45).

Figure16 shows the relative difference in theL2 norm of the internal energy,LDiff,m
2 (U(t)), versus problem

size of discretizationm. The last discretization in the sequence,um=7
hp , has 359,003dofs andLDiff,m=7

2 (U(t)) =

O(10−7). Based on these results, the reference internal energy is taken asUre f(t) = Um=7
hp (t).
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Figure 16: Relative difference in the discrete L2 norm of the internal energy, LDiff,m
2 (U(t)), versus problem size of

discretization m. Solutions are computed using the hp-GFEM.

With a reference curve for the internal energy defined, we nowanalyze theAl beam. All of the results
presented from this point forward are generated using Transient Formulation 2 since the shape functions of
theGFEMgl are time-dependent. TheGFEMgl solutions are generated using meshes with only 1,020 dofs
and solution accuracy is improved through the use ofh-extensions in the local domain. Figure17 shows
local meshes with increasing levels of refinement around thelaser flux. The local domains are generated
as described in [32], with seed nodes selected from a bounding box from min= [8.2, 0.0, 0.0] to max
= [10.6, 0.5, 0.24], and localized refinement used in a bounding box from min= [8.7, 0.0, 0.0] to max
= [9.7, 0.5, 0.24]. It may be noted that the dimension of the local domain remains unchanged, and merely
the levels of localized refinement is increased.

Results obtained for theAl beam generated with theGFEMgl are plotted in Figure18. This figure shows that
the internal energy versus time curves converge to the proper reference curve as the global-local enrichments
are improved through mesh refinement in the local domain. From the figure, it is also apparent that the time-
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(a) 3 levels of local mesh refinement.
(b) 5 levels of local mesh refinement.

(c) 7 levels of local mesh refinement. (d) 9 levels of local mesh refinement.

Figure 17: Local meshes used forGFEMgl simulations, increasing levels of local refinement are used.

dependency of the enrichment functions is properly accounted for.
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Figure 18: Internal energy versus time curves for Al. Solutions computed withGFEMgl on a fixed global mesh and
h-extensions in the local domain.

Figure19 shows the convergence in theLerror
2 norm of the internal energy for theGFEMgl andhp-GFEM.

The error normLerror
2 is computed using (46) and the reference internal energyUre f(t). It should be noted

that in the case of thehp-GFEM, the shape functions are not time-dependent. The measure ofcomputational
effort is taken as the “element size”, referring to the widthin thex-direction,hx, of the elements in the region
of high refinement. For thehp-GFEM “element size” of course refers to elements in the global domain, while
for theGFEMgl “element size” refers to the width of the elements used in thelocal problems, because the
width of the elements in the global domain remains constant,hx = 0.5in. As can be seen from the plot, at
a given element size, thehp-GFEM produces solutions with slightly better accuracy, but it does so at the
increase in the number of dofs used in the simulation. The number of dofs in thehp-GFEM is in the range
[10,000− 30,000] while theGFEMgl discretization has 1,020 dofs. The convergence rates,β , and error
levels are very comparable for both methods. This behavior is very similar to the steady-state case shown
in Figure15. Thep-enrichment strategy for thehp-GFEM is (px, py, pz) = (3,3,3) globally, with a local
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region aroundx = b where(px, py, pz) = (4,3,3). For theGFEMgl simulations(px, py, pz) = (3,3,3) in the
global domain, and(px, py, pz) = (4,2,2) in the local domain.
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Figure 19: Convergence in Lerror
2 (U(t)) for internal energy versus time curves generated with hp-GFEMandGFEMgl.

Figures20and21show the convergence in the relative error in the energy norm(57) for a single point along
the curveUhp(t), at timest = 0.5secandt = 1.0sec, respectively. Again, we see that in the lower error
ranges, thehp-GFEM delivers slightly better accuracy at a given element size. At time t = 0.5secwe see
that both thehp-GFEM andGFEMgl deliver the same convergence rates,β , and at timet = 1.0secthehp-
GFEM has a higher convergence rate, but the rate is still comparable with that obtained with theGFEMgl.
This behavior is, again, very similar to the steady-state case shown in Figure15.

‖uhp(t)−ure f(t)‖E

‖ure f(t)‖E
=

(

Uhp(t)−Ure f(t)

Ure f(t)

)1/2

(57)

Analysis of Beam with Material Heterogeneity We now apply the transientGFEMgl with Transient For-
mulation 2 to simulations involving material heterogeneity. Several different beam materials are investigated
for the same beam model. In the first case, the beam is assumed to be made entirely ofAl. In the second case,
the beam is assumed to be made entirely ofSiC. In the third case, the beam is assumed to be a composite
made up ofAl andSiC, with the volume fraction ofSiC, VSiC, taken to be constant through the thickness
of the beam, withVSiC = 0.5. Cases 4 and 5 assume a variation ofVSiC through the thickness of the beam,
according to the following power law

VSiC = Vbottom
SiC +

(

Vtop
SiC −Vbottom

SiC

)(y
h

)q
(58)

whereVbottom
SiC andVtop

SiC are the volume fraction of silicon carbide at the top and bottom faces of the beam,
respectively, taken asVtop

SiC = 1.0,Vbottom
SiC = 0.0; y is the y-coordinate of the material point, andh is the

height of the beam,h = 0.24 in. Simulations are run usingq = 1,3, corresponding to through-the-thickness
variations ofVSiC shown in Figure22. A summary of the material composition of each case analyzedis
provided in Table5.
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Figure 20: Convergence in energy norm for hp-GFEM andGFEMgl solutions at t= 0.5sec.
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Figure 21: Convergence in energy norm for hp-GFEM andGFEMgl solutions at t= 1.0sec.

Table 5: Material Composition for Each Case.

Case Material VSiC

1 Al 0.0
2 SiC 1.0
3 Al-SiC 0.5
4 Al-SiC Power Law (q = 1)
5 Al-SiC Power Law (q = 3)
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Figure 22: Illustrates the through-the-thickness variation of VSiC for the values of q used in the simulations.

For the cases in which the beam is assumed to be a FunctionallyGraded Material (FGM) (cases 4 and 5),
the values of the effective material properties,(ρc)e f f andκe f f are homogenized using the rule-of-mixtures
(59) and the Mori-Tanaka method (60), respectively [10, 24].

(ρc)e f f = VSiC∗ (ρc)SiC+(1−VSiC)(ρc)Al (59)

κe f f = κSiC+
(κAl −κSiC)∗ (1−VSiC)

1+VSiC
κAl−κSiC

3κSiC

(60)

In all cases, reference solutions are computed using the same procedure described earlier for theAl beam.
Results obtained using theGFEMgl for Cases 1 and 2 (Al andSiC), the two base materials selected for
analysis are plotted in Figure23. The figure shows the convergence in theLerror

2 norm of the internal energy
for theGFEMgl. As can be seen from the figure, good convergence behavior is obtained for Cases 1 and 2.

Figure24 shows the internal energy versus time curves for the first twocases. As we would expect, the
material with a smaller thermal conductivity has steeper gradients in the solution, and thus more internal
energy. In the figure, theGFEMgl curves are not visible in the plot because they fall on top ofhp-GFEM
reference curves.

Results for the through-the-thickness temperature distributions are provided in Figure25. The figure shows
the convergence in theLerror,temp

2 (u(xxx)) value for the through-the-thickness temperature distributions att f inal

for Cases 1 and 2, as defined below

Lerror,temp
2 (u(xxx)) =

‖u(x,y,zn)−uhp(x,y,zn)‖2

‖u(x,y,zn)‖2
(61)

where then temperature values are taken at(x,y,z) = (9.3,0.25,zn), with zn = [0.0, 0.2, ..., 0.24], and‖.‖2

is the discreteL2 norm defined in (45). From the figure, it is apparent that good convergence behavior is
obtained for this error parameter. Figure26 shows the actual through-the-thickness temperature variations
att f inal for each of the 5 cases. For each of the plots provided, solid lines indicate reference curves generated
with the hp-GFEM, and glyphs indicateGFEMgl data. TheGFEMgl data fall on top of the referencehp-
GFEM curves.
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Figure 23: Convergence in Lerror
2 (U(t)) norm of the internal energy for theGFEMgl as applied to Case 1 (Al) and

Case 2 (SiC).
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Figure 24: Internal energy versus time curves for Case 1 (Al) and Case 2 (SiC) computed withGFEMgl and hp-
GFEM. Reference curves generated using hp-GFEM are shown using solid lines while theGFEMgl data are shown
using glyphs.
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Figure 25: Convergence in the L2 norm of through-the-thickness temperature distributionsfor theGFEMgl as applied
to Case 1 (Al) and Case 2 (SiC).

0 h/2 h
Location

0

1000

2000

3000

4000

T
em

pe
ra

tu
re

Case 1
Case 2
Case 3
Case 4
Case 5

Figure 26: Through-the-thickness temperature distributions at tf inal for each of the 5 Cases. For each of the plots,
solid lines indicate reference curves generated with the hp-GFEM, and glyphs indicateGFEMgl data.
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Table 6 summarizes theLerror
2 norm of the internal energy,Uhp(t), as well as the through-the-thickness

temperature distributions att f inal for each of the 5 Cases. As can be seen from the data,GFEMgl results are
in good agreement with the referencehp-GFEM results for each of the five cases in terms of internal energy
versus time as well as for through-the-thickness temperature curves att f inal .

Table 6: Lerror
2 values for each trial investigated. Lerror

2 (Temp) is computed at tf inal .

Case Material Type Lerror
2 (Temp) Lerror

2 (Internal Energy))
1 Al 1.15e-3 4.18e-4
2 SiC 1.34e-3 7.31e-4
3 VSiC = 0.5 1.26e-3 5.07e-4
4 q = 1 1.76e-3 1.12e-2
5 q = 3 2.42e-3 1.53e-2

7.2.1 Effect of Time-Step Size

In this section we analyze the beam with material propertiescorresponding toAl, or Case 1, and varying
time step sizes,∆t. For theGFEMgl simulations, there is a lag in the boundary conditions applied to the
local domain due to the fact that in the generation of the enrichment function used at the global domain at
time tn+1, the Dirichlet BCs are taken from the global solution from time tn, whereas the Neumann BCs
and heat source are taken from the prescribed data at timetn+1. As such it is reasonable to investigate the
accuracy of theGFEMgl results relative to those generated withhp-GFEM for different time-step sizes, so as
to investigate whether or not the lag in the boundary conditions resulting from the size of∆t has a negative
impact of theGFEMgl solution quality. Figure27 shows the value ofLDi f f

2 for theGFEMgl andhp-GFEM
simulations. In this instance we are not plotting temporal convergence with respect to the size of∆t, as for
each point on the plot, the time-step size is the same for theGFEMgl simulation considered, as well as for
thehp-GFEM simulation used as reference.
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Figure 27: Plot of LDi f f
2 for hp-GFEM andGFEMgl simulations with different size∆t.

30



In this instance, we define the value ofLDi f f
2 as

LDi f f
2 =

‖Uhp(t)−Ugl(t)‖2

‖Uhp(t)‖2
(62)

whereUhp(t) andUgl(t) are the internal energy computed with thehp-GFEM andGFEMgl, respectively,
and‖.‖2 is the discreteL2 norm defined in (45). Both thehp-GFEM andGFEMgl curves are generated on
meshes with 7 levels of refinement around the laser flux location. From the plot it can be seen that theLDi f f

2
value is, at least for this problem, relatively insensitiveto the time step size used, and the lag in the boundary
conditions applied to the local problem from the global solution attn do not cause a problem in terms of the
quality of the local solution, even when a larger∆t is used.

It is reasonable to assume that there is a∆t value which is large enough to deteriorate the local boundary
condition quality and to significantly impact the accuracy of theGFEMgl solution. It is not obvious however,
how this ∆t value governing the severity of the boundary condition lag compares with the value of∆t
required for sufficient accuracy of the transient simulation, regardless of whether theGFEMgl or thehp-
GFEM is used. This type of convergence study is beyond the scope ofthe current work, but will likely be
the focus of future investigation.

7.2.2 Effect of Time-Rise Constant, γ

We now seek to investigate the effect of the time-rise constant, γ on the ability of the transientGFEMgl to
deliver accurate results. The material properties used in this section correspond toAl, referred to previously
as Case 1. Figure28shows the spatial and temporal variations for the Gaussian flux whenγ = 50.
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Figure 28: Spatial and temporal variation of the Gaussian laser flux, (γ = 50).

In this instance, the intensity of the flux ramps up much more quickly in time as compared to Figure12,
resulting in a larger gradient in the internal energy versustime reference curve for the model problem, as
shown in Figure29. In the figure, a reference curve generated usinghp-GFEM is shown using a solid line
while theGFEMgl data are shown using glyphs. TheGFEMgl data forγ = 50 once again falls on top of
the reference curve. The curves corresponding toγ = 10 are also provided to illustrate the difference in the
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evolution of the internal energy with respect to an increasein γ . In both instances,γ = 10 andγ = 50, 9
levels of localized refinement are used.
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Figure 29: Internal energy vs time curves for solutions obtained with time-rise constantγ = 10andγ = 50. Reference
curves generated using hp-GFEM are shown using solid lines while theGFEMgl data are shown using glyphs.

The convergence in theLerror
2 norm of the internal energy is shown in Figure30for γ = 10 andγ = 50. From

the plots it can be seen that in both cases good convergence behavior is obtained, with differences only at
very low error values. In both cases theLerror

2 value is driven below one percent relative difference.
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Figure 30: Convergence in the Lerror
2 norm of the internal energy for GFEMgl as a function of element size in local

problem.

The convergence in theLerror
2 norm of the through-the-thickness temperature distribution is shown in Figure

31 for γ = 10 andγ = 50. The temperatures are taken from the same location as previously noted. From
the plots it is again seen that good convergence behavior is obtained, with differences only at very low error
values. In both cases theLerror

2 value is once again driven below one percent.

The evolution of the through-the-thickness temperature distributions in time are shown in Figures32 and
33 for γ = 10,50, respectively. From the figures it can be seen that forγ = 50 the temperature distributions
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Figure 31: Convergence in the Lerror
2 norm of through-the-thickness temperature distribution at t f inal as a function of

element size in local problem.

at t = 0.3,0.65 seconds are closer to the steady-state curves than those obtained withγ = 10, as would be
expected.
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Figure 32: Evolution of the through-the-thickness temperature distribution for the beam withγ = 10.
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Figure 33: Evolution of the through-the-thickness temperature distribution for the beam withγ = 50.
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7.3 Numerical Experiment 3: Beam Subjected to Moving Laser Flux

In this section we analyze the same beam model as in the previous, with material properties corresponding
to Al, or Case 1 in the previous section. In this example, the applied laser flux increases in time, as well as
moves in space, as shown in Figure34.
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Figure 34: Flux applied to the beam.

The applied Gaussian laser flux function now takes the form:

f̄ (xxx, t) = I0∗ f (t)∗
1

2πa2 ∗G(xxx,b(t),a) (63)

f (t) = 1−exp(−γ ∗ t) (64)

G(xxx,b(t),a) = exp

(

−(x−b(t))2

2a2

)

(65)

b(t) = b0 +Vt (66)

In the above equations, the constants take the values:I0 = 295f t−lb f
s , a = 0.025in, γ = 10.0s−1, b0 = 9.25in

andV = 0.5 in
sec. The reference solution in this section is generated usinghp-GFEM with high levels of local

refinement and cubic shape functions, resulting in a model with 433,635 dofs. TheGFEMgl solutions are
once again generated using meshes with only 1,020 dofs and solution accuracy is again improved through
the use ofh-extensions in the local problem.

Figure35shows the internal energy versus time curves for theGFEMgl simulation as well as thehp-GFEM
reference curve. TheGFEMgl curve is again difficult to see because it falls on top of the reference curve.
Nine levels of mesh refinement were applied to the local problem used with theGFEMgl The Lerror

2 error
norm of the internal energy for theGFEMgl simulation is 6.01e−4, indicating excellent agreement between
theGFEMgl solution and the referencehp-GFEM solution.

Figures36 and37 show snap-shots of the solution at different times throughout the simulation forGFEMgl
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Figure 35: Internal energy vs time curves for solutions obtained with amoving source.

solutions andhp-GFEM solutions, respectively. It is of greatest interest to highlight the ability of the
GFEMgl to resolve the transient, moving, thermal spike on elementswhich are significantly larger than
the width of the spike itself, as shown in Figure36. By contrast, Figure37 illustrates the ability of the
hp-GFEM to resolve the moving spike as well, but with the requirementof a significant increase in the
mesh density. As such, there is great potential for a significant increase in the computational efficiency for
transient simulations using theGFEMgl.

(a) t = 0.05 (b) t = 0.35

(c) t = 0.65 (d) t = 0.95

Figure 36: Snap-shots in time for the transientGFEMgl simulation for the beam with a moving laser flux.
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(a) t = 0.05 (b) t = 0.35

(c) t = 0.65 (d) t = 0.95

Figure 37: Snap-shots in time for the transient hp-GFEM simulation for the beam with a moving laser flux.
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8 Conclusions

In this paper, the generalized FEM with global-local enrichments (GFEMgl) [14, 17, 25, 32] is formulated
for transient heat transfer problems with solutions exhibiting highly-localized, sharp thermal gradients. The
proposed method enables the analysis of this class of problems using uniform, coarse, global meshes. This
has several computational implications as discussed in Section 7.

(i) the possibility of capturing localized, transient solution features using uniform, coarse, global meshes.
This removes, for example, the need to refine global meshes that are usually complex and very large,
the re-meshing of which is non-trivial between subsequent time-steps;

(ii) no transient effects need to be considered in the local domains;

(iii) with the proper discretization order (temporal, spatial) theGFEMgl produces results which are in very
good agreement with the reference curves generated usinghp-GFEM and significantly more degrees
of freedom;

(iv) the GFEMgl delivers accurate results in terms of the evolution of the internal energy as a function
of time, as well as in the resulting through-the-thickness temperature distributions. The latter of
which is important for design considerations, particularly if thermo-mechanical coupling is consid-
ered. Thermo-mechanical coupling, while not addressed in this work, is a topic to be investigated in
future work;

(v) the size of the enriched global problem does not depend onthe size or discretization used in the local
problems;

(vi) the accuracy of theGFEMgl is relatively insensitive to the time-rise constant of the applied surface
flux;

(vii) the GFEMgl uses a large amount of information which can be calculated once and re-used at each sub-
sequent time-step, yielding the potential for significant improvement in the computational efficiency.
This potential increase in efficiency is the current focus upon the completion of this work;

(viii) the accuracy of theGFEMgl is relatively insensitive to the size of∆t, and the resulting lag in Dirichlet
boundary conditions applied in the local problems;
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