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SUMMARY

A new Generalized Finite Element Method (GFEM) is introduced for solving problems with discontinuous
gradient fields. The method relies on enrichment functions associated with generalized degrees of freedom at
the nodes generated from the intersection of the phase interface with element edges. The proposed approach
has several advantages over conventional GFEM formulations, such as a lower computational cost, easier
implementation, and straightforward handling of Dirichlet boundary conditions. A detailed convergence
study of the proposed method and a comparison with the standard Finite Element Method (FEM) are
presented for heat transfer problems. The method achieves the optimal rate of convergence using meshes
that do not conform to the interfaces present in the domain while achieving a level of accuracy comparable
to that of the standard FEM with conforming meshes. Various application problems are presented, including
the conjugate heat transfer problem encountered in microvascular materials. Copyright c� 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Several problems in materials science and engineering include solution fields that are
C0−continuous. Classical examples include thermal or structural fields in composite materials
where the difference in material properties between the phases leads to discontinuities in the
gradient field, also known as weak discontinuities [1, 2]. Another example can be found in the
mesoscale modeling of polycrystalline materials where the mismatch in material properties at grains
boundaries leads to a discontinuous gradient field [3]. In the general case, the mismatch between
the phases involves not only the difference between material properties, but also the effective terms
in the governing differential equation based on the type of materials, e.g., conjugate fluid/solid
problems. Active cooling of materials through embedded microvascular networks [4] is an example
of such problems, where, in addition to material properties, the effect of the convection in the fluid
phase must be incorporated in the numerical solution.
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2 INTERFACE-ENRICHED GFEM FOR PROBLEMS WITH DISCONTINUOUS GRADIENT FIELDS

An accurate FEM solution for such problems can only be achieved by adopting a conforming
mesh, i.e., a mesh that conforms to the interface geometry. In this case, the inherent gradient
discontinuity between adjacent finite elements in the standard FEM accurately represents the
weak discontinuity at the material interface. However, creating a conforming mesh which can
appropriately represent the actual geometry of the structure while yielding elements with acceptable
aspect ratios is a complex and often expensive process. Moreover, in some cases such as transient
or optimization problems, where the geometry of the problem is changing throughout the analysis,
the use of conforming meshes may simply be impossible [5, 6].

The aforementioned limitations of the standard FEM in handling problems with weak or strong
discontinuities, where the latter refers to discontinuities in the solution field, have motivated
the development of special numerical techniques. Among the most promising related methods
is the Generalized Finite Element Method (GFEM)/eXtended Finite Element Method (XFEM)
[7, 8, 9, 10], which aims at providing independence between the problem morphology and the
finite element mesh used in the numerical solution. This is achieved by incorporating an a priori
knowledge of the solution field in the form of enrichment functions at the nodes of elements cut
by the the interface. Thus, despite the inherent geometrical complexity for determining the location
of elements with respect to interface edges in 2D or surfaces in 3D, these methods provide a great
simplification in modeling discontinuous phenomena with non-conforming meshes.

Early contributions to the GFEM/XFEM were directed towards linear-elastic fracture mechanics
and crack growth simulations [11, 12, 13, 14, 15]. Later contributions to the developement of
GFEM/XFEM for this type of problems can be found in [16, 17, 18, 19]. The implementation
of these methods also gained interest in other areas addressing problems with weak and strong
discontinuities. Such areas can be categorized but not limited to contact problems [14, 20],
multiscale problems [21], multiphase/solidification [22, 23], and material or phase interfaces
[24, 25, 26]. The current work focuses on the latter type of problems by introducing new enrichment
functions and a different approach for applying them at the interface. In the proposed method, the
generalized degrees of freedom (dofs) are not applied to nodes of the original mesh, but considered
at the nodes that are created by intersecting the phase interface with element edges. Since the
generalized dofs in this approach are applied to the interface nodes, we refer to the method as
Interface Generalized Finite Element Method (IGFEM).

The remainder of the paper is organized as follows: In the next section, we discuss the formulation
of the model problem that motivated this work, i.e., the convection-diffusion equation, and the
corresponding GFEM formulation. In Section 3, we introduce the enrichment functions used in
the IGFEM and explain its formulation for solving the model problem with three-node triangular
elements. Also, implementation issues of the IGFEM are discussed and compared to those of more
conventional GFEM formulations for which generalized dofs are applied to the nodes of the original
mesh. It must be noted that the application of the IGFEM is not limited to the convection-diffusion
equation and can be easily extended to other problems (such as structural problems) with weak
discontinuities. A detailed convergence study for this method is provided in Section 4 by comparing
the accuracy and convergence rates with those of the standard FEM. We then apply the IGFEM
to solve heat transfer problems in heterogeneous and actively-cooled microvascular materials in
Section 5.

2. PROBLEM DESCRIPTION

Consider an open domain Ω = Ωs ∪ Ωf ⊂ R2, Ωs ∩ Ωf = ∅, composed of two mutually exclusive
solid (Ωs) and fluid (Ωf ) regions, with closure Ω as shown in Figure 1. The boundary Γ = Ω− Ω
has an outward unit normal n and is divided into three distinct partitions Γu, Γq, and Γh such that
Γ = Γu ∪ Γq ∪ Γh and Γu ∩ Γq ∩ Γh = ∅. The strong form of the convection-diffusion boundary
value problem can then be expressed as follows: Given the thermal conductivity κ : Ω → R2 ×R2,
fluid density ρ : Ωf → R, fluid specific heat cp : Ωf → R, velocity field v : Ωf → R2, heat source
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3

f : Ω → R, and heat transfer coefficient h : Γh → R find u : Ω → R such that

−∇ · (κ∇u) = f on Ωs

−∇ · (κ∇u) + ρcpv · ∇u = f on Ωf

u = ū on Γu

κ∇u · n = q on Γq

κ∇u · n = h (u∞ − u) on Γh,

(1)

where ū : Γu → R is the prescribed temperature and q : Γq → R the heat flux, i.e., the Dirichlet and
Neumann boundary conditions, respectively. Also, u∞ : Γh → R is the ambient temperature used
in the evaluation of the Robin (convective) boundary conditions. It must be noted that if Ω = Ωs,
i.e., no fluid phase, or v = 0, the model problem reduces to the Poisson equation.

n

Γq

Γu

x

Ωs

Ωs

Ωf

v

q

Γh

y

Figure 1. Schematic configuration of the the geometry and boundary conditions of the domain used for heat
transfer problems. The domain Ω is divided into two mutually exclusive regions Ωf and Ωs, corresponding to
fluid and solid phases, respectively. The boundary Γ with outward unit normal n is composed of three distinct
regions Γu, Γq , and Γh, corresponding to applied Dirichlet, Neumann, and Robin boundary conditions,
respectively. The picture also illustrates a subset of a FEM mesh that does not conform to the phase interfaces

in the domain.

Given the function spaces U and V , defined as U ⊂ H1
�
Ω
�
= {u : u|Γu = ū} and V ⊂

H1
�
Ω
�
= {v : u|Γu = 0}, the weak formulation of (1) is written as follows: Find u ∈ U such that

a (u, v) + a (u, v)Γh
= (v, f) + (v, q)Γq

+ (v, u∞)Γh
∀v ∈ V, (2)

where the linear and bilinear forms appearing in (2) are given by

a (u, v) =

�

Ω

∇v · (κ∇u) dΩ+

�

Ωf

vρcpv · ∇u dΩ,

a (u, v)Γh
=

�

Γh

hvu dΓh,

(v, f) =

�

Ω

vf dΩ,

(v, q)Γq
=

�

Γq

vq dΓq,

(v, u∞)Γh
=

�

Γh

hvu∞ dΓh.

Selecting the subspaces Uh ⊂ U and Vh ⊂ V such that

Vh =
�
vh : vh|Γu = 0

�
, Uh =

�
uh : uh = vh + th , th|Γu = ū , vh ∈ Vh

�
,

the Galerkin formulation of (2) can be written as: Find uh ∈ Uh such that

a
�
uh, vh

�
+ a

�
uh, vh

�
Γh

=
�
vh, f

�
− a

�
vh, th

�
+
�
vh, q

�
Γq

+
�
vh, u∞

�
Γh

∀vh ∈ Vh. (3)
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4 INTERFACE-ENRICHED GFEM FOR PROBLEMS WITH DISCONTINUOUS GRADIENT FIELDS

Equation (3) can be directly used as the standard FEM approximation by discritizing the domain Ω
into m finite elements (Ω ∼= Ωh ≡ ∪m

i=1Ωi ) and employing a set of n standard Lagrangian shape
functions Ni (x) for approximating the field in each element such that

uh (x) =
n�

i=1

Ni (x)ui. (4)

If a non-conforming mesh as shown in Figure 1 is adopted, the Galerkin method is not capable
to capture the gradient discontinuity at the interfaces, which introduces a substantial error and
therefore a loss of the optimal rate of convergence. This problem can be addressed by enriching
the solution space at the nodes of elements intersecting with the material interface to retrieve the
missing information in the standard FEM solution. Within the GFEM framework, this can be done
by using a set of local enrichment functions {ϕij (x) : x → R | Ni (x) �= 0}nen

j=1 where nen is the
number of enrichment functions associated with node i. The approximation of the solution field
through the GFEM is then expressed as

uh (x) =
n�

i=1

Ni (x) ũi +
n�

i=1

Ni (x)
nen�

j=1

ϕij (x) ûij . (5)

The first term of (5) is similar to the standard FEM approximation except for the fact that ũi does
not in general represent the field value at node i because of the presence of the second term in (5),
which is associated with the contribution of enrichment functions in evaluating the nodal values of
the solution. These enrichment functions are multiplied by the standard Lagrangian shape functions
to provide a sparse resulting system of linear equations. It is worth mentioning that, although (5)
seems to indicate that all nodes are enriched, this does not have to be the case in general.

Several issues are raised by the implementation of the GFEM formulation described by (5). The
first issue involves handling the Dirichlet boundary conditions at the enriched nodes of the mesh.
Based on (5), the field value at node i is given by ui = ũi +

�nen

j=1 ϕij (xi) ûij . Since both ũi and
ûij are unknown values, the prescribed value of the solution field can not be directly assigned to
the enriched node. Instead, one must employ techniques such as the penalty method or Lagrange
multipliers to enforce Dirichlet boundary conditions [27, 28]. One could shift ϕij such that it is zero
at the nodes. But, the enforcement of boundary conditions between the nodes is still problematic. It
is worth mentioning that for some enrichment functions such as those proposed in [26], the value of
the enrichment function vanishes at the nodes and hence enforcing the Dirichlet boundary conditions
in the GFEM is as straightforward as in the standard FEM.

Another issue associated with the implementation of the GFEM involves in the blending of
representing elements, i.e., elements with attached enrichment to all nodes, to conventional finite
elements. The problem arises due to the fact that only some of the nodes in the blending elements
are enriched and thus the enrichment functions are not fully reproduced through the interpolation
with Lagrangian shape functions described by (5). Hence, the incomplete terms of the enrichment
functions added to the numerical approximation in such elements may in fact deteriorate the
accuracy and rate of convergence. For linear interpolations, a solution is presented in [29] where all
the nodes of blending elements are enriched through the implementation of corrective enrichment
functions. However, as described in [25], higher order interpolations do not have the aforementioned
problem and optimal rates of convergences are recovered.

The last implementation issue that we study here is the quadrature of enriched elements in the
GFEM. Because of the inherent weak discontinuities in these functions, using the same order of
Gauss points as that used in the standard FEM in these elements leads to a considerable error
and degradation of the rate of convergence. It has also been shown that using higher-order Gauss
quadratures in this case performs poorly in improving the accuracy [30]. Among several approaches
proposed to address this problem, one of the most commonly accepted techniques consists in
subdividing the element into subdomain elements and moving the standard quadrature from the
parent element into these so called integration elements [12, 13]. The only constraint on creating
integration elements is that their boundaries must be aligned with discontinuity edges or surfaces of
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the domain and their aspect ratio does not affect the accuracy of the solution. As explained in the
next section, the IGFEM addresses some of the implementation issues associated with the GFEM.

3. IGFEM: FORMULATION AND IMPLEMENTATION

To explain the basic idea behind the IGFEM formulation, we first study two different approaches
for interpolating the solution field in a bi-material domain, as shown in Figure 2. The standard FEM
interpolation of the field when the domain is divided into two conforming elements is depicted
in Figure 2(a). Assuming that the nodal values of the field ui are given and elements are locally
numbered counter-clockwise starting from the lower left node (Figure 2(b)), the interpolation of the
field using the Lagrangian shape functions in each element is given by

uh = N (1)
1 u1 +N (1)

2 u2 +N (2)
3 u3 +N (2)

4 u4 (6)

+
�
N (1)

4 +N (2)
1

�
u5 +

�
N (1)

3 +N (2)
2

�
u6,

where N (j)
i denotes the standard Lagrangian shape function associated with the i-th node of element

j.

Element 1

(a) (b) (c)

Element 2
+= Parent element

34

21
Element 1

Element 2

u1

u2

u3
u4

u6

u
�

5
u5

u
�

6

u5 − u
�

5

u6 − u
�

6

Figure 2. Two equivalent approaches for capturing the weak discontinuity at the phase interface (shown by
a dash-dotted line) with Lagrangian shape functions: (a) standard FEM interpolation with two conforming
elements, (b) interpolation with one non-conforming element, (c) missing part of the field interpolation with

the non-conforming element given in Figure (b).

On the other hand, if the two elements are merged to form one non-conforming element, the field
approximation with bilinear shape functions in the parent element, N (p)

i , looks like the one shown
in Figure 2(b). In this case, the standard FEM interpolation is not able to reconstruct the gradient
discontinuity at the material interface and hence the values u

�

5 and u
�

6 at the intersection of the
element edges with the interface are different from the given values u5 and u6. The missing part
of the field in this interpolation can be retrieved as shown in Figure 2(c). An interpolation of the
solution field equivalent to that given in (6) is then obtained as

uh = N (p)
1 u1 +N (p)

2 u2 +N (p)
3 u3 +N (p)

4 u4 (7)

+
�
N (1)

4 +N (2)
1

��
u5 − u

�

5

�
+
�
N (1)

3 +N (2)
2

��
u6 − u

�

6

�
,

where N (p)
i denoted the standard Lagrangian shape functions in the parent element. The above

equation can be rewritten as

uh = N (p)
1 u1 +N (p)

2 u2 +N (p)
3 u3 +N (p)

4 u4 + ψ1α1 + ψ2α2, (8)

where, similar to the GFEM formulation, ψ1 = N (1)
4 +N (2)

1 and ψ2 = N (1)
3 +N (2)

2 are considered
as enrichment functions and α1 and α2 are interpreted as generalized dofs. We can then extend (8)
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6 INTERFACE-ENRICHED GFEM FOR PROBLEMS WITH DISCONTINUOUS GRADIENT FIELDS

into the formulation of the IGFEM as

uh (x) =
n�

i=1

Ni (x)ui +
nen�

i=1

sψi (x)αi, (9)

where the coefficient s is a scaling factor that will be introduced later.
Several important characteristics of the IGFEM can be observed by comparing (9) with the

formulation of the conventional GFEM in (5). Similar to the conventional GFEM, the first term
of (9) represents the standard FEM portion of the approximation. However, unlike the conventional
GFEM, the coefficients associated with the first term in the IGFEM directly correspond to the values
of the field at each node. The second term in (9) denotes the effect of the enrichment functions in
the solution field because the enrichment functions vanish at these locations. The main difference
between this term and the corresponding term in (5) is the approach for assembling the generalized
degrees of freedom. While the partition of unity, i.e.,

�n
i=1 Ni (x) = 1, is used in the conventional

GFEM to paste together the enrichment functions, a unified enrichment in the IGFEM is achieved
by sharing the same generalized dofs between interface nodes of adjacent elements and not nodes
of the original mesh. Figure 3 presents a schematic view of the portion of the IGFEM solution
constructed by the enrichment functions and shows how these functions are stitched together over
the material interface. As also shown in the schematic, if an interface node coincides with one of the
nodes of the original mesh, no enrichment is attached to that node. This is due to the fact that the
standard FEM portion of the approximation in (9) directly yields the values of the field at the nodes
of the original mesh. Hence, the proposed enrichment functions vanish at the location of the node
and it is not necessary to enrich such nodes. It must be noted that because of the special approach
used for applying the enrichment functions in the IGFEM, this method can be also considered as an
h-hierarchical approach [31].

α1

α2

α3

α4 α5

   Phase   interface

   No   enrichment α6 α8α7

Figure 3. Contribution of enrichment function for modeling the weak discontinuity in the IGFEM. The
generalized dof αi denotes how the enrichment functions are stitched together over the interface nodes to
provide a continuous enrichment. No enrichment is attached to an interface node if it coincides with one of

the nodes of the original mesh.

3.1. Enrichment functions

Referring back to Equations (7) and (8), the enrichment functions used for interpolating the solution
field in Figure 2 were obtained as the sum of Lagrangian shape functions in the two conforming
elements. This approach can be extended in the IGFEM formulation through selecting appropriate
Lagrangian shape functions in the integration elements and using their linear combination as the
enrichment function. In order to evaluate the enrichment functions for triangular elements, we first
divide the elements intersecting with the phase interface into the minimum number of integration
elements required to obtain accurate quadrature. The enrichment function corresponding to an
interface node is then constructed as the linear combination of the Lagrangian shape functions in
the integration elements with a unity value at that node. The integration elements and enrichment
functions for two possible orientations of a triangular element with respect to the phase interface
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are presented in Figure 4. As shown in this figure, the parent element is divided into either two
triangular elements or one triangular and one quadrilateral element based on the position of the
phase interface. It must be noted that evaluating the enrichment functions in quadrilateral elements
is similar: first divide the element into two triangular sub-elements and then interact each triangular
element with the interface and enrich them as explained. These triangular subelements are only
generated for evaluated the enrichment functions and the shape functions used in the first term of
(9) are still obtained from quadrilateral elements.

2
3

1

2

3

1

3
4

1
2

1
2

3

=⇒

=⇒ =⇒

Phase i
nterf

ace

Phase interface
2

1

1

(2)

(2)

(1)

(1)

=⇒
ψ1

ψ2

ψ1 (x) = N (1)
1 (x) +N (2)

1 (x)

ψ1 (x) = N (1)
1 (x) +N (2)

2 (x)

ψ2 (x) = N (1)
2 (x) +N (2)

1 (x)

Figure 4. Evaluation of the enrichment functions in the IGFEM: two scenarios for creating the integration
elements and corresponding enrichment functions based on the location of the interface in the intersected

triangular element.

As mentioned before, the aspect ratio of integration elements in the GFEM, and similarly in the
IGFEM, does not affect the accuracy of the solution. However, since enrichment functions in the
IGFEM are created from the Lagrangian shape functions associated to the integration elements,
numerical difficulties arise if an interface node is too close to one of the nodes of the parent
element. In this case, the high aspect ratio of resulting integration elements and consequently the
large gradient values of the corresponding enrichment functions may lead to the formation of an ill-
conditioned stiffness matrix. In fact, this issue is a substantial problem in adaptive methods where
creation of a conforming mesh from the original mesh is desired and often special techniques are
required for handling the resulting ill-conditioned matrices [32].

To avoid the obove problem, we can scale the enrichment functions to control their gradient values
in the numerical solution [26]. It must be remembered that the closer an interface node is located
to one of the nodes of the parent element, the smaller the corresponding coefficient αi appearing in
(9). Thus, one can scale down the enrichment functions as the interface node gets closer to one of
the nodes of the parent element’s edge without affecting their performance in modeling the gradient
discontinuity along the interface. In other words, instead of using the original enrichment functions
in this case, which leads to a very large gradient value and yields a vanishing coefficient αi, scaling
down the enrichment function controls the gradient value while avoiding an excessively large value
of αi. The relative location of the intersection point along the edge of the element is quantified by

� :=
min (�x1 − xint� , �x2 − xint�)

�x2 − x1�
, (10)

where x1 and x2 are the nodes defining the intersecting edge of the parent element with the interface,
and xint is the intersection point over this edge. We then scale the enrichment function by factor
s = 4�2, appearing in (9), which is a parabolic functions with a unity value in the middle of the
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8 INTERFACE-ENRICHED GFEM FOR PROBLEMS WITH DISCONTINUOUS GRADIENT FIELDS

element’s edge and zero at its defining nodes (Figure 5), This scaling can be introduced for any
value of �, or only when it is below a chosen threshold (say, � < 0.01).

=⇒

Before scaling After scaling

1 1
s

Figure 5. Scaling the enrichment functions using a parabolic function based on the distance between an
interface node and nodes of the element’s edge to avoid ill-conditioning. The dash-dotted line denotes the

location of the interface.

When a straight interface completely splits an element, the proposed IGFEM enrichment
functions resemble the ridge enrichments proposed in [26], which were based on the level set
method. Instead, the IGFEM uses a linear combination of the Lagrangian shape functions in the
integration elements for constructing the enrichment functions. Also, in the IGFEM, the generalized
DOFs are attached to the interfaces nodes and we no longer employ the partition of unity for
attaching enrichment to the nodes of the original mesh.

Furthermore, the IGFEM provides more flexibility for evaluating the enrichment functions in
elements cut by piecewise linear interfaces or interfaces intersecting within an element. For instance,
consider a three-node triangular element cut by an interface defined by two intersecting linear
segments as shown in Figure 6. Unlike the level set approach described in [26], the proposed IGFEM
formulation is able to capture this type of interface geometry by dividing the parent element into
the minimum number of integration elements needed for accurate quadrature and using a linear
combination of the Lagrangian shape functions in these elements to obtain the enrichment functions.
We only need to add an interface node at the intersection point of the interface segments and add
a generalized dof there to capture the gradient jump at this location. The integration elements and
corresponding enrichment functions for the element cut by an interface with weak discontinuity are
presented in Figure 6. The same approach can be easily extended for evaluating the enrichment
functions in elements cut by three or more intersecting interfaces. Moreover, one can add one
or more interface nodes over the interface inside an element as shown in Figure 6 to reduce the
geometry approximations error associated with curved interfaces.

=⇒2
3

1

ψ1 ψ2

(2)

4

3

2 1

(3)
3

4

2

1

(1)

3

2

1

ψ3

ψ1 = N (1)
1 +N (2)

3

N (1)
2 +N (2)

2 +N (3)
2

ψ3 = N (2)
1 +N (3)

3

ψ2 =

Phase interface

Figure 6. Creation of integration elements and evaluation of IGFEM enrichment functions for a three-node
triangular element cut by an interface made by two intersecting linear segments.

3.2. Implementation issues: comparison with conventional GFEM

One of the unique features of the IGFEM is the way that enrichment functions are constructed
through the linear combination of the Lagrangian shape functions of integration elements. It must
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be noted that, regardless of the type of enrichment functions used in the GFEM, evaluating the
Lagrangian shape functions in the integration elements is essential for the Gaussian quadrature
in the parent element, i.e., for inverse mapping of the Gauss points in the integration elements
to global coordinates of the parent element. Thus, a direct implementation of such shape
functions as enrichment functions in the IGFEM reduces the computational cost and simplifies the
implementation.

A key advantage of the IGFEM is the elimination of the aforementioned problems encountered
in some GFEM formulations when applying Dirichlet boundary conditions at the enriched nodes.
Since the generalized dofs in the IGFEM are assigned to the interface nodes and not to nodes of
the original mesh, the process for applying Dirichlet boundary conditions in this method is similar
to that of the standard FEM. Moreover, if an interface node is located over Γu (Figure 1), more
information from the prescribed values of the field over the boundary can be incorporated into the
numerical solution by prescribing the values of the generalized dofs at such nodes. This value can be
easily determined by subtracting the standard FEM interpolation of the solution value over Γu using
the given field values at the defining nodes of the edge of the parent element from the prescribed
value of the solution at the interface node. Thus, for a non-conforming mesh, IGFEM provides a
simple way to incorporate in the numerical solution the boundary values of the phase interface,
while a similar direct approach is not suited for conventional GFEM.

To assess the computational cost of the IGFEM, we compare the associated number of dofs
with that of the conventional GFEM. Figure 7 illustrates the required generalized dofs for solving
a sample domain, discretized with three-node triangular elements, through both the conventional
GFEM and IGFEM. As shown there, in the best case scenario for the conventional GFEM where
no correction [29] is needed in blending elements to achieve the optimal rate of convergence, the
number of generalized dofs in this method is similar to that in the IGFEM. For GFEM formulations
that require correction in the blending elements, the number of generalized dofs is much higher
(twice for the domain shown in Figure 7).

IGFEM generalized dofs: 25

GFEM generalized dofs: 26

GFEM correction dofs: 25

Figure 7. Required number of generalized dofs in IGFEM and regular GFEM for a non-conforming mesh
of three-node triangular elements. The triangular symbols denote the location of additional dofs introduced
by the IGFEM over the interface (shown by dash-dotted line), while circles correspond to the nodes where
the additional dofs are introduced with the conventional GFEM in the absence of correction. The additional
dofs associated with the presence of a transitional region composed of blending elements are shown with

squares.
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10 INTERFACE-ENRICHED GFEM FOR PROBLEMS WITH DISCONTINUOUS GRADIENT FIELDS

4. CONVERGENCE STUDY

To investigate the convergence and accuracy of the IGFEM, the L2-norm and H1-norm of the error,
defined as

��u− uh
��
L2(Ω)

=

��

Ω

(u− uh)2 dΩ, (11)

��u− uh
��
H1(Ω)

=

��

Ω

(u− uh)2 + �∇u−∇uh�2 dΩ, (12)

are evaluated and compared to those of the standard FEM obtained with conforming meshes. Also,
we investigate the effect of the shape of the phase interface and the material mismatch across the
interface on the accuracy and rate of convergence of the numerical solution.

4.1. Example 1: gradient discontinuity along a straight interface

In the first example, we study the convergence rates of the IGFEM solution for the heat conduction
problem shown in Figure 8(a) and compare it with that of the standard FEM. The solution field for
this problem is displayed in Figure 8(b). As shown there, the mismatch between conductivity values
along the edges of the strip creates a spatially varying discontinuity in the gradient field.

3.2
cm

20× 20 cm

q
=

1000
W

/m
2

ū = 20 ◦C

ū = 20 ◦C

κ = 0.3 W/mK

κ = 0.3 W/mK

κ = 3.0 W/mK

(a)

Temperature

20.0

67.1

114.

161.

208.
u(◦C)

(b)

Figure 8. Domain, boundary conditions, and the solution field for the first example problem. The darker strip
in the middle of the domain has a conductivity value 10 times larger than the rest of the domain, causing a

discontinuous gradient along its edges.

To study the convergence of the IGFEM solution, the standard FEM solution with an extremely
refined conforming mesh of six-node triangular elements outlined on a 2000× 2000 grid is used
as the reference solution. The IGFEM results are compared with those of the standard FEM
obtained using structured conforming meshes with three-node triangular elements. Structured and
unstructured non-conforming meshes are used in conjunction with the IGFEM as illustrated in
Figure 9.

The rates of convergence for the L2-norm and H1-norm of the error with respect to the mesh
size and total number of degrees of freedom are presented in Figures 10 and 11, respectively. As
observed in these figures, the IGFEM yields similar rates of convergence as that of the standard
FEM without the need of conforming meshes. Moreover, the accuracy of the IGFEM results is often
better than that of the standard FEM. It must be emphasized that this optimal rate of convergence is
achieved without any correction in blending elements, which reduces both the cost and complexity
of the implementation of this method.

Copyright c� 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



11

(a) (b) (c)

Figure 9. Three different types of meshes used for the numerical solutions in the first example problem:
(a) structured conforming mesh for the standard FEM solution, (b) structured and (c) unstructured non-

conforming meshes for the IGFEM solution.
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Figure 10. Convergence rates in L2-norm and H
1-norm of the error with respect to the mesh size (h) for the

example problem shown in Figure 8. IGFEM results are obtained using structured and unstructured meshes
similar to those shown in Figure 9.

4.2. Example 2: Curved interfaces and effect of material mismatch

The use of conforming meshes in problems with curved interfaces solved with the standard FEM
does not usually yield optimal rate of convergence due to the geometry approximation error.
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Figure 11. Convergence rates in L2-norm and H
1-norm of the error with respect to the total number of dofs

(ndof ) for the example problem shown in Figure 8.

Similarly, we do not expect to achieve the optimal rate of convergence for such problems using
the IGFEM. Instead, the goal here is to compare the performance of the IGFEM with that of the
standard FEM to determine the efficiency of this method for handling such problems. The effect
of the material mismatch, i.e., the ratio of the thermal conductivity values across the interface, on
the performance of the IGFEM is another issue studied in this example. It has been shown that the
accuracy of conventional GFEM deteriorates when the conductivity mismatch increases and further
corrections are necessary to achieve the optimal rate of convergence [33].

The domain and boundary conditions for the second example problem are depicted in Figure
12(a). The material mismatch values are investigated corresponding to three values of the thermal
conductivity ratio β = κi/κm = 5, 50, and 500 where κi and κm refer to the thermal conductivity of
the inclusion and matrix, respectively. The corresponding thermal fields obtained with the IGFEM
on a 40× 40 unstructured non-conforming mesh are presented in Figures 12(b), 12(c), and 12(d),
respectively, showing the ability of the IGFEM to capture the increasing gradient discontinuity
across the interface.

Since no exact solution is available for this problem, a standard FEM solution obtained with a
highly refined conforming mesh of ten-node triangular elements is used as the reference solution.
The convergence rates for the L2-norm and H1-norm of the error for the standard FEM and IGFEM
solutions are presented in Figure 13 for the three values of mismatch ratio α. As shown in this figure,
the accuracy and convergence rates of the IGFEM solutions are similar and in some cases better than
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20× 20 cm
ū = 20 ◦C

14 cm
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κ = 0.3 W/mK

κ = 1.5, 15, or 150 W/mK
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Figure 12. (a) Domain geometry and boundary conditions of the second example problem. The circular
inclusion has a larger conductivity (κi) than the rest of the domain (κm). (b) Temperature field for

α = κi/κm = 5, (c) 50, and (d) 500.

the corresponding results obtained with the standard FEM. It should also be noted that, without any
correction, the performance of the IGFEM does not deteriorate as the conductivity values across the
interface increases.

5. APPLICATIONS

In this section, we apply the IGFEM to solve two thermal problems with gradient discontinuity. We
use these applications to address issues such as assigning Dirichlet boundary conditions at elements
intersecting with the interface and conjugate heat transfer problems.

5.1. Application 1: Heterogeneous material with multiple circular inclusions

The test problem shown in Figure 14(a) can be considered as a model problem for heat transfer in
heterogeneous materials. Prescribed temperature boundary conditions with sinusoidal variations are
considered along the top and bottom edges of the domain, while a constant heat flux is applied to
the sides.

The IGFEM solution field shown in Figure 14(b) is obtained with a 120× 80 non-conforming
structured mesh of three-node triangular elements. The gradient discontinuity at material interfaces
can be clearly distinguished in the IGFEM solution. As shown in Figure 14(a), some of the
inclusions intersect the domain boundary with prescribed values of temperature. As discussed earlier
in Section 3, assigning Dirichlet boundary conditions at nodes of the enriched elements in the
IGFEM is similar to that of the standard FEM and requires no special modifications. Figure 14(b)
clearly illustrates that the solution field along the boundaries with prescribed values of temperature
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Figure 13. Convergence rates in L2-norm and H
1-norm of the error with respect to the mesh size (h) for

the second test problem shown in Figure 12(a). β denotes the thermal conductivity ratio across the material
interface.

is not affected by inclusions intersecting these boundaries and smoothly follows the prescribed
sinusoidal values.

5.2. Application 2: Active cooling in microvascular materials

The second application problem is motivated by the development of actively-cooled microvascular
polymers and polymer-based composites to be used in high-temperature applications. Recent
advances in the manufacturing of embedded 2D and 3D microvascular networks using direct ink
writing technique [34, 35] or the sacrificial fiber approach [36] have allowed the creation of a new
class of materials and structures containing complex networks of microchannels (with diameters
ranging from a millimeter down to a few microns) through which a coolant flows. By convecting
the heat in these microchannels, these networks redistribute the heat in the microvascular medium
and reduce its maximum temperature [37].

The model problem adopted in this example involves solving a conjugate heat transfer problem
in a microvascular epoxy fin (κ = 0.3 W/mK) whose dimensions and thermal loading are depicted
in Figure 15. The convective (Robin) boundary conditions along the left and right boundaries
assume an ambient temperature of u∞ = 20 ◦C and a heat transfer coefficient h = 7.9 W/m. The
temperature is set to 15 ◦C along the bottom edge of the domain, and a uniform heat flux of 5768
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Figure 14. Problem statement and solution field obtained with the IGFEM for the thermal problem in the
model heterogeneous material. The shades or colors used in the inclusions and in the matrix correspond to

prescribed values of the thermal conductivity given in W/mK.

W/m is applied along the top edge. This particular value is chosen so that the maximum temperature
along the top edge of the domain in the absence of cooling is 150 ◦C.

Motivated by manufacturing constraints involved in the use of the sacrificial fiber technique, we
adopt a sinusoidal shape for the centerline of the microchannel with amplitude A = 3.2 mm and
diameter D = 500µm. This particular configuration of the microchannel can be effectively used in
active cooling of the domain with boundary conditions shown in Figure 15 through redistributing
the heat inside the domain. The coolant used in this study is water (κ = 0.6 W/mK, ρ = 1000
kg/m3, cp = 4183 J/kgK), with an inflow temperature set at ue = 20 ◦C and a mass flow rate ṁ = 2
g/min. Convective boundary conditions, similar to that of the surrounding matrix at the sides, is
considered for the fluid at the outflow. Fully developed Poiseuille flow conditions are assumed in
the microchannel, with a velocity profile given by [38]
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7
m
m

60 mm

ū = 15 ◦C

ue = 20 ◦C

q = 5768 W/m2

500 µm

ṁ = 2 g/min

Figure 15. Domain geometry, boundary conditions, and schematic configuration of the sinusoidal
microchannel for the second application problem. The domain is composed of epoxy material and the fluid
circulating in the microchannels is water. The inset shows a part of the structured non-conforming mesh

used in the IGFEM solution.

|v| = 2v

�
1−

�
2r

D

�2
�
,

where v = 4ṁ/πD2 is the average velocity of the fluid, and r is the radial distance from the
centerline.

Details of the non-conforming mesh used in this study are shown in the inset of Figure 15.
The domain is discretized with a structured mesh of three-node triangular elements outline over
a 360× 42 grid. The temperature field for this problem for three different wavelengthes of the
microchannel is presented in Figure 16. For the sake of clarity, the temperature profile inside the
microchannels is not shown in this figure. However, Figure 16(d) shows the temperature profile
along the line depicted in Figure 16(b) where the temperature distribution inside the microchannel
and the weak discontinuity along its edges can be clearly observed.

One of the key design variables for this class of materials is the wavelength of the embedded
sinusoidal microchannel. As shown in Figure 16, the wavelength plays an important role in
redistributing the heat in the component as the coolant absorbs the heat from the hot area of the
domain at the peaks of the sinusoidal curve and exchanges the heat in the colder region, i.e., bottom
of the domain, achieving a substantial reduction on the maximum temperature in the polymeric fin.
This reduction is especially apparent in the embedded microchannel with the smaller wavelength (to
the detriment, of course, of the additional cost of driving the fluid through a longer microchannel).
It should be noted that the IGFEM is particularly well suited for this class of computational design,
as the same mesh can be used to find the optimal configuration of the microvascular network.

6. CONCLUSIONS

The formulation and implementation of an interface-based GFEM scheme for solving thermal
problems in discontinuous gradient fields has been presented. Similar to conventional GFEM,
this new method can be used for solving problems with gradient discontinuity without using
a conforming mesh. The unique feature of the IGFEM is that generalized dofs are assigned
to the interface nodes and not to the nodes of the original FEM mesh. This variation in the
formulation of the IGFEM eliminates problems encountered with some enrichment functions in the
conventional GFEM for assigning Dirichlet boundary conditions at the enriched nodes. Moreover,
enrichment functions in the IGFEM are simply constructed through the linear combination of
standard Lagrangian shape functions of the integration elements, which reduces the cost and
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Figure 16. IGFEM solution for the second application problem presented in Figure 15: (a), (b), and (c)
represent the temperature field in the actively-cooled domain for a wavelength of the microchannel of 6.13,
9.23, and 13.33 mm, respectively. (d) temperature profile along the line segment AB shown in Figure (b).

The darker vertical regions denote the location of the microchannel.

facilitates the implementation of this method. It was shown that the IGFEM solutions obtained
with non-conforming meshes achieve the same optimal rate of convergence and level of accuracy as
those of the standard FEM with conforming meshes. Moreover, unlike some GFEM formulations,
the performance of the method is not deteriorated as the ratio of the material mismatch across
the interface increases. We also investigated the application of the IGFEM for heat transfer in
heterogeneous materials and conjugate heat transfer in actively-cooled microvascular materials.
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