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Abstract

We analyze intergranular brittle cracking of polycrystadl aggregates by means of a Generalized Finite Element
Method for polycrystals with cohesive grain boundaries hnéar elastic grains. Many random realizations of a
polycrystalline topology are considered and it is shown tha resulting crack paths are insensitive to key cohesive
law parameters such as maximum cohesive strength andatfiicture energy. Normal and tangential contributions
to the dissipated energy are thoroughly investigated vagipect to mesh refinement, cohesive law parameters and
randomness of the underlying polycrystalline microsuuet
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1 Introduction

Cracking of a polycrystalline material depends on the logdionditions, the microstructure, and the mechanical

behavior of grains and grain boundaries. In materials ssaeeamics, where the grains are hard and strong, fracture
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occurs by crack growth along the grain boundaries. This &iratittle intergranular fracture is often modeled by way
of the finite element method (FEM) using the cohesive zone&pt) where the response of the grain boundaries ahead
of the crack tip is lumped into discrete linek7[ 18, 28, 36, 38, 39, 41]. Although appealing from a physical point

of view, cohesive zone models come with numerical issuesy Hhe essentially connected to cohesive zone models
containing a small length scale: the so-called cohesivgiheT his length scale is a function of the cohesive progsrti
—strength and fracture energy— and of the grain elasticteats In order to obtain reliable numerical results, the
spatial discretization must be able to resolve well suclytleiscale. Consequently, grain boundaries with different
parameters require different discretizations, complhcgthe task of performing automatic parameter studies.

The FEM, in combination with cohesive zone models, guaesehigh quality in the characterization of local and
global behavior of mesoscopic polycrystalline aggregateésrms, for instance, of stress-strain curves, stresssfiel
and crack path, but the generation of acceptable finite elemeshes may be difficult and requires user intervention.
This can be a major issue when a large number of polycrystahgé&ies are considered. Other numerical procedures
have been developed recently to describe discrete cragkipglycrystals. The boundary element meth@é][can
deliver solutions that are comparable to that obtained thighFEM at a high computational cost. On the other hand,
approaches based on lattice or spring mod#|4 3], the fuse model35], and the grain element mod&l4] are based
on simplified assumptions that guarantee cheaper compusadit the expense, in some cases, of the quality of the
numerical results. Probabilistic models for polycrystedlmicrostructures?, 6] are even less costly, but can only
deliver crack paths.

In this contribution, at variance with previous studies oittle cracking of polycrystalline aggregates, we make
use of a Generalized Finite Element Method for polycrysta. This method is based on the partition of unity
property of finite element shape functior 10, 19, 21] and considerably simplifies the process of automatic mesh
generation and refinement, as briefly illustrated in Sestibhand?2.3.

We perform an extensive study of many aspects of crack pedjmagin brittle polycrystals. With the constraint
on the mesh size as defined in Sectibf we demonstrate in Sectio3s2-3.4 that the crack path depends only on
the polycrystalline microstructure topology. An intefiegtconsequence of this result is that reliable crack padins ¢
be obtained at a relatively low computational cost for thodigtle polycrystals. Finally, the relation between palys
talline microstructure and cohesive law parameters andthie on energy dissipation are discussed in Sectibhs

and4.
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Figure 1: In the GFEM for polycrystals (a), a polycrystadliaggregate is described by superimposing a polycrys-
talline topology (b) on a background mesh (c). The qualitthef numerical solution can be improved by local mesh
refinement (d). Note that the finite element mesh does nobecanto grain boundaries and junctions.



2 Method of analysis and assumptions

2.1 Generalized Finite Element Method for polycrystals

Crack paths in polycrystals are computed by means of a Giaeatainite Element Method (GFEM) for polycrys-
tals [30] which, contrary to classical FEMs, does not need a meshrgtreto mimic the polycrystalline topology.
As sketched in Figure$(a) andl(c), it requires a simple background mesh on which the pgstailine topology is
superimposed. Meshing of the grain boundaries and jursf®not required. Being described by means of discon-
tinuous enrichment functions, grain boundaries can cubetes and grain junctions can be arbitrarily located within
elements. This approach makes use of a displacement destiimpavhere the displacement fieldof a polycrystal
comprisingNy grains is described by means of the standard displacem&h@fizzhich can be considered as related

to the background mesh, and the enrichment displacemefifiepresenting individual grains, according 3]

Ny
u=0a+ Yy A, Q)
I; 14

where the generalize¢ function is equal to 1 in grainand O otherwise. When considered in the construction of the
weak form of the governing equations, such displacemerrdposition gives rise tbl, + 1 coupled weak variational
statements. Each of ti, statements corresponding to the grain structure is eqdipjité a traction-separation law
acting across the grain boundary shared by two neighbora@igg More details can be found i8(]. The model is
completed by employing a constitutive relationship dédsieg the material behavior within the grains. The constitut
relation has been consistently linearized in a full NewRaphson algorithm and we observed quadratic convergence

rate.

2.2 Test setup and material
2.2.1 Geometry and boundary conditions

The geometry and boundary conditions of the test setup poetesl in Figure2. The notched specimen is loaded by a
uniform tensile stresgg, which is varied incrementally under quasi-static loadingditions. A dissipation-based arc-
length procedurelld] was employed in order to trace the complex load-displaceroerves which are characterized
by the frequent snap-backs associated with the failuredi¥icual grain boundaries. The boundary conditions are
such that the specimen ends can rotate freely so that thieisraot restrained by the specimen geometry.

We have considered many random realizations of an 80 grdycnystalline topology inside the process zone
depicted in Figur@. Each random realization is generated from a regular hexagopology by offsetting each grain

junction by random perturbations. We identify each redilireby means of an empirical non-dimensional randomness
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Figure 2: Geometry and boundary conditions for the notclpetisnen employed in the simulations. The process
zone is the region in which grains and grain boundaries gnesented explicitly; outside this zone the material is a
homogeneous continuum.

Figure 3: Definition of quantities for the computation of tamdomness parameteradapted fromZ3]).

parametep [23] which is equal to 0.289 for a regular hexagonal topology langer for any random realization. The

randomness parameteiis defined as the average value of the geometrical parameter
p— 3 L0 [14sin(2y)] @
KA &

over all grains. The parametgiin turn is defined at the grain level considering the nunikbef grain boundary facets,
the grain aredg, the lengthL¥) of the part that lies within the grain of the vectd¥) connecting the centroids of the
grains adjacent to fac&t and the angle between the normé& to facetk andL™, see Figure.

The average grain size is defined here as the distance betw@epposite sides of a hexagonal grain in the regular
hexagonal topology. This quantity turns out to be very climsthe average grain size computed from randomized

hexagonal topologies. In the simulations we have consideneaverage grain size of approximately @, similar



to the values used by Zavattieri et at1] (22 um) and Kraft and Molinari 16] (25 um), which corresponds to an
average grain boundary lengdip ~ 12 um. With around 80 grains in the process zone inside the ligamea, as

indicated in Figure, the length of the specimen\i§ = 360um.

2.2.2 Bulk behavior

The material parameters are taken to be representative afemage polycrystalline alumina, AD3. We assume
the grains to be elastic and isotropic, with Young's modufus- 384.6 GPa and Poisson’s rato = 0.237. This
assumption is based on the observation by Molinari and davs L6, 38] that intergranular failure is not substantially
affected by the elastic anisotropy of polycrystalline aillia The plane strain analyses are performed under the
assumption of small elastic strains and rotations. The iwidenot be able to capture grain rotation if the crack

opening becomes large.

2.2.3 Grain boundary behavior

Non-linearity in the material response is defined by the snedaw across grain boundaries. In this study, we have
used the Xu-Needleman cohesive lad@[[and considered variations of the cohesive strength anttdlcture energy
with the understanding that only these two parameters, ahdhe shape of the cohesive law mattéy 33]. The
Xu-Needleman cohesive law is a potential-based cohesine mwdel involving an initial compliance representing

that of the grain boundary. In this cohesive law, the traxtim normal and tangential direction, respectively, avemi

wogenl ) g §) (S 5)
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in terms of the normal and tangential openilygandA;. In the above relationsg, is the work of normal separation,

by

o)

=

and

@ is the work of tangential separation, whidg and & are the openings corresponding to the uncoupled normal and
tangential strengths. The normal strength itself is theemby Omax = exp(—1)@ /. Coupling between normal
and tangential directions is achieved by the parametersp /@, andr = A}/, with A, being the normal opening
after complete shear separationTat= 0. In line with previous works on mesoscopic failure anaysfi alumina
with cohesive zone elementsd, 41], we have selected = 1. It is worth noting thatj = 1 is the only value of this
parameter for which the Xu-Needleman cohesive law can piypescribe coupling between normal and tangential
directions B4]. Whenqg = 1, it can be observed fron3) and @) that the value of does not have any influence in the

cohesive law.
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Figure 4: Influence of the unloading behavior in the cohelsive(reversible behavior versus secant unloading).

In the original Xu-Needleman modet()], the cohesive zone law is assumed to be reversible. In litte ather
studies on mesoscopic failure of polycrystalline aggregt, 41], we have considered secant unloading in the nu-
merical analyses performed in this study. We have howevepened the response of a few cases considering both
reversible behavior and secant unloading and found veryl gliffarences in some parts of the unloading/reloading
branches of the load-displacement curves. These diffesecen be seen in the curves in Figdrebtained for one of
the polycrystalline topologies employed in Sect®rBoth options resulted in the same crack path.

In our numerical simulations, a “crack” develops when theckropenings are larger than the corresponding char-
acteristic separation values, i.e. whish> &, or A; > &. All the crack paths have therefore been drawn using this
definition. Although other approaches might be more apjatpto define a crack, the reported cracks are related to
the end of the loading process, when a crack is fully develgpel almost all the cohesive energy has been dissipated.
In fact, the simulations have been stopped when the resufdahe stresw acting on the right side of the specimen
is less than one thousandth of the applied load —this coorefspto a horizontal displacement of point A in Figof
around 3-4um; for the sake of clarity in the representation of these esitwve have decided to show only the “inter-
esting” part, thus restricting the range of the horizondd.aSimilar to other authorslB, 41], and dictated by lack of
precise knowledge, the characteristic separations in alcand tangential direction are set to be eqdak &) —this
choice is discussed further in Secti®®. For any choice of the normal strengiihax and the fracture energg, = Gy,

the value ofd, is computed considering thelt = Omaxexp(1)d, [40].

2.2.4 Grain boundary cohesive strength and critical fractue energy

Grain boundary cohesive strengthyax, and critical fracture energé,c, depend both on grain boundary si2&,[26].

According to Rice 25] (Figure 3), the tensile strengthnax of alumina is around 0.4 GPa for 24m grains. Zavattieri
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Figure 5: Definition of discontinuity segment lengtfy,and length of the longest element side associated to etesmen
crossed by a discontinuits.

etal. 1] consideredmaxfrom 1 to 10 GPa for 2m grains while Kraft and Molinari]6] considereax = 0.6 GPa
for 25 um grains. In the first set of simulations to be reported ini8a& we consider values from 0.6 to 3.0 GPa. In
sectiord, this range is broadened to 0.384-3.84 GPa.

Regarding the critical fracture ener@yc, Rice et al. 6] (Figure 5) report values between 35 and 453for
grain sizes around 2m. Kraft and Molinari [L6] considered several distributions of the fracture en&@gyover the
grain boundaries with values between 1 and 22 JBased on these figures, we consider valueg,gbetween 7.09

and 39.3 J/rhas in Zavattieri et al.41].

2.3 Mesh related issues

We have employed meshes of constant strain triangular alsmehich, when intersected by grain boundaries, are
refined to the desired level as shown in FigdreA longest-edge mesh refinement algorith?][is used for this
purpose. An obvious advantage of this approach is that ¢l refinement algorithm preserves the aspect ratio of
the elements in the mesh throughout the refinement procéissheiadded benefit of not having to constrain the mesh
to the local features of the problem (grain boundaries andtjons in our casep.

The mesh along grain boundaries must be sufficiently fine demto resolve the length scale associated with
the cohesive law. To resolve the cohesive law along graimtaries, considered as discontinuities in GFEM, each
discontinuity segment lengtly, defined by the intersection between an element and a graindaoy as shown in
Figure5, needs to be, at least, smaller than the cohesive ldpgfrhis bound on discontinuity segments is met by
making the lengthe of the longest side of all the elements intersected by graimbaries< |,. For potential-based

cohesive laws this parameter is estimatedia} |
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Figure 6: Three different realizations of 80 grains in thegaiss zone. The blue line indicates the computed crack path
for Gic = 39.3 J/n? andomax = 0.6 GPa, while the thick black line indicates the tractiorefreotch. The arrow in (b)
points to the grain boundary for which the traction profil@iesented in Figur&2.

In the traditional FEM with conforming meshes, reliableulescan be obtained by specifying a minimum number
of elements in the cohesive zone. There is however no consenghe value of this number: Carpinteri and Colombo
[5], according to 0], suggested to use more than ten elements; Falk elZl.used two to five elements in their
analyses; Més and Belytschka?[] suggested a minimum of two elements; Turon et3# pnd Harper and Hallett
[15] proposed at least three elements in a fully developed dahesne, while Sfantos and Aliabadiq] used at
least 15 elements. These figures make reference to probkemisexse as delamination and crack propagation in
homogeneous materials thus suggesting the existence abéepr-dependent estimate of the minimum number of
elements required in the cohesive zone. Therefore, we eevstparate section in the sequel to estimate the necessary

number of elements for our problem of brittle cracking inymoystals.

3 Results and discussion

We have performed mesh refinement and parametric studieslisa¢e the impact of cohesive law parameters on the
crack path. These studies were carried out considerindntbe tifferent random realizations of an 80 grain hexagonal
polycrystalline topology shown in Figuig

It is worth noting that in this study we are drawing conclusi@bout crack paths and not about the position of the

crack tip —crack paths are not sensitive to the precisermrtaised to define the crack tip.

3.1 Mesh refinement studies

Figure5 depicts a typical situation arising from the intersecti@vzen an element and a grain boundary. We have
performed a mesh refinement study to establish the lelgtiat can be used with confidence in the rest of our
investigations. This length must be such that any otherreligation with smaller lengthk yields the same crack
path and load-displacement curve. Two sets of analyseoagidered for this purpose. In botBy. = 39.3 J/nt but

the cohesive strength is varied so as to cover a range of iweHergthd; through £).



In the first set of analyses, the cohesive strergtky is taken as ® GPa which corresponds to a cohesive length
I, = 1.57 um. Two refinement levels are considered. One with elemeessid: |, and the other withe =~ 1,/3.
Since discontinuities can cross elements, these consti@ih, must be considered as upper bounds on element side
lengths as is evident from Figufi€d). Further, to avoid the use of unreasonably coarse megleerequire at least
four intersecting elements along each grain boundary asas®l < Iy,/2. These constraints have been imposed on
all the meshes used in this study.

The results of the mesh refinement study are shown in FiguMe found that crack paths obtained with both
refinement levels are identical. This seems to suggest tesidering element sidés approximately equal tg, is
adequate. To confirm this, we consider a second set of asalysth two refinement levels, in which the cohesive
strengthomax takes values 0.6, 1.0 and 2.0 GPa, corresponding to coHesigths equal to 39.3, 14.1, and 3561,
the values o®, and & were adapted tomay in order to dissipate the same fracture energy. Unlike tegipus set
of analyses, we found that in two out of nine cases (reatimatil and 2 withomax = 2.0 GPa), the two refinement
levels yielded different crack paths as reported in Figure~urther, the crack paths obtained with element sides
approximately equal tb /3 resulted identical to those reported in Fig@rén all the other cases, crack paths obtained
with the two refinement levels were identical. This raises djuestion of whether the crack paths obtained with
element side& =~ |,/3 can be accepted with confidence. A further mesh refinemedy,shot reported here, was
done reconsidering some of the 12 cases described so fagt& dtihe use of smaller elements in regions crossed by
discontinuities would result in different crack paths. Werid no differences in the crack paths.

Thus, this study suggests a mesh refinement such that thi lefntpe longest side of all the elements intersected
by grain boundarie& < min(I/3,lg,/2) with at least four intersecting elements along each graimtary. We

assume that the same bounds apply for any vallg of

3.2 Effect of cohesive strength on fracture behavior

In the above mesh refinement study, we have already condidar@ations of the cohesive strengtihayx. The crack
paths obtained with this set of parameters are identicabaé reported in Figuré. Nevertheless, since the grain
boundaries have varying strength, the load-displacemants are different, as shown in Figue It is noted that,
when considering the bounds on element size defined in 8ettlpincreasing the cohesive strength gives rise to a
distinct raggedness of the curves as seen in Figd(®snd8(d). This is due to the limited resolution of the cohesive
law along cracking grain boundaries. The load-displacemearves can indeed be smoothened by using finer meshes
as shown in Figuré® for the case reported in FiguBéc). This procedure however is very costly because of thgelar
number of degrees of freedom involved, and it does not réswdny change of the crack path solution while the

improvement in the load-displacement curve is arguablycosietic” nature.
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Figure 7: Sensitivity of the crack path to mesh refinementfgs, = 2.0 GPa ands;c = 39.3 J/n? for realizations 1
and 2: crack path obtained with element silies |, (a, d) ande ~ I;/3 (b, €); superimposed cracks paths (c, f).

Based on these observations, we conclude that the crackgatit affected by the magnitude of,ax in the
selected range, and that the load-displacement curvewaligatjvely similar. Consequently, crack paths and load-
displacement curves obtained for low cohesive strengihghsheaper and easier to compute, can be considered valid

also for higher strengths.

3.3 Effect of critical fracture energy on fracture behavior

To study the effect of the critical fracture energy on thecknpath,Gyc is set equal to D9, 114, 221 and 393 J/n?,
while keepingomax = 0.6 GPa. Similar to the cases described in the previous sectiodifference in the crack paths
is found with respect to those reported in Figar& he load-displacement curves, depicted in Fiduiréor realization
2, show a serrated behavior similar to that reported in Ei@urHowever, unlike the latter, the load-displacement
curves in Figurel0 do reveal quantitative differences in terms of the disgip&nergy as a consequence of the change
in fracture energy. Directly related to the fracture enasgyie number of degrees of freedom used in the simulations.
This quantity decreases with increasing fracture en&gysincele scales withG,; via I, according to §). Further,
increasing values of the fracture energy correspond to #moourves as shown in Figui®. This is again related to
the resolution of the cohesive law along grain boundaries.

To further confirm these observations on the crack path anfetitures of the load-displacement curve, realization
2 is reconsidered witloyax = 2 GPa using the same set of values &¢. Apart from being computationally more
demanding, the load-displacement curves, not reportes] keow features similar to those just describedfgs, =

0.6 GPa, and the crack paths are also identical to the one espiorEigures(b).
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Figure 8: Load-displacement curves for an 80 grain topolggglization 2 ) withGc = 39.3 J/n? using different
values ofgmax: (2) Omax = 0.6 GPa, (b)omax = 1 GPa, (C)omax = 2 GPa, (d)omax = 3 GPa, (e) superposition. The
net force reported on the vertical axis is the resultant efstinessr acting on the right side of the specimen.
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Figure 9: Effect of mesh refinement on the load-displacernente for realization 2 witlomax = 2 GPa and5ic =
39.3 J/n? (refer to Figures(c)).

The observations gathered so far suggest that, for a givangegment of grains and in the range considered for

the parameters, the crack path is independent of the cehstsangth and fracture energy.

3.4 Intragranular stress and intergranular traction fields

After having considered overall fracture characteristics interesting at this point to study the stress fieldsdas
grains and the normal traction profiles along grain bourdaiThese characteristics in a region around the propagatin
crack tip are shown in Figurg2 for different values of fracture energy and cohesive stiteng

Contrary to the observation above that the crack paths argi@l to the one reported in Figuéé), Figurel12
reveals a rich palette in stress fields inside grains antidradistribution along grain boundaries. Itis quite rekadole
that not even the extent of the inelastic region ahead of thekdip —determined by the cohesive lengith- has a
significant influence on the crack path. In fact, identicalkgrpaths are obtained in the two extreme cases reported in
Figures12(c)-(d) and12(e)-(f) wherel, = 0.638 and 39.3:m, respectively.

It is worth noting that in the case of Figut&(c)-(d) the cohesive length = 0.638 um is smaller than 1.5m
which was the smallest value considered in the definitiorhefliounds on element size in Secti®il. However,
the evidence that the same crack path is obtained with allalues of the cohesive length confirms, indirectly, the
validity of the proposed bounds on element size.

In conclusion, in the cases considered so far, the relatiagement of grains in a polycrystal seems to be the

13
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Figure 10: Load-displacement curves for an 80 grain topo(ogglization 2) using different values of fracture energy
Gyc with cohesive strengtbimax = 0.6 GPa.

only important factor in the definition of the crack path.

3.5 Energy balance: Relative contribution of normal and targential energies

We have computed the dissipated energy following two amtres. In the first approach, the dissipated energy at the

global level,Ggyop, is a function of the work done by the external loads and isutated as
n
Gglob= > W, (6)
2
with the global energy dissipation increments computerhfro
1 "
W= Az (uf —uly) — (A= A_)ul 4] . 7

Here,i is an index running on theload increments); is the incremental loading factar, is the displacement solution
vector, and the unit force vectdris related to the external force vectti throughf®t= A f where is a load factor.
More details on the derivation of the energy increments @fobnd in [L4]. In the second approach, the dissipated

energy at the local leveGoc, is computed along the grain boundaries considering the sxpression (i.e6) and (7))

14
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Figure 11: Sampling points for the stress fields and tragiiofiles reported in Figur&2.

now made a function of displacement jumps and tractionssa@ach discontinuity segment according to

Gloc = Gn,loc+ Gt,I007 (8)

with the normal and tangential contributions

n n
Ghjoc= ) Wn, and Gijoc = Wy, 9)
2, 2,

and with the incremental energies defined as

and

[-I-tl 1 (Atl
rdj

Ani—l) - (Tni - Tni—l) Ani—l] drdj (10)

Ati_l) - (Tt| —Tti_l) Ati_l} drdja (11)

whereny, is the total number of discontinuity segmerftg, denotes the length of" discontinuity segmentl,, and

T; are the tractions and,, andA; are the local jumps in the normal and tangential directisaspectively. Both

energies are then compared by considering various meskmeint levels and two sets of grain boundary properties:

Gic = 39.3 J/n? with Omax = 0.6 (Tablel) and 2.0 GPa (Tabl®). The refinement level is shown in the second column

in terms of the lengtie of the longest side of all the elements intersected by graimbaries.

From the results shown in Tablésand?2, it can be observed thatt) the relative error between local and global

energies (last column) depends only on the mesh refinemestiteterms ofl —further analyses performed with the

three realizations shown in FiguBeand considering variations of cohesive strength and fractnergy confirm this
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Figure 12: Failure characterization for the polycrystaFigure6(b) (realization 2). Left column: local failure pattern
(50x displacement magnification) and normalized von Mises ed@iit stress sampled at point A in Figure Right
column: evolution of the normal traction profile along thaigrboundary indicated by an arrow in Figuig) (sis
the normalized coordinate along the grain boundary andiggnocoincides with the crack tip; the crack tip is located
at the left hand side of the arrow in Figuséb); sampling points A, B, and C are indicated in Figlife element size
le = 0.20 um).
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|e i Gglob Gioc = Gn,loc+ Gt‘loc (;I’;ZC G:IDC;C 7loch|0bg\ub
[um] | [-] (nJ] [nJ] [%] [%] [%]

realization 1 6.05 <1/6 6.48 8.94 86.0 14.0 38.1

(p = 0.355) 425 | <1/9 6.54 7.92 85.8 14.2 21.2
2.00 <1/19 6.44 7.18 85.4 14.6 11.5
0.50 <1/78 6.44 6.61 85.6 14.4 2.74
0.20 <1/196 6.42 6.51 85.7 14.3 1.31

realization 2 6.05 <1/6 6.21 8.72 86.8 13.2 40.3

(p =0.376) 4.25 <1/9 6.20 7.47 86.8 13.2 20.6
2.00 <1/19 6.19 6.89 86.9 13.1 11.3
0.50 <1/78 6.17 6.35 87.4 12.6 2.90
0.20 <1/196 6.17 6.26 87.7 12.3 1.33

realization 3 6.05 <1/6 5.90 8.50 88.7 11.3 44.0

(p = 0.400) 4.25 <1/9 5.90 7.27 88.2 11.8 23.2
2.00 <1/19 5.90 6.61 87.9 12.1 12.0
0.50 <1/78 5.89 6.05 88.1 11.9 2.75
0.20 <1/196 5.89 5.97 88.3 11.7 1.39

Table 1: Comparison of global ener@yqn, related to the work done by the external loads, and locaiggr®qc,
dissipated along grain boundarie®{ = 39.3 J/n?, Omax= 0.6 GPa/, = 39.3 um).

| G, G Gioc — Gglob

le f Gglob Gioc = Gn,loc+ GtJloc Gnl':zc th,:)occ Tobg
[pm] | [-] [nJ] [nJ] [%] [%] [%]
realization 1 1.17 <1/3 6.19 6.72 88.7 11.3 8.60
(p =0.355) 0.58 <1/6 6.18 6.43 88.7 11.3 4.07
0.20 <1/18 6.17 6.26 88.6 11.4 1.32
realization 2 1.17 <1/3 6.04 6.53 89.8 10.2 8.23
(p =0.376) 0.58 <1/6 6.03 6.28 90.0 10.0 4.16
0.20 <1/18 6.02 6.10 90.3 9.70 1.32
realization 3 1.17 <1/3 5.83 6.32 90.6 9.40 8.47
(p = 0.400) 0.58 <1/6 5.82 6.08 90.6 9.40 4.42
0.20 <1/18 5.82 5.90 90.6 9.40 1.34

Table 2: Comparison of global ener@n, related to the work done by the external loads, and locaiggr®qc,
dissipated along grain boundari€®{ = 39.3 J/n?, Omax= 2.0 GPa), = 3.53 um).

observation and the results are reported in Fidix€ii) the calculated global energy is almost insensitive to thehm
density (fourth column);i{i) the contribution from normal energy dissipatiGn oc to the local energy is around 90%
showing a mode-I dominated cracking behavior (sixth colyrim) normal and tangential contributions do not vary
significantly with refinement (sixth and seventh columns).

A few representative cases have been re-examined by vattygngalue ofd;/d, over a decade compared to the
reference value of 1. Wha®/d, is less than 0.9, our simulations experienced convergemddgms, which could be
traced back to the fact that small valuesdofd, obstruct grain boundary sliding, which is a necessary d¢mmdto
develop a crack in polycrystals under mode-I loading at freesnen level. Values ak/d, equal to/greater than 0.9
resulted in the same crack path and more or less the sameyammargibutions as reported in Tablésand?2. Large
values ofé/d, however resulted in different crack paths in some casesalparticular grain arrangements (refer to
the discussion in Sectiochand Figurel6). In addition, in all completed analyses, the percentaffjerdnce in global

and local energies has been found to be very close to thatteepfr &/, = 1 for all the examined values of the

ratio &/ n.
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Figure 13: Convergence of local and global energy with mehement.

3.6 Topologies generated by centroidal Voronoi tessellain

To demonstrate that our results are not tied to a hexagornal gtructure, we report results obtained by employing
two 80 grain polycrystalline non-hexagonal topologiesagated using a centroidal Voronoi tessellation algorithm.
The topologies are depicted in Figure4a) and15(a). The blue line indicates the computed crack path obdaine
with different values ofGic (7.09, 11.4, 22.1 and 39.3 Hjrand omax (0.6 and 2.0 GPa). The corresponding load-
displacement curves fa@max = 0.6 GPa are shown in Figurégi(b) and15(b).

The energy contributions are listed in Tabkand4 and show a trend similar to that related to hexagonal mi-
crostructures (refer to Tabldsand2). However, due to the particular grain boundary arrangérakmg the crack

path, the topology in Figurgé4 dissipates more energy in the normal direction.

) | G G Gioc — G
Figurel4(a) le i Gylob Gioc = Gn,loc+ GtJloc Gn|izc th':: IOCGglobg‘Ob
[pm] | [-] [nJ] [nJ] [%] [%] [%]
Omax=0.6 GPa | 4.25 <1/9 5.34 6.54 88.2 11.8 22.54
(I, =39.3 um) 0.20 <1/196 5.33 5.41 89.5 10.5 1.52
Omax=2.0GPa | 1.17 <1/3 5.33 5.76 93.1 6.9 8.20
(I; =353 um) 0.20 <1/18 5.32 5.40 93.5 6.5 1.49

Table 3: Comparison of global ener@yqn, related to the work done by the external loads, and locaiggr®qc,
dissipated along grain boundari&{ = 39.3 J/n?).

18



0.02 . .

Ge =709 —
Gic=114JInf ——
0.015¢ Gie=221JImF ——— A
= Gie=393Jn%
9 0.01 i
o
crack growth L
direction 0.005 i
(a) 0 — —
0 02 04 06 038 1 1.2

(b) Displacement at point ALm]

Figure 14: Crack path (a) and load-displacement curvesofbarfi 80 grain polycrystalline non-hexagonal topology
generated using a centroidal Voronoi tessellation algorit The load-displacement curves have been obtained with
cohesive strengtbinax = 0.6 GPa.
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Figure 15: Crack path (a) and load-displacement curvesofbarfi 80 grain polycrystalline non-hexagonal topology
generated using a centroidal Voronoi tessellation algorit The load-displacement curves have been obtained with
cohesive strengtbimax = 0.6 GPa.
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Figure1(a) le Le Gylob Gioc = Gn loc+ Gt loc Gnloo Guioc M
Iz GIoc Gloc Gglob
[um] | [-] (nJ] [nJ] [%] [%] [%]
Omax=0.6GPa | 425 | <1/9 5.86 6.83 86.0 141 16.46
(I =39.3 um) 0.20 <1/196 5.86 5.94 87.3 12.7 1.33
Omax=2.0GPa | 1.17 | <1/3 5.78 6.21 90.1 9.9 7.45
(,=353um) | 020 | <1/18 5.77 5.84 90.6 9.4 1.33

Table 4: Comparison of global ener@yqn, related to the work done by the external loads, and locaiggr®qc,
dissipated along grain boundari&i{ = 39.3 J/n7).

4 Further assessment of results

In order to confirm the representativeness of the hexagoaal gesults obtained so far, 122 more realizations with
p ranging from 0.30 to 0.40 are considered. We also enlargeahge of the grain boundary cohesive strength
Omax considering the following three options for each realmati(1) Omax = 0.384 GPa and;. = 39.3 J/n? (I, =
95.9 M), (2) Omax = 0.384 GPa an@c = 7.09 J/in? (I, = 17.3 um), and (3)0max = 3.84 GPa and;c = 39.3 J/n?

(I, =0.959um). 71 realizations resulted in identical crack paths fotted options. The remaining cases have partial
overlaps of the crack path and are characterized by patélgrain arrangements with peculiar geometrical features.
These are cases for which it is difficult to obtain reliabkulés unless a very high mesh density is considered. A typica
case is shown in Figuré6(a) with crack paths corresponding to the use of two diffesets of material properties
reported in Figured6(b) and16(c). The superposition of the two crack paths in Figié&d) clearly shows that the
crack path changes its direction at a junction where twongoaundaries in front of the crack tip are arranged in a
Y-like configuration consisting of these two grain boundarand the previous crack segment.

To appreciate the influence of the grain arrangement, thgigro®f one of the grain junctions is changed as
shown in Figurel6(e) resulting in the polycrystal in Figures(f). Identical crack paths, shown in Figui€(g), are
now obtained with this new configuration considering the sanaterial parameters used for the simulations related
to Figure16(d) and the same spatial discretization. Note that the f@adirection is horizontal and the crack segment
below the crack tip is vertical thus generating a regularoMiguration —two such cases are shown in Figudre
and have been resolved by employing a finer mesh. We have kowgperienced cases with similar behavior in
which the crack segment below the crack tip was not vertithk identification of these special cases must be done
considering local geometrical features and their oriématiith respect to the loading direction. It must be strdsse
however that these situations are not uncommon and the bameélement side lengths defined in Sectiohdo
not always guarantee the determination of correct crack aatl load-displacement curve. Adaptive discretization
schemes3, 11, 22, 42] should be considered in these circumstances.

The relative contribution of the energy dissipated in thema direction along grain boundaries for the above 71
realizations is shown in Figurer. Three observations can be made. First, when the cohesigthles larger than the

average grain boundary length, the contribution of theggndissipated in the normal direction is strongly influenced

20



(@) (b) © (d)

e et

(e) (f) ()

Figure 16: Influence of grain arrangement on the crack pahoiiginal grain arrangement; (b and c) crack paths

obtained with different material properties; (d) superasgd crack paths; (e) the realization is perturbed for one of
the grain boundaries in the Y-configuration as shown in theeslup; (f) the modified grain arrangement; (g) identical

crack paths are obtained with different material propsrtie

by the granular arrangement. This influence weakens withedsing cohesive length, as indicated by the extent of
the dispersion around the best fit lines. This behavior caratienalized by noting that the cohesive length measures
the distance over which the cohesive zone is active. A lacgbesive length indicates a situation in which more
energy can be dissipated along a grain boundary as showgumeHi2 (compare the cohesive zone length with the
size of the process zone around the crack tip). Further,tfuauat of the dissipation in the normal direction is related
to the inclination of the grain boundary with respect to thading direction, i.e. dissipation in the normal direction
is maximum for a grain boundary perpendicular to the loadiingction and null for a grain boundary parallel to it.
Hence, grain boundaries with random orientations will gateea normal energy dissipation which will be a function
of the size of the cohesive zone length and of the inclinadfdhe grain boundary with respect to the loading direction.
Second, decreasing values of the cohesive length corrddpdncreasing values of the average contribution in the
normal direction. Third, although the boundary conditigmemote and achieve mode-I cracking at the specimen
level, local failure at the grain-boundary level is dictht®y the granular arrangement and is characterized bywvelati

contributions in the tangential direction between 9 and 20%

5 Summary and conclusions

Intergranular crack propagation in brittle polycrystadsbeen studied under quasi-static loading conditiongsodgr

random realizations of a regular hexagonal grain topolagyehbeen considered in combination with variations of
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Figure 17: Relative contribution of the energy dissipatedhie normal direction along grain boundaries for the 71
microstructures resulting in identical crack paths foethsets of grain boundary properties (circle: min=79.88%,
max=86.95%, average=83.76%; square: min=85.98%, ma&#%). average=88.32%; triangle: min=87.47%,
max=91.38%, average=89.42%).

representative values of cohesive law parameters.

Our numerical investigations suggest that mesh indepeéndsnlts in the GFEM for polycrystals can be ob-
tained when the length of the longest side of all the elements intersected by graimfaries is such thdg <
min (Iz/3, |gb/2) with at least four intersecting elements along each graimbary. Following these refinement rules,
we have discovered that the intergranular crack path iiegent of key cohesive law parameters like fracture en-
ergy and cohesive strength, and depends solely on the yimderhicrostructure. This has been confirmed on two
microstructures generated with a centroidal Voronoi tiéestien.

It is to be noted that the GFEM used in this paper does not geoany benefit in terms of discretization error
or convergence rates. In general, enriched finite elemetiiods based on the partition of unity property of shape
functions, like the GFEM{4, 10] and XFEM [21, 31, 37], and equipped with a discontinuous enrichment function
to describe interfaces and cracks, can facilitate the mgsétiage of an FEM analysis. This is important when a
large number of microstructures needs to be discretizeptdwements in terms of discretization error or convergence
rate can only be obtained with special enrichments funsta@mmaking recourse to “classical” approaches like h- or
p-refinement9]. Since our GFEM implementation does not incorporate sxttaesnrichment functions, its perfor-
mance can be considered comparable to that of the stand&idelgiipped with cohesive zones through interface

elements along grain boundaries. Indeed, as showBUn$ection 4], the solutions of both methods (GFEM and
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standard FEM) are the same when the grain boundaries atedoglang element boundaries.

Other important findings of our study can be summarized d@wsl

1. Simulations with low values of the cohesive length, edatio highomax and low Gy, require very fine mesh
in order to resolve the cohesive response of grain bourslanéd to get smooth load-displacement curves. Fur-
thermore, their complex equilibrium path can be traced @glyising very small load increments. Conversely,
smalleromax and/or largeiGc leads to smoother load-displacement curves which can laénelot with coarser
meshes. Since the crack path is insensitive to the cohesipeies, this implies that the most convenient set

of cohesive parameters may be used to determine the crédtk pat

2. The difference between global and local energies deesagith increasing mesh refinement, but the partitioning
in normal and tangential contributions does not vary sigaiftly. The difference between local and global
energies is independent of the cohesive law parameterskelthie local energy, the global energy is almost

insensitive to the mesh density.

3. When the cohesive lengthis larger than the average grain boundary lergghthe contribution of the energy
dissipated in the normal direction to the global energyrisrgly influenced by the granular arrangement and
the dispersion around the mean value is more pronouncedhdforore, a decrease in the cohesive length

gives rise to an increase of the normal contribution to the nergy dissipation.

4. The boundary conditions employed in the simulations mtenand achieve mode-I cracking at the specimen
level. However, local failure at the grain-boundary leetlictated by the granular arrangement and is charac-
terized by relative contributions of tangential separatetween 9 and 20%. Accordingly, the contribution in
normal direction is between 80 and 91% showing a mode-| datathcracking behavior —similar figures have
been obtained with microstructures generated with a cielatr®oronoi tessellation as shown in Sectidrb.
Higher values of the normal energy contribution correspinsituations with localized sharp normal traction
profiles along grain boundaries. Our results suggest thderaracking in polycrystals is only possible if the
grain boundary deformation is accommodated by sliding amthal separation. The suppression of the tangen-
tial contribution results in a kinematic constraint thatdkeased at the expense of many grain boundaries failing
in normal direction thus resulting in diffuse cracking —Bwwimulations are usually not numerically stable and

have not been reported in this study.
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