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Abstract

We analyze intergranular brittle cracking of polycrystalline aggregates by means of a Generalized Finite Element

Method for polycrystals with cohesive grain boundaries andlinear elastic grains. Many random realizations of a

polycrystalline topology are considered and it is shown that the resulting crack paths are insensitive to key cohesive

law parameters such as maximum cohesive strength and critical fracture energy. Normal and tangential contributions

to the dissipated energy are thoroughly investigated with respect to mesh refinement, cohesive law parameters and

randomness of the underlying polycrystalline microstructure.

KEY WORDS: brittle fracture, polycrystals, cracks, generalized finite element method.

1 Introduction

Cracking of a polycrystalline material depends on the loading conditions, the microstructure, and the mechanical

behavior of grains and grain boundaries. In materials such as ceramics, where the grains are hard and strong, fracture
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occurs by crack growth along the grain boundaries. This kindof brittle intergranular fracture is often modeled by way

of the finite element method (FEM) using the cohesive zone concept, where the response of the grain boundaries ahead

of the crack tip is lumped into discrete lines [17, 18, 28, 36, 38, 39, 41]. Although appealing from a physical point

of view, cohesive zone models come with numerical issues. They are essentially connected to cohesive zone models

containing a small length scale: the so-called cohesive length. This length scale is a function of the cohesive properties

—strength and fracture energy— and of the grain elastic constants. In order to obtain reliable numerical results, the

spatial discretization must be able to resolve well such length scale. Consequently, grain boundaries with different

parameters require different discretizations, complicating the task of performing automatic parameter studies.

The FEM, in combination with cohesive zone models, guarantees a high quality in the characterization of local and

global behavior of mesoscopic polycrystalline aggregatesin terms, for instance, of stress-strain curves, stress fields,

and crack path, but the generation of acceptable finite element meshes may be difficult and requires user intervention.

This can be a major issue when a large number of polycrystal geometries are considered. Other numerical procedures

have been developed recently to describe discrete crackingin polycrystals. The boundary element method [29] can

deliver solutions that are comparable to that obtained withthe FEM at a high computational cost. On the other hand,

approaches based on lattice or spring models [8, 13], the fuse model [35], and the grain element model [24] are based

on simplified assumptions that guarantee cheaper computations at the expense, in some cases, of the quality of the

numerical results. Probabilistic models for polycrystalline microstructures [2, 6] are even less costly, but can only

deliver crack paths.

In this contribution, at variance with previous studies on brittle cracking of polycrystalline aggregates, we make

use of a Generalized Finite Element Method for polycrystals[30]. This method is based on the partition of unity

property of finite element shape functions [4, 10, 19, 21] and considerably simplifies the process of automatic mesh

generation and refinement, as briefly illustrated in Sections2.1and2.3.

We perform an extensive study of many aspects of crack propagation in brittle polycrystals. With the constraint

on the mesh size as defined in Section3.1, we demonstrate in Sections3.2-3.4 that the crack path depends only on

the polycrystalline microstructure topology. An interesting consequence of this result is that reliable crack paths can

be obtained at a relatively low computational cost for trulybrittle polycrystals. Finally, the relation between polycrys-

talline microstructure and cohesive law parameters and their role on energy dissipation are discussed in Sections3.5

and4.
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Figure 1: In the GFEM for polycrystals (a), a polycrystalline aggregate is described by superimposing a polycrys-
talline topology (b) on a background mesh (c). The quality ofthe numerical solution can be improved by local mesh
refinement (d). Note that the finite element mesh does not conform to grain boundaries and junctions.
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2 Method of analysis and assumptions

2.1 Generalized Finite Element Method for polycrystals

Crack paths in polycrystals are computed by means of a Generalized Finite Element Method (GFEM) for polycrys-

tals [30] which, contrary to classical FEMs, does not need a mesh generator to mimic the polycrystalline topology.

As sketched in Figures1(a) and1(c), it requires a simple background mesh on which the polycrystalline topology is

superimposed. Meshing of the grain boundaries and junctions is not required. Being described by means of discon-

tinuous enrichment functions, grain boundaries can cut elements and grain junctions can be arbitrarily located within

elements. This approach makes use of a displacement decomposition where the displacement fielduuu of a polycrystal

comprisingNG grains is described by means of the standard displacement field ûuu, which can be considered as related

to the background mesh, and the enrichment displacement field ũuu, representing individual grains, according to [30]

uuu = ûuu+
NG

∑
i=1

Hiũuui, (1)

where the generalizedHi function is equal to 1 in graini and 0 otherwise. When considered in the construction of the

weak form of the governing equations, such displacement decomposition gives rise toNG +1 coupled weak variational

statements. Each of theNG statements corresponding to the grain structure is equipped with a traction-separation law

acting across the grain boundary shared by two neighboring grains. More details can be found in [30]. The model is

completed by employing a constitutive relationship describing the material behavior within the grains. The constitutive

relation has been consistently linearized in a full Newton-Raphson algorithm and we observed quadratic convergence

rate.

2.2 Test setup and material

2.2.1 Geometry and boundary conditions

The geometry and boundary conditions of the test setup are reported in Figure2. The notched specimen is loaded by a

uniform tensile stress,σ , which is varied incrementally under quasi-static loadingconditions. A dissipation-based arc-

length procedure [14] was employed in order to trace the complex load-displacement curves which are characterized

by the frequent snap-backs associated with the failure of individual grain boundaries. The boundary conditions are

such that the specimen ends can rotate freely so that the crack is not restrained by the specimen geometry.

We have considered many random realizations of an 80 grain polycrystalline topology inside the process zone

depicted in Figure2. Each random realization is generated from a regular hexagonal topology by offsetting each grain

junction by random perturbations. We identify each realization by means of an empirical non-dimensional randomness
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Figure 2: Geometry and boundary conditions for the notched specimen employed in the simulations. The process
zone is the region in which grains and grain boundaries are represented explicitly; outside this zone the material is a
homogeneous continuum.
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Figure 3: Definition of quantities for the computation of therandomness parameterρ (adapted from [23]).

parameter̄ρ [23] which is equal to 0.289 for a regular hexagonal topology andlarger for any random realization. The

randomness parameterρ̄ is defined as the average value of the geometrical parameter

ρ =
1

KAG

K

∑
k=1

L(k)2
[

1+sin
(

2ψ(k)
)]

(2)

over all grains. The parameterρ in turn is defined at the grain level considering the numberK of grain boundary facets,

the grain areaAG, the lengthL(k) of the part that lies within the grain of the vectorLLL(k) connecting the centroids of the

grains adjacent to facetk, and the angle between the normalnnn(k) to facetk andLLL(k), see Figure3.

The average grain size is defined here as the distance betweentwo opposite sides of a hexagonal grain in the regular

hexagonal topology. This quantity turns out to be very closeto the average grain size computed from randomized

hexagonal topologies. In the simulations we have considered an average grain size of approximately 21µm, similar
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to the values used by Zavattieri et al. [41] (22 µm) and Kraft and Molinari [16] (25 µm), which corresponds to an

average grain boundary lengthlgb ≈ 12 µm. With around 80 grains in the process zone inside the ligament area, as

indicated in Figure2, the length of the specimen isW = 360µm.

2.2.2 Bulk behavior

The material parameters are taken to be representative of anaverage polycrystalline alumina, Al2O3. We assume

the grains to be elastic and isotropic, with Young’s modulusE = 384.6 GPa and Poisson’s ratioν = 0.237. This

assumption is based on the observation by Molinari and coworkers [16, 38] that intergranular failure is not substantially

affected by the elastic anisotropy of polycrystalline alumina. The plane strain analyses are performed under the

assumption of small elastic strains and rotations. The model will not be able to capture grain rotation if the crack

opening becomes large.

2.2.3 Grain boundary behavior

Non-linearity in the material response is defined by the cohesive law across grain boundaries. In this study, we have

used the Xu-Needleman cohesive law [40] and considered variations of the cohesive strength and thefracture energy

with the understanding that only these two parameters, and not the shape of the cohesive law matter [1, 33]. The

Xu-Needleman cohesive law is a potential-based cohesive zone model involving an initial compliance representing

that of the grain boundary. In this cohesive law, the tractions in normal and tangential direction, respectively, are given

by

Tn =
φn

δn
exp

(

−
∆n

δn

){

∆n

δn
exp

(

−
∆2

t

δ 2
t

)

+
1−q
r−1

[

1−exp

(

−
∆2

t

δ 2
t

)][

r−
∆n

δn

]}

(3)

and

Tt = 2

(

φn∆t

δ 2
t

){

q+

(

r−q
r−1

)

∆n

δn

}

exp

(

−
∆n

δn

)

exp

(

−
∆2

t

δ 2
t

)

(4)

in terms of the normal and tangential opening∆n and∆t. In the above relations,φn is the work of normal separation,

φt is the work of tangential separation, whileδn andδt are the openings corresponding to the uncoupled normal and

tangential strengths. The normal strength itself is then given byσmax = exp(−1)φn/δn. Coupling between normal

and tangential directions is achieved by the parametersq = φt/φn andr = ∆∗
n/δn, with ∆∗

n being the normal opening

after complete shear separation atTn = 0. In line with previous works on mesoscopic failure analysis of alumina

with cohesive zone elements [18, 41], we have selectedq = 1. It is worth noting thatq = 1 is the only value of this

parameter for which the Xu-Needleman cohesive law can properly describe coupling between normal and tangential

directions [34]. Whenq = 1, it can be observed from (3) and (4) that the value ofr does not have any influence in the

cohesive law.
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Figure 4: Influence of the unloading behavior in the cohesivelaw (reversible behavior versus secant unloading).

In the original Xu-Needleman model [40], the cohesive zone law is assumed to be reversible. In line with other

studies on mesoscopic failure of polycrystalline aggregates [7, 41], we have considered secant unloading in the nu-

merical analyses performed in this study. We have however compared the response of a few cases considering both

reversible behavior and secant unloading and found very small differences in some parts of the unloading/reloading

branches of the load-displacement curves. These differences can be seen in the curves in Figure4 obtained for one of

the polycrystalline topologies employed in Section3. Both options resulted in the same crack path.

In our numerical simulations, a “crack” develops when the crack openings are larger than the corresponding char-

acteristic separation values, i.e. when∆n > δn or ∆t > δt. All the crack paths have therefore been drawn using this

definition. Although other approaches might be more appropriate to define a crack, the reported cracks are related to

the end of the loading process, when a crack is fully developed and almost all the cohesive energy has been dissipated.

In fact, the simulations have been stopped when the resultant of the stressσ acting on the right side of the specimen

is less than one thousandth of the applied load —this corresponds to a horizontal displacement of point A in Fig.2 of

around 3-4µm; for the sake of clarity in the representation of these curves we have decided to show only the “inter-

esting” part, thus restricting the range of the horizontal axis. Similar to other authors [18, 41], and dictated by lack of

precise knowledge, the characteristic separations in normal and tangential direction are set to be equal (δn = δt) —this

choice is discussed further in Section3.5. For any choice of the normal strengthσmax and the fracture energyφn = GIc,

the value ofδn is computed considering thatφn = σmaxexp(1)δn [40].

2.2.4 Grain boundary cohesive strength and critical fracture energy

Grain boundary cohesive strength,σmax, and critical fracture energy,GIc, depend both on grain boundary size [25, 26].

According to Rice [25] (Figure 3), the tensile strengthσmax of alumina is around 0.4 GPa for 21µm grains. Zavattieri
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Figure 5: Definition of discontinuity segment length,ld, and length of the longest element side associated to elements
crossed by a discontinuity,le.

et al. [41] consideredσmax from 1 to 10 GPa for 22µm grains while Kraft and Molinari [16] consideredσmax= 0.6 GPa

for 25 µm grains. In the first set of simulations to be reported in Section 3 we consider values from 0.6 to 3.0 GPa. In

section4, this range is broadened to 0.384–3.84 GPa.

Regarding the critical fracture energyGIc, Rice et al. [26] (Figure 5) report values between 35 and 45 J/m2 for

grain sizes around 21µm. Kraft and Molinari [16] considered several distributions of the fracture energyGIc over the

grain boundaries with values between 1 and 22 J/m2. Based on these figures, we consider values ofGIc between 7.09

and 39.3 J/m2 as in Zavattieri et al. [41].

2.3 Mesh related issues

We have employed meshes of constant strain triangular elements which, when intersected by grain boundaries, are

refined to the desired level as shown in Figure1. A longest-edge mesh refinement algorithm [27] is used for this

purpose. An obvious advantage of this approach is that this local refinement algorithm preserves the aspect ratio of

the elements in the mesh throughout the refinement process with the added benefit of not having to constrain the mesh

to the local features of the problem (grain boundaries and junctions in our case) [9].

The mesh along grain boundaries must be sufficiently fine in order to resolve the length scale associated with

the cohesive law. To resolve the cohesive law along grain boundaries, considered as discontinuities in GFEM, each

discontinuity segment lengthld, defined by the intersection between an element and a grain boundary as shown in

Figure5, needs to be, at least, smaller than the cohesive lengthlz. This bound on discontinuity segments is met by

making the lengthle of the longest side of all the elements intersected by grain boundaries≤ lz. For potential-based

cohesive laws this parameter is estimated as [12]

lz =
9π
32

E
1− v2

GIc

σ2
max

. (5)
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(a) realization 1 (b) realization 2 (c) realization 3

crack growth
direction

Figure 6: Three different realizations of 80 grains in the process zone. The blue line indicates the computed crack path
for GIc = 39.3 J/m2 andσmax= 0.6 GPa, while the thick black line indicates the traction-free notch. The arrow in (b)
points to the grain boundary for which the traction profile ispresented in Figure12.

In the traditional FEM with conforming meshes, reliable results can be obtained by specifying a minimum number

of elements in the cohesive zone. There is however no consensus on the value of this number: Carpinteri and Colombo

[5], according to [20], suggested to use more than ten elements; Falk et al. [12] used two to five elements in their

analyses; Möes and Belytschko [20] suggested a minimum of two elements; Turon et al. [32] and Harper and Hallett

[15] proposed at least three elements in a fully developed cohesive zone, while Sfantos and Aliabadi [29] used at

least 15 elements. These figures make reference to problems as diverse as delamination and crack propagation in

homogeneous materials thus suggesting the existence of a problem-dependent estimate of the minimum number of

elements required in the cohesive zone. Therefore, we devote a separate section in the sequel to estimate the necessary

number of elements for our problem of brittle cracking in polycrystals.

3 Results and discussion

We have performed mesh refinement and parametric studies to evaluate the impact of cohesive law parameters on the

crack path. These studies were carried out considering the three different random realizations of an 80 grain hexagonal

polycrystalline topology shown in Figure6.

It is worth noting that in this study we are drawing conclusions about crack paths and not about the position of the

crack tip —crack paths are not sensitive to the precise criterion used to define the crack tip.

3.1 Mesh refinement studies

Figure5 depicts a typical situation arising from the intersection between an element and a grain boundary. We have

performed a mesh refinement study to establish the lengthle that can be used with confidence in the rest of our

investigations. This length must be such that any other discretization with smaller lengthsle yields the same crack

path and load-displacement curve. Two sets of analyses are considered for this purpose. In both,GIc = 39.3 J/m2 but

the cohesive strength is varied so as to cover a range of cohesive lengthslz through (5).
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In the first set of analyses, the cohesive strengthσmax is taken as 3.0 GPa which corresponds to a cohesive length

lz = 1.57 µm. Two refinement levels are considered. One with element sides le ≈ lz and the other withle ≈ lz/3.

Since discontinuities can cross elements, these constraints onlz must be considered as upper bounds on element side

lengths as is evident from Figure1(d). Further, to avoid the use of unreasonably coarse meshes, we require at least

four intersecting elements along each grain boundary as well as le ≤ lgb/2. These constraints have been imposed on

all the meshes used in this study.

The results of the mesh refinement study are shown in Figure6. We found that crack paths obtained with both

refinement levels are identical. This seems to suggest that considering element sidesle approximately equal tolz is

adequate. To confirm this, we consider a second set of analyses, with two refinement levels, in which the cohesive

strengthσmax takes values 0.6, 1.0 and 2.0 GPa, corresponding to cohesivelengths equal to 39.3, 14.1, and 3.53µm;

the values ofδn andδt were adapted toσmax in order to dissipate the same fracture energy. Unlike the previous set

of analyses, we found that in two out of nine cases (realizations 1 and 2 withσmax = 2.0 GPa), the two refinement

levels yielded different crack paths as reported in Figure7. Further, the crack paths obtained with element sides

approximately equal tolz/3 resulted identical to those reported in Figure6. In all the other cases, crack paths obtained

with the two refinement levels were identical. This raises the question of whether the crack paths obtained with

element sidesle ≈ lz/3 can be accepted with confidence. A further mesh refinement study, not reported here, was

done reconsidering some of the 12 cases described so far to check if the use of smaller elements in regions crossed by

discontinuities would result in different crack paths. We found no differences in the crack paths.

Thus, this study suggests a mesh refinement such that the length of the longest side of all the elements intersected

by grain boundariesle ≤ min
(

lz/3, lgb/2
)

with at least four intersecting elements along each grain boundary. We

assume that the same bounds apply for any value oflz.

3.2 Effect of cohesive strength on fracture behavior

In the above mesh refinement study, we have already considered variations of the cohesive strengthσmax. The crack

paths obtained with this set of parameters are identical andwere reported in Figure6. Nevertheless, since the grain

boundaries have varying strength, the load-displacement curves are different, as shown in Figure8. It is noted that,

when considering the bounds on element size defined in Section 3.1, increasing the cohesive strength gives rise to a

distinct raggedness of the curves as seen in Figures8(c) and8(d). This is due to the limited resolution of the cohesive

law along cracking grain boundaries. The load-displacement curves can indeed be smoothened by using finer meshes

as shown in Figure9 for the case reported in Figure8(c). This procedure however is very costly because of the large

number of degrees of freedom involved, and it does not resultin any change of the crack path solution while the

improvement in the load-displacement curve is arguably of “cosmetic” nature.
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Figure 7: Sensitivity of the crack path to mesh refinement forσmax= 2.0 GPa andGIc = 39.3 J/m2 for realizations 1
and 2: crack path obtained with element sidesle ≈ lz (a, d) andle ≈ lz/3 (b, e); superimposed cracks paths (c, f).

Based on these observations, we conclude that the crack pathis not affected by the magnitude ofσmax in the

selected range, and that the load-displacement curves are qualitatively similar. Consequently, crack paths and load-

displacement curves obtained for low cohesive strength, being cheaper and easier to compute, can be considered valid

also for higher strengths.

3.3 Effect of critical fracture energy on fracture behavior

To study the effect of the critical fracture energy on the crack path,GIc is set equal to 7.09, 11.4, 22.1 and 39.3 J/m2,

while keepingσmax= 0.6 GPa. Similar to the cases described in the previous section, no difference in the crack paths

is found with respect to those reported in Figure6. The load-displacement curves, depicted in Figure10for realization

2, show a serrated behavior similar to that reported in Figure 8. However, unlike the latter, the load-displacement

curves in Figure10do reveal quantitative differences in terms of the dissipated energy as a consequence of the change

in fracture energy. Directly related to the fracture energyis the number of degrees of freedom used in the simulations.

This quantity decreases with increasing fracture energyGIc sincele scales withGIc via lz according to (5). Further,

increasing values of the fracture energy correspond to smoother curves as shown in Figure10. This is again related to

the resolution of the cohesive law along grain boundaries.

To further confirm these observations on the crack path and the features of the load-displacement curve, realization

2 is reconsidered withσmax = 2 GPa using the same set of values forGIc. Apart from being computationally more

demanding, the load-displacement curves, not reported here, show features similar to those just described forσmax=

0.6 GPa, and the crack paths are also identical to the one reported in Figure6(b).
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Figure 8: Load-displacement curves for an 80 grain topology(realization 2 ) withGIc = 39.3 J/m2 using different
values ofσmax: (a) σmax= 0.6 GPa, (b)σmax= 1 GPa, (c)σmax= 2 GPa, (d)σmax= 3 GPa, (e) superposition. The
net force reported on the vertical axis is the resultant of the stressσ acting on the right side of the specimen.
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Figure 9: Effect of mesh refinement on the load-displacementcurve for realization 2 withσmax= 2 GPa andGIc =
39.3 J/m2 (refer to Figure8(c)).

The observations gathered so far suggest that, for a given arrangement of grains and in the range considered for

the parameters, the crack path is independent of the cohesive strength and fracture energy.

3.4 Intragranular stress and intergranular traction fields

After having considered overall fracture characteristics, it is interesting at this point to study the stress fields inside

grains and the normal traction profiles along grain boundaries. These characteristics in a region around the propagating

crack tip are shown in Figure12 for different values of fracture energy and cohesive strength.

Contrary to the observation above that the crack paths are identical to the one reported in Figure6(b), Figure12

reveals a rich palette in stress fields inside grains and traction distribution along grain boundaries. It is quite remarkable

that not even the extent of the inelastic region ahead of the crack tip —determined by the cohesive lengthlz— has a

significant influence on the crack path. In fact, identical crack paths are obtained in the two extreme cases reported in

Figures12(c)-(d) and12(e)-(f) wherelz = 0.638 and 39.3µm, respectively.

It is worth noting that in the case of Figure12(c)-(d) the cohesive lengthlz = 0.638 µm is smaller than 1.57µm

which was the smallest value considered in the definition of the bounds on element size in Section3.1. However,

the evidence that the same crack path is obtained with all four values of the cohesive length confirms, indirectly, the

validity of the proposed bounds on element size.

In conclusion, in the cases considered so far, the relative arrangement of grains in a polycrystal seems to be the
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Figure 10: Load-displacement curves for an 80 grain topology (realization 2) using different values of fracture energy
GIc with cohesive strengthσmax= 0.6 GPa.

only important factor in the definition of the crack path.

3.5 Energy balance: Relative contribution of normal and tangential energies

We have computed the dissipated energy following two approaches. In the first approach, the dissipated energy at the

global level,Gglob, is a function of the work done by the external loads and is calculated as

Gglob =
n

∑
i=1

wi (6)

with the global energy dissipation increments computed from

wi =
1
2

[

λi−1
(

uuuT
i −uuuT

i−1

)

− (λi −λi−1)uuuT
i−1

]

f̂ff . (7)

Here,i is an index running on then load increments,λi is the incremental loading factor,uuui is the displacement solution

vector, and the unit force vectorf̂ff is related to the external force vectorfff ext through fff ext= λ f̂ff whereλ is a load factor.

More details on the derivation of the energy increments can be found in [14]. In the second approach, the dissipated

energy at the local level,Gloc, is computed along the grain boundaries considering the same expression (i.e. (6) and (7))

14



Displacement

F
or

ce

Displacement

F
or

ce

A

B

C

A

C

B

Figure 11: Sampling points for the stress fields and tractionprofiles reported in Figure12.

now made a function of displacement jumps and tractions across each discontinuity segment according to

Gloc = Gn,loc+Gt,loc, (8)

with the normal and tangential contributions

Gn,loc=
n

∑
i=1

wni and Gt,loc =
n

∑
i=1

wti , (9)

and with the incremental energies defined as

wni =

nld

∑
j=1

1
2

∫

Γd j

[

Tni−1

(

∆ni −∆ni−1

)

−
(

Tni −Tni−1

)

∆ni−1

]

dΓd j (10)

and

wti =

nld

∑
j=1

1
2

∫

Γd j

[

Tti−1

(

∆ti −∆ti−1

)

−
(

Tti −Tti−1

)

∆ti−1

]

dΓdj , (11)

wherenld is the total number of discontinuity segments,Γd j denotes the length ofjth discontinuity segment,Tn and

Tt are the tractions and∆n and ∆t are the local jumps in the normal and tangential directions,respectively. Both

energies are then compared by considering various mesh refinement levels and two sets of grain boundary properties:

GIc = 39.3 J/m2 with σmax= 0.6 (Table1) and 2.0 GPa (Table2). The refinement level is shown in the second column

in terms of the lengthle of the longest side of all the elements intersected by grain boundaries.

From the results shown in Tables1 and2, it can be observed that: (i) the relative error between local and global

energies (last column) depends only on the mesh refinement level in terms ofle —further analyses performed with the

three realizations shown in Figure6 and considering variations of cohesive strength and fracture energy confirm this
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Figure 12: Failure characterization for the polycrystal inFigure6(b) (realization 2). Left column: local failure pattern
(50× displacement magnification) and normalized von Mises equivalent stress sampled at point A in Figure11. Right
column: evolution of the normal traction profile along the grain boundary indicated by an arrow in Figure6(b) (s is
the normalized coordinate along the grain boundary and its origin coincides with the crack tip; the crack tip is located
at the left hand side of the arrow in Figure6(b); sampling points A, B, and C are indicated in Figure11; element size
le ≈ 0.20 µm).
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le
le
lz

Gglob Gloc = Gn,loc+Gt,loc
Gn,loc

Gloc

Gt,loc

Gloc

Gloc−Gglob

Gglob
[µm] [ - ] [nJ] [nJ] [ % ] [ % ] [ % ]

realization 1 6.05 ≤ 1/6 6.48 8.94 86.0 14.0 38.1
(ρ̄ = 0.355) 4.25 ≤ 1/9 6.54 7.92 85.8 14.2 21.2

2.00 ≤ 1/19 6.44 7.18 85.4 14.6 11.5
0.50 ≤ 1/78 6.44 6.61 85.6 14.4 2.74
0.20 ≤ 1/196 6.42 6.51 85.7 14.3 1.31

realization 2 6.05 ≤ 1/6 6.21 8.72 86.8 13.2 40.3
(ρ̄ = 0.376) 4.25 ≤ 1/9 6.20 7.47 86.8 13.2 20.6

2.00 ≤ 1/19 6.19 6.89 86.9 13.1 11.3
0.50 ≤ 1/78 6.17 6.35 87.4 12.6 2.90
0.20 ≤ 1/196 6.17 6.26 87.7 12.3 1.33

realization 3 6.05 ≤ 1/6 5.90 8.50 88.7 11.3 44.0
(ρ̄ = 0.400) 4.25 ≤ 1/9 5.90 7.27 88.2 11.8 23.2

2.00 ≤ 1/19 5.90 6.61 87.9 12.1 12.0
0.50 ≤ 1/78 5.89 6.05 88.1 11.9 2.75
0.20 ≤ 1/196 5.89 5.97 88.3 11.7 1.39

Table 1: Comparison of global energyGglob, related to the work done by the external loads, and local energy Gloc,
dissipated along grain boundaries (GIc = 39.3 J/m2, σmax= 0.6 GPa,lz = 39.3 µm).

le
le
lz

Gglob Gloc = Gn,loc+Gt,loc
Gn,loc

Gloc

Gt,loc

Gloc

Gloc−Gglob

Gglob
[µm] [ - ] [nJ] [nJ] [ % ] [ % ] [ % ]

realization 1 1.17 ≤ 1/3 6.19 6.72 88.7 11.3 8.60
(ρ̄ = 0.355) 0.58 ≤ 1/6 6.18 6.43 88.7 11.3 4.07

0.20 ≤ 1/18 6.17 6.26 88.6 11.4 1.32
realization 2 1.17 ≤ 1/3 6.04 6.53 89.8 10.2 8.23
(ρ̄ = 0.376) 0.58 ≤ 1/6 6.03 6.28 90.0 10.0 4.16

0.20 ≤ 1/18 6.02 6.10 90.3 9.70 1.32
realization 3 1.17 ≤ 1/3 5.83 6.32 90.6 9.40 8.47
(ρ̄ = 0.400) 0.58 ≤ 1/6 5.82 6.08 90.6 9.40 4.42

0.20 ≤ 1/18 5.82 5.90 90.6 9.40 1.34

Table 2: Comparison of global energyGglob, related to the work done by the external loads, and local energy Gloc,
dissipated along grain boundaries (GIc = 39.3 J/m2, σmax= 2.0 GPa,lz = 3.53 µm).

observation and the results are reported in Figure13; (ii) the calculated global energy is almost insensitive to the mesh

density (fourth column); (iii) the contribution from normal energy dissipationGn,loc to the local energy is around 90%

showing a mode-I dominated cracking behavior (sixth column); (iv) normal and tangential contributions do not vary

significantly with refinement (sixth and seventh columns).

A few representative cases have been re-examined by varyingthe value ofδt/δn over a decade compared to the

reference value of 1. Whenδt/δn is less than 0.9, our simulations experienced convergence problems, which could be

traced back to the fact that small values ofδt/δn obstruct grain boundary sliding, which is a necessary condition to

develop a crack in polycrystals under mode-I loading at the specimen level. Values ofδt/δn equal to/greater than 0.9

resulted in the same crack path and more or less the same energy contributions as reported in Tables1 and2. Large

values ofδt/δn however resulted in different crack paths in some cases due to particular grain arrangements (refer to

the discussion in Section4 and Figure16). In addition, in all completed analyses, the percentage difference in global

and local energies has been found to be very close to that reported for δt/δn = 1 for all the examined values of the

ratio δt/δn.
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GIc = 39.3 J/m2, σmax = 2.0 GPa
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Figure 13: Convergence of local and global energy with mesh refinement.

3.6 Topologies generated by centroidal Voronoi tessellation

To demonstrate that our results are not tied to a hexagonal grain structure, we report results obtained by employing

two 80 grain polycrystalline non-hexagonal topologies generated using a centroidal Voronoi tessellation algorithm.

The topologies are depicted in Figures14(a) and15(a). The blue line indicates the computed crack path obtained

with different values ofGIc (7.09, 11.4, 22.1 and 39.3 J/m2) andσmax (0.6 and 2.0 GPa). The corresponding load-

displacement curves forσmax= 0.6 GPa are shown in Figures14(b) and15(b).

The energy contributions are listed in Tables3 and4 and show a trend similar to that related to hexagonal mi-

crostructures (refer to Tables1 and2). However, due to the particular grain boundary arrangement along the crack

path, the topology in Figure14 dissipates more energy in the normal direction.

Figure14(a) le
le
lz

Gglob Gloc = Gn,loc+Gt,loc
Gn,loc

Gloc

Gt,loc

Gloc

Gloc−Gglob

Gglob
[µm] [ - ] [nJ] [nJ] [ % ] [ % ] [ % ]

σmax= 0.6 GPa 4.25 ≤ 1/9 5.34 6.54 88.2 11.8 22.54
(lz = 39.3 µm) 0.20 ≤ 1/196 5.33 5.41 89.5 10.5 1.52
σmax= 2.0 GPa 1.17 ≤ 1/3 5.33 5.76 93.1 6.9 8.20
(lz = 3.53 µm) 0.20 ≤ 1/18 5.32 5.40 93.5 6.5 1.49

Table 3: Comparison of global energyGglob, related to the work done by the external loads, and local energy Gloc,
dissipated along grain boundaries (GIc = 39.3 J/m2).
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Figure 14: Crack path (a) and load-displacement curves (b) for an 80 grain polycrystalline non-hexagonal topology
generated using a centroidal Voronoi tessellation algorithm. The load-displacement curves have been obtained with
cohesive strengthσmax= 0.6 GPa.
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Figure 15: Crack path (a) and load-displacement curves (b) for an 80 grain polycrystalline non-hexagonal topology
generated using a centroidal Voronoi tessellation algorithm. The load-displacement curves have been obtained with
cohesive strengthσmax= 0.6 GPa.
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Figure15(a) le
le
lz

Gglob Gloc = Gn,loc+Gt,loc
Gn,loc

Gloc

Gt,loc

Gloc

Gloc−Gglob

Gglob
[µm] [ - ] [nJ] [nJ] [ % ] [ % ] [ % ]

σmax= 0.6 GPa 4.25 ≤ 1/9 5.86 6.83 86.0 14.1 16.46
(lz = 39.3 µm) 0.20 ≤ 1/196 5.86 5.94 87.3 12.7 1.33
σmax= 2.0 GPa 1.17 ≤ 1/3 5.78 6.21 90.1 9.9 7.45
(lz = 3.53 µm) 0.20 ≤ 1/18 5.77 5.84 90.6 9.4 1.33

Table 4: Comparison of global energyGglob, related to the work done by the external loads, and local energy Gloc,
dissipated along grain boundaries (GIc = 39.3 J/m2).

4 Further assessment of results

In order to confirm the representativeness of the hexagonal grain results obtained so far, 122 more realizations with

ρ̄ ranging from 0.30 to 0.40 are considered. We also enlarge therange of the grain boundary cohesive strength

σmax considering the following three options for each realization: (1) σmax= 0.384 GPa andGIc = 39.3 J/m2 (lz =

95.9 µm), (2)σmax= 0.384 GPa andGIc = 7.09 J/m2 (lz = 17.3 µm), and (3)σmax= 3.84 GPa andGIc = 39.3 J/m2

(lz = 0.959µm). 71 realizations resulted in identical crack paths for all the options. The remaining cases have partial

overlaps of the crack path and are characterized by patches of grain arrangements with peculiar geometrical features.

These are cases for which it is difficult to obtain reliable results unless a very high mesh density is considered. A typical

case is shown in Figure16(a) with crack paths corresponding to the use of two different sets of material properties

reported in Figures16(b) and16(c). The superposition of the two crack paths in Figure16(d) clearly shows that the

crack path changes its direction at a junction where two grain boundaries in front of the crack tip are arranged in a

Y-like configuration consisting of these two grain boundaries and the previous crack segment.

To appreciate the influence of the grain arrangement, the position of one of the grain junctions is changed as

shown in Figure16(e) resulting in the polycrystal in Figure16(f). Identical crack paths, shown in Figure16(g), are

now obtained with this new configuration considering the same material parameters used for the simulations related

to Figure16(d) and the same spatial discretization. Note that the loading direction is horizontal and the crack segment

below the crack tip is vertical thus generating a regular Y-configuration —two such cases are shown in Figure7

and have been resolved by employing a finer mesh. We have however experienced cases with similar behavior in

which the crack segment below the crack tip was not vertical.The identification of these special cases must be done

considering local geometrical features and their orientation with respect to the loading direction. It must be stressed

however that these situations are not uncommon and the bounds on element side lengths defined in Section3.1 do

not always guarantee the determination of correct crack path and load-displacement curve. Adaptive discretization

schemes [3, 11, 22, 42] should be considered in these circumstances.

The relative contribution of the energy dissipated in the normal direction along grain boundaries for the above 71

realizations is shown in Figure17. Three observations can be made. First, when the cohesive length is larger than the

average grain boundary length, the contribution of the energy dissipated in the normal direction is strongly influenced

20



(a) (b) (c) (d)

(g)(f)

=

(e)

Figure 16: Influence of grain arrangement on the crack path: (a) original grain arrangement; (b and c) crack paths
obtained with different material properties; (d) superimposed crack paths; (e) the realization is perturbed for one of
the grain boundaries in the Y-configuration as shown in the close-up; (f) the modified grain arrangement; (g) identical
crack paths are obtained with different material properties.

by the granular arrangement. This influence weakens with decreasing cohesive length, as indicated by the extent of

the dispersion around the best fit lines. This behavior can berationalized by noting that the cohesive length measures

the distance over which the cohesive zone is active. A largercohesive length indicates a situation in which more

energy can be dissipated along a grain boundary as shown in Figure12 (compare the cohesive zone length with the

size of the process zone around the crack tip). Further, the amount of the dissipation in the normal direction is related

to the inclination of the grain boundary with respect to the loading direction, i.e. dissipation in the normal direction

is maximum for a grain boundary perpendicular to the loadingdirection and null for a grain boundary parallel to it.

Hence, grain boundaries with random orientations will generate a normal energy dissipation which will be a function

of the size of the cohesive zone length and of the inclinationof the grain boundary with respect to the loading direction.

Second, decreasing values of the cohesive length correspond to increasing values of the average contribution in the

normal direction. Third, although the boundary conditionspromote and achieve mode-I cracking at the specimen

level, local failure at the grain-boundary level is dictated by the granular arrangement and is characterized by relative

contributions in the tangential direction between 9 and 20%.

5 Summary and conclusions

Intergranular crack propagation in brittle polycrystals has been studied under quasi-static loading conditions. Various

random realizations of a regular hexagonal grain topology have been considered in combination with variations of
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Solid lines correspond to best fit lines
σmax = 3.84 GPa,GIc = 39.3 J/m2, lz = 0.959µm
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Figure 17: Relative contribution of the energy dissipated in the normal direction along grain boundaries for the 71
microstructures resulting in identical crack paths for three sets of grain boundary properties (circle: min=79.88%,
max=86.95%, average=83.76%; square: min=85.98%, max=90.67%, average=88.32%; triangle: min=87.47%,
max=91.38%, average=89.42%).

representative values of cohesive law parameters.

Our numerical investigations suggest that mesh independent results in the GFEM for polycrystals can be ob-

tained when the lengthle of the longest side of all the elements intersected by grain boundaries is such thatle ≤

min
(

lz/3, lgb/2
)

with at least four intersecting elements along each grain boundary. Following these refinement rules,

we have discovered that the intergranular crack path is independent of key cohesive law parameters like fracture en-

ergy and cohesive strength, and depends solely on the underlying microstructure. This has been confirmed on two

microstructures generated with a centroidal Voronoi tessellation.

It is to be noted that the GFEM used in this paper does not provide any benefit in terms of discretization error

or convergence rates. In general, enriched finite element methods based on the partition of unity property of shape

functions, like the GFEM [4, 10] and XFEM [21, 31, 37], and equipped with a discontinuous enrichment function

to describe interfaces and cracks, can facilitate the meshing stage of an FEM analysis. This is important when a

large number of microstructures needs to be discretized. Improvements in terms of discretization error or convergence

rate can only be obtained with special enrichments functions or making recourse to “classical” approaches like h- or

p-refinement [9]. Since our GFEM implementation does not incorporate such extra enrichment functions, its perfor-

mance can be considered comparable to that of the standard FEM equipped with cohesive zones through interface

elements along grain boundaries. Indeed, as shown in [30, Section 4], the solutions of both methods (GFEM and
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standard FEM) are the same when the grain boundaries are located along element boundaries.

Other important findings of our study can be summarized as follows.

1. Simulations with low values of the cohesive length, related to highσmax and lowGIc, require very fine mesh

in order to resolve the cohesive response of grain boundaries and to get smooth load-displacement curves. Fur-

thermore, their complex equilibrium path can be traced onlyby using very small load increments. Conversely,

smallerσmax and/or largerGIc leads to smoother load-displacement curves which can be obtained with coarser

meshes. Since the crack path is insensitive to the cohesive properties, this implies that the most convenient set

of cohesive parameters may be used to determine the crack path.

2. The difference between global and local energies decreases with increasing mesh refinement, but the partitioning

in normal and tangential contributions does not vary significantly. The difference between local and global

energies is independent of the cohesive law parameters. Unlike the local energy, the global energy is almost

insensitive to the mesh density.

3. When the cohesive lengthlz is larger than the average grain boundary lengthlgb, the contribution of the energy

dissipated in the normal direction to the global energy is strongly influenced by the granular arrangement and

the dispersion around the mean value is more pronounced. Furthermore, a decrease in the cohesive lengthlz

gives rise to an increase of the normal contribution to the total energy dissipation.

4. The boundary conditions employed in the simulations promote and achieve mode-I cracking at the specimen

level. However, local failure at the grain-boundary level is dictated by the granular arrangement and is charac-

terized by relative contributions of tangential separation between 9 and 20%. Accordingly, the contribution in

normal direction is between 80 and 91% showing a mode-I dominated cracking behavior —similar figures have

been obtained with microstructures generated with a centroidal Voronoi tessellation as shown in Section3.6.

Higher values of the normal energy contribution correspondto situations with localized sharp normal traction

profiles along grain boundaries. Our results suggest that mode-I cracking in polycrystals is only possible if the

grain boundary deformation is accommodated by sliding and normal separation. The suppression of the tangen-

tial contribution results in a kinematic constraint that isreleased at the expense of many grain boundaries failing

in normal direction thus resulting in diffuse cracking —such simulations are usually not numerically stable and

have not been reported in this study.
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