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Abstract

This paper presents a generalized finite element method (GFEM) for crack growth simulations based
on a two-scale decomposition of the solution – a smooth coarse-scale component and a singular fine-scale
component. The smooth component is approximated by discretizations defined on coarse finite element
meshes. The fine-scale component is approximated by the solution of local problems defined in neigh-
borhoods of cracks. Boundary conditions for the local problems are provided by the available solution at
a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes
with elements that are orders of magnitude larger than thoserequired by the FEM. The coarse-scale
mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM
shape functions, allows the recycling of the factorizationof the global stiffness matrix during a crack
growth simulation. Numerical examples demonstrating the approximating properties of the proposed
enrichment functions and the computational performance ofthe methodology are presented.

KEY WORDS: Generalized FEM; Extended FEM; Fracture; Crack growth; Fatigue; Multi-scale; Global-
local analysis.

1 Introduction

The prediction of growth rate, shape, and trajectory of cracks in structural components is of great importance
in several engineering applications. Relevant examples are the prediction of fatigue life of engine compo-
nents and structural members. Realistic crack growth simulations require many crack propagation steps,
several initial crack configurations, and, often, a non-linear analysis. As a result, the computing power
required to solve this class of problems using existing methodologies can be formidable. Representative
methods for three-dimensional crack growth simulations include the standard finite element method (FEM)
with remeshing [60], the boundary element method (BEM) [36, 11], and the extended [38, 25, 57, 1, 8, 58]
or generalized FEM [18, 48]. These methods require the solution of the problem from scratch at each step of
a crack growth simulation. As a result, each crack propagation step may take several hours even on teraflop
computers [60].
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Champaign, 2122 Newmark Laboratory, 205 North Mathews Avenue, Urbana, Illinois 61801, USA. Tel.: +1-217-244-2830; Fax:
+1-217-265-8040. e-mail: caduarte@illinois.edu.
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This paper presents a generalized FEM for crack growth simulations that combines the concept of global-
local enrichments introduced in [19, 13] with thehp-GFEM for 3-D propagating fractures presented in [48].
The GFEM with global-local enrichments (GFEMgl) uses a two-scale decomposition of the solution of a
fracture mechanics problem – a smooth coarse-scale component and a singular fine-scale component. The
smooth component is approximated by a global (structural-scale) discretization defined on a coarse finite
element mesh. The fine-scale (near crack) component is approximated by the solution of boundary value
problems defined in neighborhoods of cracks. The partition of unity method [4, 3, 34, 14, 15, 16, 12, 40] is
then used to create conforming global spaces enriched with the fine-scale problem solutions. A key point in
this class of methods is the boundary conditions used in the fine-scale problems. In the GFEMgl presented
here, the solution at a simulation step is used as boundary conditions for the fine-scale problems. The
solutions of these problems, in turn, are used to define GFEM solution spaces at the next simulation step. A
key idea introduced in this paper is to utilize as much as possible information available at a crack simulation
step in order to reduce computational cost at the next step. The proposed GFEMgl takes advantage of the
fact that crack increments, in all crack propagation algorithms we are aware, must be small for accurate
predictions of crack paths in mixed-mode 3-D simulations. Thus, the solution away from the crack front
does not change significantly between crack propagation steps.
The proposed methodology can be combined with the standard FEM while enabling accurate modeling of
3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by
the FEM. Furthermore, only a few degrees of freedom are hierarchically added to the uncracked coarse-scale
discretization regardless of the number of degrees of freedom required to solve the fine-scale problems. This
enables the factorized matrix of the global problem to be recycled during a crack growth simulation. The
numerical experiments presented in Section4 show that the accuracy of the proposed GFEMgl for crack
growth is comparable to thehp-GFEM presented in [48] while being significantly more computationally
efficient than available methods for this class of problems.
In this paper, we focus on crack growth problems modeled withthe linear elastic fracture mechanics theory.
However, the methodology presented here is not limited to this application. Several other classes of prob-
lems, like time-dependent ones and those involving non-linearities, are solved using a multi-step algorithm.
Thus, the idea of using available information at a solution step to build approximation spaces for the next
step is also applicable to them. This is demonstrated in [42] for time-dependent problems exhibiting sharp
thermal gradients and in [29] for problems with localized material non-linearities. This broad applicability
of the GFEMgl is in contrast with other recently proposed multi-scale methods which rely on, e.g., analyti-
cally derived boundary conditions for fine-scale problems [55, 56]. The GFEMgl is also related to upscaling
techniques proposed by Hou and Xu [27]. However, the solution spaces in the GFEMgl are conforming,
while some of the methods presented in [27] are not.
Early methods for the analysis of propagating fractures based on multi-scale concepts include the work of
Rashid on the arbitrary local mesh replacement method [51], and several works on the so-called S-method
[22, 32]. More recent methods aimed at crack growth modeling and based on multi-scale concepts include
the multigrid methods proposed in [50, 45]; the method of Guidault et al. [26] based on the LATIN method
and domain decomposition concepts; the method of Pierres etal. [49] based on the LATIN method and
augmented Lagrangian methods; the method of Ben Dhia and Jamond [7] which combines the extended
FEM (XFEM) with the Arlequin method; the method of Galland etal. [24] based on global model reduction.
A recent version of the s-method aimed at multi-scale failure simulations, is the reduced order s-method
(rs-method) of Fish et al. [21, 43]. A related method aimed at modeling interactions among multiple static
cracks is the multiscale method of Loehnert and Belytschko [33]. Other related methods for two-dimensional
static cracks include the spider-XFEM [9] and the reduced basis enrichment for the XFEM [10] of Chahine
et al.; the method of Menk and Bordas for fracture of bi-material systems [35]; the harmonic enrichment
functions of Mousavi et al. [39] for two-dimensional branched cracks.
The outline of the paper is as follows. Section2 briefly reviews the definition of approximation spaces used
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in the generalized FEM. A detailed formulation of the proposed GFEMgl for 3-D crack growth is presented
in Section3. Numerical examples demonstrating the approximating properties of the proposed enrichment
functions and the computational performance of the methodology are presented in Section4. The main
conclusions are presented in Section5.

2 Generalized Finite Element Method: A Summary

The generalized FEM [2, 3, 17, 40, 54] is an instance of the so-called partition of unity method (PUM),
which has its origins in the works of Babuškaet al. [4, 3, 34] and Duarte and Oden [14, 15, 16, 12, 40]. The
generalized FEM (GFEM) denotes a PUM with the partition of unity provided by Lagrangian finite element
shape functions. The same method is also known as the extended FEM (XFEM) [5, 37]. Recent reviews of
generalized/extended FEMs along with a brief history on their development can be found in [6, 23].
Generalized FEM approximation spaces (i.e., trial spaces)consist of three components: (a) patches or
clouds, (b) a partition of unity, and (c) the patch or cloud approximation spaces. We describe these compo-
nents as follows:

Fig. 1 Construction of a general-
ized FEM shape function. Here,ϕα
is the function at the top,Lα i is the
function in the middle, and the gen-
eralized FE shape function,φα i, is
shown at the bottom

(a) Patch or Cloud ωα : In the generalized finite element method, a cloud
ωα is given by the union of the finite elements sharing nodeα of the
finite element mesh covering the domain of interestΩ. The set{ωα}N

α=1,
in a finite element mesh withN nodes, is an open cover ofΩ, i.e., Ω =
∪N

α=1ωα .
(b) Partition of Unity Subordinate to the Cover {ωα}N

α=1: The Lagrangian
finite element shape functionsϕα , α = 1, . . . ,N, of the finite element
mesh covering the domain of interestΩ constitute a partition of unity, i.e.,
∑N

α=1 ϕα(xxx) = 1 for all xxx in Ω. This is a key property used in partition of
unity methods.
(c) Cloud Approximation Spaces χα : To each cloudωα , we associate a
DL(α)-dimensional spaceχα of functions defined onωα , namely,

χα = span{Lα i, 1≤ i ≤ DL(α), Lα i ∈ H1(ωα)}. (1)

The basis functionsLα i above are also known asenrichment functions.
A cloud approximationuuuhp

α (xxx) ∈ χα of uuu|ωα – the restriction toωα of a
functionuuu defined onΩ – can be written as

uuuhp
α (xxx) =

DL

∑
i=1

uuu α iLα i(xxx) (2)

whereuuu α i, i = 1, . . . ,DL(α), are degrees of freedom.
The trial space for the GFEM is given by

XXX(Ω)≡
N

∑
α=1

ϕα χα = span{φα i = ϕαLα i, 1≤ i ≤ DL(α), 1≤ α ≤ N}. (3)

The function
φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (4)

whereα is a node in the finite element mesh, is called a GFEM shape function. Figure1 illustrates the
construction of GFEM shape functions in a two-dimensional domain.
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A GFEM approximationuuuhp(xxx) ∈ XXX(Ω) of a vector value functionuuu can be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuu α iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuu α iϕα(xxx)Lα i(xxx)

=
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

uuu α iLα i(xxx) =
N

∑
α=1

ϕα(xxx)uuu
hp
α (xxx).

The enrichment functions inχα must be chosen carefully to mimic the properties of the functions to be
approximated inωα . In [46, 47], we present high order enrichment functions for 3-D fracture problems that
enable modeling of surface discontinuities arbitrarily located within a finite element mesh (across elements).
Nonetheless, a sufficiently fine mesh must be used around the crack front to achieve acceptable accuracy
[46, 47, 48]. Even though the refinement does not have to be as strong as inthe standard FEM, it leads to
high computational costs when simulating, for example, 3-Dpropagating fractures. In this paper, we present
enrichment functions for propagating fractures that are numerical solutions of boundary value problems
created on-the-fly during a crack growth simulation. These functions, as demonstrated in Section4, enable
the solution of 3-D fracture problems on coarse meshes and donot require the solution of the problem from
scratch at each crack evolution step.

3 Generalized FEM with Global-Local Enrichments for 3-D Propagating
Fractures

In this section, a GFEM with global-local enrichment functions (GFEMgl) for 3-D mixed-mode propagating
fractures is presented. The methodology can be formulated for several classes of crack growth problems.
For simplicity and without loss of generality, we focus on the case of high-cycle quasi-static fatigue crack
growth in linear elastic materials. The problem consists ofa 3-D body subjected to cyclic loading and with
an initial crack surfaceS1 as illustrated in Figure2(a). We assume that the stress state around the crack
front can be fully characterized by linear elastic fracturemechanics and that the cyclic load has constant
amplitude (cf. Figure2(b)). The notation used in the GFEM presented here is illustrated in Figure3. The
next sections describe the methodology in detail.

3.1 Formulation of Coarse-Scale Problem

Consider the domain̄Ω = Ω∪ ∂ Ω ⊂ IR3. The boundary is decomposed as∂ Ω = ∂ Ωu ∪ ∂ Ωσ with ∂ Ωu ∩
∂ Ωσ = /0. Figure2(a)illustrates these definitions.
The strong form of the equilibrium and constitutive equations are given by

∇ ·σσσ = 000 σσσ =CCC : εεε in Ω (5)

whereCCC is Hooke’s tensor. The following boundary conditions are prescribed on∂ Ω

uuu = ūuu on ∂ Ωu σσσ ·nnn = t̄tt on ∂ Ωσ (6)

wherennn is the outward unit normal vector to∂ Ωσ andt̄tt andūuu are prescribed tractions and displacements,
respectively.
Let uuu0

G denote the generalized or standard FEM solution of the problem defined by (5) and (6). This is
hereafter denoted as theinitial or uncracked global problem. The crack surface shown in Figure2(a)is not
considered when solving this problem. The approximationuuu0

G is the solution of the following problem:
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Ω

t̄tt(t)

ū

∂Ωσ

∂Ωu

S1

(a)

t

‖t̄tt (t)‖

(b)

Fig. 2 Model problem and cyclic loading applied to the body. The crack surface isnot considered when solving the
initial global problem (7)

Sk

uuuk
G

Sk+1

Ωk
L

∂Ωk
L�∂Ωk

L∩∂Ω

∂Ωk
L∩∂Ω

ū

∂Ωσ

Ω

∂Ωu

Local problem
at stepk

t̄tt

Enrichment function

Boundary condition for
local problem

Fig. 3 Notation used in the description of the generalized FEM withglobal-local enrichments (GFEMgl) for 3-D
propagating fractures. The global solutionuuuk

G at a crack propagation stepk provides boundary conditions for a fine-
scale problem defined in a neighborhoodΩk

L of the crack surfaceSk+1. The solution of this problem, in turn, is used
as enrichment function for the global solution space at crack propagation stepk+1

Find uuu0
G ∈ XXX0

G(Ω)⊂ H1(Ω), such that∀ vvv0
G ∈ XXX0

G(Ω)

∫

Ω
σσσ(uuu0

G) : εεε(vvv0
G)dxxx+η

∫

∂Ωu
uuu0

G · vvv0
Gdsss

=
∫

∂Ωσ
t̄tt · vvv0

Gdsss+η
∫

∂Ωu
ūuu · vvv0

Gdsss
(7)
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whereXXX0
G(Ω) is a discretization ofH1(Ω), a Hilbert space defined onΩ, built with generalized or standard

FEM shape functions. In this paper, the GFEM presented in [17] is used and the spaceXXX0
G(Ω) is given by

(see also (3))

XXX0
G(Ω) =

{

uuuhp =
N

∑
α=1

ϕα(xxx)ûuu
hp
α (xxx) : ûuuhp

α (xxx) =
D̂L

∑
i=1

ûuu α iL̂α i(xxx)

}

(8)

where ûuu α i, α = 1, . . . ,N, i = 1, . . . , D̂L are nodal degrees of freedom andD̂L is the dimension of a set of
polynomial enrichment functions,L̂α i(xxx), of a degree less than or equal top−1. Details can be found, for
example, in [17] or Section 3.2 of [46]. SpaceXXX0

G(Ω) can also be defined using standard polynomial FEM
shape functions since cracks arenot discretized in the initial global problem.
The parameterη in (7) is a penalty parameter based on Young’s modulus and the Jacobian of elements with
a face on∂ Ωu.

Global Problem

BC from Stepk

Sk+1

Sk

Fig. 4 Illustration of the GFEMgl for crack propagation. The figure shows an edge-cracked plate under modeI loading.
The solution computed on the coarse mesh provides boundary conditions for the extracted local domainΩk

L in a
neighborhood of the crack (on element faces with green arrows). The spheres indicate seed nodes used in the definition
of the local problem domain. Further details on the definition of Ωk

L are provided in AppendixB

3.2 Enriched Coarse-Scale Problem

Global-local enrichment functions for propagating fractures are able to represent fine-scale responses on
coarse macro-scale finite element meshes and to fully account for interactions among scales. The formu-
lation of the coarse-scale problems enriched with these functions is provided in this section, while their
definition and computation are presented in Section3.3. The coarse-scale solution spaces used in this sec-
tion are defined in Section3.4.
Let uuuk

G denote a generalized FEM approximation of the global problem illustrated in Figure3. For simplicity
of notation, we assume that a single stress-free crack surfaceSk with front Γk exists inΩ at crack evolution
stepk, k ≥ 1. The initial crack surface configuration corresponds toS1, andk = 0 refers to the initial
(uncracked) global problem (see also Figure7). The approximationuuuk

G is the solution of the following
problem:
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Find uuuk
G ∈ XXXk

G(Ω)⊂ H1(Ω), such that∀ vvvk
G ∈ XXXk

G(Ω)

∫

Ω
σσσ(uuuk

G) : εεε(vvvk
G)dxxx+η

∫

∂Ωu
uuuk

G · vvvk
Gdsss

=
∫

∂Ωσ
t̄tt · vvvk

Gdsss+η
∫

∂Ωu
ūuu · vvvk

Gdsss
(9)

whereXXXk
G(Ω) ⊂ H1(Ω) is the generalized FEM space at crack propagation stepk, k ≥ 1 (cf. Section3.4).

The enrichment functions inXXXk
G(Ω) are defined in cloud spacesIα and have to be computed; we describe

a fine-scale problem in the next subsection to achieve this goal. The mesh used to solve Problem (9) is
typically acoarse quasi-uniform mesh,regardless of the presence of cracks in the domain. Figures4 and5
illustrate one such discretization. Problem (9) leads to a system of linear equations for the unknown degrees
of freedom ofuuuk

G. The only difference between problem statements (7) and (9) is the GFEM spaces. In the
first case, cracks are not discretized, while in second case,they are discretized using global-local enrichment
functions built on-the-fly as described below.

3.3 Fine-Scale Problems

The GFEMgl for propagating fractures involves the solution of a local boundary value problem defined
in a neighborhoodΩk

L of the crack surfaceSk+1 and subjected to boundary conditions provided by the
coarse-scale GFEM solutionuuuk

G, k ≥ 0. Here,S1 represents the initial crack configuration before starting
its propagation. This is illustrated in Figures3 and 4. Details on the definition ofΩk

L are provided in
AppendixB. Let uuuk

G denote the global approximation computed using (7) for k = 0 or (9) for k ≥ 1. The
following fine-scale problem onΩk

L ⊂ Ω is solved to find global-local enrichment functions for the GFEM
spaceXXX k+1

G (Ω):
Find uuuk

L ∈ XXX k
L(Ωk

L)⊂ H1(Ωk
L), such that∀ vvvk

L ∈ XXXk
L(Ωk

L)

∫

Ωk
L

σσσ(uuuk
L) : εεε(vvvk

L)dxxx+η
∫

∂Ωk
L\(∂Ωk

L∩∂Ωσ )
uuuk

L · vvvk
Lds

=
∫

∂Ωk
L∩∂Ωσ

t̄tt · vvvk
Lds+η

∫

∂Ωk
L∩∂Ωu

ūuu · vvvk
Lds

+η
∫

∂Ωk
L\(∂Ωk

L∩∂Ω)
uuuk

G · vvvk
Lds

(10)

whereXXX k
L(Ωk

L) is a discretization ofH1(Ωk
L) using the GFEM shape functions presented in [46, 47]. The

mesh used inΩk
L doesnot fit the crack surface. Furthermore, since this mesh is usually much finer than

the one used in the global problem, they donot match at∂ Ωk
L. The local mesh is created by bisecting

elements copied from the global mesh [13]. The integrals overΩk
L and∂ Ωk

L are performed using the fine
scale mesh as described in Section 3.5 of [30]. The computation of the global solutionuuuk

G at an integration
point on∂ Ωk

L \ (∂ Ωk
L ∩ ∂ Ω) basically requires the computation of the corresponding master coordinates at

the global element face on∂ Ωk
L \ (∂ Ωk

L∩∂ Ω) and the evaluation ofuuuk
G at these coordinates. Figure5 shows

anhp-GFEM discretization on a local domainΩk
L containing crack surfaceSk+1.

A key aspect of Problem (10) is the use of the coarse-scale solution at simulation stepk, uuuk
G, as boundary

condition on∂ Ωk
L \ (∂ Ωk

L ∩∂ Ω). Exact boundary conditions are prescribed elsewhere on∂ Ωk
L. Other types

of boundary conditions such as spring or traction boundary conditions can also be applied on∂ Ωk
L \ (∂ Ωk

L ∩
∂ Ω) [30].
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Global Problem

Sk+1

Enrichment for Stepk +1

Sk+1

Fig. 5 Hierarchical enrichment of the coarse global mesh with local solutions computed with thehp-GFEM on the
local domain. Only three degrees of freedom are added to these global nodes (shown with brown spheres in the
figure). These enrichments are used to approximate the global solution in the neighborhood of the crack

3.4 Enriched Global Spaces

The solution,uuuk
L, of the fine-scale problem defined in (10) is used to build generalized FEM shape functions

defined on the coarse-scale (global) mesh:

φφφ k+1
α (xxx) := ϕα(xxx)uuu

k
L(xxx) (11)

where the partition of unity function,ϕα , is provided by a global,coarse, FE mesh anduuuk
L has the role

of an enrichment or basis function for the cloud spaceχα(ωα). Hereafter,uuuk
L is denoted as aglobal-local

enrichment function and the function defined above is denoted as aglobal-local GFEM shape function. The
global GFEM space containing shape functionsφφφ k+1

α is denoted asXXXk+1
G (Ω) and is given by

XXXk+1
G (Ω) =







uuuhp =
N

∑
α=1

ϕα(xxx)ûuu
hp
α (xxx)

︸ ︷︷ ︸

coarse-scale approx.

+ ∑
β∈I

k+1
gl

ϕβ (xxx)uuu
gl(k)
β (xxx)

︸ ︷︷ ︸

fine-scale approx.







(12)

= XXX0
G(Ω)

⋃ {

ϕβ (xxx)uuu
gl(k)
β (xxx), β ∈ I

k+1
gl

}

whereI
k+1

gl is the index set of nodes (i.e., clouds) at crack growth stepk+ 1 enriched with global-local

enrichment functionsuuuk
L, ûuuhp

α is defined in (8) and

uuugl(k)
β =






uβ1uk
L1(xxx)

uβ2uk
L2(xxx)

uβ3uk
L3(xxx)




 (13)
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Global Problem

Solve Local Problem

Enrichment for Stepk +1

BC from Stepk

Fig. 6 Illustration of the GFEMgl for crack propagation. In the figure, the local domain is selected on-the-fly such that
it contains the entire crack surface

whereuβ j, β ∈ I
k+1

gl , j = 1,2,3, are degrees of freedom anduk
L j(xxx), j = 1,2,3, are global Cartesian com-

ponents of the displacement vectoruuuk
L. SpaceXXX k+1

G (Ω) is the spaceXXX0
G(Ω) augmented with global-local

enrichment functions computed at crack simulation stepk. Figure5 illustrates the enrichment of a global
mesh with the solution of a local problem. Global nodes in theindex setI k+1

gl are shown in the figure with
brown spheres.
The coarse-scale problem defined in (9) is solved foruuuk+1

G ∈ XXXk+1
G (Ω) and the procedure is repeated at each

crack evolution step. The GFEMgl for crack propagation is illustrated in Figures3 and6. The global solution
provides boundary conditions for fine-scale problems, while their solutions are used as enrichment functions
for the coarse-scale problem through the partition of unityframework of the GFEM.
The numerical integration of the GFEM shape functions defined in (11) cannot be performed by the coarse
scale mesh. They can, however, be integrated efficiently andaccurately using the elements from the local
mesh used for the computation ofuuuk

L since they are nested in the coarse scale elements [13, 30]. This
procedure is analogous to the concept of integration elements broadly used for the numerical integration in
the extended FEM [5, 37]. The elements used in the numerical integration of the weakform are also useful
for the visualization of results of the enriched global problem. One example is shown in Figure14.

3.5 Crack Growth Algorithm with the GFEM gl

This section presents an algorithm for the simulation of fatigue crack growth using the GFEMgl presented
above. The algorithm consists of an incremental process in which at each step, a small crack advance is
prescribed based on the solution of a linear elastic fracture mechanics problem.
Let the crack surface at crack evolution stepk be denoted bySk. The initial crack surface configuration
corresponds toS1. The GFEMgl algorithm for crack growth consists of the following steps:

1. Solve the initial coarse-scale problem without cracks: Computeuuu0
G using (7). Keep the factorization of
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the global stiffness matrix
(
KKK0)−1

so it can be re-used in the solution of the enriched global problems
as described in AppendixC.

2. For each crack simulation stepk, k = 0, . . . ,Nsteps, do:

(a) UsingSk+1, select the global elements that define the local problem domain, Ωk
L, at this step.

Details on this procedure are presented in AppendixB.

(b) Compute the local problem solution,uuuk
L, using (10) with crack surfaceSk+1 and with boundary

conditions on∂ Ωk
L \ (∂ Ωk

L ∩∂ Ω) provided by the global solutionuuuk
G.

(c) Compute the solution of the enriched global problemuuuk+1
G ∈ XXXk+1

G (Ω) using (9) with crack
surfaceSk+1. The global solution spaceXXX k+1

G (Ω) is defined in (12) and uses the local solution
uuuk

L as enrichment function (cf. Section3.4). The algorithm presented in AppendixC is used in
the solution of the linear system of equations associated with Problem (9).

(d) If k > 0 , compute crack surface configurationSk+2 using global solutionuuuk+1
G (cf. AppendixA

for details). The crack surface is not updated at crack stepk = 0 since the boundary conditions
for the local problem defined onΩ0

L are provided by the initial (uncracked) global solutionuuu0
G.

(e) If k = Nsteps, stop; otherwise, setk = k+1 and go to step (2a).

Figure6 illustrates the interactions between coarse and fine scaleson an edge-crack panel and Figure7
illustrates the first two steps of the above algorithm. A key feature of the methodology is the use of the
global solution at simulation stepk, uuuk

G, to build the solution space for the next simulation step, i.e., the
GFEMgl spaceXXXk+1

G (Ω) containing the GFEMgl solutionuuuk+1
G . The coarse-scale solutionuuuk

G, is used as
the boundary condition on∂ Ωk

L\(∂ Ωk
L ∩∂ Ω) for the fine-scale problem (10) instead of the unknown exact

solution at stepk+1. As a result, the error ofuuuk
L depends not only on the discretization used in the local

domainΩL, but also on how much the solution of the problem changes at∂ Ωk
L\(∂ Ωk

L∩∂ ΩG) between crack
steps. Since crack increments must be small for accurate results, it is reasonable to assume that the change
in the solution between crack steps is also small. The examples presented in Section4 show that the effect of
inexact boundary conditions on∂ Ωk

L\(∂ Ωk
L∩∂ ΩG) on the accuracy of the enriched global problem is small.

Detailed error analysis of the GFEMgl for crack growth will be presented elsewhere. Furthermore,this
effect can be controlled using the iterative improvement ofboundary conditions proposed in [41, 42]. The
effect of the inexact boundary conditions on the accuracy ofuuuk

L can be addressed by repeating the procedure
illustrated in Figure6 at each crack simulation step:

1. Use the solution of the global problemuuuk+1
G ∈ XXXk+1

G (Ω) as boundary conditions for the fine-scale
problem (10) defined onΩk

L.

2. Update global shape functions (11) and global solution spaceXXXk+1
G (Ω).

3. Solve the enriched coarse-scale problem (9) for uuuk+1
G ∈ XXXk+1

G (Ω).

4. Go to step 1 if the accuracy ofuuuk+1
G is not acceptable; proceed to the next crack step otherwise.

In this paper, this iterative improvement is performed onlyonce at the first crack simulation step and only
used at step (2d) of the algorithm described above. This strategy is illustrated using a dashed arrow in Figure
7. Hereafter, this strategy is denoted asImprovement at Starting Step (ISS). Its effect on the accuracy of
global quantities like strain energy is analyzed in Section4.1. Another multi-scale method for 3-D crack
growth based on a multi-grid iterative solver is presented in [50].
Another key feature of the methodology presented above is that the coarse-scale mesh is kept unchanged
throughout the simulation. The enriched coarse-scale problem at any crack simulation step is solved on the
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Fig. 7 Illustrations of the first two steps of the GFEMgl for crack growth and the Improvement at Starting Step (ISS)
indicated by a dashed arrow in the figure

same uncracked mesh used in the computation ofuuu0
G. Fine-scale features are hierarchically added to the

global-solution space through global-local enrichment functions. These functions allow the simulation of
crack surfaces with arbitrary shape using fairly coarse global meshes. The numerical example presented in
Section4.3also demonstrates that the GFEMgl is more computationally efficient than thehp-GFEM, which
is among the most efficient methods currently available in the literature.

3.6 Alternative Strategy: Local Domain with Crack Front Onl y

In the GFEMgl described above and illustrated in Figure6, the local domain is selected on-the-fly at each
crack propagation step such that it contains the entire crack surface. Furthermore, the discontinuities and
singularities of the global solution along the crack surface and crack front are approximated exclusively by
the global-local enrichment functions. This is reflected inthe definition of the enriched global spaces given
in (12). There are several possible variations to this methodology. One of them is illustrated in Figure8.
In this case, the local domainΩk

L contains the entire crack front but not the entire crack surface. Clouds
fully cut by the crack surface but not in the set enriched withlocal solutionuuuk

L, i.e., not in the setI k+1
gl , are

enriched instead with the analytically defined discontinuous functions [46]. Let I
k+1
H

denote the index set
of clouds enriched with these functions at crack growth stepk+1. The enriched global space at crack step
k+1 is then given by

XXXk+1
G (Ω) =






uuuhp =

N

∑
α=1

ϕα(xxx)ûuu
hp
α (xxx)+ ∑

β∈I
k+1

gl

ϕβ (xxx)uuu
gl(k)
β (xxx)+ ∑

γ∈I
k+1
H

ϕγ(xxx)H ũuuhp
γ (xxx)






. (14)

The performances of this and the previous versions of the GFEMgl are investigated in Section4.

4 Numerical Examples

This section presents three numerical examples to verify and measure the computational performance of
the GFEMgl for crack growth. The problems are also solved with thehp-GFEM for fatigue crack growth
presented in [48]. Since thehp-GFEM methodology is extensively verified in that paper, it is adopted as a
reference. In all examples, both methods use the same polynomial enrichment (p = 3) and localized crack
front refinementLe/ao,≃ 10−2, whereao is the initial crack size andLe is the tetrahedral element size. In
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Enrichment for Stepk +1

BC from Stepk

Fig. 8 Illustration of the GFEMgl with local domains defined around the crack front only. The discontinuous global
solution away from the crack front is approximated with analytically defined high-order discontinuous enrichment
functions. Global nodes enriched with these functions are marked with yellow cubes and belong to the setI

k+1
H

.
Brown spheres in the global domain belong to the setI

k+1
gl and are enriched with global-local enrichment functions

the case of the GFEMgl, mesh refinement is applied in local problems only. Global problems use coarse
quasi-uniform meshes.

4.1 Fatigue Crack Growth in an Edge-Cracked Plate

As a proof of concept, this section presents a simple exampleof fatigue crack growth simulation using
the proposed GFEMgl. Consider the edge-cracked plate under cyclic uniaxial tension in the y-direction
illustrated in Figure9. The dimensions of the model are 2h/t = b/t = 4 andao/t = 2.1. Young’s modulus
and Poisson’s ratio areE = 2.0×105MPa andν = 0.30, respectively. The parameters for the cyclic load
and Paris-Erdogan’s equation (18) areσmax = 1MPa,R = 0 andC = 1.5463×10−11MPa−2.1m−0.05/cycle
andm = 2.1, respectively. This problem is solved using the algorithmdescribed in Section3.5. Reference
values for strain energy and stress intensity factors are provided by thehp-GFEM for crack growth presented
in [48]. The plane strain modeI stress intensity factor (SIF) is also used as a reference. Inthe case of a finite
edge-cracked plate,KI is given by [59]

KI = σ
√

πaF
(a

b

)

(15)

where

F
(a

b

)

=

√

2b
πa

tan
(πa

2b

)0.752+2.02
a
b
+0.37

[

1− sin
(πa

2b

)]3

cos
(πa

2b

) . (16)

The plane strain SIF is compared with GFEMgl andhp-GFEM values extracted att/2. A crack front incre-
ment,∆a, is prescribed at each crack step. Furthermore, the crack front is kept straight as shown in Figure9
in order to reduce 3-D effects.
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Fig. 9 Edge-cracked panel subjected to cyclic load. Brown spheresrepresent nodes with the global-local enrichment
functions

The performance of GFEMgl strategies illustrated in Figures6 and8 are compared in this example. They are
hereafter denoted as Strategies 1 and 2, respectively. In the case of Strategy 1, the local problem domains
are defined by global elements that intersect the crack surface and their neighbors while Strategy 2 defines
local problem domains using global elements that intersectthe crack front and their neighbors. Strategy 1 is
used with and without the Improvement at Starting Step (ISS)described in Section3.5. Strategy 2 doesnot
use the Improvement at Starting Step.
Figures10(a)and11(a)show the evolution of the strain energy and SIF for thehp-GFEM and the GFEMgl

with respect to crack growth length, respectively. One can observe that both methods provide virtually the
same values of strain energy and SIF at all crack growth steps. Figure10(b) plots the relative difference
in strain energy of GFEMgl solutions with respect tohp-GFEM solutions. In the case of the GFEMgl with
Strategy 2, the relative difference is always below 1.5%, while in the case of Strategy 1 with ISS, the
relative difference is below 0.5%. Strategy 1 without ISS has about the same error as Strategy 1 with ISS
except at the first crack propagation step. This shows that the Improvement at the Starting Step described in
Section3.5 may be important when the crack is discretized using solution space (12). Figure11(b)shows
the relative difference of SIF computed with the GFEMgl and thehp-GFEM with respect to the plane strain
solution. All methods show a similar behavior. Strategy 1 without ISS, again, has a large relative difference
at the first crack propagation step and about the same behavior as Strategy 1 with ISS at all other steps.
In this example, crack growth is governed by modeI only, and thus the error of Strategy 1 without the
improvement of boundary conditions at the first crack step does not affect subsequent steps. However, in a
mixed-mode situation, incorrect SIF values at the first crack propagation step may give an incorrect crack
growth direction, leading to discrepancies in subsequent steps. The remaining examples in this paper are
solved using Strategy 1 with ISS.
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Fig. 10Strain energy evolution with respect to crack growth length
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Fig. 11SIF evolution with respect to crack growth length

In a GFEMgl discretization, only a few global-local enrichments are added to the global problem. For
instance, let us consider the first crack propagation step ofthe GFEMgl simulation with Strategies 1 and 2.
At this step, the global problem with Strategy 2 has a total of18636 degrees of freedom (dofs). From this
total, 17280 dofs correspond to the initial global discretization without the crack, 1320 dofs correspond to
discontinuous enrichment functions, and only 36 dofs correspond to global-local enrichment functions (cf.
solution space defined in (14)).
In the case of Strategy 1, the global problem at the first crackpropagation step has a total of 17448 dofs:
17280 dofs correspond to continuous shape functions and only 168 dofs correspond to global-local enrich-
ment functions (cf. solution space defined in (12)). No analytically-defined discontinuous enrichments are
used in this case since the crack surface is contained in the local domain and the solution discontinuity is
approximated by global-local enrichments only. This showsthat Strategy 1 is clearly more efficient than
Strategy 2.
Table1 lists the range of problem sizes solved with GFEMgl andhp-GFEM. Both global and local problem
sizes are listed in the case of GFEMgl. Problem sizes are not affected by the use of the Improvementat
Starting Step (ISS). One can observe that the size of global problems solved in the case of the GFEMgl with
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either Strategy 1 or 2 are much smaller than in the case of thehp-GFEM. Since the accuracy of both methods
is about the same, one can expect that crack growth simulations with the GFEMgl are more computationally
efficient than with thehp-GFEM. Table1 also shows that the local problems in the GFEMgl with Strategy 2
are smaller than in the case of Strategy 1. However, Strategy1 leads to enriched global problems of much
smaller size than in the case of Strategy 2. Thus, the algorithm presented in AppendixC is more suitable for
Strategy 1 than Strategy 2. A more elaborated cost analysis is performed in Section4.3.

Table 1Range of problem sizes solved with GFEMgl andhp-GFEM

Method Min. number of dofs Max. number of dofs
hp-GFEM 31272 39042
GFEMgl with Strategy 1 (global prob.) 17448 17544
GFEMgl with Strategy 1 (local prob.) 20040 25272
GFEMgl with Strategy 2 (global prob.) 18636 19836
GFEMgl with Strategy 2 (local prob.) 15324 23988

4.2 GFEMgl Performance in a Mixed-Mode Crack Growth Simulation

This example considers crack growth of a single edge notched(SEN) specimen in a three point bend-
ing configuration. Figure12 illustrates the global mesh, boundary conditions and the dimensions of the
model. The crack is located at the middle of the span and is inclined by an angleβ = 45◦ with re-
spect to the thickness of the beam, which causes a mixed-modebehavior. The geometrical and mate-
rial parameters of the SEN specimen are as follows: total length, Lt = 260mm, distance between sup-
ports, Ls = 240mm, thickness,t = 10mm, width,h = 60mm, and ratio of initial crack length to thick-
ness,ao/h = 1/3, Young’s modulusE = 2.1× 105N/mm2 and Poisson’s ratioν = 0.3. The model is
subjected to a cyclic load with constant amplitude applied at the middle of the span. The Paris’ equation
parameters areC = 1.546×10−12(N/mm2)−2.1mm−0.05/cycle andm = 2.1. The cyclic load parameters are
σmax = 100N/mm2 andR = 0. The crack growth simulation is performed with 25 incremental crack steps
of variable magnitude. The maximum increment along the crack front is taken as∆amax = 0.05ao for the
first 4 steps of the simulations and∆amax = 0.075ao for the remainder of the simulations. Details on the
computation of crack front increments based on∆amax and Paris’ law are provided in, e.g., Section 4.2 of
[48].
The inclination of the crack surface with respect to thez-axis produces a mixed-mode behavior. In this case,
the crack surface tends to rotate such that the angleβ shown in Figure12 becomes zero while keeping the
middle to the crack front aligned with the center of the applied load area. The main purpose of this example
is to verify the performance of the GFEMgl for crack growth simulations under mixed-mode conditions.
The SEN model is solved with both the GFEMgl and thehp-GFEM presented in [48]. Hp-GFEM results
are used as a reference. Equivalent discretizations are used in the GFEMgl and thehp-GFEM. Hp-GFEM
discretizations use polynomial orderp= 3 and localized refinement with 3.91×10−3 ≤ Le/ao ≤ 1.19×10−2

along the crack front, whereLe is the tetrahedral element size. The localized mesh refinement follows the
evolution of the crack front using the refinement and unrefinement technique presented in [48]. Figure13(a)
illustrates the crack surface evolution and thehp-GFEM mesh used at various simulation steps. In the case of
the GFEMgl, the local problem at each crack step is solved with anhp-GFEM discretization with polynomial
orderp = 3 and localized refinement with 3.91×10−3 ≤ Le/ao ≤ 1.20×10−2 along the crack front. Figure
13(b) illustrates the crack surface evolution and the global meshfor the crack growth simulation with the
GFEMgl. It is clear from the figure that thethe global mesh remains unchanged throughout the entire crack
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Fig. 12Single edge notched (SEN) specimen in a three point bending configuration: domain dimensions, crack surface
description, and global mesh used with the GFEMgl

growth simulation.
Figure14illustrates thehp-GFEM and GFEMgl solutions at crack growth step 25. In both cases, the solution
is plotted in the deformed configuration with an amplification factor. The elements used in the numerical
integration of discontinuous functions inhp-GFEM and GFEMgl analyses are used as graphical elements to
visualize the discontinuity along the crack surface. The crack surface can be quite complex inside a single
computational element, especially in the case of the GFEMgl where the global mesh is coarse. Such a feature
is allowed by the decoupling between crack surface representation and computational mesh together with
the procedure for non-planar cutting of computational elements presented in [46].
Figure15(a)illustrates the variation of the strain energy with respectto the accumulated maximum crack
increment throughout the simulation. One can observe that the strain energies of the solutions computed with
GFEMgl andhp-GFEM show very good agreement. Figures15(b), 15(c), 15(d), 15(e), and15(f) show the
variation of stress intensity factors throughout the simulation at the first, second, middle, second to last and
last vertices along the crack front, respectively. The orientation of these vertices is given by the parametric
coordinateζ illustrated in Figure12. These vertices are used in the triangularization of the crack surface
[46]. The results show that the SIFs computed with GFEMgl are in good agreement with the corresponding
hp-GFEM values. The figures also show that both methods can capture very well the transition from a
mixed-mode problem at the start of the simulation to a mode-I problem as the crack surface grows and
twists around they-axis.
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Fig. 13Crack surface evolution and mesh for various crack steps inhp-GFEM and GFEMgl simulations
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(a) hp-GFEM solution

(b) GFEMgl solution

Fig. 14hp-GFEM and GFEMgl solutions and meshes used in the numerical integration of the weak form shown in the
deformed configuration at crack growth step 25
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(b) SIFs at first crack front vertex
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(c) SIFs at second crack front vertex
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(d) SIFs at middle crack front vertex
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(e) SIFs at second to last crack front vertex
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(f) SIFs at last crack front vertex

Fig. 15 Strain energy evolution with respect to crack growth lengthand stress intensity factors (SIFs) evolution with
respect to crack growth step
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4.3 Computational Cost Analysis of Crack Growth in a 3-D Bracket

In this section, a three-dimensional bracket model with a half penny-shaped crack is considered. Due to
the large number of nodes and elements used in the discretization and the complexity of the geometry, this
problem is considerably more challenging for available computational methods than the previous ones. The
model illustrated in Figure16 is subjected to a cyclic load withR = 0. The load is applied at the horizontal
opening and the model is fixed at the vertical openings, as indicated in Figure16. Figure16 also illustrates
the location and geometry of the initial half penny-shaped crack surface. The radius of the initial crack is
ao = 8mm. Young’s modulus and Poisson’s ratio of the material areE = 105MPa andν = 0.33, respectively.
C = 1.425×10−11(N/mm2)−2.5mm−0.25/cycle andm = 2.5 are the parameters of the Paris’ equation used
in the fatigue model. The simulation has a total ofn = 40 steps, and the maximum values for the crack
growth increments used are∆amax = 0.1ao and∆amax = 0.05ao for the initial four steps and the remainder
of the simulation, respectively.

XZ

Y

ao

3-D bracket

cyclic load
σ(t)

crack surface

ζ

fixed

fixed

crack location

Fig. 16Three-dimensional bracket model with a half penny-shaped crack

The main goal of this example is to compare the computationalperformances of the GFEMgl and thehp-
GFEM when solving large 3-D problems. As in the previous examples, thehp-GFEM solution is used as a
reference. Figure17 illustrates thehp-GFEM and GFEMgl discretizations at crack growth step 20.
In the hp-GFEM for fatigue crack growth, as in the standard FEM, a linear system of equations is solved
from scratch at each crack growth step. This results in a highcomputational cost when solving problems
with an industrial level of complexity. In contrast, in the GFEMgl, the solution vector of the initial global
problem and the factorization of the initial global stiffness matrix are reused at each crack growth step.
This feature of the GFEMgl leads, as demonstrated below, to crack growth simulations with much reduced
computational costs.
In this example, the GFEMgl strategy shown in Figure6 together with the Improvement at Starting Step
(ISS) discussed in Section3.5 are used. The local problem domain is created using global elements that
intersect the crack surface and their neighbors. As the crack surface evolves, an automatic procedure selects
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and updates the global elements used in the definition of the local problem domain. Once the local problem
domain is defined, the local solution is computed using thehp-GFEM with polynomial orderp = 3 and
localized crack front refinement in the range 1.95×10−2 ≤ Le/a ≤ 1.87×10−1. Figure18 illustrates the
local problem domains and their solutions at steps 0, 8, 13, 23, 32, and 38. As in the previous examples, the
polynomial order and level of refinement used inhp-GFEM discretizations are the same as those adopted in
the local problems of the GFEMgl. Figure19 shows thehp-GFEM solutions at crack growth steps 0, 8, 13,
23, 32, and 38.
The accumulated computational cost of the GFEMgl andhp-GFEM at each crack growth step is presented
in Figure20. In the hp-GFEM, the computational cost at each crack step consists ofthe CPU time for
the factorization of the global stiffness matrix, back and forward substitutions. The computational cost of a
crack growth step using the GFEMgl consists of the summation of the CPU time spent on (i) the factorization,
back and forward substitutions of the global stiffness matrix of the initial (uncracked) global problem; (ii)
factorization, back and forward substitutions of the localstiffness matrix; (iii) computation of the solution of
the enriched global problem using the algorithm described in AppendixC; and (iv) Improvement at Starting
Step (ISS) described in Section3.5. In both methods, the factorizations are performed using a parallel sparse
solver on a computer with eight cores. The results show that the GFEMgl for crack growth uses less than
half the CPU time required by thehp-GFEM.
Tables2 and3 list the CPU time and the accumulated computational cost at some representative steps of
the crack growth simulation using thehp-GFEM and GFEMgl, respectively. They also list the number of
dofs used by each method. The results show that the size of theglobal problem in the GFEMgl does not
depend on the number of dofs used in the local problem. In the GFEMgl, only a small number of dofs are

GFEMgl discretization

hp-GFEM discretization

Fig. 17Crack discretization withhp-GFEM and GFEMgl at crack growth step 20. Yellow cubes, green diamonds, and
brown spheres indicate high-order discontinuous, singular, and global-local enrichment functions, respectively. The
first two types of enrichments are used in thehp-GFEM while the last one is used in the GFEMgl
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Fig. 18 Local problem domains and solutions at various crack growthsteps. The local domains are automatically
selected such that they contain the entire crack surface
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Fig. 19hp-GFEM solutions at various crack growth steps
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Fig. 20Accumulated computational costvs. crack growth length for entire simulation

added to the enriched global problem, e.g., 27, 57, and 84 at crack steps 0, 20, and 35, respectively. In
addition, from Table3, one can observe that the minimum and maximum numbers of global nodes enriched
with local solutions are 9 and 28, respectively. In contrast, the localized mesh refinement required by the
hp-GFEM increases the size of the global problem substantially as the crack propagates. Furthermore, the
cost to compute global-local enrichments and to solve the enriched global problem in the GFEMgl using the
algorithm of AppendixC corresponds to between 30% and 48% of the CPU time spent withhp-GFEM at
the same crack step. As a result, the total CPU time spent in the crack growth simulation with the GFEMgl

is much smaller than with thehp-GFEM.

Table 2 CPU time spent on the factorization of the stiffness matrix of selected crack steps using thehp-GFEM

Accumulated
Step Number of degrees of freedom CPU time(s) Comp. Cost(s)

0 186666 139.2 139.2
5 191388 146.3 852.2

10 204036 171.3 1661.4
15 209892 171.2 2517.4
20 223644 183.4 3401.0
25 230892 193.1 4331.4
30 234282 212.0 5382.5
35 253050 234.7 6500.0
39 255618 243.0 7452.5

Figures21(a), 21(b), and21(c)show the stress intensity factors (SIFs) along the crack front at crack propa-
gation steps 0, 10, and 20, respectively, forhp-GFEM and GFEMgl. The SIFs computed with the GFEMgl
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Table 3CPU time spent on the factorization of the initial and local problems and on the solution of the enriched global
problem of the GFEMgl

Number of dofs CPU time(s) Accumulated
Step Initial Local Enriched Initial Local Enriched Comp. Cost(s)

0 66456 115497 33.7 8.0 205.5
5 72000 115515 40.4 13.8 451.4

10 84552 115521 52.1 15.3 771.4
15 88680 115527 51.9 16.7 1104.7
20 115470 95532 115527 77.3 59.9 16.7 1472.5
25 112536 115530 73.4 18.2 1885.0
30 115374 115551 74.3 23.8 2363.9
35 124992 115554 82.2 25.1 2916.5
39 134646 115554 91.9 25.2 3379.1

show good agreement with the reference values extracted from thehp-GFEM solution. Figure21(d)shows
the variation of the strain energy of the quasi-static solution as a function of crack growth length. Once
more, GFEMgl andhp-GFEM solutions show good agreement.
Figures22(a)and22(b)illustrate the crack surface evolution computed with thehp-GFEM and the GFEMgl,
respectively. The crack surfaces are presented at steps 5, 15, 25, and 35. One can observe that both methods
lead to nearly identical crack surface predictions. Both methods capture the three-dimensional mixed-mode
behavior of the solution and provide non-planar crack surface predictions.

5 Summary and Conclusions

This paper presents a GFEM with enrichment functions built on-the-fly through a global-local analysis.
The methodology is applied to high-cycle fatigue crack growth in three-dimensional bodies. Boundary
conditions for the fine-scale problem containing the crack surface at a propagation step are provided by the
coarse-scale solution computed at the previous step, and thus they are dynamically updated as the crack
grows. This is, to our knowledge, a unique methodology to build approximation spaces for this class of
problems. The fine-scale solutions are embedded in the coarse-scale solution spaces using the partition of
unity method [4, 3, 34, 14, 15, 16].
The proposed global-local enrichments add only three degrees of freedom to nodes of the coarse-scale
discretization. In the example solved in Section4.3, the uncracked coarse-scale discretization has 115470
dofs. The global-local enrichments used to model a complex 3-D crack surface adds at most 84 dofs to the
problem. In contrast, if available methods like the FEM withremeshing are used, the discretization of 3-D
crack surfaces requires a large number of degrees of freedom(cf. Table2).
The coarse-scale mesh used in the GFEMgl need not model the crack surface explicitly. Instead, the cracks
are modeled through global-local enrichment functions – the solution of fine-scale problems computed with
the hp-GFEM presented in [46, 47]. As a result,the coarse-scale mesh remains unchanged during the
simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of
the factorization of the global stiffness matrix during a crack growth simulation. An algorithm exploring
this feature of the method is presented in AppendixC. The numerical example presented in Section4.3
shows that the computational cost to solve the problem at each crack growth step is much smaller than in
available methods. The computational cost of the GFEMgl can be further reduced. It is clear from Table3
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(b) SIFs along crack front for step 10
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(c) SIFs along crack front for step 20
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(d) Strain energy with respect to the crack growth length

Fig. 21Stress intensity factors (SIFs) at various steps and strainenergy variation throughout the simulation

that the cost to solve the coarse-scale problem in the GFEMgl is dominated by the cost of the local problem
solution. In this paper, a single local problem is defined at each crack propagation step. However, a local
problem can be defined for each node of the coarse-scale mesh whose partition of unity support intersects
the crack surface. These local problems can be efficiently solved in parallel, sinceno communication among
processors solving different local problems is required [31]. This leads to very scalable computations even
on shared memory machines [31], which is a commodity hardware nowadays.
The computational efficiency of the GFEMgl does not come at the expense of its accuracy – the computa-
tional accuracy of the GFEMgl is comparable to thehp-GFEM [48]. This is demonstrated in Section4 where
3-D mixed-mode problems with complex crack surfaces are solved. This high accuracy is delivered using
global meshes with elements that are orders of magnitude larger than those required by, e.g., the standard
FEM. As a result, the crack surface can be quite complex inside a single finite element in the global mesh.
Such a feature is allowed by decoupling the crack surface representation from the computational mesh [46].
In summary, this paper demonstrates that the GFEMgl is a fast and reliable alternative for the simulation of
mixed-mode crack growth problems in complex 3-D domains.

Acknowledgments: The support from the U.S. Air Force Office of Scientific Research under contract
number FA9550-09-1-0401 and the U.S. Air Force Research Laboratory Air Vehicles Directorate under
contract number USAF-0060-50-0001 is gratefully acknowledged.
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(a) Crack surface evolution computed withhp-GFEM

step 5 step 15 step 25 step 35

(b) Crack surface evolution computed with GFEMgl

Fig. 22Crack surface at various propagation steps

A Update of Crack Surface

In step (2d) of the algorithm presented in Section3.5, the crack surface is updated using the solution of the
enriched global problemuuuk+1

G . At each crack propagation step, the magnitude and direction of the crack
front advance are computed as described below. New positionvectors of crack front vertices are computed
and the Face Offsetting Method (FOM) [28] is used to avoid self-intersections of non-convex crack fronts.
This is the same approach presented in [48] and the reader is referred to Section 2.2 of that paper for further
details.

Crack growth direction - Schöllmann’s criterion In 3-D mixed-mode crack growth problems, the crack
front deflection at each crack step is represented by a kinking angle and a twisting angle as illustrated in
Figure23. In this work, Scḧollmann’s criterion [53] is adopted. This criterion is equivalent to the criterion
of maximum tangential stress proposed by Erdogan and Sih [20] when the modeIII stress intensity factor,
KIII , is zero.
The crack kinking angleθ0 is a non-linear function ofKI , KII , andKIII , the stress intensity factors for modes
I, II, andIII, respectively. The reader is referred to [53] or to Section 4.1 of [48] for further details.
Once the deflection angleθ0 is determined, the twisting angleψ0 is defined as in [53] by

ψ0 =
1
2

arctan

[
2τθz(θ0)

σθ (θ0)−σz(θ0)

]

(17)

whereσθ , τθz, andσz are components of the stress tensor in a cylindrical coordinate system defined at the
crack front.

Magnitude of crack front advance - Paris-Erdogan equation In this paper, Paris-Erdogan equation [44]

da
dN

=C (∆K)m (18)
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Crack Surface

ψ0
θ0

Fig. 23Crack kinking and twisting anglesθ0 andψ0 for three-dimensional mixed-mode crack problems [52]

is used to predict the crack growth rate. ParametersC and m are regarded as material constants, while
∆K = (1−R)Kmax is the stress intensity factor range under cyclic loading, whereR is the ratio of minimum
to maximum loads applied in a cycle andKmax is the stress intensity factor at the maximum load. In Equation
(18), ∆K takes into account modeI only. Mixed-mode effects are taken into account by using instead the
cyclic comparative stress intensity factor,∆Kν , given by [52]

∆Kν =
∆KI

2
+

1
2

√

∆K2
I +4(α1∆KII)2+4(α2∆KIII)2 (19)

whereα1 = KIc/KIIc andα2 = KIc/KIIIc are the ratios of the fracture toughness of modeI to modeII and
of modeI to modeIII, respectively [53, 52]. In the examples presented in this paper, we adoptα1 = 1.155
andα2 = 1.0 as proposed in [53, 52].
The reader is referred to Section 4.2 of [48] for further details on the application of Equation (18) to compute
crack front advance and fatigue life.

B Definition of Local Domains

As illustrated in Figures6 and8, local problem domains are defined by either global clouds that intersect
the crack surface or by global clouds that intersect the crack front. Let ISk+1 denote the indices of all
clouds from the global mesh that intersect the crack surfaceSk+1. These are also calledseed nodes and are
illustrated with brown spheres in Figure6. The local domainΩk

L containing crack surfaceSk+1 (cf. Figure3
for notation) is given by

Ωk
L =

⋃

β∈ISk+1

ωβ (20)

where the cloudωβ is the union of (copy of) global elements sharing vertex nodexxxβ , β ∈ ISk+1.
This can be implemented as follows:

(i) Find all global elements that intersect crack surfaceSk+1; Mark the nodes of these elements asseed
nodes.

(ii) The local domainΩk
L is defined by the union of (copy of) global elements sharing a seed node.

Local domains containing the crack front only are defined analogously:

(i) Find all global elements that intersect the front,Γk+1, of the crack surfaceSk+1; Mark the nodes of
these elements asseed nodes.

(ii) The local domainΩk
L is defined by the union of (copy of) global elements sharing a seed node.
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This simple algorithm can be used to create local domains containing fairly complex 3-D crack surfaces (or
crack fronts only) like those shown in Figures13and22.

C Solution of Enriched Global Problem

This section presents an algorithm to efficiently solve the system of equations associated with the enriched
coarse-scale problem (9). The algorithm is an extension of the procedure presented in Section A.2 of [13] to
crack propagation problems. It explores the hierarchical nature of the global-local enrichment functions and
reuses in all crack propagation steps the solution and the factorization of the stiffness matrix associated with
the initial global problem (7). All quantities presented in this section are global; therefore, the subscript(.)G

is hereafter dropped.
The enriched global spaceXXXk

G(Ω) defined in (12) is the union of the initial global spaceXXX0
G(Ω) and global-

local GFEM shape functions. As a result, the global stiffness matrix of the initial global problem (7), KKK0,
is nested in the global matrix of the enriched global problem(9) at any crack propagation stepk. Thus, the
system of equations associated with problem (9) can be partitioned as follows:

[
KKK0 KKK0,gl(k)

KKKgl(k),0 KKKgl(k)

][
uuu0(k)

uuugl(k)

]

=

[
FFF0

FFFgl(k)

]

(21)

whereKKKgl(k) anduuugl(k) are the global stiffness matrix entries and dofs, respectively, associated with global-
local GFEM shape functions used in the definition of spaceXXXk

G(Ω). Vectoruuu0(k) has dofs associated with
GFEM shape functions from the initial global spaceXXX0

G(Ω). From the first equation in (21), it follows that

KKK0uuu0(k)+KKK0,gl(k)uuugl(k) = FFF0. (22)

Thus
uuu0(k) = uuu0−SSS0,gl(k)uuugl(k) (23)

whereuuu0 =
(
KKK0

)−1
FFF0 is the solution vector of the initial global problem and matrix SSS0,gl(k) is the solution

of
KKK0SSS0,gl(k) = KKK0,gl(k) (24)

which can be computed at a lower cost using the available factorization of the initial global stiffness matrix,
(
KKK0

)−1
.

From the second equation in (21), it follows that

KKKgl(k),0uuu0(k)+KKKgl(k)uuugl(k) = FFFgl(k) (25)

Using Equation (23) to condense out the fine-scale dofs,uuugl(k), the above reduces to

K̂KK
gl(k)

uuugl(k) = F̂FF
gl(k)

(26)

where
K̂KK

gl(k)
= KKKgl(k)−KKKgl(k),0SSS0,gl(k) (27)

and
F̂FF

gl(k)
= FFFgl(k)−KKKgl(k),0uuu0. (28)

The computation of the solution vector of the enriched global problem,

uuuk =
[

uuu0(k) uuugl(k)
]T

, (29)
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involves back and forward substitutions on the factorization of the global stiffness matrix,KKK0, some matrix
multiplications, and the solution of the system (26). This procedure leads to significant savings in computa-
tional cost when solving large problems, where dim(uuu0(k))≫ dim(uuugl(k)). Thus, the solution of the enriched
global problem at each crack growth step can be obtained in a very efficient manner. This is demonstrated
numerically in Section4.3.
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