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Abstract

This paper presents a generalized finite element method N}k crack growth simulations based
on a two-scale decomposition of the solution — a smooth eescale component and a singular fine-scale
component. The smooth component is approximated by dizatieins defined on coarse finite element
meshes. The fine-scale component is approximated by thgasobf local problems defined in neigh-
borhoods of cracks. Boundary conditions for the local peoid are provided by the available solution at
a crack growth step. The methodology enables accurate imga#l3-D propagating cracks on meshes
with elements that are orders of magnitude larger than thegeired by the FEM. The coarse-scale
mesh remains unchanged during the simulation. This, caedbivith the hierarchical nature of GFEM
shape functions, allows the recycling of the factorizatiérihe global stiffness matrix during a crack
growth simulation. Numerical examples demonstrating greximating properties of the proposed
enrichment functions and the computational performandceeomethodology are presented.

KEY WORDS: Generalized FEM; Extended FEM; Fracture; Craakngh; Fatigue; Multi-scale; Global-
local analysis.

1 Introduction

The prediction of growth rate, shape, and trajectory ofksae structural components is of great importance
in several engineering applications. Relevant exampleshar prediction of fatigue life of engine compo-
nents and structural members. Realistic crack growth sitimnls require many crack propagation steps,
several initial crack configurations, and, often, a nordinanalysis. As a result, the computing power
required to solve this class of problems using existing wadlogies can be formidable. Representative
methods for three-dimensional crack growth simulatioctuitle the standard finite element method (FEM)
with remeshing 0], the boundary element method (BEMJ4, 11], and the extende®pB, 25, 57, 1, 8, 58]

or generalized FEMI[8, 48]. These methods require the solution of the problem froratsbrat each step of

a crack growth simulation. As a result, each crack propagaiep may take several hours even on teraflop
computers§qQ].
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Champaign, 2122 Newmark Laboratory, 205 North Mathews Aeeturbana, lllinois 61801, USA. Tel.: +1-217-244-2830xFa
+1-217-265-8040. e-mail: caduarte@illinois.edu.



This paper presents a generalized FEM for crack growth sitiuls that combines the concept of global-
local enrichments introduced itn9, 13] with the hp-GFEM for 3-D propagating fractures presented4f]]
The GFEM with global-local enrichments (GFE)uses a two-scale decomposition of the solution of a
fracture mechanics problem — a smooth coarse-scale compané a singular fine-scale component. The
smooth component is approximated by a global (structuwalle$ discretization defined on a coarse finite
element mesh. The fine-scale (near crack) component is dépmated by the solution of boundary value
problems defined in neighborhoods of cracks. The partittamdy method §, 3, 34, 14, 15, 16, 12, 40] is
then used to create conforming global spaces enriched étfirie-scale problem solutions. A key point in
this class of methods is the boundary conditions used in tieesicale problems. In the GFEMpresented
here, the solution at a simulation step is used as boundangitcans for the fine-scale problems. The
solutions of these problems, in turn, are used to define GFEMisn spaces at the next simulation step. A
key idea introduced in this paper is to utilize as much asiplessmformation available at a crack simulation
step in order to reduce computational cost at the next stap.pfoposed GFEM takes advantage of the
fact that crack increments, in all crack propagation athons we are aware, must be small for accurate
predictions of crack paths in mixed-mode 3-D simulationbug, the solution away from the crack front
does not change significantly between crack propagatiqs ste

The proposed methodology can be combined with the standatiwhile enabling accurate modeling of
3-D propagating cracks on meshes with elements that aresooflenagnitude larger than those required by
the FEM. Furthermore, only a few degrees of freedom are tukizally added to the uncracked coarse-scale
discretization regardless of the number of degrees of tima@quired to solve the fine-scale problems. This
enables the factorized matrix of the global problem to bgaled during a crack growth simulation. The
numerical experiments presented in Sectioshow that the accuracy of the proposed GREfr crack
growth is comparable to thiep-GFEM presented in4g] while being significantly more computationally
efficient than available methods for this class of problems.

In this paper, we focus on crack growth problems modeled thigHinear elastic fracture mechanics theory.
However, the methodology presented here is not limiteditoapplication. Several other classes of prob-
lems, like time-dependent ones and those involving nogalitties, are solved using a multi-step algorithm.
Thus, the idea of using available information at a soluti@p 4o build approximation spaces for the next
step is also applicable to them. This is demonstrated zhfpr time-dependent problems exhibiting sharp
thermal gradients and ir2§] for problems with localized material non-linearities.i$troad applicability

of the GFEM! is in contrast with other recently proposed multi-scalelrods which rely on, e.g., analyti-
cally derived boundary conditions for fine-scale problef% 56]. The GFEM! is also related to upscaling
techniques proposed by Hou and X27]. However, the solution spaces in the GF#Mre conforming,
while some of the methods presentedaid][are not.

Early methods for the analysis of propagating fracturegas multi-scale concepts include the work of
Rashid on the arbitrary local mesh replacement metbal 4nd several works on the so-called S-method
[22, 32]. More recent methods aimed at crack growth modeling anddas multi-scale concepts include
the multigrid methods proposed i&(, 45]; the method of Guidault et al2p] based on the LATIN method
and domain decomposition concepts; the method of Pierrak ¢#19] based on the LATIN method and
augmented Lagrangian methods; the method of Ben Dhia andnthff] which combines the extended
FEM (XFEM) with the Arlequin method; the method of Gallandé&t[24] based on global model reduction.
A recent version of the s-method aimed at multi-scale failsimulations, is the reduced order s-method
(rs-method) of Fish et al.2[1, 43]. A related method aimed at modeling interactions amondipialstatic
cracks is the multiscale method of Loehnert and BelytscBEp ther related methods for two-dimensional
static cracks include the spider-XFEM] jand the reduced basis enrichment for the XFEN] jof Chahine

et al.; the method of Menk and Bordas for fracture of bi-matesystems 35]; the harmonic enrichment
functions of Mousavi et al.39 for two-dimensional branched cracks.

The outline of the paper is as follows. Secthriefly reviews the definition of approximation spaces used
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in the generalized FEM. A detailed formulation of the prag&FEM!' for 3-D crack growth is presented
in Section3. Numerical examples demonstrating the approximatinggnags of the proposed enrichment
functions and the computational performance of the metloggoare presented in Sectigh The main
conclusions are presented in Section

2 Generalized Finite Element Method: A Summary

The generalized FEMZ] 3, 17, 40, 54] is an instance of the so-called partition of unity methotd§B,
which has its origins in the works of Bakkaet al. [4, 3, 34] and Duarte and Oderif, 15, 16, 12, 40]. The
generalized FEM (GFEM) denotes a PUM with the partition dfyuprovided by Lagrangian finite element
shape functions. The same method is also known as the exté&iitdd (XFEM) [5, 37]. Recent reviews of
generalized/extended FEMs along with a brief history oiir thevelopment can be found i6,[23].
Generalized FEM approximation spaces (i.e., trial spacesyist of three components: (a) patches or
clouds, (b) a partition of unity, and (c) the patch or clougraximation spaces. We describe these compo-
nents as follows:

(a) Patch or Cloud wy: In the generalized finite element method, a cloud
wy is given by the union of the finite elements sharing nodef the
finite element mesh covering the domain of inte@sthe sef{ w, }N_,,
in a finite element mesh witN nodes, is an open cover &, i.e.,Q =
UN_ .

(b) Partition of Unity Subordinate to the Cover {wa}’g‘zl: The Lagrangian
finite element shape functionfs,, a = 1,...,N, of the finite element
mesh covering the domain of inter€stonstitute a partition of unity, i.e.,
Z’g‘zl da(X) =1 forallxin Q. This is a key property used in partition of
unity methods.

(c) Cloud Approximation Spaces x,: To each cloudw,, we associate a
D, (a)-dimensional spacg, of functions defined oy, namely,

Xa = sparLqi, 1<i <D (a), Lgi € HY(wy)}- (1)

Fig. 1 Construction of a general-
The basis functionsy; above are also known asrichment functions. ized FEM shape function. Hergg
A cloud approximatioruj’(X) € Xa of Ul — the restriction taw, of a is the function at the tol,q; is the

functionu defined orQ — can be written as function in the middle, and the gen-
eralized FE shape functioy;, is
hp D shown at the bottom
Uy (X) = Zlgail—ai(x) (2)
i=
whereugi, i =1,...,D(a), are degrees of freedom.

The trial space for the GFEM is given by

X(Q)= % $aXa = SPa @ui = Palai, 1<i<Di(a), 1<a <N} (3)

a=1

The function
@i (X) = P (X)Lgi (X) (no summation om ), 4)

wherea is a node in the finite element mesh, is called a GFEM shapdifumcFigurel illustrates the
construction of GFEM shape functions in a two-dimensiomehdin.
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A GFEM approximatioru™(x) € X(Q) of a vector value functiom can be written as

ND|_ NDL

uP(x) = Zl Uqi i (X Zl 21 UqiPa (X)Lai(X)
Z Pa (X 21 Uqilai(X % ui&p

The enrichment functions iy, must be chosen carefully to mimic the properties of the fionstto be
approximated irw,. In [46, 47], we present high order enrichment functions for 3-D fraetoroblems that
enable modeling of surface discontinuities arbitrarilydted within a finite element mesh (across elements).
Nonetheless, a sufficiently fine mesh must be used aroundalek front to achieve acceptable accuracy
[46, 47, 48]. Even though the refinement does not have to be as strongths standard FEM, it leads to
high computational costs when simulating, for example, @-@pagating fractures. In this paper, we present
enrichment functions for propagating fractures that ammerical solutions of boundary value problems
created on-the-fly during a crack growth simulation. Thesefions, as demonstrated in Sectihrenable

the solution of 3-D fracture problems on coarse meshes amdd@quire the solution of the problem from
scratch at each crack evolution step.

3 Generalized FEM with Global-Local Enrichments for 3-D Propagating
Fractures

In this section, a GFEM with global-local enrichment funcis (GFEM') for 3-D mixed-mode propagating
fractures is presented. The methodology can be formulateseveral classes of crack growth problems.
For simplicity and without loss of generality, we focus oe ttase of high-cycle quasi-static fatigue crack
growth in linear elastic materials. The problem consista 8fD body subjected to cyclic loading and with
an initial crack surfac&; as illustrated in Figur@(a) We assume that the stress state around the crack
front can be fully characterized by linear elastic fractarechanics and that the cyclic load has constant
amplitude (cf. Figure(b)). The notation used in the GFEM presented here is illustratéigure3. The

next sections describe the methodology in detalil.

3.1 Formulation of Coarse-Scale Problem

Consider the domai = QU dQ C R3. The boundary is decomposed @@ = dQ! U dQ with QYN
0Q% = 0. Figure2(a)illustrates these definitions.
The strong form of the equilibrium and constitutive equasiare given by

O0-0=0 o=C:¢ in Q (5)
whereC is Hooke's tensor. The following boundary conditions aresgribed oo Q
u=uondQY o-n=tondQ° (6)

wheren is the outward unit normal vector @Q° andt andu are prescribed tractions and displacements,
respectively.

Let ug denote the generalized or standard FEM solution of the proldefined by %) and @). This is
hereafter denoted as thtial or uncracked global problem. The crack surface shown in Figu2éa)is not
considered when solving this problem. The approximaﬂ‘én’s the solution of the following problem:

[Pereira et al.— July 12, 2011] page 4



|
—
~—

0Q°

s €

<l

Ve

aQ t
(@) (b)

Fig. 2 Model problem and cyclic loading applied to the body. Theckrsurface isnot considered when solving the
initial global problem 7)

Boundary condition for
local problem

S Local problem
at stepk
SIT
k
20k N 90 Us
Qf
QN 0QkNIQ

Enrichment function

<l

oQY
Fig. 3 Notation used in the description of the generalized FEM withbal-local enrichments (GFE®) for 3-D
propagating fractures. The global solutiu@ at a crack propagation stéqprovides boundary conditions for a fine-

scale problem defined in a neighborhcﬁ)b of the crack surfac&, ;. The solution of this problem, in turn, is used
as enrichment function for the global solution space aticpropagation steg+ 1

Findud € X&(Q) c HY(Q), such that’ V& € X2(Q)

/a(uOG):s(voG)dx+n/ ul-\2ds
Q aQu

_ B (7)
:/ﬁQUt-v%dSJrn/aQuu-v%ds
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whereX(Q) is a discretization oH*(Q), a Hilbert space defined d®, built with generalized or standard
FEM shape functions. In this paper, the GFEM presentedihi§ used and the spad¢Z(Q) is given by
(see alsoy))

N DL .
X(Q) = U =3 da(X)UP(X) : BP(X) = Zi Oailai(x) 8)
a=1 i=
wherellgi, a =1,...,N, i = 1,...,D, are nodal degrees of freedom abd is the dimension of a set of

polynomial enrichment functionﬁ,ai(x), of a degree less than or equalge- 1. Details can be found, for
example, in L7] or Section 3.2 of44§]. SpaceX%(Q) can also be defined using standard polynomial FEM
shape functions since cracks aa discretized in the initial global problem.

The parameten in (7) is a penalty parameter based on Young’s modulus and théidacof elements with

a face o QY.

Global Problem J

Fig. 4 lllustration of the GFEM!' for crack propagation. The figure shows an edge-crackee ptater modé loading.

The solution computed on the coarse mesh provides boundagitons for the extracted local doma@t in a
neighborhood of the crack (on element faces with green a).olihe spheres indicate seed nodes used in the definition
of the local problem domain. Further details on the definit‘ube are provided in Appendi®

3.2 Enriched Coarse-Scale Problem

Global-local enrichment functions for propagating fraegiare able to represent fine-scale responses on
coarse macro-scale finite element meshes and to fully account feractions among scales. The formu-
lation of the coarse-scale problems enriched with thesetifums is provided in this section, while their
definition and computation are presented in SecBiéh The coarse-scale solution spaces used in this sec-
tion are defined in Sectio®4.

Let u‘é denote a generalized FEM approximation of the global prabilleistrated in Figure. For simplicity

of notation, we assume that a single stress-free crackca&fawith front I'y exists inQ at crack evolution
stepk, k > 1. The initial crack surface configuration correspondsstoandk = 0 refers to the initial
(uncracked) global problem (see also Figuje The approximatiom'é is the solution of the following
problem:
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Find uf € X§(Q) € HY(Q), such tha/ V& € X&(Q)

/a(ué):s(v‘é_;)dXJrn/ uf-vds
Q aQu
:/ t_-v‘éds+n/ u-vids
0Q9 oQu

whereX'é(Q) C H1(Q) is the generalized FEM space at crack propagationlsté&p> 1 (cf. Section3.4).
The enrichment functions XK (Q) are defined in cloud space%, and have to be computed; we describe
a fine-scale problem in the next subsection to achieve thas gbhe mesh used to solve Problef) {s
typically acoarse quasi-uniform meshregardless of the presence of cracks in the domain. Figures4 and5
illustrate one such discretization. Proble®hleads to a system of linear equations for the unknown degree
of freedom ofu'é. The only difference between problem statementa(id Q) is the GFEM spaces. In the
first case, cracks are not discretized, while in second tasgare discretized using global-local enrichment
functions built on-the-fly as described below.

(9)

3.3 Fine-Scale Problems

The GFEM' for propagating fractures involves the solution of a localihdary value problem defined
in a neighborhood‘.)',f of the crack surfac&,; and subjected to boundary conditions provided by the
coarse-scale GFEM soluticufs, k > 0. Here,S represents the initial crack configuration before starting
its propagation. This is illustrated in Figur8sand 4. Details on the definition oQ'ﬁ are provided in
AppendixB. Let u'(‘3 denote the global approximation computed usifgf¢r k = 0 or Q) for k> 1. The
following fine-scale problem o@'ﬁ C Q is solved to find global-local enrichment functions for thEEM
spaceX&H(Q):

Finduk € XK(QF) c HY(QY), such that/ v e X[ (Q))

o(uf)e(v)dx+n [ uf - vkds
Qf 0QK\ (0QfN9Q0)

— t-vids+n u-vids (10)
0QkNaQe oQknaQY

+ / uf - vids
L 0QK\ (0QFNIQ) Gt

whereXK(Q) is a discretization oH(QF) using the GFEM shape functions presented4i@ §7]. The
mesh used iff doesnot fit the crack surface. Furthermore, since this mesh is usualich finer than
the one used in the global problem, they mli match atdQ'lf. The local mesh is created by bisecting
elements copied from the global mest8[. The integrals ovef} anddQf are performed using the fine
scale mesh as described in Section 3.536f.[ The computation of the global solutimg at an integration
point ondQk \ (dQF N JQ) basically requires the computation of the correspondingtenaoordinates at
the global element face aQf \ (9QF N dQ) and the evaluation af§, at these coordinates. Figuseshows
anhp-GFEM discretization on a local domaff containing crack surfacg*.

A key aspect of ProblemL() is the use of the coarse-scale solution at simulation Isté, as boundary
condition ondQf \ (9QK N Q). Exact boundary conditions are prescribed elsewhe@@jn Other types
of boundary conditions such as spring or traction boundangitions can also be applied @@ \ (9QK N
0Q) [30].
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Fig. 5 Hierarchical enrichment of the coarse global mesh withllsctutions computed with thBp-GFEM on the
local domain. Only three degrees of freedom are added te thledal nodes (shown with brown spheres in the
figure). These enrichments are used to approximate thelglohaion in the neighborhood of the crack

Enrichment for Stefx+ 1

L

Global Problem

3.4 Enriched Global Spaces

The solutionuk, of the fine-scale problem defined it0j is used to build generalized FEM shape functions
defined on the coarse-scale (global) mesh:

@K (%) := da (X)UF(X) (11)

where the partition of unity functionp,, is provided by a globalcoarse, FE mesh andl'ﬁ has the role
of an enrichment or basis function for the cloud spggéwy ). Hereafteru'ﬁ is denoted as global-local
enrichment function and the function defined above is denoted gkobal-local GFEM shape function. The
global GFEM space containing shape functimﬁ,él is denoted ax‘éjl(Q) and is given by

XEHQ) = JuP= §¢a<x>ﬁ2p<x>+ > 9s00u3 00 (12)
a=1 Bejgl“

coarse-scale approx. -
fine-scale approx.

= X§@ U {#p00u8“ 0, B € 75}

whereﬂg'}+1 is the index set of nodes (i.e., clouds) at crack growth ktefd enriched with global-local
enrichment functionsk, g 0 is defined in 8) and

" leutl(x)
Ug( "= | ugato(x) (13)
Ug3U5(X)
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nrichment for St

Fig. 6 lllustration of the GFEM! for crack propagation. In the figure, the local domain isatelé on-the-fly such that
it contains the entire crack surface

wheregm, B e Jg"ﬁl, j =1,2,3, are degrees of freedom an‘g (x), ] =1,2,3, are global Cartesian com-

ponents of the displacement vectg. SpaceX{™(Q) is the spaceXd(Q) augmented with global-local
enrichment functions computed at crack simulation $tepigure5 illustrates the enrichment of a global
mesh with the solution of a local problem. Global nodes initiaiex setfg'ﬁl are shown in the figure with
brown spheres.

The coarse-scale problem defined3ié solved foru'(‘;rl € xgl(cz) and the procedure is repeated at each
crack evolution step. The GFE\for crack propagation is illustrated in Figur@and6. The global solution
provides boundary conditions for fine-scale problems, efieir solutions are used as enrichment functions
for the coarse-scale problem through the partition of uinaynework of the GFEM.

The numerical integration of the GFEM shape functions ddfing11) cannot be performed by the coarse
scale mesh. They can, however, be integrated efficientlyagndrately using the elements from the local
mesh used for the computation u[ since they are nested in the coarse scale elem&B{s3(]. This
procedure is analogous to the concept of integration elesi@oadly used for the numerical integration in
the extended FEMY, 37]. The elements used in the numerical integration of the weak are also useful
for the visualization of results of the enriched global peoir. One example is shown in Figuté.

3.5 Crack Growth Algorithm with the GFEM 9

This section presents an algorithm for the simulation dfjta crack growth using the GFE\Vpresented
above. The algorithm consists of an incremental processhiohwat each step, a small crack advance is
prescribed based on the solution of a linear elastic fragngchanics problem.

Let the crack surface at crack evolution stepe denoted bys,. The initial crack surface configuration
corresponds t&;. The GFEM! algorithm for crack growth consists of the following steps:

1. Solve the initial coarse-scale problem without crackm@uteu% using (7). Keep the factorization of
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the global stiffness matri){d(o)_1 so it can be re-used in the solution of the enriched globdllpros
as described in Appendi®.

2. For each crack simulation st&pk = 0, ..., Ngeps, dO:

(a) UsingSc.1, select the global elements that define the local problemaitor, at this step.
Details on this procedure are presented in Appeidix

(b) Compute the local problem solutiouf, using (L0) with crack surface; and with boundary
conditions o Qf \ (dQF N Q) provided by the global solutiou .

(c) Compute the solution of the enriched global probla@‘il € X‘gl(Q) using @) with crack
surfaceS. ;. The global solution spac)é'é“(Q) is defined in {2) and uses the local solution
u'ﬁ as enrichment function (cf. Secti@¥). The algorithm presented in Appendixis used in
the solution of the linear system of equations associatéuRrioblem 9).

(d) If k> 0, compute crack surface configurati®n , using global solutionu'grl (cf. AppendixA
for details). The crack surface is not updated at cracklstef® since the boundary conditions
for the local problem defined a2? are provided by the initialuncracked) global solutionu.

(e) If k= Ngeps, Stop; otherwise, sé&t=k-+ 1 and go to stepXg).

Figure 6 illustrates the interactions between coarse and fine scales edge-crack panel and Figute
illustrates the first two steps of the above algorithm. A kestéire of the methodology is the use of the
global solution at simulation stdp u'é, to build the solution space for the next simulation step, ithe
GFEM? spaceXk™(Q) containing the GFEM solutionuf™. The coarse-scale solutias, is used as
the boundary condition on'ﬁ\(dQ'ﬁ NoQ) for the fine-scale problent() instead of the unknown exact
solution at stegk+ 1. As a result, the error aif depends not only on the discretization used in the local
domainQ, but also on how much the solution of the problem changéXt (dQF NdQc) between crack
steps. Since crack increments must be small for accuratééseis is reasonable to assume that the change
in the solution between crack steps is also small. The exesksented in Sectidgrshow that the effect of
inexact boundary conditions cﬁQ‘f\(dQ‘f NdQg) on the accuracy of the enriched global problem is small.
Detailed error analysis of the GFEMfor crack growth will be presented elsewhere. Furthermtis,
effect can be controlled using the iterative improvemerti@indary conditions proposed i#l, 42]. The
effect of the inexact boundary conditions on the accuraayf afan be addressed by repeating the procedure
illustrated in Figures at each crack simulation step:

1. Use the solution of the global problentﬁjl € x(k;l(o) as boundary conditions for the fine-scale
problem (L0) defined orQk.

2. Update global shape functiorislj and global solution spaOé‘é“(Q).
3. Solve the enriched coarse-scale probl&jidr u$ € X§™(Q).

4. Goto step 1 if the accuracy ugl is not acceptable; proceed to the next crack step otherwise.

In this paper, this iterative improvement is performed amhge at the first crack simulation step and only
used at stepXd) of the algorithm described above. This strategy is illatstd using a dashed arrow in Figure
7. Hereafter, this strategy is denotedlaprovement at Starting Step (ISS). Its effect on the accuracy of
global quantities like strain energy is analyzed in Sectidn Another multi-scale method for 3-D crack
growth based on a multi-grid iterative solver is preseniteléd)].

Another key feature of the methodology presented aboveaistkie coarse-scale mesh is kept unchanged
throughout the simulation. The enriched coarse-scald@moht any crack simulation step is solved on the
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Fig. 7 lllustrations of the first two steps of the GFEMor crack growth and the Improvement at Starting Step (ISS)
indicated by a dashed arrow in the figure

same uncracked mesh used in the computatiougofFine-scale features are hierarchically added to the
global-solution space through global-local enrichmenmicfions. These functions allow the simulation of
crack surfaces with arbitrary shape using fairly coarséajloneshes. The numerical example presented in
Sectiord.3also demonstrates that the GFEN& more computationally efficient than the-GFEM, which

is among the most efficient methods currently available énliterature.

3.6 Alternative Strategy: Local Domain with Crack Front Only

In the GFEM' described above and illustrated in Fig@ethe local domain is selected on-the-fly at each
crack propagation step such that it contains the entirkesadace. Furthermore, the discontinuities and
singularities of the global solution along the crack sugfand crack front are approximated exclusively by
the global-local enrichment functions. This is reflectethia definition of the enriched global spaces given
in (12). There are several possible variations to this methogol@ne of them is illustrated in Figur@&

In this case, the local domam'ﬁ contains the entire crack front but not the entire crackamgf Clouds

fully cut by the crack surface but not in the set enriched \attal solutionuf, i.e., notin the setﬁg'j+1, are

enriched instead with the analytically defined discontirsifunctions 46]. Let fj}l denote the index set
of clouds enriched with these functions at crack growth &tefd.. The enriched global space at crack step
k+ 1 is then given by

XEHQ) = U= 5 a0+ § dp (0" (x) + > HATPN . (14)
a=1 BeeﬂgﬁzL Vej/;l

The performances of this and the previous versions of theNB-Bre investigated in Sectigh

4 Numerical Examples

This section presents three numerical examples to veriflyraeasure the computational performance of
the GFEM for crack growth. The problems are also solved with theGFEM for fatigue crack growth
presented in48]. Since thehp-GFEM methodology is extensively verified in that papersiadopted as a
reference. In all examples, both methods use the same puolghenrichment ¢ = 3) and localized crack
front refinemente/ay, ~ 102, wherea, is the initial crack size antl is the tetrahedral element size. In

[Pereira et al.— July 12, 2011] page 11



L H IT _. BC from Stepk

Fig. 8 lllustration of the GFEM' with local domains defined around the crack front only. Theeditinuous global
solution away from the crack front is approximated with gtiehlly defined high-order discontinuous enrichment
functions. Global nodes enriched with these functions aaeked with yellow cubes and belong to the s@j}l.

Brown spheres in the global domain belong to the,égﬁl and are enriched with global-local enrichment functions

the case of the GFEM mesh refinement is applied in local problems only. Globabfgms use coarse
guasi-uniform meshes.

4.1 Fatigue Crack Growth in an Edge-Cracked Plate

As a proof of concept, this section presents a simple exawipfatigue crack growth simulation using
the proposed GFEM Consider the edge-cracked plate under cyclic uniaxiaditenin the y-direction
illustrated in Figured. The dimensions of the model arg/2 = b/t = 4 anda,/t = 2.1. Young’s modulus
and Poisson’s ratio aré = 2.0 x 10°MPa andv = 0.30, respectively. The parameters for the cyclic load
and Paris-Erdogan’s equatioh8) are 0mex = 1IMPa,R= 0 andC = 1.5463x 10 "MPa2tm~%95/cycle
andm= 2.1, respectively. This problem is solved using the algoritteacribed in Sectiof.5. Reference
values for strain energy and stress intensity factors andged by thehp-GFEM for crack growth presented
in [48]. The plane strain modestress intensity factor (SIF) is also used as a referendleloase of a finite
edge-cracked plat& is given by b9

K = o/maF (g) )
where 0.752+2.022 037{1 | (na)r
752+2.02 +0.37|1-sin{ 5
F(g) ) i—zta” (,;_D bcos("—Z) 20/ (16)
2

The plane strain SIF is compared with GFEMndhp-GFEM values extracted &t2. A crack front incre-
ment,Aa, is prescribed at each crack step. Furthermore, the crankif kept straight as shown in Figuse
in order to reduce 3-D effects.
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Fig. 9 Edge-cracked panel subjected to cyclic load. Brown sphegm&sent nodes with the global-local enrichment
functions

The performance of GFE¥strategies illustrated in Figurésand8 are compared in this example. They are
hereafter denoted as Strategies 1 and 2, respectivelyeloabe of Strategy 1, the local problem domains
are defined by global elements that intersect the crackeaigfiad their neighbors while Strategy 2 defines
local problem domains using global elements that intertbectrack front and their neighbors. Strategy 1 is
used with and without the Improvement at Starting Step (I&Skribed in SectioB.5. Strategy 2 doesot

use the Improvement at Starting Step.

Figures10(a)and11(a)show the evolution of the strain energy and SIF fortiheGFEM and the GFEM
with respect to crack growth length, respectively. One daseove that both methods provide virtually the
same values of strain energy and SIF at all crack growth stejggire 10(b) plots the relative difference
in strain energy of GFEM solutions with respect thp-GFEM solutions. In the case of the GFEMvith
Strategy 2, the relative difference is always below%, while in the case of Strategy 1 with ISS, the
relative difference is below.8%. Strategy 1 without ISS has about the same error as Strategth ISS
except at the first crack propagation step. This shows tledttprovement at the Starting Step described in
Section3.5 may be important when the crack is discretized using saludfmace 12). Figure11(b)shows
the relative difference of SIF computed with the GF¥lsind thehp-GFEM with respect to the plane strain
solution. All methods show a similar behavior. Strategy thaut ISS, again, has a large relative difference
at the first crack propagation step and about the same betewiStrategy 1 with ISS at all other steps.
In this example, crack growth is governed by mddenly, and thus the error of Strategy 1 without the
improvement of boundary conditions at the first crack stegsdwt affect subsequent steps. However, in a
mixed-mode situation, incorrect SIF values at the first ki@opagation step may give an incorrect crack
growth direction, leading to discrepancies in subsequipiss The remaining examples in this paper are
solved using Strategy 1 with ISS.
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Fig. 11 SIF evolution with respect to crack growth length

In a GFEM' discretization, only a few global-local enrichments areleiito the global problem. For
instance, let us consider the first crack propagation stépeoGFEM! simulation with Strategies 1 and 2.
At this step, the global problem with Strategy 2 has a totdl®@636 degrees of freedom (dofs). From this
total, 17280 dofs correspond to the initial global disaatiion without the crack, 1320 dofs correspond to
discontinuous enrichment functions, and only 36 dofs gmoed to global-local enrichment functions (cf.
solution space defined ifi4)).

In the case of Strategy 1, the global problem at the first cprokagation step has a total of 17448 dofs:
17280 dofs correspond to continuous shape functions arydl&d dofs correspond to global-local enrich-
ment functions (cf. solution space defined 12)). No analytically-defined discontinuous enrichments are
used in this case since the crack surface is contained irota domain and the solution discontinuity is
approximated by global-local enrichments only. This shtheg Strategy 1 is clearly more efficient than
Strategy 2.

Table1 lists the range of problem sizes solved with GFEEhdhp-GFEM. Both global and local problem
sizes are listed in the case of GFEMProblem sizes are not affected by the use of the Improveatent
Starting Step (ISS). One can observe that the size of glabhlgms solved in the case of the GFEMith
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either Strategy 1 or 2 are much smaller than in the case diH@@FEM. Since the accuracy of both methods
is about the same, one can expect that crack growth simugatiiih the GFEM' are more computationally
efficient than with thédyp-GFEM. Tablel also shows that the local problems in the GFEEMith Strategy 2
are smaller than in the case of Strategy 1. However, Strdtdgsds to enriched global problems of much
smaller size than in the case of Strategy 2. Thus, the algomgiresented in AppendiX is more suitable for
Strategy 1 than Strategy 2. A more elaborated cost anal/psrformed in Sectioa.3.

Table 1 Range of problem sizes solved with GFEINndhp-GFEM

Method Min. number of dofs Max. number of dofs
hp-GFEM 31272 39042

GFEM® with Strategy 1 (global prob.) 17448 17544
GFEM? with Strategy 1 (local prob.) 20040 25272
GFEM? with Strategy 2 (global prob.) 18636 19836
GFEM? with Strategy 2 (local prob.) 15324 23988

4.2 GFEMY Performance in a Mixed-Mode Crack Growth Simulation

This example considers crack growth of a single edge not¢B&tdN) specimen in a three point bend-
ing configuration. Figure.2 illustrates the global mesh, boundary conditions and theedsions of the
model. The crack is located at the middle of the span and imat by an angle8 = 45° with re-
spect to the thickness of the beam, which causes a mixed-feltevior. The geometrical and mate-
rial parameters of the SEN specimen are as follows: totajtlerL; = 260mm, distance between sup-
ports, Lg = 240mm, thickness, = 10mm, width,h = 60mm, and ratio of initial crack length to thick-
ness,a,/h = 1/3, Young’s modulusE = 2.1 x 10°N/mn¥ and Poisson’s ratiw = 0.3. The model is
subjected to a cyclic load with constant amplitude applietha middle of the span. The Paris’ equation
parameters ai@ = 1.546x 10~12(N/mm?)~2*mm~20/cycleandm= 2.1. The cyclic load parameters are
Omax = 100N/mn? andR = 0. The crack growth simulation is performed with 25 incretaorack steps

of variable magnitude. The maximum increment along thekcfiammt is taken af\a.x = 0.05a, for the
first 4 steps of the simulations ald . = 0.0758, for the remainder of the simulations. Details on the
computation of crack front increments based/a.x and Paris’ law are provided in, e.g., Section 4.2 of
[48].

The inclination of the crack surface with respect tozfaxis produces a mixed-mode behavior. In this case,
the crack surface tends to rotate such that the gBigleown in Figurel2 becomes zero while keeping the
middle to the crack front aligned with the center of the agblioad area. The main purpose of this example
is to verify the performance of the GFEMfor crack growth simulations under mixed-mode conditions.
The SEN model is solved with both the GFEMind thehp-GFEM presented in4g]. Hp-GFEM results
are used as a reference. Equivalent discretizations aceinsee GFEM' and thehp-GFEM. Hp-GFEM
discretizations use polynomial order= 3 and localized refinement with®L x 1073 < Le/a, < 1.19x 1072
along the crack front, where; is the tetrahedral element size. The localized mesh refinefokows the
evolution of the crack front using the refinement and unrefiget technique presented #d]. Figurel13(a)
illustrates the crack surface evolution andpeGFEM mesh used at various simulation steps. In the case of
the GFEM, the local problem at each crack step is solved with@GFEM discretization with polynomial
orderp = 3 and localized refinement with®lL x 1073 < Le/a, < 1.20x 1072 along the crack front. Figure
13(b)illustrates the crack surface evolution and the global nfeslthe crack growth simulation with the
GFEMY. It is clear from the figure that thie global mesh remains unchanged throughout the entire crack
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Fig. 12Single edge notched (SEN) specimen in a three point bendinfipuration: domain dimensions, crack surface
description, and global mesh used with the GFEM

growth simulation.

Figurel4illustrates thénp-GFEM and GFEM solutions at crack growth step 25. In both cases, the solutio
is plotted in the deformed configuration with an amplificatfactor. The elements used in the numerical
integration of discontinuous functionsip-GFEM and GFEM' analyses are used as graphical elements to
visualize the discontinuity along the crack surface. Tleekisurface can be quite complex inside a single
computational element, especially in the case of the G®EMere the global mesh is coarse. Such a feature
is allowed by the decoupling between crack surface reptasen and computational mesh together with
the procedure for non-planar cutting of computational eets presented irtf)].

Figure15(a)illustrates the variation of the strain energy with resgedhe accumulated maximum crack
increment throughout the simulation. One can observeltleattain energies of the solutions computed with
GFEMY andhp-GFEM show very good agreement. Figufiggb), 15(c), 15(d), 15(e) and15(f) show the
variation of stress intensity factors throughout the satiah at the first, second, middle, second to last and
last vertices along the crack front, respectively. Therdgagon of these vertices is given by the parametric
coordinate( illustrated in Figurel2. These vertices are used in the triangularization of thekcsarface
[46]. The results show that the SIFs computed with GF¥EMe in good agreement with the corresponding
hp-GFEM values. The figures also show that both methods camumapery well the transition from a
mixed-mode problem at the start of the simulation to a mogesblem as the crack surface grows and
twists around thg-axis.

[Pereira et al.— July 12, 2011] page 16



(b) GFEM®! global mesh

Fig. 13 Crack surface evolution and mesh for various crack steppiBFEM and GFEM' simulations
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(a) hp-GFEM solution

Solution tetrahedra

(b) GFEM®! solution

Solution tstrahedra

Fig. 14hp-GFEM and GFEM' solutions and meshes used in the numerical integratioreoitrak form shown in the

deformed configuration at crack growth step 25
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4.3 Computational Cost Analysis of Crack Growth in a 3-D Bradket

In this section, a three-dimensional bracket model with & gjenny-shaped crack is considered. Due to
the large number of nodes and elements used in the disd¢retizand the complexity of the geometry, this
problem is considerably more challenging for available potational methods than the previous ones. The
model illustrated in Figuré6is subjected to a cyclic load witR = 0. The load is applied at the horizontal
opening and the model is fixed at the vertical openings, dsatet in Figurel6. Figurel6 also illustrates
the location and geometry of the initial half penny-shapexttic surface. The radius of the initial crack is
a, = 8mm. Young’s modulus and Poisson’s ratio of the materiaazel °MPa andv = 0.33, respectively.
C = 1.425x 10~ (N /mm?)~25mm~%25/cycle andm = 2.5 are the parameters of the Paris’ equation used
in the fatigue model. The simulation has a totalnof 40 steps, and the maximum values for the crack

growth increments used af@y,x = 0.1a, andAaya = 0.058, for the initial four steps and the remainder
of the simulation, respectively.

3-D bracket

. crack surface
cyclic load

e e
s

15

=

o

o g

P
"’Avb_‘f’%.’ 3

crack location

Fig. 16 Three-dimensional bracket model with a half penny-shapackc

The main goal of this example is to compare the computatipegbrmances of the GFEMand thehp-
GFEM when solving large 3-D problems. As in the previous eglas) thehp-GFEM solution is used as a
reference. Figuré?7 illustrates thenp-GFEM and GFEM!' discretizations at crack growth step 20.

In the hp-GFEM for fatigue crack growth, as in the standard FEM, adim&ystem of equations is solved
from scratch at each crack growth step. This results in a baghputational cost when solving problems
with an industrial level of complexity. In contrast, in th&"BMY', the solution vector of the initial global
problem and the factorization of the initial global stiffsematrix are reused at each crack growth step.
This feature of the GFER) leads, as demonstrated below, to crack growth simulatiétismuch reduced
computational costs.

In this example, the GFEM strategy shown in Figuré together with the Improvement at Starting Step
(ISS) discussed in Sectigh5 are used. The local problem domain is created using globahets that
intersect the crack surface and their neighbors. As th&kmaidace evolves, an automatic procedure selects
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and updates the global elements used in the definition obda problem domain. Once the local problem
domain is defined, the local solution is computed usinghSFEM with polynomial ordemp = 3 and
localized crack front refinement in the rang®3.x 102 < Le/a<1.87x 101, Figurel8illustrates the
local problem domains and their solutions at steps 0, 8,3332, and 38. As in the previous examples, the
polynomial order and level of refinement usedpGFEM discretizations are the same as those adopted in
the local problems of the GFEM Figure19 shows thehp-GFEM solutions at crack growth steps 0, 8, 13,
23, 32, and 38.

The accumulated computational cost of the GFPEMdhp-GFEM at each crack growth step is presented
in Figure 20. In the hp-GFEM, the computational cost at each crack step consistiseoCPU time for
the factorization of the global stiffness matrix, back aodMard substitutions. The computational cost of a
crack growth step using the GFEMonsists of the summation of the CPU time spent on (i) thefazition,
back and forward substitutions of the global stiffness matf the initial (uncracked) global problem; (ii)
factorization, back and forward substitutions of the I@tdfness matrix; (iii) computation of the solution of
the enriched global problem using the algorithm describesapendixC; and (iv) Improvement at Starting
Step (ISS) described in Secti8rb. In both methods, the factorizations are performed usirgrallel sparse
solver on a computer with eight cores. The results show te@&FEM!' for crack growth uses less than
half the CPU time required by tHg-GFEM.

Tables2 and3 list the CPU time and the accumulated computational costraesrepresentative steps of
the crack growth simulation using tte-GFEM and GFEM', respectively. They also list the number of
dofs used by each method. The results show that the size gfidbal problem in the GFER does not
depend on the number of dofs used in the local problem. In fENS', only a small number of dofs are
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step O step 8 step 13

step 23 step 32 step 38

Fig. 18 Local problem domains and solutions at various crack grasteips. The local domains are automatically

selected such that they contain the entire crack surface

step 0 step 8 step 13

step 23 step 32 step 38

Fig. 19hp-GFEM solutions at various crack growth steps
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Fig. 20 Accumulated computational cog. crack growth length for entire simulation

added to the enriched global problem, e.g., 27, 57, and 84#aak steps 0, 20, and 35, respectively. In
addition, from Table3, one can observe that the minimum and maximum numbers oftminles enriched
with local solutions are 9 and 28, respectively. In conirist localized mesh refinement required by the
hp-GFEM increases the size of the global problem substaptialithe crack propagates. Furthermore, the
cost to compute global-local enrichments and to solve thieteed global problem in the GFENusing the
algorithm of AppendixC corresponds to between 30% and 48% of the CPU time spentyi®FEM at

the same crack step. As a result, the total CPU time speneinrtick growth simulation with the GFEM

is much smaller than with thiep-GFEM.

Table 2 CPU time spent on the factorization of the stiffness matfigadected crack steps using the GFEM

Accumulated
Step Number of degrees of freedom CPU time(s) Comp. Cost(s)

0 186666 132 1392

5 191388 1463 8522
10 204036 178 16614
15 209892 17p 25174
20 223644 1831 34010
25 230892 193 43314
30 234282 21D 53825
35 253050 234 65000
39 255618 243 74525

Figures21(a) 21(b), and21(c)show the stress intensity factors (SIFs) along the craak fibcrack propa-
gation steps 0, 10, and 20, respectively, ipfGFEM and GFEM'. The SIFs computed with the GFEM
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Table 3CPU time spent on the factorization of the initial and logallgems and on the solution of the enriched global
problem of the GFEM

Number of dofs CPU time(s) Accumulated

Step Initial Local Enriched Initial Local Enriched Comp. €i(s)
0 66456 115497 33 8.0 2055
5 72000 115515 4a 138 4514
10 84552 115521 52 153 7714
15 88680 115527 59 167 11047
20 115470 95532 115527 B/ 599 167 14725
25 112536 115530 73 182 18850
30 115374 115551 73 238 23639
35 124992 115554 82 251 29165
39 134646 115554 9 252 33791

show good agreement with the reference values extractadtirehp-GFEM solution. Figure1(d)shows

the variation of the strain energy of the quasi-static sofuas a function of crack growth length. Once
more, GFEM' andhp-GFEM solutions show good agreement.

Figures22(a)and22(b)illustrate the crack surface evolution computed withiheéGFEM and the GFEM,
respectively. The crack surfaces are presented at steps 25,1and 35. One can observe that both methods
lead to nearly identical crack surface predictions. Botlhoés capture the three-dimensional mixed-mode
behavior of the solution and provide non-planar crack serfaredictions.

5 Summary and Conclusions

This paper presents a GFEM with enrichment functions builthe-fly through a global-local analysis.
The methodology is applied to high-cycle fatigue crack growm three-dimensional bodies. Boundary
conditions for the fine-scale problem containing the crackese at a propagation step are provided by the
coarse-scale solution computed at the previous step, argdtiiey are dynamically updated as the crack
grows. This is, to our knowledge, a uniqgue methodology tadbapproximation spaces for this class of
problems. The fine-scale solutions are embedded in theezgaede solution spaces using the partition of
unity method §, 3, 34, 14, 15, 14].

The proposed global-local enrichments add only three @sgoé freedom to nodes of the coarse-scale
discretization. In the example solved in Sectif, the uncracked coarse-scale discretization has 115470
dofs. The global-local enrichments used to model a compiBxcBack surface adds at most 84 dofs to the
problem. In contrast, if available methods like the FEM wiémeshing are used, the discretization of 3-D
crack surfaces requires a large number of degrees of freécfoifable?2).

The coarse-scale mesh used in the GEEMed not model the crack surface explicitly. Instead, taeks
are modeled through global-local enrichment functionse-stblution of fine-scale problems computed with
the hp-GFEM presented in46, 47]. As a result,the coarse-scale mesh remains unchanged during the
simulation. This, combined with the hierarchical nature of GFEM shapefions, allows the recycling of
the factorization of the global stiffness matrix during aek growth simulation. An algorithm exploring
this feature of the method is presented in ApperdixThe numerical example presented in SectioB
shows that the computational cost to solve the problem dt ek growth step is much smaller than in
available methods. The computational cost of the GREin be further reduced. It is clear from TaBle
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Fig. 21 Stress intensity factors (SIFs) at various steps and stragngy variation throughout the simulation

that the cost to solve the coarse-scale problem in the GEEMominated by the cost of the local problem
solution. In this paper, a single local problem is definedaathecrack propagation step. However, a local
problem can be defined for each node of the coarse-scale ntesewpartition of unity support intersects
the crack surface. These local problems can be efficientgdan parallel, sinc&o communication among
processors solving different local problemsisrequired [31]. This leads to very scalable computations even
on shared memory machinel], which is a commodity hardware nowadays.

The computational efficiency of the GFEMloes not come at the expense of its accuracy — the computa-
tional accuracy of the GFEMis comparable to thep-GFEM [48]. This is demonstrated in Sectidrwhere
3-D mixed-mode problems with complex crack surfaces areesol This high accuracy is delivered using
global meshes with elements that are orders of magnituderanan those required by, e.g., the standard
FEM. As a result, the crack surface can be quite complex@aigingle finite element in the global mesh.
Such a feature is allowed by decoupling the crack surfaceseptation from the computational medhb][

In summary, this paper demonstrates that the GREdva fast and reliable alternative for the simulation of
mixed-mode crack growth problems in complex 3-D domains.
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step 5 step 15 step 25 step 35
(a) Crack surface evolution computed with-GFEM

a A A A

step 5 step 15 step 25 step 35

(b) Crack surface evolution computed with GFEM

Fig. 22 Crack surface at various propagation steps

A Update of Crack Surface

In step @d) of the algorithm presented in SectiBrb, the crack surface is updated using the solution of the
enriched global probleru'é“. At each crack propagation step, the magnitude and directidche crack
front advance are computed as described below. New posiiciors of crack front vertices are computed
and the Face Offsetting Method (FOM){] is used to avoid self-intersections of non-convex cracks.
This is the same approach presented}i] pnd the reader is referred to Section 2.2 of that paper foinén
details.

Crack growth direction - Schollmann’s criterion  In 3-D mixed-mode crack growth problems, the crack
front deflection at each crack step is represented by a lgn&imgle and a twisting angle as illustrated in
Figure23. In this work, Sclbllmann’s criterion p3] is adopted. This criterion is equivalent to the criterion
of maximum tangential stress proposed by Erdogan andZ8jiwhen the model| stress intensity factor,
K, is zero.

The crack kinking anglép is a non-linear function df|, K;;, andK;, the stress intensity factors for modes
I, 11, andlll, respectively. The reader is referred &3] or to Section 4.1 of48] for further details.

Once the deflection angl is determined, the twisting angli is defined as ing3] by

- 1 ZTQZ(QQ)
Yo = E arctan{—ae(eo) — Uz(eo):|

whereoy, Ty, andag; are components of the stress tensor in a cylindrical coatdigystem defined at the
crack front.

(17)

Magnitude of crack front advance - Paris-Erdogan equation In this paper, Paris-Erdogan equatidd][

da

N C(aK)™ (18)
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Crack Surface

Fig. 23 Crack kinking and twisting angle® andy, for three-dimensional mixed-mode crack problei®d [

is used to predict the crack growth rate. Paramefeesid m are regarded as material constants, while
AK = (1—-R)Kmax is the stress intensity factor range under cyclic loadirfiergR is the ratio of minimum

to maximum loads applied in a cycle algly is the stress intensity factor at the maximum load. In Equati
(18), AK takes into account modeonly. Mixed-mode effects are taken into account by usingeims the
cyclic comparative stress intensity factak,, given by b2

AK|
2
wherea; = K¢/Kjc andaz = Ki¢/Kjj|c are the ratios of the fracture toughness of mbtie model | and
of model to modelll, respectively $3, 52]. In the examples presented in this paper, we adapt 1.155
anday = 1.0 as proposed irg3, 52].

The reader is referred to Section 4.2 48] for further details on the application of Equaticr8f to compute
crack front advance and fatigue life.

1
MK, = 4+ é\/AK|2+4(011AK|| )%+ 4(a20K )2 (19)

B Definition of Local Domains

As illustrated in Figure$ and8, local problem domains are defined by either global clouds ititersect
the crack surface or by global clouds that intersect thekchamt. Let.7s ., denote the indices of all
clouds from the global mesh that intersect the crack suiace These are also callested nodes and are
illustrated with brown spheres in Figuée The local domairQ'f containing crack surfacg; (cf. Figure3
for notation) is given by

A= |J ws (20)
BeSs iy

where the cloudyg is the union of (copy of) global elements sharing vertex ragle € /s, , .
This can be implemented as follows:

(i) Find all global elements that intersect crack surf&ceg ; Mark the nodes of these elementssasd
nodes.

(i) The local domairQ'lf is defined by the union of (copy of) global elements sharingeaishode.
Local domains containing the crack front only are definedagwausly:

(i) Find all global elements that intersect the froht, 1, of the crack surfac&, 1; Mark the nodes of
these elements ased nodes.

(i) The local domairQ'lf is defined by the union of (copy of) global elements sharingeisiode.
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This simple algorithm can be used to create local domaintaagung fairly complex 3-D crack surfaces (or
crack fronts only) like those shown in Figuré3and22.

C Solution of Enriched Global Problem

This section presents an algorithm to efficiently solve tystesm of equations associated with the enriched
coarse-scale probler) The algorithm is an extension of the procedure present8gction A.2 of L.3] to
crack propagation problems. It explores the hierarchiatlme of the global-local enrichment functions and
reuses in all crack propagation steps the solution and tterfaation of the stiffness matrix associated with
the initial global problem?). All quantities presented in this section are global; ¢fere, the subscrigt)c

is hereafter dropped.

The enriched global spad€s(Q) defined in (2) is the union of the initial global spad (Q) and global-
local GFEM shape functions. As a result, the global stiffnestrix of the initial global problem7, K°,

is nested in the global matrix of the enriched global prob(8jrat any crack propagation st&pThus, the
system of equations associated with probl&ycén be partitioned as follows:

KO KO,gI(k) QO(k) =Y
KIKOo KK || yo® | T | po (21)

whereK9® andu?® are the global stiffness matrix entries and dofs, respelgtiassociated with global-
local GFEM shape functions used in the definition of sp¥EéQ). Vectoru®® has dofs associated with
GFEM shape functions from the initial global spaC%(Q). From the first equation ir2(l), it follows that

KOQO(k) + KO,gI(k)ggl(k) _ FO. (22)

Thus
w0k — 0 — P9k yd ) (23)

whereu? = (K% “*F? s the solution vector of the initial global problem and ma&®9 * is the solution
of
KOgP.9 (k) — kO.l(k) (24)

which can be computed at a lower cost using the availableffizetion of the initial global stiffness matrix,
(K.
From the second equation i@), it follows that

K9 (K).0y0k) 4 ga(K)yd (k) — Fai(K) (25)

Using Equation?3) to condense out the fine-scale dafé (¥, the above reduces to

RI0 ok _ pd® (26)
where
RIKW _ ka0 _ g (K,0g0d (K (27)
and
FIN _ pa _ kak.0y0, (28)

The computation of the solution vector of the enriched glpibablem,

U= [ Wk g ]T7 (29)
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involves back and forward substitutions on the factor@atf the global stiffness matri¥°, some matrix
multiplications, and the solution of the systef®). This procedure leads to significant savings in computa-
tional cost when solving large problems, where @ift!) > dim(u? ¥). Thus, the solution of the enriched
global problem at each crack growth step can be obtained anaefficient manner. This is demonstrated
numerically in Sectiod.3.
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