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Abstract

The generalized FEM (GFEM) has been successfully applighdet@imulation of dynamic propagating fractures,
polycrystalline and ber-reinforced microstructures,rpos materials, etc. A-priori knowledge about the solutibn
these problems are used in the de nition of their GFEM apprnation spaces. This leads to more accurate and robust
simulations than available nite element methods whilaxr@hg some meshing requirements. This is demonstrated in a
simulation of intergranular crack propagation in a brigt@ycrystal using simple background meshes.

For many classes of problems — like those with material foeatities or involving multiscale phenomena — a-priori
knowledge of the solution behavior is limited. In this pawes present a GFEM based on the solution of interdependent
global (structural) and ne-scale or local problems. Thedbproblems focus on the resolution of ne-scale features
of the solution in the vicinity of, e.g., evolving fracturegeess zones while the global problem addresses the macro-
scale structural behavior. Fine-scale solutions are atelyrsolved using ahp-adaptive GFEM and thus the proposed
method does not rely on analytical solutions. These salatare embedded into the global solution space using the
partition of unity method. This GFEM enables accurate miodebf problems involving multiple scales of interest
using meshes with elements that are orders of magnituderlérgn those required by the FEM. Numerical examples
illustrating the application of this class of GFEM to higyete fatigue crack growth of small cracks and to problems
exhibiting localized non-linear material responses aes@nted.
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1. Introduction

Many problems of engineering relevance exhibit strongtgriacting multiscale eects. Their modeling
and simulation demand analytical and computational tdwalsdo not assume a view of nature that partitions
phenomena into categories of scales [1]. One example oicpkat interest — and which is part of the
motivation behind this work — lies in the structural anadysi stealth aircrafts. To increase the stealthiness
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of aircrafts like the one shown in Figure 1, a high tempempanel is used at the exhausts of the embedded
engines. These panels are subjected to an intense therof@anieal-acoustic environment and can fail
in high-cycle fatigue due to the acoustic and vibration Ingdin low-cycle fatigue due to thermal and
mechanical loading, and by material degradation or oxadatiue to the extreme thermal environment [2].
Experiments in these environments are dilt, limited and extremely costly.

Fig. 1. Micro-crack growth in structures subjected to iseethermo, mechanical and acoustic loads involves compleraictions over
vastly di erent scales [httymedia.defenseindustrydaily.céimaged].

The analysis of this class of problems with the FEM requirgseenely re ned meshes. This may cre-
ate severe restrictions in maximum time step allowed fougste time integration of the solution [2, 3].
Dynamic load balancing for ecient parallel computations becomes quite challengindHisrtype of dis-
cretization [3]. In addition, the construction of propedgtapted discretizations can be quite costly since it
demands several adaptive cycles on large computationatlsioinother severe issue with a Direct Numer-
ical Simulation (DNS) approach based on available metretiill-conditioning of the resulting system of
equations [4] due to the extremely large ratio between etésizes in the FEM mesh. One workaround for
this issue is to perform the computations using high-preci4¢28-bit oating-point arithmetic [3]. How-
ever, few compilers or software libraries can handle higéeision arithmetic, and those that do so are
extremely slow — often 50 to 100 times slower than converliéd-bit oating-point arithmetic [3].

The generalized FEM [5, 6, 7, 8, 9] is an instance of the stedgdartition of unity method which has
its origins in the works of Balskaet al. [10, 6, 11] and Duarte and Oden [12, 13, 14, 15, 8]. The exnde
FEM [16, 17] and several other methods proposed in recems e also be formulated as special cases
of the partition of unity method. Recent reviews ofXGEM can be found in [18, 19]. The partition of
unity in the Generalized FEM (GFEM) is provided by low ordexgrangian nite element shape functions.
These functions are combined with local function approxiomspaces built around a-priori knowledge
about the solution of a given problem. These functions gi®vihore accurate and robust simulations than
the polynomial functions traditionally used in the startd@EM while relaxing some meshing requirements
of the FEM. An example of this class of GFEM based on anallyickerived local spaces is the GFEM
for polycrystals proposed in [20]. In this GFEM, discretima of polycrystalline micro-structures requires
only a simple background mesh on which the polycrystallopotogy is superimposed.

In many classes of problems — like those involving multisgaienomena or material non-linearities —
local approximation spaces are, in general, not amenalaralytical derivation. To overcome this limita-
tion, basis functions for these spaces are de ned from ttmeamnical solution of boundary-value problems.
Section 4 summarizes the so-called Generalized Finite &emith global-local enrichments (GFE
In this method, basis functions are numerically de ned gsioncepts from the classical global-local nite
element method [21, 22, 23, 24] and a multiscale decomposdf the solution of a boundary or initial
value problem is performed. The coarse scale componenéeafdiution is approximated by discretizations
de ned on coarse nite element meshes. The ne-scale conepbis, in turn, approximated by the solution
of local problems de ned in neighborhoods of regions eximigi multiscale e ects such as in the neighbor-
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hood of micro-cracks. Boundary conditions for the locallgdeons are provided by the available solution at a
crack growth step. The methodology enables accurate nmgpedj e.g., 3-D propagating cracks on meshes
with elements that are orders of magnitude larger than thexggired by the FEM. The coarse-scale mesh
remains unchanged during the simulation. This, combindtl thie hierarchical nature of GFEM shape
functions, leads to signi cant computational savings wikempared with a DNS approach [25].

A related method aimed at modeling interactions among plalstatic cracks is the multiscale method
of Loehnert and Belytschko [26]. Other related methods ¥ao-timensional static cracks include the
spider-XFEM [27] and the reduced basis enrichment for th&MH28] of Chahine et al.; the method of
Menk and Bordas for fracture of bi-material systems [29& fiarmonic enrichment functions of Mousavi
et al. [30] for two-dimensional branched cracks.

The outline of this paper is as follows. Section 2 summarihesmain ingredients of GFEM approxi-
mation spaces. The GFEM for polycrystals is reviewed iniSe@ and an application of this method to
the simulation of intergranular crack propagation in atleripolycrystal is presented in Section 5.1. The
formulation of a GFEM for 3-D crack growth is presented in Section 4. Numericahepies illustrating
the application of this class of GFEM to high-cycle fatiguaak growth of small cracks and to problems ex-
hibiting localized non-linear material responses aregmgs] in Sections 5.2 and 5.3. The main conclusions
are outlined in Section 6.

2. The Generalized Finite Element Method

A GFEM approximation space (i.e., a trial space) is based on

three components: (a) patches or clouds, (b) a partitiomibty,.and
(c) local approximation spaces. We describe these comp®@sn
follows:
(a) Patches or Clouds : In the generalized nite element method,
acloud! is given by the union of the nite elements sharing node

of the nite element mesh covering the domain of interestThe
setf! d\‘zl, in a nite element mesh witN nodes, is an open cover
of ,ie.,

A

= N 1|

(b) Partition of Unity Subordinate to the Covéyr d\‘zl: The La-
grangian nite element|§hape functiohs; = 1;:::;N, constitute
a partition of unity, i.e., N:1' (x)=1forallxin . Thisis a key
property used in partition of unity methods.

(c) Cloud or Patch Approximation Spaces: To each patcth , we
associate am -dimensional space of functions de ned onl

namely,

Fig. 2. The generalized FEM shape func-
=sparfiL; 1 i m;L;2 Hl(! )9 tion jatx is constructed by consider-
ing the product of the Lagrangian nite
element shape function and the non-

The basis function& ; above are also known a&nrichment func- | i
polynomial enrichment ;.

tions
The trial space for the GFEM is given by

XN
SGFEM() ' =spari ;=" Li;1 i m;1 Ng

The function
ix)=" (X)L i(x) (no summation on); Q)

where is a node in the nite element mesh, is called a GFEM shapetiomc Figure 2 illustrates the
construction of GFEM shape functions in a two-dimensiormahdin.
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The enrichment functions in are chosen carefully to mimic the properties of the functmie approx-
imated locally inl . This is often done by using the available information ondapproximated function.
Choosing suitable patch spaces for a particular problerarigral to the approximation property of GFEM.

3. A GFEM for Polycrystals

The GFEM for polycrystals [20] is illustrated in Figure 3. doretization of polycrystalline micro-
structres with this method requires only a simple backgdomesh on which the polycrystalline topology
is superimposed. Grain boundaries and junctions can béailyi located within elements. The main
concepts used in this GFEM are summarized. Details can el fio{20].

() (b) (c)

Fig. 3. In the GFEM for polycrystals (a), a polycrystallinggaegate is described by superimposing a polycrystaltipelogy (b) on a
background mesh (c). The quality of the numerical solutiamloe improved by local mesh re nement (d). Note that theergtement
mesh does not conform to grain boundaries and junctions.

Consider the following decomposition of the displacemeziti u of a polycrystal comprisindig grains

u=0+ Hjﬁj; (2)
=1

where the generalized ; function is equal to 1 in graif and O otherwise. Enrichment functions;, used
atnode are taken as the set of functioHs that are discontinuous on clotid [20]. A traction-separation
law is used at grain boundaries and a constitutive relatipngescribing the material behavior is adopted
within the grains. An application of this method to the siatidn of intergranular crack propagation in a
brittle polycrystal is presented in Section 5.1. It is to lden that the method is capable of describing
more complex failure scenario with combined transgranaitett intergranular cracking, provided rules for
the transition from one type to the other are de ned.
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4. GFEMY": Bridging Scales with Global-Local Enrichment Functions

Global-local enrichment functions can be de ned for mangssks of problems like interacting 3-D
cracks [31], propagating 3-D fractures [25] or problemsileiting sharp thermal gradients [32, 33]. These
functions can also be developed for problems involving liaed non-linear material responses [34]. They
are able to represent ne-scale responsesaarse macroscale, nite element meshes and to fully account
for interactions among scales. Detailed mathematicayaisadf this class of GFEM is presented in [35, 36].

In this section, we consider the case of 3-D simulations gppgating mechanically-short cracks. These
cracks are much smaller than any dimension of a structurapooent but larger than the details of the
material micro-structure [37].

4.1. Problem Formulation

Consider a domain  R3. The boundany@ is decomposed a@= SY[ Sfwith SU\ Sf=:. The
equilibrium equations are given by
r =0 in 3)

The following boundary conditions are prescribed@n
n=t onS'; n= (U u)onSY; (4)

wheren is the outward unit normal vector t@ andt are prescribed tractions. The second equation
represents a spring or Robin boundary condition [38]s the sti ness of the springy is displacement
imposed at the base of the spring system ainslthe displacement at the boundary of the body. Dirichlet
boundary conditions can be treated as a limiting case ofypis of boundary conditions [38].

The constitutive relations may be given by the generalizedkd's law, = C:"; whereC is Hooke's
tensor, or by a non-linear stress-strain relation. In thieg the classical rate-independ&ntow theory for
small strains with isotropic hardening is adopted. The wieakulation of the problem described above is
given by:

Findu 2 HY( ), suchthaB v2 H( )

z z z Z

(u):"(Wd + u vdS= t vdS+ u vds; (5)
Su Sf Su

whereH!( ) is a Hilbert space de ned on.

4.2. Computation of Global-Local Enrichments: Coarsel&¢aoblem at Simulation Step t

Let uf, denote a generalized FEM approximation of the Problem (Bpatage evolution (or load) step
t. This approximation is the solution of the following glolpabblem:
Findul 2 S3FE™( ) HY( ) suchthat8 v 2 SgTM( )
z z z Z

(us) 1" (vs)d + N uf v5dS = SfF V5dS + Sum Vv5dS; (6)

whereSg 5™ ) HY( ) is the generalized FEM space at simulation gteffhe enrichment functions
in SS75™!( ) are de ned in local spaces arfthve to be computed on-the: YWe describe a ne-scale
problem in the next subsection to achieve this goal. The nussld to solve Problem (6) is typically a
coarse quasi-uniform mestregardless of the presence of cracks or localized non-limegponses in the
domain Figure 4 illustrates one such discretization. Problenmg@ils to a system of non-linear equations
for the unknown degrees of freedomugf.
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Global Problem |

Fig. 4. lllustration of the GFEM! for crack propagation. The gure shows the neighborhoqdof a small propagating crack in the
global domain. The solution of the global problem at siniolastept provides boundary conditions for the extracted local domai

4.3. Computation of Global-Local Enrichments: Fine-Sdateblems at Simulation Step t

The GFEM! involves the solution of a ne-scale boundary value probléemned at a neighborhood
L of a ne-scale feature like the crack shown in Figure 4. Hagvihe global approximationtG at sim-
ulation stept, the following ne-scale problem on  is solved to nd enrichment functions for the space
SGFEM;t+1( )
o :
Findu! 2 SPFEMY( ) HY( (), suchthaB v 2 SPFEMY( )
z z z
(ub):"(v)d + ul vidS+ ul vjds
Z Z @L\Su Z @Ln(@L\@)
= tt VidS+ ut vidS+ tus) + uf Vids; 7
@\ sf @\ s @@\ @)

whereSPTEM( ) is a discretization oH*( () using GFEM shape functions presented in [39].

A key aspect of Problem (7) is the use of the coarse-scaléigolat simulation step, ul,, to compute
the boundary condition o@ n(@ .\ @ ). The numerical nature of the coarse-scale solution usethéo
ne-scale boundary conditions leads to the use of the tesiogy “inexact boundary conditions”. Exact
boundary conditions are prescribed on portiongf that intersect eithe8" or S*. The traction vector,
t(ug), that appears in the integral ov@ (@ .\ @ ) can be computed using,

tug) = A (ug) (8)
wheren is the outward unit normal vector {@ . The spring stiness, , can be selected using [34, 40]

— E .
- _RF.J! (9)

whereE is the Young's modulusnd is the number of spatial dimensions of the probl&fgijs the volume
of the master element used ahds the Jacobian of the global element across the local boyndzere the
spring boundary condition is imposed.

4.4, Scale-Bridging with Global-Local Enrichment Functio

The solutionu}, of the ne-scale problem de ned above is used to build gefieed FEM shape func-
tions
%) =" (UL (10)

de ned on the coarse-scale (global) mesh, where the ganrtitf unity function,” , is provided by a global,
coarse FE mesh and! has the role of an enrichment or basis function for the patebes (! ). Hereafter,
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ul is denoted as global-local enrichment functionThe global GFEM space containing shape functions
t1js denoteds3™=""*1( ) and is given by

8 9

_ § Xe R X | g

SgFEM,Hl( )= uP = (U L () + (x)ug (t)(x)§ (11)

| =1 i=1 {Z } |2| ;1 }

global approx.

Iocal approx.

wherel “1 is the index set of nodes enriched at simulation stefi with functionu} computed at (7) and

|
I(t) ggil- u}_l(X)
u® (x) = Hgg U}_Z(X) ;
|
u% ui5(x)

wheregg'j; 21 “1 j = 1;2;3, are nodal degrees of freedom, aﬁ(j*l(x), j = 1;2;3, are the Cartesian
components of d|splacement vectr

The coarse-scale Problem (6) is solved gt 2 SST=™*1( ) and the procedure is repeated at each
damage (or load) evolution step. The hierarchical enrigitroéthe coarse global mesh with a ne-scale
solution is illustrated in Figure 5.

Local Problem

Global Problem ’

Fig. 5. Hierarchical enrichment of the coarse global mesh ieical solutions computed on locally re ned mesh. Onlyethdegrees
of freedom are added to these global nodes (shown with regteplin the global mesh). These enrichments are used toxapiaite
the global solution in the neighborhood of the crack at satiah stegt + 1.

5. Numerical examples

5.1. Intergranular crack propagation

In this section we analyze intergranular brittle crackifig @olycrystalline aggregate by means of the
GFEM for polycrystals with cohesive grain boundaries anddir elastic grains. The geometry and boundary
conditions of the problem are shown in Figure 6. The notclpedisnen is loaded by a uniform tensile stress,

, Which is varied incrementally under quasi-static loadtogditions.

An 80 grain polycrystalline microstructure is used insile process zone depicted in Figure 6. The
process zone is the region in which grains and grain boueslare represented explicitly; outside this zone
the material is a homogeneous continuum. The aggregateatah considered in this study was generated
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Fig. 6. Geometry and boundary conditions for the notchedispen employed in the simulations.

using a centroidal Voronoi tessellation algorithm. Therage grain size is approximately 2in which
corresponds to an average grain-boundary lehQgth 12 m. Since there are 80 grains in the process zone,
the length of the specimenW = 360 m.

The material parameters are taken to be representative aferage polycrystalline alumina, ADs.

We assume the grains to be elastic and isotropic, with YaumgidulusE = 3846 GPa and Poisson's ratio
= 0:237. Plane strain conditions and small elastic strains atadions are assumed.

Non-linearity in the material response is de ned by the W law across grain boundaries. In this
study, we have used the Xu-Needleman cohesive law [41]. ®lewing parameters for this law are
adopted: critical fracture ener@y. = 39:3 ¥m? and grain boundary cohesive strengthay = 0:6 GPa.

The partition of unity adopted in this section is provideddmystant strain triangles. The elements that
intersect the grain boundaries are re ned to the desireel ewillustrated in Figure 3. Since the mesh does
not have to t the aggregate geometry, mesh re nement presethe aspect ratio of the elements [42]. The
re nement level for acceptable accuracy is governed by theaf the fracture process zone along the grain
boundaries as discussed in [43].

Figure 7 shows the aggregate topology near the crack tip. gtire also shows the GFEM discretiza-
tion of the aggregate and the computed crack path. The coplourepresents the normalized von Mises
equivalent stress. Note that the nite element mesh doesowform to grain boundaries and junctions.
Thus mesh generation issues faced by the FEM do not exiseiGH#EM. Therefore, a large number of
randomly generated polycrystalline aggregates can beratically analyzed [43].

The boundary conditions shown in Figure 6 promote and aehmude-I cracking at the specimen
level. However, as shown in Figure 7, local failure at thargi@oundary level is dictated by the granular
arrangement and exhibits both mode-I and mode-II craclkdBy [

5.2. Analysis of three-dimensional cracks

This section presents two applications of the GREdgscribed in Section 4. The rst one deals with
a static quarter penny-shaped crack as illustrated in EigurThis problem is used in the veri cation of
the method using as reference the solutions by Raju and Neydddand Ali [45] for corner cracks. The
second problem deals with the propagation of a small conraekdn a plate subjected to a cyclic load. In
both cases, polynomial enrichments of degoee 3 is adopted at global and local problems.

5.2.1. Quarter penny-shaped crack
The problem consists of a quarter penny-shaped crack thedtthe corner of a plate subjected to a
uniform tensile load at its ends (cf. Figure 8). Displacement constraints are ialposed near the ends
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Seq=Smax
[ .
0 1 2

Fig. 7. Failure characterization in brittle polycrystalgiwthe GFEM: intergranular cracking (20displacement magni cation) and
normalized von-Mises equivalent stress. Note that a umfBEM mesh was used in the computation —the gure also shows su
element used for integration of the weak form over nite eds1ts cut by grain boundaries.

" bx

by

b) Local Problem

a) Initial Global Problem

¢) Crack Surface

Fig. 8. Corner-cracked plate problem subjected to tensikd bad.

of the plate in order to minimize rotations under the applaats. In this problem we consider a quarter
circular crack and thus, in Figure 8= c. In the case of static cracks, the rst step in the GFEMvolves
the solution of the global problem on a mesh enriched witlypamial functions only. Thus, no cracks are
considered at this stage. This problem is hereafter derast¢leinitial global problem This is illustrated
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in Figure 8a. The global mesh is quasi-uniform while in thealgporoblem the mesh is strongly re ned at
the crack front. The ratio between the element size at thekdrant, LS, and the crack size, is taken as
Li=a' 0:03. The ratio between the size of the smallest element in #shrof the global problent.S, and
the crack sizeg, is LS=a = 0:5. Note that in the GFEM, cracks are not explicitly discretized in the global
problem. Instead, they are represented through global-&swichments, i.e. the solution of local problems.
Thus, the global mesh does not change during a simulatioa.fallowing dimensions are adopted for the
plate: Zh=c = 1805, a=t = 0:2 anda=b = 0:04.

Figure 8b shows the local problem where the crack is disétiising analytically de ned enrichment
functions as described in [39]. The size of the local domsigni cantly smaller than the global one. The
local domain is de ned by global elements contained in a loling box with dimensionbx=a = 2; by=a =
2; bzza=2inthex ,y andz directions, respectively. The size of the local domain isuil2% of the
original problem size.

The solution of the global problem enriched with globaldbéunctions is shown in Figure 9. This
problem is hereafter denoted as #r@iched global problemThe global mesh is quite coarse and yet it can
capture the singularity at the crack front.

Fig. 9. Enriched global problem solution.

Figure 10 shows the normalized mode | stress intensity faGteK, extracted from the solution of the
enriched global and local problems. They are denoted as GF&M GL-FEM in the gure, respectively.
K, was extracted using a formulation of the Cut-Bunction Method [38] adapted for the GFEM [46, 47,
48]. The reference solutions by Raju and Newman [44] and4d] pre also shown. The horizontal axis in
the gure denotes the angular position at the crack frontlastrated in Figure 8c. The normalizing factor,

K., is taken as r
a
K = 6 (12)
with Q
a 1:65
Q=1+1464 c : (13)

The example presented in this section shows that Stresssitytdactors (SIFs) extracted from the
GFEM® solution are signi cantly more accurate than those exéddtom the local solution and agrees
very well with the reference solutions. The local solutisrequivalent to one provided by a global-local
FEM analysis, which is commonly used in the industry to hamtbblems involving multiple spatial scales
of interest.
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Fig. 10. Normalized mode | stress intensity factors for eomracka=t = 0:2.

Table 1. Size of the various discretizations in terms of neindf degrees of freedom (DOFs).

Problem | Number of DOFs

Initial Global 10,170
Local 53,436
Enriched Global 10,290

Table 1 shows the size of the various discretizations uséukisolution of this problem. The enriched
global problem capture; very well while adding only 120 global-local enrichment degs of freedom
to the initial global problem. The computational cost of theal problem must also be considered in the
total cost of the GFEM. However, in most practical problems the global problem igmlarger than the
local one. Furthermore, the solution of the enriched glgibablem can be eciently computed using the
solution of the initial global problem [40, 25].

5.2.2. Three-dimensional crack propagation

In this section, we consider the fatigue crack growth sittioteof the corner crack shown in Figure 8
using the GFEM. The plate is subjected to cyclic uniaxial tensioft) in the x direction as illustrated in
the gure. The magnitude of crack front advancement is caimgusing Paris-Erdogan equation [49]

da _ m.
aN - C( K™ (14)
Parameter€ andmare regarded as material constants, white= (1 R)Knaxis the stress intensity factor
range under cyclic loadindr is the ratio of minimum to maximum loads applied in a cycle &pdxis the
stress intensity factor at the maximum loaglax. The reader is referred to Section 4.2 of [50] for further
details on the application of Equation (14) to compute cifackt advance and fatigue life. The following
parameters are adopted for the simulation presented isebi®on: n,x= 12MPa, R=0,C = 0:0001 and

m = 6. Young's modulus and Poisson's ratio are takefcas 2000MPaand = 0:37, respectively. The
direction of crack front propagation is computed usingsstriatensity factors and Salmann's criterion
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[51]. WhenKj;, = 0, as in this example, this criterion is equivalent to théecion of maximum tangential
stress proposed by Erdogan and Sih [52].

The initial crack surface has an elliptical shape with majod minor radiiag andcy, respectively. The
following dimensions are adopted for the initial crack atmatg (cf. Figure 8):ap=cy = 1:25, Zh=cy = 224,
ap=t = 0:165 andag=b = 0:033. Note that the initial crack is even smaller than the osedun the static
case.

Similar to the case of static cracks, the propagating cradiee is not explicitly modeled in the global
problem. Instead, it is represented through global-lonecéments. The initial local domain is de ned by
global elements contained in a bounding box with dimensibaay = 2; by=ag = 2; bz=ag = 2. The size
of the local domain increases during the simulation in otdessccommodate the growing crack surface.
The dimensions of the local domain are selected such thaatlesbx=a, by=a andbz=a remain close to 2.
Figure 11 illustrates the local problem domains and thdirttems at propagation steps 0, 30, 40, 60, 70, 83,
93, 103, 104 and 146.

It is important to mention that in the local domain mesh rement is performed along the crack front.
At the beginning of the simulation, it was adopted a ratiga, ' 0:03, wherea, is the major axis of the
initial crack surface. This ratio was kept approximatelypstant during the crack propagation simulation.
Since the crack changes dramatically in size as it propagksss mesh re nement is required to preserve
the ratioLL=a as the crack propagates. The localized re nement followesctiack front evolution using the
re nement and unre nement technique presented in [50]. Rndther hand, in the enriched global domain
the mesh remains unchanged throughout the entire crackiysimulation. The ratio between the size of
the smallest element in the mesh of the global problegy,and the minor axis of the initial cracky is
LS=c, = 0:77. This ratio is several times larger than what is requicgcitceptable accuracy in the FEM.

(a) step 0 (b) step 30 (c) step 40 (d) step 60 (e) step 70

(f) step 83 (g) step 93 (h) step 103 (i) step 104 () step 146

Fig. 11. Local problem domains and solutions at variouslcgrowth steps. The size of the local domain increases duhirg
simulation in order to accommodate the growing crack serfac

Figures 12 and 13 show the crack surface evolution at step®, @5, 50, 70, 85, 93, 103, 110 and 146.
It can be observed that at step 103 the crack front reachdsott@m surface of the plate and changes its
topology. This type of transition is dicult to simulate using the FEM since the creation of stronggded
meshes tting the crack surface while preserving the aspsa of the elements is not always possible
in this case unless extremely small elements are used. IGREEEVE this can be handled without much
di culty by simply trimming the portion of the crack surfacetthaay have advanced beyond the physical
domain and snapping the crack front to the boundary of theaitormin addition, the global elements are
orders of magnitude larger than those required by the FEMitiar challenge in this simulation is the
signi cant change in size of the crack surface. This recuithat the geometrical representation of the crack
be adapted during the simulation. This process preservedmefrically accurate representation of the
crack front while reducing the number of facets at portiohthe surface that are near at or are far from
the crack front.

Table 2 shows the size of the various discretizations usetdrsolution of this problem. In the ta-
ble, “Initial Global Problem” corresponds to the uncrackgdbal problem which has only polynomial
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(a) step 0 (b) step 20 (c) step 35 (d) step 50 (e) step 70

(f) step 85 (g) step 93 (h) step 103 (i) step 110 (j) step 146

Fig. 12.hp-GFEM discretizations used at local domains. The localtsmis are used as enrichments for the global problem.

(a) step0 (b) step 20 (c) step 35 (d) step 50 (e) step 70

(f) step 85 (g) step 93 (h) step 103 (i) step 110 () step 146

Fig. 13. Evolution of the crack surface in the enriched glgibablem. The global mesh is not re ned during the simulati@he crack
is approximated by global-local enrichments only. The krsurface changes topology around step 103 after the crankifeaches
the bottom of the plate.

enrichments and no crack. The size of the problems changég &sack grows. However, the number of
global-local enrichments added to the initial global pesblis at most 543, which is only 4.1% of the size
of the uncracked global problem.

Table 2. Size of the various discretizations in terms of nenatb degrees of freedom (DOFs). The “Initial Global Problearresponds
to the uncracked global problem which has only polynomigiciments and no crack.

Problem | Min. Number of DOFs Max Number of DOFs
Initial Global 13,110 13,110
Local 43,428 113,988
Enriched Global 13,310 13,653

5.3. Three-dimensional beam with localized plasticity

The scope of the GFEW| as mentioned in Section 1, is not limited to linear elastbfems and it
can be applied to problems involving non-linearities. Towfulation of the GFEM remains very similar
to as described in Section 4. This section illustrates thectveness of the GFEMin solving a three-
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dimensional elasto-plastic mechanics problem with laealiplasticity. Further details and speci cs of the
GFEM for elasto-plastic problems are given in [34].

Figure 14 shows a bi-material cantilever beam subjecteduloifarm traction in the vertical direction
and magnitudg, = 1:50, applied on the right-most face of the beam. The crosteseaf the beam is 11.
This gure also shows the global nite element mesh, a unifionesh of 6 (10 4 4) tetrahedron elements,
used to solve the problem, along with the boundary conditishich the beam is subjected to. This mesh
was generated by rst creating a (104 4) structured mesh of hexahedral elements and then reglacin
each element by six tetrahedral elements. A cubic polynicampigroximation is used for all elements in the
mesh to capture bending of the beam accurately.

Fig. 14. A bi-material cantilever beam subjected to cortsttattion on the right end. The bottom gure features thetenelement
mesh with the boundary conditions applied. Green arrowseneft face represent the xed displacement boundary damd, and
the red arrows on the right face represent the traction.

A linear isotropic hardening model is assumed to de ne théemia properties for the beam, which are
given in Table 3. The shaded region shown in Figure 14 has erlovitial yield stress (, = 15) than the
material in the rest of the beam. This will lead, for the loadll considered in this problem, to a localized
yielding in that layer of global elements. The material ifdees are located at element boundaries. The
case of interfaces not tting element boundaries can be leanbly proper enrichment functions at local
problems. An example of this class of functions is availail¢3]. The relative norm of the residual is
used as the tolerance criterion for the convergence of NeRphson iterations, and the tolerance value is
taken as 10*. A total of 30 uniform load steps are used to solve this n@aiproblem.

The procedure to analyze this problem using the GPERs described in Section 4 is illustrated in
Figure 15. The rst step in this procedure involves the Solutof the global problem on a coarse mesh
with the full load applied and assuming a linear elastic matenodel. This problem is hereafter denoted
as theinitial global problem A local domain, which fully contains the region with plasstrains, is then
automatically extracted from this coarse global mesh asstio the gure. The solution of the initial
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Table 3. Material parameters of the isotropic hardeningehaded for the bi-material beam problem.

Material parameters
Young's modulusE) 7000
Poisson's ratio () 0.20
Initial yield stress (y)  70.0
Plastic Modulus i) 500

global problem, obtained in the rst step is used to preschbundary conditions for the local problem in
the form of spring boundary conditions. The spring sgss () is selected based on Equation (9), and for
this problem, a value of = 14; 000 is used. The local problem is solved nonlinearly usingtda-Raphson
iterations for the nal load step with the assumption of Enésotropic hardening material model, given in
Table 3. The computed nonlinear local solution is then useshtich the global solution space at certain
nodes in the coarse global mesh (shown as red spheres ireRigur Thisenriched global problens then
solved with the same nonlinear material model and a totdlidf/tuniform load steps.

Fig. 15. Figure showing the algorithm for the nonlinear sioliof the 3-D beam problem using GFEMRed nodes in the enriched
global problem indicate nodes with global-local enrichisen

The reference solution to this problem is obtained usinch\fh&FEM, which applies mesh re nement
and enrichment to the global problem like in the standgrdFrEM [38] and is a very robust and e&ient
approach to capture ne scale behavior. TieGFEM discretization shown in Figure 17 uses the same
element sizeh and polynomial ordep as those selected for the local problem in the case of GEEM
Figures 16 and 17 show the contour plots of the distributicth@ norm of plastic strain tensor

KPk= B2+ Bl 4B b2y (15)
obtained with the GFEM andhp-GFEM, respectively. This norm is equivalent to the Frobsmorm of

a second order tensor. As can be seen from the gures, thég&sin distribution in the two cases are
very similar, in spite of using a coarse global mesh in the cdsSFEM. Figure 18 shows the distribution
of the norm of plastic strain tensor for the GFEM solutionadbéd by solving the problem on the coarse
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global mesh, i.e., without re nementin the region with localized plasticity. The piigsstrain distribution
is clearly not well captured by this discretization.

Fig. 16. Figure showing the distribution of the norm of plastrain tensor in the case of GFEM

Fig. 17. Figure showing the distribution of the norm of piastrain tensor in the case bp-GFEM.

Figure 19 shows the plot of the displacement component at the centroid of the extreme fagiet of
the beam against the load step for the three discretizatiessribed above. The non-linear response of the
problem is quite evident from this plot and shows that the BFEsolution agrees very well with that of
hp-GFEM. Even though, the displacement, which is a global response quantity, obdifireen the GFEM
solution on a coarse nite element mesh is not too far fromréference solution, the local distribution
of plastic strains is signi cantly dierent, as seen from gures 16, 17 and 18. Therefore, a coanse
element model is not suitable for predicting, for exampldoaalized failure of the beam. In contrast,
the local distribution of plastic strains predicted by thEEBIY approach is clearly close to the reference
solution bp-GFEM solution).

Table 4 lists the number of DOFs corresponding to each offtreeetdiscretizations used to solve this
problem. The GFEM captures the global and localized responses very well wish the addition of
225E 8475 8250) degrees of freedom to the coarse global meshhfH@&-EM discretization, in contrast,
requires many more degrees of freedom to achieve compaetileacy.

Table 5 lists the number of Newton-Raphson iterations al é@ad step for the cases of GFEMnd
hp-GFEM. The problem behaves linearly up td"llbad step, and thereby leading to just one iteration in the
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Fig. 18. Figure showing the distribution of the norm of piastrain tensor in the case of GFEM on a coarse global mesénriched
with global-local functions.

Un I
—* GFEM’
~ -« hp-GFEM (Reference Solution
i s---o GFEM on a coarse global me|
-0.05— _

y-displacement
)
T

-0.15

Load Step

Fig. 19. Plot ofy-displacement at the centroid of the extreme right face @btam against the load step.

Table 4. Size of the problem in terms of number of degreeseefdom (DOFs) for dierent methods.

Method | Number of DOFs
GFEM with a coarse mes 8250
GFEM 8475
hp-GFEM 126,630

rst 11 load steps. From this table, it can be seen that the/l¥Eakes equal or lesser number of iterations
at each load step as when comparetiggGFEM. Since the GFEM discretization has signi cantly fewer
DOFs than théap-GFEM and the local problem is solved only once, we can calecthat the computational
cost of the GFEM is lower than that of thep-GFEM.
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Table 5. Number of Newton-Raphson iterations to solve thdinear beam problem.

Load || Number of iterations
step || hp-GFEM | GFEM¥
11 1

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

~N~Noo~NoogoaprhooabhoooaobbboobdobdopE

R R T T I S S A i )

6. Conclusions

The examples presented in Section 5.2 demonstrate thatRE#¢ is able to simulate three-dimen-
sional fracture mechanics problems using global disa#tins with elements that are orders of magnitude
larger than those required by the FEM. This leads to glolailpms of much reduced dimension than in the
FEM. The computational cost of the GFEMan be further reduced. In this paper a single local problem
is de ned, for example, at each crack propagation step. Wewe local problem can be de ned for each
node of the coarse-scale mesh whose partition of unity stpptersects the crack surface. These local
problems can be eciently solved in parallel, sinceo communication among processors solvingedent
local problems is requirefb4]. This leads to very scalable computations even on shraemory machines
[54].

This paper also demonstrates that the GFEMnNot limited to linear problems. A problem involving a
non-linear material response is solved to demonstrateltlissshown that the GFERis able to capture de-
tails of non-linear strain elds using coarse meshes. ThamgXe presented in Section 5.3 also demonstrates
that the GFEM!' takes equal or lesser number of Newton iterations at eachsitep as when compared to
available discretization approaches. This translatesameduced computational cost for the method.

While not explored in this paper, it is conceivable to conebihe GFEM' with the GFEM for poly-
crystals described in Section 3. This would enable the efiszation of polycrystalline micro-structures at
the local problems while keeping the global discretizatioarse. This and other similar ideas are currently
being investigated by our groups.
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