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Abstract

The generalized FEM (GFEM) has been successfully applied tothe simulation of dynamic propagating fractures,
polycrystalline and �ber-reinforced microstructures, porous materials, etc. A-priori knowledge about the solutionof
these problems are used in the de�nition of their GFEM approximation spaces. This leads to more accurate and robust
simulations than available �nite element methods while relaxing some meshing requirements. This is demonstrated in a
simulation of intergranular crack propagation in a brittlepolycrystal using simple background meshes.

For many classes of problems – like those with material non-linearities or involving multiscale phenomena – a-priori
knowledge of the solution behavior is limited. In this paper, we present a GFEM based on the solution of interdependent
global (structural) and �ne-scale or local problems. The local problems focus on the resolution of �ne-scale features
of the solution in the vicinity of, e.g., evolving fracture process zones while the global problem addresses the macro-
scale structural behavior. Fine-scale solutions are accurately solved using anhp-adaptive GFEM and thus the proposed
method does not rely on analytical solutions. These solutions are embedded into the global solution space using the
partition of unity method. This GFEM enables accurate modeling of problems involving multiple scales of interest
using meshes with elements that are orders of magnitude larger than those required by the FEM. Numerical examples
illustrating the application of this class of GFEM to high-cycle fatigue crack growth of small cracks and to problems
exhibiting localized non-linear material responses are presented.
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1. Introduction

Many problems of engineering relevance exhibit strongly interacting multiscale e� ects. Their modeling
and simulation demand analytical and computational tools that do not assume a view of nature that partitions
phenomena into categories of scales [1]. One example of particular interest – and which is part of the
motivation behind this work – lies in the structural analysis of stealth aircrafts. To increase the stealthiness
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of aircrafts like the one shown in Figure 1, a high temperature panel is used at the exhausts of the embedded
engines. These panels are subjected to an intense thermo-mechanical-acoustic environment and can fail
in high-cycle fatigue due to the acoustic and vibration loading, in low-cycle fatigue due to thermal and
mechanical loading, and by material degradation or oxidation due to the extreme thermal environment [2].
Experiments in these environments are di� cult, limited and extremely costly.

Fig. 1. Micro-crack growth in structures subjected to intense thermo, mechanical and acoustic loads involves complex interactions over
vastly di� erent scales [http://media.defenseindustrydaily.com/images/].

The analysis of this class of problems with the FEM requires extremely re�ned meshes. This may cre-
ate severe restrictions in maximum time step allowed for accurate time integration of the solution [2, 3].
Dynamic load balancing for e� cient parallel computations becomes quite challenging forthis type of dis-
cretization [3]. In addition, the construction of properlyadapted discretizations can be quite costly since it
demands several adaptive cycles on large computational models. Another severe issue with a Direct Numer-
ical Simulation (DNS) approach based on available methods is the ill-conditioning of the resulting system of
equations [4] due to the extremely large ratio between element sizes in the FEM mesh. One workaround for
this issue is to perform the computations using high-precision 128-bit �oating-point arithmetic [3]. How-
ever, few compilers or software libraries can handle high-precision arithmetic, and those that do so are
extremely slow – often 50 to 100 times slower than conventional 64-bit �oating-point arithmetic [3].

The generalized FEM [5, 6, 7, 8, 9] is an instance of the so-called partition of unity method which has
its origins in the works of Babu�skaet al. [10, 6, 11] and Duarte and Oden [12, 13, 14, 15, 8]. The extended
FEM [16, 17] and several other methods proposed in recent years can also be formulated as special cases
of the partition of unity method. Recent reviews of G/XFEM can be found in [18, 19]. The partition of
unity in the Generalized FEM (GFEM) is provided by low order Lagrangian �nite element shape functions.
These functions are combined with local function approximation spaces built around a-priori knowledge
about the solution of a given problem. These functions provide more accurate and robust simulations than
the polynomial functions traditionally used in the standard FEM while relaxing some meshing requirements
of the FEM. An example of this class of GFEM based on analytically derived local spaces is the GFEM
for polycrystals proposed in [20]. In this GFEM, discretization of polycrystalline micro-structures requires
only a simple background mesh on which the polycrystalline topology is superimposed.

In many classes of problems – like those involving multiscale phenomena or material non-linearities –
local approximation spaces are, in general, not amenable toanalytical derivation. To overcome this limita-
tion, basis functions for these spaces are de�ned from the numerical solution of boundary-value problems.
Section 4 summarizes the so-called Generalized Finite Element with global-local enrichments (GFEMgl).
In this method, basis functions are numerically de�ned using concepts from the classical global-local �nite
element method [21, 22, 23, 24] and a multiscale decomposition of the solution of a boundary or initial
value problem is performed. The coarse scale component of the solution is approximated by discretizations
de�ned on coarse �nite element meshes. The �ne-scale component is, in turn, approximated by the solution
of local problems de�ned in neighborhoods of regions exhibiting multiscale e� ects such as in the neighbor-
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hood of micro-cracks. Boundary conditions for the local problems are provided by the available solution at a
crack growth step. The methodology enables accurate modeling of, e.g., 3-D propagating cracks on meshes
with elements that are orders of magnitude larger than thoserequired by the FEM. The coarse-scale mesh
remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape
functions, leads to signi�cant computational savings whencompared with a DNS approach [25].

A related method aimed at modeling interactions among multiple static cracks is the multiscale method
of Loehnert and Belytschko [26]. Other related methods for two-dimensional static cracks include the
spider-XFEM [27] and the reduced basis enrichment for the XFEM [28] of Chahine et al.; the method of
Menk and Bordas for fracture of bi-material systems [29]; the harmonic enrichment functions of Mousavi
et al. [30] for two-dimensional branched cracks.

The outline of this paper is as follows. Section 2 summarizesthe main ingredients of GFEM approxi-
mation spaces. The GFEM for polycrystals is reviewed in Section 3 and an application of this method to
the simulation of intergranular crack propagation in a brittle polycrystal is presented in Section 5.1. The
formulation of a GFEMgl for 3-D crack growth is presented in Section 4. Numerical examples illustrating
the application of this class of GFEM to high-cycle fatigue crack growth of small cracks and to problems ex-
hibiting localized non-linear material responses are presented in Sections 5.2 and 5.3. The main conclusions
are outlined in Section 6.

2. The Generalized Finite Element Method

xa

f a i(xxx)

La i(xxx)

j a (xxx)

�

=

Fig. 2. The generalized FEM shape func-
tion � � i at x� is constructed by consider-
ing the product of the Lagrangian �nite
element shape function' � and the non-
polynomial enrichmentL� i .

A GFEM approximation space (i.e., a trial space) is based on
three components: (a) patches or clouds, (b) a partition of unity, and
(c) local approximation spaces. We describe these components as
follows:
(a) Patches or Clouds! � : In the generalized �nite element method,
a cloud! � is given by the union of the �nite elements sharing node
� of the �nite element mesh covering the domain of interest
 . The
setf! � gN

� =1, in a �nite element mesh withN nodes, is an open cover
of 
 , i.e.,


 = [ N
� =1! � :

(b) Partition of Unity Subordinate to the Coverf! � gN
� =1: The La-

grangian �nite element shape functions' � ; � = 1; : : : ;N, constitute
a partition of unity, i.e.,

P N
� =1 ' � (x) = 1 for all x in 
 . This is a key

property used in partition of unity methods.
(c) Cloud or Patch Approximation Spaces� � : To each patch! � , we
associate anm� -dimensional space� � of functions de�ned on! � ,
namely,

� � = spanfL� i ; 1 � i � m� ; L� i 2 H1(! � )g:

The basis functionsL� i above are also known asenrichment func-
tions.
The trial space for the GFEM is given by

SGFEM(
 ) �
NX

� =1

' � � � = spanf� � i := ' � L� i ; 1 � i � m� ; 1 � � � Ng:

The function
� � i(x) = ' � (x)L� i(x) (no summation on� ); (1)

where� is a node in the �nite element mesh, is called a GFEM shape function. Figure 2 illustrates the
construction of GFEM shape functions in a two-dimensional domain.
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The enrichment functions in� � are chosen carefully to mimic the properties of the functionto be approx-
imated locally in! � . This is often done by using the available information on theapproximated function.
Choosing suitable patch spaces for a particular problem is central to the approximation property of GFEM.

3. A GFEM for Polycrystals

The GFEM for polycrystals [20] is illustrated in Figure 3. Discretization of polycrystalline micro-
structres with this method requires only a simple background mesh on which the polycrystalline topology
is superimposed. Grain boundaries and junctions can be arbitrarily located within elements. The main
concepts used in this GFEM are summarized. Details can be found in [20].

(b)

= +

(c)(a)

(d)

Fig. 3. In the GFEM for polycrystals (a), a polycrystalline aggregate is described by superimposing a polycrystalline topology (b) on a
background mesh (c). The quality of the numerical solution can be improved by local mesh re�nement (d). Note that the �nite element
mesh does not conform to grain boundaries and junctions.

Consider the following decomposition of the displacement �eldu of a polycrystal comprisingNG grains

u = û +
NGX

j=1

H j ũ j ; (2)

where the generalizedH j function is equal to 1 in grainj and 0 otherwise. Enrichment functions,L� i , used
at node� are taken as the set of functionsH j that are discontinuous on cloud! � [20]. A traction-separation
law is used at grain boundaries and a constitutive relationship describing the material behavior is adopted
within the grains. An application of this method to the simulation of intergranular crack propagation in a
brittle polycrystal is presented in Section 5.1. It is to be noted that the method is capable of describing
more complex failure scenario with combined transgranularand intergranular cracking, provided rules for
the transition from one type to the other are de�ned.



J. Garzon et al./ Procedia IUTAM 00 (2011) 1–20 5

4. GFEMgl: Bridging Scales with Global-Local Enrichment Functions

Global-local enrichment functions can be de�ned for many classes of problems like interacting 3-D
cracks [31], propagating 3-D fractures [25] or problems exhibiting sharp thermal gradients [32, 33]. These
functions can also be developed for problems involving localized non-linear material responses [34]. They
are able to represent �ne-scale responses oncoarse, macroscale, �nite element meshes and to fully account
for interactions among scales. Detailed mathematical analysis of this class of GFEM is presented in [35, 36].

In this section, we consider the case of 3-D simulations of propagating mechanically-short cracks. These
cracks are much smaller than any dimension of a structural component but larger than the details of the
material micro-structure [37].

4.1. Problem Formulation

Consider a domain
 � R3. The boundary@
 is decomposed as@
 = Su [ S f with Su \ S f = ; . The
equilibrium equations are given by

r � � = 0 in 
 : (3)

The following boundary conditions are prescribed on@
 :

� � n = t̄ on S f ; � � n = � (ū � u) onSu ; (4)

where n is the outward unit normal vector to@
 and t̄ are prescribed tractions. The second equation
represents a spring or Robin boundary condition [38]:� is the sti� ness of the spring,̄u is displacement
imposed at the base of the spring system andu is the displacement at the boundary of the body. Dirichlet
boundary conditions can be treated as a limiting case of thistype of boundary conditions [38].

The constitutive relations may be given by the generalized Hooke's law,� = C : " ; whereC is Hooke's
tensor, or by a non-linear stress-strain relation. In this case, the classical rate-independentJ2 �ow theory for
small strains with isotropic hardening is adopted. The weakformulation of the problem described above is
given by:

Find u 2 H1(
 ), such that8 v 2 H1(
 )
Z



� (u) : " (v)d
 + �

Z

Su
u � vdS =

Z

S f
t̄ � vdS + �

Z

Su
ū � vdS; (5)

whereH1(
 ) is a Hilbert space de�ned on
 .

4.2. Computation of Global-Local Enrichments: Coarse-Scale Problem at Simulation Step t

Let ut
G denote a generalized FEM approximation of the Problem (5) atdamage evolution (or load) step

t. This approximation is the solution of the following globalproblem:
Find ut

G 2 SGFEM;t
G (
 ) � H1(
 ) such that,8 vt

G 2 SGFEM;t
G (
 )

Z



� (ut

G) : " (vt
G)d
 + �

Z

Su
ut

G � vt
GdS =

Z

S f
t̄t � vt

GdS + �
Z

Su
ūt � vt

GdS; (6)

whereSGFEM;t
G (
 ) � H1(
 ) is the generalized FEM space at simulation stept. The enrichment functions

in SGFEM;t
G (
 ) are de�ned in local spaces andhave to be computed on-the-�y. We describe a �ne-scale

problem in the next subsection to achieve this goal. The meshused to solve Problem (6) is typically a
coarse, quasi-uniform mesh,regardless of the presence of cracks or localized non-linear responses in the
domain. Figure 4 illustrates one such discretization. Problem (6)leads to a system of non-linear equations
for the unknown degrees of freedom ofut

G.
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Global Problem

BC from stept

Local Problem

Fig. 4. Illustration of the GFEMgl for crack propagation. The �gure shows the neighborhood
 L of a small propagating crack in the
global domain. The solution of the global problem at simulation stept provides boundary conditions for the extracted local domain.

4.3. Computation of Global-Local Enrichments: Fine-ScaleProblems at Simulation Step t

The GFEMgl involves the solution of a �ne-scale boundary value problemde�ned at a neighborhood

 L of a �ne-scale feature like the crack shown in Figure 4. Having the global approximationut

G at sim-
ulation stept, the following �ne-scale problem on
 L is solved to �nd enrichment functions for the space
SGFEM;t+1

G (
 ):
Find ut

L 2 SGFEM;t
L (
 L) � H1(
 L), such that8 vt

L 2 SGFEM;t
L (
 L)

Z


 L

� (ut
L) : " (vt

L)d
 + �
Z

@
 L\ Su
ut

L � vt
LdS + �

Z

@
 Ln(@
 L\ @
 )
ut

L � vt
LdS

=
Z

@
 L\ S f
t̄t � vt

LdS + �
Z

@
 L\ Su
ūt � vt

LdS +
Z

@
 Ln(@
 L\ @
 )

�
t(ut

G) + � ut
G

�
� vt

LdS; (7)

whereSGFEM;t
L (
 L) is a discretization ofH1(
 L) using GFEM shape functions presented in [39].

A key aspect of Problem (7) is the use of the coarse-scale solution at simulation stept, ut
G, to compute

the boundary condition on@
 Ln(@
 L \ @
 ). The numerical nature of the coarse-scale solution used for the
�ne-scale boundary conditions leads to the use of the terminology “inexact boundary conditions”. Exact
boundary conditions are prescribed on portions of@
 L that intersect eitherSu or S f . The traction vector,
t(ut

G), that appears in the integral over@
 Ln(@
 L \ @
 ) can be computed using,

t(ut
G) = n̂ � � (ut

G) (8)

wheren̂ is the outward unit normal vector to@
 L. The spring sti� ness,� , can be selected using [34, 40]

� =
E

nd
p

V0J
; (9)

whereE is the Young's modulus,nd is the number of spatial dimensions of the problem,V0 is the volume
of the master element used andJ is the Jacobian of the global element across the local boundary where the
spring boundary condition is imposed.

4.4. Scale-Bridging with Global-Local Enrichment Functions

The solution,ut
L, of the �ne-scale problem de�ned above is used to build generalized FEM shape func-

tions
� t+1

� (x) := ' � (x)ut
L(x) (10)

de�ned on the coarse-scale (global) mesh, where the partition of unity function,' � , is provided by a global,
coarse, FE mesh andut

L has the role of an enrichment or basis function for the patch space� � (! � ). Hereafter,
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ut
L is denoted as aglobal-local enrichment function. The global GFEM space containing shape functions

� t+1
� i is denotedSGFEM;t+1

G (
 ) and is given by

SGFEM;t+1
G (
 ) =

8
>>>>>>>>>>><
>>>>>>>>>>>:

uhp =
NGX

� =1

D�X

i=1

' � (x) u � iL� i(x)

|                         {z                         }
global approx.

+
X

� 2I t+1
gl

' � (x)ugl(t)
� (x)

|                  {z                  }
local approx.

9
>>>>>>>>>>>=
>>>>>>>>>>>;

; (11)

whereI t+1
gl is the index set of nodes enriched at simulation stept + 1 with functionut

L computed at (7) and

ugl(t)
� (x) =

2
666666666664

ugl
� 1 ut

L1(x)

ugl
� 2 ut

L2(x)

ugl
� 3 ut

L3(x)

3
777777777775
;

where ugl
� j ; � 2 I t+1

gl ; j = 1; 2; 3, are nodal degrees of freedom, andut
L j(x); j = 1; 2; 3, are the Cartesian

components of displacement vectorut
L.

The coarse-scale Problem (6) is solved forut+1
G 2 SGFEM;t+1

G (
 ) and the procedure is repeated at each
damage (or load) evolution step. The hierarchical enrichment of the coarse global mesh with a �ne-scale
solution is illustrated in Figure 5.

Local Problem

Enrichment for stept + 1

Global Problem

Fig. 5. Hierarchical enrichment of the coarse global mesh with local solutions computed on locally re�ned mesh. Only three degrees
of freedom are added to these global nodes (shown with red spheres in the global mesh). These enrichments are used to approximate
the global solution in the neighborhood of the crack at simulation stept + 1.

5. Numerical examples

5.1. Intergranular crack propagation

In this section we analyze intergranular brittle cracking of a polycrystalline aggregate by means of the
GFEM for polycrystals with cohesive grain boundaries and linear elastic grains. The geometry and boundary
conditions of the problem are shown in Figure 6. The notched specimen is loaded by a uniform tensile stress,
� , which is varied incrementally under quasi-static loadingconditions.

An 80 grain polycrystalline microstructure is used inside the process zone depicted in Figure 6. The
process zone is the region in which grains and grain boundaries are represented explicitly; outside this zone
the material is a homogeneous continuum. The aggregate realization considered in this study was generated
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Fig. 6. Geometry and boundary conditions for the notched specimen employed in the simulations.

using a centroidal Voronoi tessellation algorithm. The average grain size is approximately 21� m which
corresponds to an average grain-boundary lengthlgb � 12 � m. Since there are 80 grains in the process zone,
the length of the specimen isW = 360� m.

The material parameters are taken to be representative of anaverage polycrystalline alumina, Al2O3.
We assume the grains to be elastic and isotropic, with Young's modulusE = 384:6 GPa and Poisson's ratio
� = 0:237. Plane strain conditions and small elastic strains and rotations are assumed.

Non-linearity in the material response is de�ned by the cohesive law across grain boundaries. In this
study, we have used the Xu-Needleman cohesive law [41]. The following parameters for this law are
adopted: critical fracture energyGIc = 39:3 J/m2 and grain boundary cohesive strength� max = 0:6 GPa.

The partition of unity adopted in this section is provided byconstant strain triangles. The elements that
intersect the grain boundaries are re�ned to the desired level as illustrated in Figure 3. Since the mesh does
not have to �t the aggregate geometry, mesh re�nement preserves the aspect ratio of the elements [42]. The
re�nement level for acceptable accuracy is governed by the size of the fracture process zone along the grain
boundaries as discussed in [43].

Figure 7 shows the aggregate topology near the crack tip. The�gure also shows the GFEM discretiza-
tion of the aggregate and the computed crack path. The contour plot represents the normalized von Mises
equivalent stress. Note that the �nite element mesh does notconform to grain boundaries and junctions.
Thus mesh generation issues faced by the FEM do not exist in the GFEM. Therefore, a large number of
randomly generated polycrystalline aggregates can be automatically analyzed [43].

The boundary conditions shown in Figure 6 promote and achieve mode-I cracking at the specimen
level. However, as shown in Figure 7, local failure at the grain-boundary level is dictated by the granular
arrangement and exhibits both mode-I and mode-II cracking [43].

5.2. Analysis of three-dimensional cracks
This section presents two applications of the GFEMgl described in Section 4. The �rst one deals with

a static quarter penny-shaped crack as illustrated in Figure 8. This problem is used in the veri�cation of
the method using as reference the solutions by Raju and Newman [44] and Ali [45] for corner cracks. The
second problem deals with the propagation of a small corner crack in a plate subjected to a cyclic load. In
both cases, polynomial enrichments of degreep = 3 is adopted at global and local problems.

5.2.1. Quarter penny-shaped crack
The problem consists of a quarter penny-shaped crack located at the corner of a plate subjected to a

uniform tensile load� at its ends (cf. Figure 8). Displacement constraints are also imposed near the ends
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seq=smax

0 1 2

Fig. 7. Failure characterization in brittle polycrystals with the GFEM: intergranular cracking (20� displacement magni�cation) and
normalized von-Mises equivalent stress. Note that a uniform FEM mesh was used in the computation —the �gure also shows sub-
element used for integration of the weak form over �nite elements cut by grain boundaries.

a) Initial Global Problem

b) Local Problem

c) Crack Surface

c

a

xz

y

h

h

t

b

' bx

' by

' bz

�

�

Fig. 8. Corner-cracked plate problem subjected to tensile axial load.

of the plate in order to minimize rotations under the appliedloads. In this problem we consider a quarter
circular crack and thus, in Figure 8c,a = c. In the case of static cracks, the �rst step in the GFEMgl involves
the solution of the global problem on a mesh enriched with polynomial functions only. Thus, no cracks are
considered at this stage. This problem is hereafter denotedas theinitial global problem. This is illustrated
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in Figure 8a. The global mesh is quasi-uniform while in the local problem the mesh is strongly re�ned at
the crack front. The ratio between the element size at the crack front, LL

e, and the crack size,a, is taken as
LL

e=a ' 0:03. The ratio between the size of the smallest element in the mesh of the global problem,LG
e , and

the crack size,a, is LG
e =a = 0:5. Note that in the GFEMgl, cracks are not explicitly discretized in the global

problem. Instead, they are represented through global-local enrichments, i.e. the solution of local problems.
Thus, the global mesh does not change during a simulation. The following dimensions are adopted for the
plate: 2h=c = 180:5, a=t = 0:2 anda=b = 0:04.

Figure 8b shows the local problem where the crack is discretized using analytically de�ned enrichment
functions as described in [39]. The size of the local domain is signi�cantly smaller than the global one. The
local domain is de�ned by global elements contained in a bounding box with dimensionsbx=a = 2; by=a =
2; bz=a = 2 in thex� , y� andz� directions, respectively. The size of the local domain is about 2% of the
original problem size.

The solution of the global problem enriched with global-local functions is shown in Figure 9. This
problem is hereafter denoted as theenriched global problem. The global mesh is quite coarse and yet it can
capture the singularity at the crack front.

Fig. 9. Enriched global problem solution.

Figure 10 shows the normalized mode I stress intensity factor KI =Kr extracted from the solution of the
enriched global and local problems. They are denoted as GFEMgl and GL-FEM in the �gure, respectively.
KI was extracted using a formulation of the Cut-O� Function Method [38] adapted for the GFEM [46, 47,
48]. The reference solutions by Raju and Newman [44] and Ali [45] are also shown. The horizontal axis in
the �gure denotes the angular position at the crack front as illustrated in Figure 8c. The normalizing factor,
Kr , is taken as

Kr = �
r

� a
Q

(12)

with Q

Q = 1 + 1:464
� a
c

� 1:65
: (13)

The example presented in this section shows that Stress Intensity Factors (SIFs) extracted from the
GFEMgl solution are signi�cantly more accurate than those extracted from the local solution and agrees
very well with the reference solutions. The local solution is equivalent to one provided by a global-local
FEM analysis, which is commonly used in the industry to handle problems involving multiple spatial scales
of interest.
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Fig. 10. Normalized mode I stress intensity factors for corner crack,a=t = 0:2.

Table 1. Size of the various discretizations in terms of number of degrees of freedom (DOFs).
Problem Number of DOFs

Initial Global 10,170
Local 53,436

Enriched Global 10,290

Table 1 shows the size of the various discretizations used inthe solution of this problem. The enriched
global problem capturesKI very well while adding only 120 global-local enrichment degrees of freedom
to the initial global problem. The computational cost of thelocal problem must also be considered in the
total cost of the GFEMgl. However, in most practical problems the global problem is much larger than the
local one. Furthermore, the solution of the enriched globalproblem can be e� ciently computed using the
solution of the initial global problem [40, 25].

5.2.2. Three-dimensional crack propagation
In this section, we consider the fatigue crack growth simulation of the corner crack shown in Figure 8

using the GFEMgl. The plate is subjected to cyclic uniaxial tension� (t) in the x� direction as illustrated in
the �gure. The magnitude of crack front advancement is computed using Paris-Erdogan equation [49]

da
dN

= C (� K)m : (14)

ParametersC andmare regarded as material constants, while� K = (1� R)Kmax is the stress intensity factor
range under cyclic loading,R is the ratio of minimum to maximum loads applied in a cycle andKmax is the
stress intensity factor at the maximum load� max. The reader is referred to Section 4.2 of [50] for further
details on the application of Equation (14) to compute crackfront advance and fatigue life. The following
parameters are adopted for the simulation presented in thissection:� max = 12MPa, R = 0,C = 0:0001 and
m = 6. Young's modulus and Poisson's ratio are taken asE = 2000MPa and� = 0:37, respectively. The
direction of crack front propagation is computed using stress intensity factors and Schöllmann's criterion
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[51]. WhenKIII = 0, as in this example, this criterion is equivalent to the criterion of maximum tangential
stress proposed by Erdogan and Sih [52].

The initial crack surface has an elliptical shape with majorand minor radiia0 andc0, respectively. The
following dimensions are adopted for the initial crack and plate (cf. Figure 8):a0=c0 = 1:25, 2h=c0 = 224,
a0=t = 0:165 anda0=b = 0:033. Note that the initial crack is even smaller than the one used in the static
case.

Similar to the case of static cracks, the propagating crack surface is not explicitly modeled in the global
problem. Instead, it is represented through global-local enrichments. The initial local domain is de�ned by
global elements contained in a bounding box with dimensionsbx=a0 = 2; by=a0 = 2; bz=a0 = 2. The size
of the local domain increases during the simulation in orderto accommodate the growing crack surface.
The dimensions of the local domain are selected such that theratiosbx=a, by=a andbz=a remain close to 2.
Figure 11 illustrates the local problem domains and their solutions at propagation steps 0, 30, 40, 60, 70, 83,
93, 103, 104 and 146.

It is important to mention that in the local domain mesh re�nement is performed along the crack front.
At the beginning of the simulation, it was adopted a ratioLL

e=a0 ' 0:03, wherea0 is the major axis of the
initial crack surface. This ratio was kept approximately constant during the crack propagation simulation.
Since the crack changes dramatically in size as it propagates, less mesh re�nement is required to preserve
the ratioLL

e=a as the crack propagates. The localized re�nement follows the crack front evolution using the
re�nement and unre�nement technique presented in [50]. On the other hand, in the enriched global domain
the mesh remains unchanged throughout the entire crack growth simulation. The ratio between the size of
the smallest element in the mesh of the global problem,LG

e , and the minor axis of the initial crack,c0 is
LG

e =c0 = 0:77. This ratio is several times larger than what is required for acceptable accuracy in the FEM.

(a) step 0 (b) step 30 (c) step 40 (d) step 60 (e) step 70

(f) step 83 (g) step 93 (h) step 103 (i) step 104 (j) step 146

Fig. 11. Local problem domains and solutions at various crack growth steps. The size of the local domain increases duringthe
simulation in order to accommodate the growing crack surface.

Figures 12 and 13 show the crack surface evolution at steps 0,20, 35, 50, 70, 85, 93, 103, 110 and 146.
It can be observed that at step 103 the crack front reaches thebottom surface of the plate and changes its
topology. This type of transition is di� cult to simulate using the FEM since the creation of stronglygraded
meshes �tting the crack surface while preserving the aspectratio of the elements is not always possible
in this case unless extremely small elements are used. In theGFEMgl this can be handled without much
di� culty by simply trimming the portion of the crack surface that may have advanced beyond the physical
domain and snapping the crack front to the boundary of the domain. In addition, the global elements are
orders of magnitude larger than those required by the FEM. Another challenge in this simulation is the
signi�cant change in size of the crack surface. This requires that the geometrical representation of the crack
be adapted during the simulation. This process preserves a geometrically accurate representation of the
crack front while reducing the number of facets at portions of the surface that are near �at or are far from
the crack front.

Table 2 shows the size of the various discretizations used inthe solution of this problem. In the ta-
ble, “Initial Global Problem” corresponds to the uncrackedglobal problem which has only polynomial
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(a) step 0 (b) step 20 (c) step 35 (d) step 50 (e) step 70

(f) step 85 (g) step 93 (h) step 103 (i) step 110 (j) step 146

Fig. 12.hp-GFEM discretizations used at local domains. The local solutions are used as enrichments for the global problem.

(a) step 0 (b) step 20 (c) step 35 (d) step 50 (e) step 70

(f) step 85 (g) step 93 (h) step 103 (i) step 110 (j) step 146

Fig. 13. Evolution of the crack surface in the enriched global problem. The global mesh is not re�ned during the simulation. The crack
is approximated by global-local enrichments only. The crack surface changes topology around step 103 after the crack front reaches
the bottom of the plate.

enrichments and no crack. The size of the problems changes asthe crack grows. However, the number of
global-local enrichments added to the initial global problem is at most 543, which is only 4.1% of the size
of the uncracked global problem.

Table 2. Size of the various discretizations in terms of number of degrees of freedom (DOFs). The “Initial Global Problem” corresponds
to the uncracked global problem which has only polynomial enrichments and no crack.

Problem Min. Number of DOFs Max Number of DOFs
Initial Global 13,110 13,110

Local 43,428 113,988
Enriched Global 13,310 13,653

5.3. Three-dimensional beam with localized plasticity

The scope of the GFEMgl, as mentioned in Section 1, is not limited to linear elastic problems and it
can be applied to problems involving non-linearities. The formulation of the GFEMgl remains very similar
to as described in Section 4. This section illustrates the e� ectiveness of the GFEMgl in solving a three-
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dimensional elasto-plastic mechanics problem with localized plasticity. Further details and speci�cs of the
GFEMgl for elasto-plastic problems are given in [34].

Figure 14 shows a bi-material cantilever beam subjected to auniform traction in the vertical direction
and magnitudety = � 1:50, applied on the right-most face of the beam. The cross-section of the beam is 1� 1.
This �gure also shows the global �nite element mesh, a uniform mesh of 6� (10� 4� 4) tetrahedron elements,
used to solve the problem, along with the boundary conditions which the beam is subjected to. This mesh
was generated by �rst creating a (10� 4 � 4) structured mesh of hexahedral elements and then replacing
each element by six tetrahedral elements. A cubic polynomial approximation is used for all elements in the
mesh to capture bending of the beam accurately.

Fig. 14. A bi-material cantilever beam subjected to constant traction on the right end. The bottom �gure features the �nite element
mesh with the boundary conditions applied. Green arrows on the left face represent the �xed displacement boundary conditions, and
the red arrows on the right face represent the traction.

A linear isotropic hardening model is assumed to de�ne the material properties for the beam, which are
given in Table 3. The shaded region shown in Figure 14 has a lower initial yield stress (� y = 15) than the
material in the rest of the beam. This will lead, for the load level considered in this problem, to a localized
yielding in that layer of global elements. The material interfaces are located at element boundaries. The
case of interfaces not �tting element boundaries can be handled by proper enrichment functions at local
problems. An example of this class of functions is availableat [53]. The relative norm of the residual is
used as the tolerance criterion for the convergence of Newton-Raphson iterations, and the tolerance value is
taken as 10� 4. A total of 30 uniform load steps are used to solve this nonlinear problem.

The procedure to analyze this problem using the GFEMgl, as described in Section 4 is illustrated in
Figure 15. The �rst step in this procedure involves the solution of the global problem on a coarse mesh
with the full load applied and assuming a linear elastic material model. This problem is hereafter denoted
as theinitial global problem. A local domain, which fully contains the region with plastic strains, is then
automatically extracted from this coarse global mesh as shown in the �gure. The solution of the initial
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Table 3. Material parameters of the isotropic hardening model used for the bi-material beam problem.

Material parameters
Young's modulus (E) 7000

Poisson's ratio (� ) 0.20
Initial yield stress (� y) 70.0
Plastic Modulus (H) 500

global problem, obtained in the �rst step is used to prescribe boundary conditions for the local problem in
the form of spring boundary conditions. The spring sti� ness (� ) is selected based on Equation (9), and for
this problem, a value of� = 14; 000 is used. The local problem is solved nonlinearly using Newton-Raphson
iterations for the �nal load step with the assumption of linear isotropic hardening material model, given in
Table 3. The computed nonlinear local solution is then used to enrich the global solution space at certain
nodes in the coarse global mesh (shown as red spheres in Figure 15). Thisenriched global problemis then
solved with the same nonlinear material model and a total of thirty uniform load steps.

Fig. 15. Figure showing the algorithm for the nonlinear solution of the 3-D beam problem using GFEMgl. Red nodes in the enriched
global problem indicate nodes with global-local enrichments.

The reference solution to this problem is obtained using thehp-GFEM, which applies mesh re�nement
and enrichment to the global problem like in the standardhp-FEM [38] and is a very robust and e� cient
approach to capture �ne scale behavior. Thehp-GFEM discretization shown in Figure 17 uses the same
element sizeh and polynomial orderp as those selected for the local problem in the case of GFEMgl.
Figures 16 and 17 show the contour plots of the distribution of the norm of plastic strain tensor
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2 (15)

obtained with the GFEMgl andhp-GFEM, respectively. This norm is equivalent to the Frobenius norm of
a second order tensor. As can be seen from the �gures, the plastic strain distribution in the two cases are
very similar, in spite of using a coarse global mesh in the case of GFEMgl. Figure 18 shows the distribution
of the norm of plastic strain tensor for the GFEM solution obtained by solving the problem on the coarse
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global mesh, i.e., withouth� re�nement in the region with localized plasticity. The plastic strain distribution
is clearly not well captured by this discretization.

Fig. 16. Figure showing the distribution of the norm of plastic strain tensor in the case of GFEMgl.

Fig. 17. Figure showing the distribution of the norm of plastic strain tensor in the case ofhp-GFEM.

Figure 19 shows the plot of they� displacement component at the centroid of the extreme rightface of
the beam against the load step for the three discretizationsdescribed above. The non-linear response of the
problem is quite evident from this plot and shows that the GFEMgl solution agrees very well with that of
hp-GFEM. Even though, they� displacement, which is a global response quantity, obtained from the GFEM
solution on a coarse �nite element mesh is not too far from thereference solution, the local distribution
of plastic strains is signi�cantly di� erent, as seen from �gures 16, 17 and 18. Therefore, a coarse �nite
element model is not suitable for predicting, for example, alocalized failure of the beam. In contrast,
the local distribution of plastic strains predicted by the GFEMgl approach is clearly close to the reference
solution (hp-GFEM solution).

Table 4 lists the number of DOFs corresponding to each of the three discretizations used to solve this
problem. The GFEMgl captures the global and localized responses very well with just the addition of
225(= 8475� 8250) degrees of freedom to the coarse global mesh. Thehp-GFEM discretization, in contrast,
requires many more degrees of freedom to achieve comparableaccuracy.

Table 5 lists the number of Newton-Raphson iterations at each load step for the cases of GFEMgl and
hp-GFEM. The problem behaves linearly up to 11th load step, and thereby leading to just one iteration in the
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Fig. 18. Figure showing the distribution of the norm of plastic strain tensor in the case of GFEM on a coarse global meshnot enriched
with global-local functions.
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Fig. 19. Plot ofy-displacement at the centroid of the extreme right face of the beam against the load step.

Table 4. Size of the problem in terms of number of degrees of freedom (DOFs) for di� erent methods.
Method Number of DOFs

GFEM with a coarse mesh 8250
GFEMgl 8475

hp-GFEM 126,630

�rst 11 load steps. From this table, it can be seen that the GFEMgl takes equal or lesser number of iterations
at each load step as when compared tohp-GFEM. Since the GFEMgl discretization has signi�cantly fewer
DOFs than thehp-GFEM and the local problem is solved only once, we can conclude that the computational
cost of the GFEMgl is lower than that of thehp-GFEM.
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Table 5. Number of Newton-Raphson iterations to solve the nonlinear beam problem.

Load Number of iterations
step hp-GFEM GFEMgl

11 1 1
12 5 3
13 4 4
14 5 4
15 4 4
16 5 4
17 4 4
18 4 4
19 5 4
20 5 4
21 4 4
22 5 4
23 5 4
24 4 4
25 5 4
26 5 4
27 7 4
28 5 4
29 5 4
30 7 4

6. Conclusions

The examples presented in Section 5.2 demonstrate that the GFEMgl is able to simulate three-dimen-
sional fracture mechanics problems using global discretizations with elements that are orders of magnitude
larger than those required by the FEM. This leads to global problems of much reduced dimension than in the
FEM. The computational cost of the GFEMgl can be further reduced. In this paper a single local problem
is de�ned, for example, at each crack propagation step. However, a local problem can be de�ned for each
node of the coarse-scale mesh whose partition of unity support intersects the crack surface. These local
problems can be e� ciently solved in parallel, sinceno communication among processors solving di� erent
local problems is required[54]. This leads to very scalable computations even on shared memory machines
[54].

This paper also demonstrates that the GFEMgl is not limited to linear problems. A problem involving a
non-linear material response is solved to demonstrate this. It is shown that the GFEMgl is able to capture de-
tails of non-linear strain �elds using coarse meshes. The example presented in Section 5.3 also demonstrates
that the GFEMgl takes equal or lesser number of Newton iterations at each load step as when compared to
available discretization approaches. This translates into a reduced computational cost for the method.

While not explored in this paper, it is conceivable to combine the GFEMgl with the GFEM for poly-
crystals described in Section 3. This would enable the discretization of polycrystalline micro-structures at
the local problems while keeping the global discretizationcoarse. This and other similar ideas are currently
being investigated by our groups.
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