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Abstract

The generalized FEM (GFEM) has been successfully applighdet@imulation of dynamic propagating fractures,
polycrystalline and fiber-reinforced microstructuresrqus materials, etc. A-priori knowledge about the solutibn
these problems are used in the definition of their GFEM agpration spaces. This leads to more accurate and robust
simulations than available finite element methods whilaxielg some meshing requirements. This is demonstrated in a
simulation of intergranular crack propagation in a brigt@ycrystal using simple background meshes.

For many classes of problems — like those with material fioeatities or involving multiscale phenomena — a-priori
knowledge of the solution behavior is limited. In this papes present a GFEM based on the solution of interdependent
global (structural) and fine-scale or local problems. Theml@roblems focus on the resolution of fine-scale features
of the solution in the vicinity of, e.g., evolving fracturegeess zones while the global problem addresses the macro-
scale structural behavior. Fine-scale solutions are atelyrsolved using ahp-adaptive GFEM and thus the proposed
method does not rely on analytical solutions. These salatare embedded into the global solution space using the
partition of unity method. This GFEM enables accurate miodebf problems involving multiple scales of interest
using meshes with elements that are orders of magnituderlérgn those required by the FEM. Numerical examples
illustrating the application of this class of GFEM to higyete fatigue crack growth of small cracks and to problems
exhibiting localized non-linear material responses aes@nted.
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1. Introduction

Many problems of engineering relevance exhibit stronglgriacting multiscaleféects. Their modeling
and simulation demand analytical and computational tdwlsdo not assume a view of nature that partitions
phenomena into categories of scales [1]. One example oicpkat interest — and which is part of the
motivation behind this work — lies in the structural anadysi stealth aircrafts. To increase the stealthiness
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of aircrafts like the one shown in Figure 1, a high tempempanel is used at the exhausts of the embedded
engines. These panels are subjected to an intense therof@anieal-acoustic environment and can fail
in high-cycle fatigue due to the acoustic and vibration Ingdin low-cycle fatigue due to thermal and
mechanical loading, and by material degradation or oxadatiue to the extreme thermal environment [2].
Experiments in these environments argidilt, limited and extremely costly.

Fig. 1. Micro-crack growth in structures subjected to iseethermo, mechanical and acoustic loads involves complesaictions over
vastly diferent scales [httymedia.defenseindustrydaily.cimageg|.

The analysis of this class of problems with the FEM requirgseenely refined meshes. This may cre-
ate severe restrictions in maximum time step allowed fougate time integration of the solution [2, 3].
Dynamic load balancing forfecient parallel computations becomes quite challengindHisrtype of dis-
cretization [3]. In addition, the construction of propedgtapted discretizations can be quite costly since it
demands several adaptive cycles on large computationalsioinother severe issue with a Direct Numer-
ical Simulation (DNS) approach based on available metretiill-conditioning of the resulting system of
equations [4] due to the extremely large ratio between ehésizes in the FEM mesh. One workaround for
this issue is to perform the computations using high-preci428-bit floating-point arithmetic [3]. How-
ever, few compilers or software libraries can handle higéeision arithmetic, and those that do so are
extremely slow — often 50 to 100 times slower than convealiéd-bit floating-point arithmetic [3].

The generalized FEM [5, 6, 7, 8, 9] is an instance of the stedgdartition of unity method which has
its origins in the works of Baliikaet al. [10, 6, 11] and Duarte and Oden [12, 13, 14, 15, 8]. The ex@nde
FEM [16, 17] and several other methods proposed in recems @ also be formulated as special cases
of the partition of unity method. Recent reviews ofXGEM can be found in [18, 19]. The partition of
unity in the Generalized FEM (GFEM) is provided by low ordexrgrangian finite element shape functions.
These functions are combined with local function approxiomspaces built around a-priori knowledge
about the solution of a given problem. These functions gi®vihore accurate and robust simulations than
the polynomial functions traditionally used in the startd&@EM while relaxing some meshing requirements
of the FEM. An example of this class of GFEM based on anallyickerived local spaces is the GFEM
for polycrystals proposed in [20]. In this GFEM, discretiea of polycrystalline micro-structures requires
only a simple background mesh on which the polycrystallopotogy is superimposed.

In many classes of problems — like those involving multisqgaienomena or material non-linearities —
local approximation spaces are, in general, not amenalalrdlytical derivation. To overcome this limita-
tion, basis functions for these spaces are defined from theerical solution of boundary-value problems.
Section 4 summarizes the so-called Generalized Finite &emith global-local enrichments (GFEN
In this method, basis functions are numerically definedgisomcepts from the classical global-local finite
element method [21, 22, 23, 24] and a multiscale decompasdf the solution of a boundary or initial
value problem is performed. The coarse scale componenéafdiution is approximated by discretizations
defined on coarse finite element meshes. The fine-scale cemiisnin turn, approximated by the solution
of local problems defined in neighborhoods of regions exihigpimultiscale &ects such as in the neighbor-
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hood of micro-cracks. Boundary conditions for the localgdeos are provided by the available solution at a
crack growth step. The methodology enables accurate nmgpedj e.g., 3-D propagating cracks on meshes
with elements that are orders of magnitude larger than trexggired by the FEM. The coarse-scale mesh
remains unchanged during the simulation. This, combindt thie hierarchical nature of GFEM shape
functions, leads to significant computational savings wtmnpared with a DNS approach [25].

A related method aimed at modeling interactions among plalstatic cracks is the multiscale method
of Loehnert and Belytschko [26]. Other related methods ¥ao-timensional static cracks include the
spider-XFEM [27] and the reduced basis enrichment for th&MH28] of Chahine et al.; the method of
Menk and Bordas for fracture of bi-material systems [29& fiarmonic enrichment functions of Mousavi
et al. [30] for two-dimensional branched cracks.

The outline of this paper is as follows. Section 2 summarikesmain ingredients of GFEM approxi-
mation spaces. The GFEM for polycrystals is reviewed iniSe@ and an application of this method to
the simulation of intergranular crack propagation in atleripolycrystal is presented in Section 5.1. The
formulation of a GFEM for 3-D crack growth is presented in Section 4. Numericahepies illustrating
the application of this class of GFEM to high-cycle fatiguaak growth of small cracks and to problems ex-
hibiting localized non-linear material responses areggs] in Sections 5.2 and 5.3. The main conclusions
are outlined in Section 6.

2. The Generalized Finite Element Method

A GFEM approximation space (i.e., a trial space) is based on
three components: (a) patches or clouds, (b) a partitiomit§,.and
(c) local approximation spaces. We describe these comp®m@sn
follows:
(a) Patches or Clouds),: In the generalized finite element method,
a cloudw, is given by the union of the finite elements sharing node
a of the finite element mesh covering the domain of inte¢esthe
set{wa}y 1+ in afinite element mesh witN nodes, is an open cover

of Q, i.e.,

9a(X)

_ N
Q=U,_ wq.

(b) Partition of Unity Subordinate to the Covema}[jzl: The La-
grangian finite element shape functigns « = 1,..., N, constitute
a partition of unity, i.e.z(’:'=1 wo(X) = 1 for all x in Q. This is a key
property used in partition of unity methods.

(c) Cloud or Patch Approximation Spacgs: To each patcl,, we
associate am,-dimensional spacg, of functions defined om,,

namely,

Fig. 2. The generalized FEM shape func-
Xo = sparil,, 1<i<m, Ly HY(w,)h tion ¢, at X, is constructed by consider-
ing the product of the Lagrangian finite
element shape functiop, and the non-

The basis function&,; above are also known anrichment func- ; -
polynomial enrichment,;.

tions
The trial space for the GFEM is given by

N
SCFEMQ) = 3 guxa = SPaNli = gL, L<i<my, 1<a <N,

a=1

The function
0i(X) = 0o (X)L4i (X) (no summation ow), Q)

whereqa is a node in the finite element mesh, is called a GFEM shapdifumcFigure 2 illustrates the
construction of GFEM shape functions in a two-dimensiormahdin.
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The enrichment functions jp, are chosen carefully to mimic the properties of the functmine approx-
imated locally inw,. This is often done by using the available information onapproximated function.
Choosing suitable patch spaces for a particular problerarigral to the approximation property of GFEM.

3. A GFEM for Polycrystals

The GFEM for polycrystals [20] is illustrated in Figure 3. doretization of polycrystalline micro-
structres with this method requires only a simple backgdomesh on which the polycrystalline topology
is superimposed. Grain boundaries and junctions can béailyi located within elements. The main
concepts used in this GFEM are summarized. Details can el fio{20].

() (b) (c)

Fig. 3. In the GFEM for polycrystals (a), a polycrystallinggaegate is described by superimposing a polycrystaliipelogy (b) on a
background mesh (c). The quality of the numerical solutiamloe improved by local mesh refinement (d). Note that theefelgment
mesh does not conform to grain boundaries and junctions.

Consider the following decomposition of the displacemezitliil of a polycrystal comprisinglg grains
Ng

u=a+ijﬁ,-, )
j=1

where the generalizeH; function is equal to 1 in graif and O otherwise. Enrichment functions,, used

at nodex are taken as the set of functiof§ that are discontinuous on clougl [20]. A traction-separation
law is used at grain boundaries and a constitutive relatipngescribing the material behavior is adopted
within the grains. An application of this method to the siatidn of intergranular crack propagation in a
brittle polycrystal is presented in Section 5.1. It is to lden that the method is capable of describing
more complex failure scenario with combined transgranaitett intergranular cracking, provided rules for
the transition from one type to the other are defined.
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4. GFEMY": Bridging Scales with Global-Local Enrichment Functions

Global-local enrichment functions can be defined for mamgsts of problems like interacting 3-D
cracks [31], propagating 3-D fractures [25] or problemsileiting sharp thermal gradients [32, 33]. These
functions can also be developed for problems involving lized non-linear material responses [34]. They
are able to represent fine-scale responsasanse macroscale, finite element meshes and to fully account
for interactions among scales. Detailed mathematicayaisadf this class of GFEM is presented in [35, 36].

In this section, we consider the case of 3-D simulations gppgating mechanically-short cracks. These
cracks are much smaller than any dimension of a structurapooent but larger than the details of the
material micro-structure [37].

4.1. Problem Formulation

Consider a domaif c R3. The boundary)Q is decomposed a¥2 = SY U Sf with SU N S’ = 0. The
equilibrium equations are given by
V.o=0 inQ 3)

The following boundary conditions are prescribedign
o-n=tonS", o.-n=pl-u) onSY, (4)

wheren is the outward unit normal vector t#@Q andt are prescribed tractions. The second equation
represents a spring or Robin boundary condition [38]s the stifness of the springy is displacement
imposed at the base of the spring system aislthe displacement at the boundary of the body. Dirichlet
boundary conditions can be treated as a limiting case ofypis of boundary conditions [38].

The constitutive relations may be given by the generalizedkd'’s law,o- = C : &, whereC is Hooke’s
tensor, or by a non-linear stress-strain relation. In thisegthe classical rate-independ&nfiow theory for
small strains with isotropic hardening is adopted. The wieakulation of the problem described above is
given by:

Findu € HY(Q), such that/ v e HY(Q)

fo-(u):s(v)dQ+nf u-vdS = t_-vdS+r]f u-vds, (5)
Q Su Sf u

whereH(Q) is a Hilbert space defined dn.

4.2. Computation of Global-Local Enrichments: Coarsei&¢aoblem at Simulation Step t

Let uf denote a generalized FEM approximation of the Problem (Bpatage evolution (or load) step
t. This approximation is the solution of the following glolpabblem:
Finduf, e S3FE™(Q) c HY(Q) such thaty v§ € S"(Q)

fga(ug):s(v‘G)deLuug-thdszfoF-\/Gdsmfsum-\des, (6)

whereSg 5"™(Q) ¢ HY(Q) is the generalized FEM space at simulation gteffhe enrichment functions
in SSTEM{(Q) are defined in local spaces ahdve to be computed on-the:flyve describe a fine-scale
problem in the next subsection to achieve this goal. The nussld to solve Problem (6) is typically a
coarse quasi-uniform mestregardless of the presence of cracks or localized non-limegponses in the
domain Figure 4 illustrates one such discretization. Probleng@ils to a system of non-linear equations
for the unknown degrees of freedomugf.
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Global Problem |

Fig. 4. lllustration of the GFEM! for crack propagation. The figure shows the neighborh@paf a small propagating crack in the
global domain. The solution of the global problem at simafastept provides boundary conditions for the extracted local domai

4.3. Computation of Global-Local Enrichments: Fine-Sdateblems at Simulation Step t
The GFEM! involves the solution of a fine-scale boundary value probtefined at a neighborhood
Q, of a fine-scale feature like the crack shown in Figure 4. Hatre global approximationtG at sim-
ulation stept, the following fine-scale problem a1, is solved to find enrichment functions for the space
SGFEI\/Lt+1(Q).
o :
Findu! € STFEMY(Q) c HY(Q), such that/ v e SPFEMY(Qy)

f () (v )dQ + 7 f Ul Vi dS+k f UtV dS

o 90 NSY A\ (69 NAQ)

= f F-VtLdS+r]f at -v‘,_dS+f (t(ug) + kug) - vidS, (7)
a0, NS' 90 NSY A\ (O NIQ)

whereSETEM Q) is a discretization oH(Q, ) using GFEM shape functions presented in [39].

A key aspect of Problem (7) is the use of the coarse-scaléigolat simulation step, ul,, to compute
the boundary condition o6 \(0Q N Q). The numerical nature of the coarse-scale solution useitiéo
fine-scale boundary conditions leads to the use of the t@logy “inexact boundary conditions”. Exact
boundary conditions are prescribed on portiond@f that intersect eithe8" or S*. The traction vector,
t(u), that appears in the integral ov@®, \(9Q. N Q) can be computed using,

t(ug) = A o(ug) (8)
wheren is the outward unit normal vector &, . The spring stthessg, can be selected using [34, 40]

E
K= s 9
e 9)
whereE is the Young's modulusd is the number of spatial dimensions of the probl&fyijs the volume
of the master element used ahds the Jacobian of the global element across the local boyndzere the
spring boundary condition is imposed.

4.4, Scale-Bridging with Global-Local Enrichment Functio
The solutionu, of the fine-scale problem defined above is used to build géimed FEM shape func-
tions
$.H(X) = pa(X)u (X) (10)
defined on the coarse-scale (global) mesh, where the partifiunity functiony,, is provided by a global,
coarse FE mesh andtL has the role of an enrichment or basis function for the patebey, (w,). Hereafter,
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ul is denoted as global-local enrichment functionThe global GFEM space containing shape functions
¢t is denoteds =M (Q) and is given by

Ng D.
SgFEM,Hl(Q) —Jyhe = Z Z ©a(X) U 4iLai(X) + Z gaﬁ(x)ugl(t)(x) , (1))
a=1i=1 Bely?

global approx. local approx.

where]‘g;,f1 is the index set of nodes enriched at simulation stefi with functionu} computed at (7) and

ugl ut, (x)
ud(x) = ugI uL(x) |,
ugl ut LX)
where ug'J, B € Igll, j = 1,2, 3, are nodal degrees of freedom, aﬁLg(x), j = 1,2,3, are the Cartesian

components of displacement vectgr.

The coarse-scale Problem (6) is solved diit € ST="*1(Q) and the procedure is repeated at each
damage (or load) evolution step. The hierarchical enrigitroéthe coarse global mesh with a fine-scale
solution is illustrated in Figure 5.

Local Problem

Global Problem ’

Fig. 5. Hierarchical enrichment of the coarse global mesh ieical solutions computed on locally refined mesh. Onlg¢hdegrees
of freedom are added to these global nodes (shown with regtaplin the global mesh). These enrichments are used toxappite
the global solution in the neighborhood of the crack at satiah stegt + 1.

5. Numerical examples

5.1. Intergranular crack propagation

In this section we analyze intergranular brittle crackifig @olycrystalline aggregate by means of the
GFEM for polycrystals with cohesive grain boundaries anddir elastic grains. The geometry and boundary
conditions of the problem are shown in Figure 6. The notclpedisnen is loaded by a uniform tensile stress,
o, which is varied incrementally under quasi-static loadingditions.

An 80 grain polycrystalline microstructure is used insile process zone depicted in Figure 6. The
process zone is the region in which grains and grain boueslare represented explicitly; outside this zone
the material is a homogeneous continuum. The aggregateatiah considered in this study was generated



8 J. Garzon et al/ Procedia IUTAM 00 (2011) 1-20

- ~W/2 -

< Q 2 >
= process &

_ zone o

- ™ >
Lf‘_|'> v ~
= S

- =¥ >

- A >

g W/2 W/2 o

P (= ]
I 1< 1

Fig. 6. Geometry and boundary conditions for the notchedispen employed in the simulations.

using a centroidal Voronoi tessellation algorithm. Therage grain size is approximately 2in which
corresponds to an average grain-boundary lehgth 12um. Since there are 80 grains in the process zone,
the length of the specimenW = 360um.

The material parameters are taken to be representative aferage polycrystalline alumina, ADs.

We assume the grains to be elastic and isotropic, with YaumgidulusE = 384.6 GPa and Poisson’s ratio
vy = 0.237. Plane strain conditions and small elastic strains atadions are assumed.

Non-linearity in the material response is defined by the sileelaw across grain boundaries. In this
study, we have used the Xu-Needleman cohesive law [41]. ©hewing parameters for this law are
adopted: critical fracture ener@y. = 39.3 Jm? and grain boundary cohesive strengthax = 0.6 GPa.

The partition of unity adopted in this section is provideddmystant strain triangles. The elements that
intersect the grain boundaries are refined to the desiredlda\llustrated in Figure 3. Since the mesh does
not have to fit the aggregate geometry, mesh refinement pesséire aspect ratio of the elements [42]. The
refinement level for acceptable accuracy is governed byitleeo$ the fracture process zone along the grain
boundaries as discussed in [43].

Figure 7 shows the aggregate topology near the crack tip fiffee also shows the GFEM discretiza-
tion of the aggregate and the computed crack path. The coplourepresents the normalized von Mises
equivalent stress. Note that the finite element mesh doesamform to grain boundaries and junctions.
Thus mesh generation issues faced by the FEM do not exiseiGH#EM. Therefore, a large number of
randomly generated polycrystalline aggregates can beratically analyzed [43].

The boundary conditions shown in Figure 6 promote and aehimude-I cracking at the specimen
level. However, as shown in Figure 7, local failure at thargl@oundary level is dictated by the granular
arrangement and exhibits both mode-I and mode-II cracldBy [

5.2. Analysis of three-dimensional cracks

This section presents two applications of the GFEdgscribed in Section 4. The first one deals with
a static quarter penny-shaped crack as illustrated in €igurThis problem is used in the verification of
the method using as reference the solutions by Raju and Neyddaand Ali [45] for corner cracks. The
second problem deals with the propagation of a small conaekdn a plate subjected to a cyclic load. In
both cases, polynomial enrichments of degoee 3 is adopted at global and local problems.

5.2.1. Quarter penny-shaped crack
The problem consists of a quarter penny-shaped crack thedtthe corner of a plate subjected to a
uniform tensile loadr at its ends (cf. Figure 8). Displacement constraints are ialposed near the ends
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Fig. 7. Failure characterization in brittle polycrystalgiwthe GFEM: intergranular cracking (20 displacement magnification) and
normalized von-Mises equivalent stress. Note that a umfBEM mesh was used in the computation —the figure also shol¢s su
element used for integration of the weak form over finite elpta cut by grain boundaries.

¢) Crack Surface

Fig. 8. Corner-cracked plate problem subjected to tensikd bad.

of the plate in order to minimize rotations under the applaats. In this problem we consider a quarter
circular crack and thus, in Figure 8= c. In the case of static cracks, the first step in the GEHEMolves
the solution of the global problem on a mesh enriched witlypamial functions only. Thus, no cracks are
considered at this stage. This problem is hereafter derastéleinitial global problem This is illustrated
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in Figure 8a. The global mesh is quasi-uniform while in thealgproblem the mesh is strongly refined at
the crack front. The ratio between the element size at thekdrant, LS, and the crack size, is taken as
LL/a ~ 0.03. The ratio between the size of the smallest element in #shraof the global problent.S, and
the crack sizeg, is LS/a = 0.5. Note that in the GFEM, cracks are not explicitly discretized in the global
problem. Instead, they are represented through global-sawichments, i.e. the solution of local problems.
Thus, the global mesh does not change during a simulatioa.fallowing dimensions are adopted for the
plate: 2h/c = 1805, a/t = 0.2 anda/b = 0.04.

Figure 8b shows the local problem where the crack is disétiising analytically defined enrichment
functions as described in [39]. The size of the local domaignificantly smaller than the global one. The
local domain is defined by global elements contained in a 8imgrbox with dimensionbx/a = 2, by/a =
2, bz/a =2 inthex—, y— andz- directions, respectively. The size of the local domain isual2% of the
original problem size.

The solution of the global problem enriched with globaldbéunctions is shown in Figure 9. This
problem is hereafter denoted as #@iched global problemThe global mesh is quite coarse and yet it can
capture the singularity at the crack front.

Fig. 9. Enriched global problem solution.

Figure 10 shows the normalized mode | stress intensity faGtK, extracted from the solution of the
enriched global and local problems. They are denoted as GF&M GL-FEM in the figure, respectively.
K, was extracted using a formulation of the Cuff®unction Method [38] adapted for the GFEM [46, 47,
48]. The reference solutions by Raju and Newman [44] and48] pre also shown. The horizontal axis in
the figure denotes the angular position at the crack frortustrated in Figure 8c. The normalizing factor,
K., is taken as

with Q 5
1.65
Q=1+14643) . (13)

The example presented in this section shows that Stresssitytd=actors (SIFs) extracted from the
GFEM® solution are significantly more accurate than those exthfiriom the local solution and agrees
very well with the reference solutions. The local solutisreguivalent to one provided by a global-local
FEM analysis, which is commonly used in the industry to hamtbblems involving multiple spatial scales
of interest.
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Fig. 10. Normalized mode | stress intensity factors for eomracka/t = 0.2.

Table 1. Size of the various discretizations in terms of neindf degrees of freedom (DOFs).

Problem | Number of DOFs

Initial Global 10,170
Local 53,436
Enriched Global 10,290

Table 1 shows the size of the various discretizations uséukigolution of this problem. The enriched
global problem capturek; very well while adding only 120 global-local enrichment degs of freedom
to the initial global problem. The computational cost of theal problem must also be considered in the
total cost of the GFEMl. However, in most practical problems the global problem igimlarger than the
local one. Furthermore, the solution of the enriched glgibablem can beféciently computed using the
solution of the initial global problem [40, 25].

5.2.2. Three-dimensional crack propagation

In this section, we consider the fatigue crack growth sittiotteof the corner crack shown in Figure 8
using the GFEM. The plate is subjected to cyclic uniaxial tensisft) in the x—direction as illustrated in
the figure. The magnitude of crack front advancement is coatpusing Paris-Erdogan equation [49]

da m
aN - C(AK)™. (14)
Parameter€ andmare regarded as material constants, white= (1 - R)Knaxis the stress intensity factor
range under cyclic loadindr is the ratio of minimum to maximum loads applied in a cycle &pdxis the
stress intensity factor at the maximum loaglax. The reader is referred to Section 4.2 of [50] for further
details on the application of Equation (14) to compute cifagkt advance and fatigue life. The following
parameters are adopted for the simulation presented isebi®n:omax= 12MPa, R = 0,C = 0.0001 and

m = 6. Young's modulus and Poisson’s ratio are takeilas 2000MPa andv = 0.37, respectively. The
direction of crack front propagation is computed usingsstriatensity factors and Sallmann’s criterion
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[51]. WhenKj;; = 0, as in this example, this criterion is equivalent to théecion of maximum tangential
stress proposed by Erdogan and Sih [52].

The initial crack surface has an elliptical shape with majod minor radiiag andcy, respectively. The
following dimensions are adopted for the initial crack atate (cf. Figure 8)ap/co = 1.25, Zh/cy = 224,
ag/t = 0.165 andag/b = 0.033. Note that the initial crack is even smaller than the osexlun the static
case.

Similar to the case of static cracks, the propagating cradkee is not explicitly modeled in the global
problem. Instead, it is represented through global-lonetements. The initial local domain is defined by
global elements contained in a bounding box with dimensibtiag = 2, by/ag = 2, bz/ag = 2. The size
of the local domain increases during the simulation in otdesccommodate the growing crack surface.
The dimensions of the local domain are selected such thaatlesbx/a, by/a andbz/a remain close to 2.
Figure 11 illustrates the local problem domains and théut&ms at propagation steps 0, 30, 40, 60, 70, 83,
93, 103, 104 and 146.

It is important to mention that in the local domain mesh refieat is performed along the crack front.
At the beginning of the simulation, it was adopted a rafiga; ~ 0.03, wherea, is the major axis of the
initial crack surface. This ratio was kept approximatelypstant during the crack propagation simulation.
Since the crack changes dramatically in size as it propagksss mesh refinement is required to preserve
the ratioLL/a as the crack propagates. The localized refinement follosttéck front evolution using the
refinement and unrefinement technique presented in [50]h®nther hand, in the enriched global domain
the mesh remains unchanged throughout the entire crackiysimulation. The ratio between the size of
the smallest element in the mesh of the global problegy,and the minor axis of the initial cracky is
LS/co = 0.77. This ratio is several times larger than what is requicgcitceptable accuracy in the FEM.

(a) step 0 (b) step 30 (c) step 40 (d) step 60 (e) step 70
(f) step 83 (g) step 93 (h) step 103 (i) step 104 () step 146

Fig. 11. Local problem domains and solutions at variouslcgrowth steps. The size of the local domain increases duhing
simulation in order to accommodate the growing crack setfac

Figures 12 and 13 show the crack surface evolution at step® @5, 50, 70, 85, 93, 103, 110 and 146.
It can be observed that at step 103 the crack front reachdsottem surface of the plate and changes its
topology. This type of transition is fiicult to simulate using the FEM since the creation of stronggded
meshes fitting the crack surface while preserving the agp#iot of the elements is not always possible
in this case unless extremely small elements are used. IGEEVE this can be handled without much
difficulty by simply trimming the portion of the crack surfacetth@ay have advanced beyond the physical
domain and snapping the crack front to the boundary of theaitormin addition, the global elements are
orders of magnitude larger than those required by the FEMitiar challenge in this simulation is the
significant change in size of the crack surface. This requirat the geometrical representation of the crack
be adapted during the simulation. This process preservedmefrically accurate representation of the
crack front while reducing the number of facets at portiohthe surface that are near flat or are far from
the crack front.

Table 2 shows the size of the various discretizations usddearsolution of this problem. In the ta-
ble, “Initial Global Problem” corresponds to the uncraclgdbal problem which has only polynomial
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(a) step 0 (b) step 20 (c) step 35 (d) step 50 (e) step 70

(f) step 85 (g) step 93 (h) step 103 (i) step 110 (j) step 146

Fig. 12.hp-GFEM discretizations used at local domains. The localtsmis are used as enrichments for the global problem.

(f) step 85 (g) step 93 (h) step 103 (i) step 110 () step 146

Fig. 13. Evolution of the crack surface in the enriched gl@bablem. The global mesh is not refined during the simutatithe crack
is approximated by global-local enrichments only. The ksurface changes topology around step 103 after the crankifeaches
the bottom of the plate.

enrichments and no crack. The size of the problems changés asack grows. However, the number of
global-local enrichments added to the initial global pesblis at most 543, which is only 4.1% of the size
of the uncracked global problem.

Table 2. Size of the various discretizations in terms of nenatd degrees of freedom (DOFs). The “Initial Global Problearresponds
to the uncracked global problem which has only polynomiaicliments and no crack.
Problem | Min. Number of DOFs  Max Number of DOFs

Initial Global 13,110 13,110
Local 43,428 113,988
Enriched Global 13,310 13,653

5.3. Three-dimensional beam with localized plasticity

The scope of the GFEW| as mentioned in Section 1, is not limited to linear elastmbfems and it
can be applied to problems involving non-linearities. Towrfulation of the GFEM remains very similar
to as described in Section 4. This section illustrates thectveness of the GFEMin solving a three-
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dimensional elasto-plastic mechanics problem with Iaealiplasticity. Further details and specifics of the
GFEM for elasto-plastic problems are given in [34].

Figure 14 shows a bi-material cantilever beam subjecteduloifarm traction in the vertical direction
and magnitudg, = —1.50, applied on the right-most face of the beam. The crosisesenf the beam is % 1.
This figure also shows the global finite element mesh, a unifoesh of 6(10x4x4) tetrahedron elements,
used to solve the problem, along with the boundary conditishich the beam is subjected to. This mesh
was generated by first creating a (2@ x 4) structured mesh of hexahedral elements and then reglacin
each element by six tetrahedral elements. A cubic polynicapigroximation is used for all elements in the
mesh to capture bending of the beam accurately.

Fig. 14. A bi-material cantilever beam subjected to cortst@ttion on the right end. The bottom figure features theefinlement
mesh with the boundary conditions applied. Green arrowseneft face represent the fixed displacement boundary tonsj and
the red arrows on the right face represent the traction.

A linear isotropic hardening model is assumed to define themahproperties for the beam, which are
given in Table 3. The shaded region shown in Figure 14 has erlovitial yield stress¢, = 15) than the
material in the rest of the beam. This will lead, for the loadkl considered in this problem, to a localized
yielding in that layer of global elements. The material ifdees are located at element boundaries. The
case of interfaces not fitting element boundaries can beléardy proper enrichment functions at local
problems. An example of this class of functions is availail¢3]. The relative norm of the residual is
used as the tolerance criterion for the convergence of NeR&phson iterations, and the tolerance value is
taken as 10*. A total of 30 uniform load steps are used to solve this n@alirproblem.

The procedure to analyze this problem using the GPERs described in Section 4 is illustrated in
Figure 15. The first step in this procedure involves the smubf the global problem on a coarse mesh
with the full load applied and assuming a linear elastic mattenodel. This problem is hereafter denoted
as theinitial global problem A local domain, which fully contains the region with plasstrains, is then
automatically extracted from this coarse global mesh as/shio the figure. The solution of the initial
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Table 3. Material parameters of the isotropic hardeningehasded for the bi-material beam problem.

Material parameters
Young’s modulusE) 7000
Poisson’s ratiox) 0.20
Initial yield stress¢y)  70.0
Plastic Modulus ) 500

global problem, obtained in the first step is used to presdsitundary conditions for the local problem in
the form of spring boundary conditions. The springfsgss ) is selected based on Equation (9), and for
this problem, a value of = 14,000 is used. The local problem is solved nonlinearly usingtde-Raphson
iterations for the final load step with the assumption ofdinisotropic hardening material model, given in
Table 3. The computed nonlinear local solution is then useshtich the global solution space at certain
nodes in the coarse global mesh (shown as red spheres ireRigur Thisenriched global problens then
solved with the same nonlinear material model and a totdlidf/tuniform load steps.

Load T-q--- - 2T ..

Local Problem

_Initial Global D o Enriched Global
Problem Problem

Fig. 15. Figure showing the algorithm for the nonlinear sioliof the 3-D beam problem using GFEMRed nodes in the enriched
global problem indicate nodes with global-local enrichisen

The reference solution to this problem is obtained usindhfth&FEM, which applies mesh refinement
and enrichment to the global problem like in the standgrdFEM [38] and is a very robust andfeient
approach to capture fine scale behavior. TipeGFEM discretization shown in Figure 17 uses the same
element sizeh and polynomial ordep as those selected for the local problem in the case of GEEM
Figures 16 and 17 show the contour plots of the distributicth@ norm of plastic strain tensor

2 2 2 2 2 2
lleP]| = \/sgx + sf,)y +&2 +s§’y +s§’z + &b (15)

obtained with the GFEM andhp-GFEM, respectively. This norm is equivalent to the Frobsmorm of

a second order tensor. As can be seen from the figures, thé@tain distribution in the two cases are
very similar, in spite of using a coarse global mesh in the cdsSFEM'. Figure 18 shows the distribution
of the norm of plastic strain tensor for the GFEM solutionadbéd by solving the problem on the coarse
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global mesh, i.e., without-refinement in the region with localized plasticity. The piastrain distribution
is clearly not well captured by this discretization.

0.008
0.006

0.004 &

0.002 £
0.000 I

PlasStrain totrahedra

Fig. 16. Figure showing the distribution of the norm of piastrain tensor in the case of GFEM

Fig. 17. Figure showing the distribution of the norm of piastrain tensor in the case bp-GFEM.

Figure 19 shows the plot of the-displacement component at the centroid of the extreme fagiet of
the beam against the load step for the three discretizatiessribed above. The non-linear response of the
problem is quite evident from this plot and shows that the BFEsolution agrees very well with that of
hp-GFEM. Even though, the-displacement, which is a global response quantity, obdigfireen the GFEM
solution on a coarse finite element mesh is not too far fronréiference solution, the local distribution
of plastic strains is significantly fierent, as seen from figures 16, 17 and 18. Therefore, a coaitge fi
element model is not suitable for predicting, for exampldoaalized failure of the beam. In contrast,
the local distribution of plastic strains predicted by thEEBIY' approach is clearly close to the reference
solution bp-GFEM solution).

Table 4 lists the number of DOFs corresponding to each offtreeetdiscretizations used to solve this
problem. The GFEM captures the global and localized responses very well wish the addition of
225E 8475-8250) degrees of freedom to the coarse global meshhfp@&-EM discretization, in contrast,
requires many more degrees of freedom to achieve compaatileacy.

Table 5 lists the number of Newton-Raphson iterations al é@ad step for the cases of GFEMnd
hp-GFEM. The problem behaves linearly up td"lbad step, and thereby leading to just one iteration in the
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0.0z L
0.010 %
0.008

0.008 £

PlosStrain tetrahedra

0.004 |

U'Joz'l
0.000

Fig. 18. Figure showing the distribution of the norm of piastrain tensor in the case of GFEM on a coarse global mesénriched
with global-local functions.

Un I
~—* GFEM’
~ -« hp-GFEM (Reference Solution
i s---o GFEM on a coarse global mes|
-0.05—

y-displacement
)
T

-0.15

Load Step

Fig. 19. Plot ofy-displacement at the centroid of the extreme right face @bitam against the load step.

Table 4. Size of the problem in terms of number of degreeseefdom (DOFs) for dierent methods.

Method | Number of DOFs
GFEM with a coarse mes 8250
GFEM 8475
hp-GFEM 126,630

first 11 load steps. From this table, it can be seen that theMSH&kes equal or lesser number of iterations
at each load step as when comparetiggGFEM. Since the GFEM discretization has significantly fewer
DOFs than théap-GFEM and the local problem is solved only once, we can calecthat the computational
cost of the GFEM is lower than that of thep-GFEM.
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Table 5. Number of Newton-Raphson iterations to solve thrdimear beam problem.

Load || Number of iterations
step || hp-GFEM | GFEM¥
11 1

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

~N~Noo~NoogoaprhooabhoooaobbboobdobdopE

R R T T I S S A i )

6. Conclusions

The examples presented in Section 5.2 demonstrate thatRE&¢ is able to simulate three-dimen-
sional fracture mechanics problems using global disa#tins with elements that are orders of magnitude
larger than those required by the FEM. This leads to glolailpms of much reduced dimension than in the
FEM. The computational cost of the GFEMan be further reduced. In this paper a single local problem
is defined, for example, at each crack propagation step. WHawa local problem can be defined for each
node of the coarse-scale mesh whose partition of unity stpptersects the crack surface. These local
problems can beficiently solved in parallel, sinceo communication among processors solvinggedent
local problems is requirefb4]. This leads to very scalable computations even on shraemory machines
[54].

This paper also demonstrates that the GFEMnNot limited to linear problems. A problem involving a
non-linear material response is solved to demonstrateltlissshown that the GFERis able to capture de-
tails of non-linear strain fields using coarse meshes. Thmeple presented in Section 5.3 also demonstrates
that the GFEM!' takes equal or lesser number of Newton iterations at eachsiep as when compared to
available discretization approaches. This translatesameduced computational cost for the method.

While not explored in this paper, it is conceivable to conebihe GFEM' with the GFEM for poly-
crystals described in Section 3. This would enable the eligation of polycrystalline micro-structures at
the local problems while keeping the global discretizatioarse. This and other similar ideas are currently
being investigated by our groups.
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