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Abstract

This paper presents a parallel generalized finite elemetitaddGFEM) that uses customized en-
richment functions for applications where limited a pricmowledge about the solution is available. The
procedure involves the parallel solution of local boundeajue problems using boundary conditions
from a coarse global problem. The local solutions are in tsed to enrich the global solution space us-
ing the partition of unity methodology. The parallel comgtidn of local solutions can be implemented
using a single pair of scatter-gather communications. 1@évweimerical experiments demonstrate the
high parallel efficiency of these computations. For proldeequiring non-uniform mesh refinement
and enrichment, load unbalance is addressed by defininger laumber of small local problems than
the number of parallel processors and by sorting and solWiedocal problems based on estimates of
their workload. A simple and effective estimate of the latgaumber of processors where load balance
among processors is maintained is also proposed. Sevezaldimensional fracture mechanics prob-
lems aiming at investigating the accuracy and parallelgperince of the propos&sFEM are analyzed.

KEY WORDS: Generalized FEM; Extended FEM; Parallel compatg OpenMP; Global-local analysis;
Fracture.

1 Introduction

Realistic simulations of many practical fracture mechauimblems are still formidable tasks for the finite
element methodHEM) [38]. The accurate solution of three-dimensional fraetonechanics problems re-
quires aggressive mesh refinement and polynomial enrichaneand crack fronts. This creates difficulties
in the parallel solution of the problem since load balandiegomes non-trivial. Typical parallEEM im-
plementations partition the computational domain andibiste the partitions among processors such that
each processor processes the same computational loa®[Z2}1HoweverfFEM discretizations with non-
uniform element sizes and/or polynomial orders are diffitupartition since estimating the computational

*Submitted to Computational Mechanics
TCorresponding author. E-mail: caduarte@uiuc.edu



load of each partition is not trivial [26]. Furthermore, t@mputation load in each partition changes during
the simulation as thEEM mesh is adapted and/or the crack propagates. The use ovmasgiputational
power by itself is not sufficient. Instead, advances in @xistechniques and the development of scalable
algorithms for this class of problems are needed.

The Generalized or eXtended Finite Element Meth@tKFEM) [2—4, 8, 25, 27, 35, 36] allows straight-
forward construction of discrete solution spaces usingpalgnomial functions while preserving the spar-
sity of global matrices. These functions are chosen cdygfumimic known properties of the function to be
approximated like discontinuities or singularities. Mapplications of these methods have relied on analyt-
ically derived enrichment functions. However, while thésections add flexibility and robustness to these
methods, they are in general not able to deliver accuratgisns on coarse three-dimensional meshes. To
overcome this limitation, local mesh refinement must beqraréd as in the standard finite element method
[14, 31]. This creates several of the drawbacks ofRE# with remeshing, in particular, low scalability in
a parallel environment.

In[7,9, 10, 20, 21] we presented a generalized finite elemmathod based on the solution of interde-
pendent global (structural) and local (crack) scale prmoBleThe local problems focus on the resolution of
fine scale features of the solution in the vicinity of 3-D d&tawhile the global problem addresses the macro-
scale structural behavior. The local solutions are emtabde the global solution space using the partition
of unity method. The local problems are accurately solvedgisnhp-GFEM for 3-D cracks [31, 32] and
thus the method does not rely on analytical solutions. Thihog®logy enables accurate modeling of 3-D
cracks on meshes with elements that are orders of magnituderlthan those required by tR&M or
previously availablésFEM. As a result, a single global mesh can be used to analyze ani¢ configura-
tion [21] or multiple interacting cracks [20]. Furthermpomly a few degrees of freedom are hierarchically
added to the global (coarse-scale) discretization, régssdf the number of degrees of freedom required
to solve the local problems [9]. We denote this class of nethas &EGFEM with global-local enrichment
functions GFEMY). Global-local enrichment functions also enable the asialpf problems with sharp
thermal gradients using coarse meshes, as demonstra@fj 9.

In this paper, we formulate th@FEMY' such that the bulk of the computations can be efficiently done
in parallel. In this approach, a local problem is defined factenode of the global mesh whose shape
function support intersects a region of interest — like @hlkorhood of a crack. These local problems can be
efficiently solved in parallel, since no communication ag@nocessors solving different local problems is
required. In the paralldbFEMY' presented here, load balancing among processors is agdisgsefining
a larger number of local problems than the number of parptietessors, and by sorting and solving the
local problems based on estimates of their workload. A stnapld effective estimate of the largest number
of processors below which load balance among processomiigained is also presented.

The remainder of this paper is organized as follows. Sest?oand 3 review th&FEM and in particular
theGFEM with global-local enrichment functions presented in [dh]Section 4, an approach to handle the
numerical integration on global elements enriched wittbgldocal enrichment functions computed at dif-
ferent local problems is presented. The implementatioh@ptoposed parall@FEMY' using the OpenMP
(Open Multi-Processing) programming model [30] and a agralgorithm to improve the computational
load balancing among processors are also discussed im®dctin Section 5, numerical examples demon-
strating the accuracy and the parallel efficiency of the oatlogy are presented. Finally, the conclusions
of this paper are drawn in Section 6.



2 Generalized Finite Element Method: A Summary

The generalized FEM [2, 3, 8, 27, 35] is an instance of theadled partition of unity method (PUM)
which has its origins in the works of Baskaet al. [1, 3, 24] and Duarte and Oden [6, 11-13, 27]. The
generalized FEMGFEM) denotes a PUM with the partition of unity provided by Lagyem finite element
shape functions. The same method is also known as the eXté&itdd (XFEM) [4, 25]. A recent review of
Generalized/eXtended FEMs along with a brief history ofrtHevelopments can be found in [5].

Generalized FEM approximation spaces (i.e., trial spaces}ist of three components — (a) patches
or clouds, (b) a partition of unity, and (c) the patch or clamproximation spaces. We describe these
components as follows:

(a) Patches or Clouds wy: In the generalized finite element method, a cloud
wy is given by the union of the finite elements sharing nadef the finite
element mesh covering the domain of inter@st The set{w,}N_;, in a
finite element mesh with nodes, is an open cover ©f i.e.,Q = UN_; ;.

(b) Partition of Unity Subordinate to the Cover {wq }_;: The Lagrangian

finite element shape functionfs,, a = 1,...,N, constitute a partition of
unity, i.e., YN_; ¢4(x) = 1 for all x in Q. This is a key property used in
partition of unity methods.

(c) Cloud Approximation Spaces x,: To each cloudw,, we associate a L
D, (a)-dimensional spacg, of functions defined oy, , namely,

Xa =spafLqi, 1<i <Dy (a), Lai € HY(wq)}-
i . ) _ Figure 1. Construction of a
The basis functionk,; above are also known a@srichment functions. A generalized FEM shape func-

cloud approximatiom’(x) € Xq Of U, — the restriction taw, of a func- tipn Here, ¢, is the function

tion u defined o2 — can be written as at the top,Lqi is the function
DL in the middle and the general-
ugp(x) = Zlgai Lai(X) ized FE shape functiomy,, is
i= shown at the bottom.

whereugi, i=1,...,D.(a), are degrees of freedom.

The trial space for th&FEM is given by

X(Q) = i%xa = spa @i := ¢alai, 1<i<DL(a), 1< a <N} (1)

The function
@i (X) = Pa (X)Lai(X) (no summation omr), (2)

wherea is a node in the finite element mesh, is calleGREM shape function. Figure 1 illustrates the
construction ofGFEM shape functions in a two-dimensional domain.



A GFEM approximatioru™(x) € X(Q) of a vector value function can be written as

ND|_ NDL

uhp<x) = Zl_zlﬂaifpai(x):Zl_zl!ai‘pa(x)l—ai(x)

DL

- ail(Pa(X)iZlgmLm(x)_a ¢a(X)U2p(X)

1

2

3 Paralld Solution of Two-Scale Problems Using Global-L ocal Enrichments

A global-local approach to build enrichment functions fue generalized FEM was introducedin [9, 10, 21].
The approach is based on the solution of interdependenalyisiouctural) and local (crack) scale problems.
The local problems focus on the resolution of fine scale feataf the solution in the vicinity of 3-D cracks
while the global problem addresses the macro-scale staldighavior. We denote this class of methods
as aGFEM with global-local enrichment function SEEMY'). In this section, we formulate th@FEMY
presented in [21] such that the bulk of the computations eaefficiently done in parallel. In the approach
presented below, a local problem is defined for each nodeedflttbal mesh whose shape function support
intersects a region of interest — like a neighborhood of alcrdt is also conceivable that the region of
interest be the entire global domain.

3.1 Formulation of Coarse-Scale Global Problem

Consider the domai = QU JQ c R®. The boundary is decomposed @@ = dQ! U dQ° with QN
0Q°% =0.

The strong form of the equilibrium and constitutive equagiare given by
O0-0=0 o=C:¢ in Q, 3)
whereC is Hooke’s tensor. The following boundary conditions aresgribed oo Q
u=uondQY o-n=tondQ’, (4)

wheren is the outward unit normal vector @Q° andt andu are prescribed tractions and displacements,
respectively.

Let u% denote the generalized or standard FEM solution of the proldefined by (3), (4). This is
hereafter denoted as theitial global problem. The approximatiom?3 is the solution of the following
problem:

Findud € X%(Q) c HY(Q) such thaty v € X3(Q)
/ o(ud): g(v2)dx+ n/ ud-vids= / t-v2ds+n / u-v2ds (5)
Q oQu Q2 oQu
where X4(Q) is a discretization oH(Q), a Hilbert space defined d®, built with generalized or standard

FEM shape functions. In this paper, tBEEM is used and the spa® (Q) is given by (1). The enrichment
functionsLyi, a=1,...,N, i=1,...,D, are taken as polynomials of degree less than or equaa.



Details can be found, for example, in Section 3.2 of [31].@[)9%(9) can also be defined using standard
polynomialFEM shape functions since cracks & discretized in the initial global problem.

The parameten in (5) is a penalty parameter determined based on the Young@ulusk and the
Jacobian of elements with a face d@". Other methods to impose Dirichlet boundary conditionsloan
used as well.

The mesh used to solve problem (5) is typically a coarse quairm meshregardless of the presence
of cracksin the domain. Figure 2 illustrates one example of such discretizatidns Thesh and the solution
ug are often available from the initial design stage of a strrecbr mechanical component.
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Figure 2: lllustration of parallel computation of globalekl enrichment functions using a cracked bar under
tension. Several local problems used for the computatigihadfal-local enrichments are created around the
crack front. Each local problem can be sent to a differentgseor and efficiently solved in parall@lhe
crackisshownin the global domain for illustration purposesonly. In theGFEMY', cracks areot discretized

in the global problem. Instead, global-local enrichmemictions are used.

3.2 Formulation of Local Problems

Let Qg C Q denote a region of interest like the shaded neighborhookieoftack front shown in Figure 2.
We assume tha&g is the union of cloudsv, from a global mesh coverinQ. Thus

Qg = U Wy

C(Gfg|

where.#y denotes an index set of clouds from the global mesh. Thelpp@FEMY involves the solution
of local boundary value problems defined on clouagls a € ., of the macroscale (global) mesh. Each
cloudwy, a € .7y, is taken as the domai@{" of a local boundary value problem. It is also conceivable
to use more than one global cloud to define the local domains akeQgy = Q. In this paper, we take

I = wq. Thus, for each crack, a large number of local problems afieete Figure 2 illustrates the
neighborhood)y of a 3-D crack front and local domaigy', a € 7.

Having the solution of the initial global problemoG computed as described in the previous section, the



following local problems are solved in parallel for allc .7

Findu? e X{P(Q%) c HL(Q) such thaty v& € XP(Q¢)

‘ ou”): g(v?)dx+ / u"-v“ds+:</ u’-vids =
/Qg (ug) - &) 1 2QFNAQU Lo 208\ (0QFNAQ) Lo

tvds+ / l_l-v"’dSJr/ t(ud) +kud)-vids 6
/"QEW’Q” ; 1 oorroQs - .aQE\(aQEmaQ)(( c) &)Vt ©)

whereXEp(Qf) is a discretization oft}(QY) defined using th&FEM shape functions presented in [31, 32].
Details can be found in Section 3.2 of [21].

A key aspect of problem (6) is the use of the coarse-scaldigonlto compute the boundary condition
prescribed o@Q\ (9Q N dQ). Exact boundary conditions are prescribed on portiordQ@ff that inter-
sect eithe@Q or 9Q7. The traction vectort(ul), that appears in the integral ov@\ (9Qf N 9Q) is
computed from the coarse-scale solution using Cauchyasiosl, i.e.,

t(ug) =n-o(ud) =n-(C:gug)) (7)

with nthe outward unit normal vector @Q. The parametex is a spring stiffness defined @2\ (dQf N
0Q). If the spring stiffness is zero or equal to a large (penalty) value, the boundary itiondon
0Qf\(0QF N9dQ) becomes a Neumann or a Dirichlet boundary condition, reése#e Intermediate values
lead to a spring boundary condition. Our numerical expemimi@resented in [21] show that any value of
k comparable to or larger than the stiffness of the coarseagtolesh nead Q" \ (dQ N dQ) is acceptable
and provides global-local enrichment functions with gopgraximation properties. For three-dimensional
linear elasticity problems, the following spring stiffrsasis recommended [21]:
E

K= o753 (®)
whereE is the Young's modulusy is the number of spacial dimensions of the probl&mis the volume
of the master element used ahi the Jacobian of the global element across the local bayndzere the
spring boundary condition is imposed. For further detadfer to [21].

The local problems defined @', o € %y, can be efficiently solved in parallel, sinee communication
among processors solving different local problems is required. This feature of the method is discussed in
details in Section 4 and numerical evidence is presenteddtich 5.

3.3 Global-Local Enrichment Functions and Enriched Global Problem

The solutionsu of the local problems o2, a € .%y, can be used to build generalized FEM shape
functions for the coarse global mesh. Equation (2) is usdid thie partition of unity functiong,, provided
by the coarse global FE mesh and the enrichment functiomdiya, i.e.,

@, (X) = o (X)U] (X) (no summation om) 9)

The local solutiong), a € %y, have the role of basis functions for the cloud spaxg&uy), o € .
Hereafter,u? is denoted aglobal-local enrichment function and the global problem enriched with these
functions is denoted asnriched global problem. The formulation of this problem is given by



Findug € X§(Q) c HY(Q) such thaty V§ € X§(Q)
/ o(ug) : g(VE)dx+ n/ u§-vEds= / t-vEds+ n/ u-vids (10)
Q oQu Q09 oQu

where, XE(Q) is the spacé(g(Q) defined in (1) augmented wWitBFEM functions (9). In the case of 3-D
elasticity problems, global-local enrichments add onlke¢éhdegrees of freedom to nodes: .7y of the
coarse global meshFhe number of enrichment functions per global node does not depend on the number

of degrees of freedom of the local problems (several thousands in general). Furthermore, the hidraaich
nature of global-local enrichments implies that the séiffs matrix of the initial global problem is nested in
the one of the enriched global problem. Due to these featfrdge method, the enriched global problem
can be efficiently solved using the static condensationraehiatroduced in Section A.2 of [9]. In most
practical engineering applications, the computationat ¢o solve the enriched global problem with this
strategy is small as demonstrated in [21]. Therefore, & phaiper, we focus on the efficiency and accuracy
of the parallel solution of the local problems. The readey mlgo refer to Section 3.3 of [21] for further
discussion on spadé(E;(Q). Figure 2 illustrates the enrichment of a global mesh withgblution of local
problems defined in a neighborhood of a 3-D crack.

4 Parallel Computation of Global-L ocal Enrichment Functions

In this section, some technical issues related to the garaiplementation of local problem computations
are discussed. Hereafter, the methodology described préwious sections and its parallel implementation
are referred to the parall&@FEMY',

4.1 Master-Sub Local Problem Approach

The key idea of the parallé&6FEMY is to define a large number of small local problems on a regfon o
interestQq C Q as described in Section 3.2. The smallest possible localsuhinQ[ corresponds to

a single cloudw, in the global domairQ. We adopt these local domains in the parallel implemematio
described in this paper.

Figure 3(a) shows two clouds represented by dashed linesimple two-dimensional global mesh.
Each cloud is used to define a local problem as illustratedgarg 3(b). The solution of these problems
are, in turn, used to enrich the corresponding global clotiie main technical difficulty with the procedure
illustrated in Figure 3 is how to handle the numerical inégigm over global elements enriched with distinct
local solutions, i.e., elements belonging to the inteieacdf two or more local domains. If all nodes of
a global element are enriched with the same local solutio,numerical integration can be performed
with the aid of the local elements nested in the global elém&his approach was proposed in [9] and is
illustrated in Figure 4. This procedure, however, cannaiderl on global elements enriched with solutions
from distinct local problems if the local meshes are not catifybe at the intersection of local domains (Cf.
Figure 3(c)). Neither of the two local meshes shown in Figd(t® is, in general, adequate for numerical
integration.

We address the above issue using the conceptasier andsub-local problems as illustrated in Figure
5. Instead of directly creating local problem discretiaasi from the global mesh, we create firshaster-
local domain extracted from the coarse global mesh. This domairbedp-adapted as if a single local



(a)

Global domain

(b)

Local Problems

(c)

Enrich global domain with local solutions

Figure 3: Incompatibility of local meshes nested in globahgents enriched with distinct local solutions. (a)
Two clouds used to define small local problems. (b) Localrdigzations after refinement. (c) Enrichment
of global elements with solutions from the two distinct Ibgeoblems.
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Figure 4: lllustration of numerical integration schemehe global elements enriched with local solutions
[9]. Dashes lines in the figure represent local problem efggeested in global elements. These elements
are used to define quadrature points in elements enrichbdaeidl solution. Crosses represent quadrature
points.
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Figure 5: Master-sub local problem approach. Sub-localaiogare created from a master local domain.
This strategy leads to sub-local problems that have colvipatieshes at the intersection of their domains.

problem is created around a crack. Next, clouds from theseogiobal mesh are used to extraab-local
domains from thdp-adapted master-local domain. No further refinement is donthie sub-local domains
after their creation. The sub-local problems defined onleaal domains can be solved in parallel and
their solutions used to enrich global elements. Each clooih fthe global mesh contained in the master
local domain defines a single local problem in our curreniémpentation. Thus, a large number of small
sub-local problems is created. This, as demonstrated sesuient sections, is beneficial for balancing the
workload among processors. Incompatibility between sdall meshes no longer exists. Therefore, the
integration procedure illustrated in Figure 4 can againdewon global elements.

In some applications, sub-local domains may be createchdrauegion where the solution has strong
gradients, is highly oscillatory or is singular, such asie tase of fracture mechanics problems. The quality
of the initial global solution is in general poor in thoseimts. As a result, some sub-local problems may
be subjected to poor boundary conditions which may reswgtabal-local enrichment functions with poor
approximation properties. This problem can be addressqiblfprming additional global-local cycles as
proposed in [28]. The solution of the enriched global prable used as boundary conditions for the local
problems and the process proceeds as before — solve th@tobé¢ms and enrich the global discretization
with local solutions. One important feature of this apptoacthat we can obtain improved enriched global
solutions with a small amount of additional computationsc8 only the boundary conditions provided by
the global problem are changed in the sub-local problemsEglation (6)), the stiffness matrix of each
sub-local problem factorized in the first global-local ®&clan be reused. Therefore, it is only necessary
to rebuild the right-hand side and perform backward and &mdwsubstitutions in each sub-local problem.
Furthermore, since shape functions built with global-leceichments are hierarchically added to the global
problem, the solution of the enriched global problem can ln&ioed at a low cost using the algorithm
introduced in Section A.2 of [9]. Examples of the applicatadf this approach are presented in sections 5.1
and 5.2.



4.2 Parallelization Issues

This section focuses on the implementation and load baigrissues of the parall@FEMY'. A simple
sorting technique is proposed to improve the parallel efficy of the algorithm. We also provide an estimate
of the largest number of CPUs at which a near uniform distidlouof workload among processors can be
maintained.

4.2.1 Paralld Implementation Algorithm

A key advantage of the parall@FEMY is that it does not require any communication among processo

and only a pair of scatter-gather communications is inwblvAll information needed to solve each sub-

local problem is obtained from the initial global problemfdre starting the parallel analysis (a scatter
communication). After the parallel solution of each subaloproblem, their solutions are sent back to the
global problem for enrichment (a gather communication)is Téature of the method greatly simplifies its

parallel implementation.

The Open Multi-Processing (OpenMP) programming model [80%ed in our implementation. OpenMP
is suitable to run parallel jobs on shared-memory multiepesor platforms. The implementation of the par-
allel GFEMY using OpenMP can be summarized as follows:

(i) Create sub-local problems using the master-sub loadilpm approach discussed in Section 4.1 and
store them in a list.

(i) Sort the sub-local problems in the list based on estiwalf their computational workload. Sorting
criteria are discussed in Section 4.2.2.

(iii) Activate N, processors (user-defined value).

(iv) Select the first sub-local problem in the list and remifeom the list. This operation must be done
in a critical region to avoid the so-calledce condition. Only one processor is allowed to enter into
the critical region.

(v) Solve the selected sub-local problem in parallel. Mds<EBU time is spent in this step.

(vi) If not all sub-local problems in the list have been salygo to step (iv) and repeat the procedure.
Otherwise, finish the parallel solution of sub-local probée

High parallel efficiency can be achieved with this algorithetause no processor becomes idle until all
sub-local problems in the list are solved. The critical oegiet up in this algorithm may slightly deteriorate
the parallel efficiency, but it is almost negligible when #isient large number of local problems is solved
in parallel as demonstrated later. The parallelizatiomswhdescribed above is illustrated in Figure 6.

In the numerical experiments presented in this paper, thallpbzation of the code is done on a SGI
Altix 3700 with 1024 Intel Itanium 2 processors located atC(National Center for Supercomputing
Applications), Urbana, lllinois, U.S. This machine adoghts Linux operating system by default and was
ranked 489th in the top 500 supercomputer list released ieidber of 2007 [37].
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Create sub-local problems using the master-sub local @mobbproach and store them in a list;
Sort sub-local problems in the list;
Activate N processors;
foreach processor i, i = 1,...,Np do
while not all of the sub-local problemsin thelist are solved do

while the OpenMP lock is not available do
Wait until the OpenMP lock becomes available;

endw
set an OpenMP lock;
select the first sub-local problem in the list and removeaitrfithe list;
unset the OpenMP lock;
solve the selected sub-local problem;
endw
endfch

Figure 6: Parallel algorithm for the solution of sub-locablplems implemented using OpenMP. A
critical region can be set using the OpenMP lock and only anegssor is allowed to enter into the
critical region.

4.2.2 Sorting of Sub-Local Problems

The computational cost to solve each sub-local problem neasidnificantly different if local mesh refine-
ment orp-enrichment is performed. For example, in fracture prolsleanhigh-level of mesh refinement
and enrichment with Westergaard singular functions aropeed in elements around the crack front to
accurately approximate the solution. As a result, subtlipoablems intersecting the crack front have a
larger number of degrees of freedom and/or more integratoants than sub-local problems far from the
crack front [31]. This may cause load unbalance among psoce®ven with the parallel algorithm intro-
duced in Section 4.2.1 and result in low parallel efficiend observe that a similar difficulty exists when
partitioning a domain with adaptive mesh refinement andccemient in the standarfeEM [26]. This load
unbalance issue can be addressed by sorting the sub-lotédéprs in the list used in the algorithm shown
in Figure 6 based on estimates of their computational logglurg 7(a) illustrates the worst possible distri-
bution of sub-local problems in the list. In the figure, sobdl problems are represented by circles and their
computational load is represented by the size of the cirdlks sub-local problems are sorted in ascending
order of their workload — the smallest problem is solved firsdl the largest one last, thus load unbalance
among processors exists if the difference in workload answiglocal problems is significant. Figure 7(b)
represents the opposite case. The sub-local problemsraee sodescending order - the largest problem is
solved first and the smallest one last, thus load unbalanoce@processors can be minimized. If no sorting
is done, the parallel efficiency will be somewhere betweesdhwo extremes. The parallel performance of
these sorting criteria is compared in Section 5.2.

4.2.3 Load BalanceLimit

The sorting of sub-local problems in descending order ifopered to evenly distribute the workload among
processors and improve parallel efficiency. However, ef/éns sorting criterion is used, there is a limit

in the number of CPUs at which load balance among procesaarbe& maintained. This occurs when the
computational load of the sub-local problems is signifigadifferent. If the average workload assigned to

11



(a) Sorting in ascending order (b) Sorting in descending order

Figure 7: Analogy to sorting of sub-local problems in destirg and ascending order.

each processor is smaller than the computational load te $bé largest sub-local problem, load balance
among processors cannot be maintained. Therefore, théioorfdr load balance among processors can be
stated by the following inequality

Ns A
258 Qe (11)
P
whereNs denotes the number of sub-local problems creaigdhe number of processors provideg|,an
estimate of the computational cost to solveitie sub-local problem an@max = maxQ1,Qz,...,Qn,). The
left and right hand sides of Equation (11) represent thease=workload assigned to each processor and the

cost to solve the largest sub-local problem created, réispgc
The largest number of CPUs that satisfies inequality (), is given by

N
izlei

Qmax

This equation provides an estimate for the largest numb&Rtfs where load balance among processors
can be achieved by assuming that a sufficiently large nunfternmlocal problems are created.

Nr?lax = (12)

In addition to the difference in workload among sub-locablpems, there are other factors such as
initial multi-processor activation cost, processor reation cost and cache effect, which may also affect
parallel efficiency. Therefore, it is recommended that Eign12) be used as a guide to select the number
of processors used for a parallel analysis. Another chgdlén the application of this equation is how to
estimate the computational load to solve each sub-localeno(Q;) before performing the parallel analysis.
According to our numerical experience, the number of flappoint operations required to factorize the
stiffness matrix of a sub-local problem is a reasonablaredt of the cost to solve a sub-local problem
since in general the factorization of the stiffness matsithe most time-consuming procedure in a finite
element analysis. This information is provided by most spatirect solvers currently available before
starting the factorization of a matrix. The validity of Edia (12) is evaluated in the numerical examples
of Sections 5.2 and 5.3.
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5 Numerical Experiments

In this section, we analyze several numerical examplesritywbe effectiveness and accuracy of the pro-
posed parallel generalized finite element technique.

5.1 EdgeCracked Bar

As a first example, we analyze a rectangular bar with a thrahgfthickness crack with the goal of demon-
strating the accuracy of the proposed paraBEIEMY. This example has been analyzed by several re-
searchers [23, 34] and thus reliable solutions for the Masleeks intensity factork, along the crack front
are available. The geometry of the domain and the boundarglitons are illustrated in Figure 8. The
following parameters are used in this example: Poissotis va= 1/3; Young’s modulu€ = 1.0; Domain
dimensiond/t = 0.875,a/t = 0.5, w/t = 1.5. andt = 2.0.

Figure 8 illustrates the discretization used in the analyghe initial global mesh is coarse and is com-
posed of 6x (10x 15 x 15) tetrahedral elements. Heaviside enrichment functionsisee to approximate
the solution on elements cut by the crack surface. The crad& at faces of elements. Westergaard singular
enrichment functions are not used in the initial global peoh

The master local domain is created from the coarse globah med it has 480 clouds around the crack
front. It is hp-adapted and enriched with both Heaviside and Westergaaatiéns. Details on this process
can be found in [31, 32]. Next, the master local domain is sutbeld into 480 sub-local domains and solved
in parallel as illustrated in Figure 8. Spring boundary atiads provided by the initial global solution are
used in each sub-local problem. The spring stiffness ictmlaising Equation (8). The mesh of the master
local domain is designed such that the ratio of the elemeatsithe characteristic length of the cratk/a)
is 0.0192 for the elements intersecting the crack front. Sdlation of the sub-local problems are used to
enrich 480 nodes around the crack front in the global dom@irbic polynomial shape functions are used
in both global and local problems.

5.1.1 Quality of Model Stress|ntensity Factor

Mode | stress intensity factor (SIF, extracted along the crack front is normalized using
— K
Kl = I )
o\ ma

whereK, denotes the normalized Mode | SIF aads the magnitude of the traction applied at the bottom
and top surfaces of the rectangular domain.

(13)

Figure 9 presents the normalized SIF extracted along thok érant using both thép-GFEM for the 3D
fractures presented in [31, 32] and the proposed pa@F&M?. The results are plotted in the parametric
coordinate system defined on the crack front wisgre= 0.0 ands/w = 0.5 correspond to the center of the
crack front and a crack vertex, respectively. FipeGFEM solution corresponds to the case in which the
global mesh is refined and enriched with Heaviside and Wgssded functions as described in [31]. Figure
9 also presents the reference solution provided by Li e@8l.

The SIF extracted from the (first) global solution enrichethwub-local solutions has an erm(K,) =
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Figure 8: Solution of an edge cracked bar using the par@liM9' with the master-sub local approach.
Only 8 out of 480 sub-local problems are illustrated in therfig
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Figure 9: Mode | SIF extracted from the first and second erddjlobal solutions.

3.01%, whereg (K| ) is a normalized discrete?-norm of the difference between the computed SIF and the
reference solution defined by

(14)

whereNeq is the number of extraction points along the crack fréfitandK,' are the reference and com-
puted stress intensity factor values for Mode | at the cracktfpoint j, respectively. This low accuracy
happens because the boundary of some sub-local domaireeiciiethe crack front where the quality of the
boundary conditions provided by the initial global solatis usually poor. This problem can be addressed
by performing an additional global-local cycle as discdsseSection 4.1. It can be noted from Figure 9
that the quality of the second enriched global solution &tly improved. The relative error in this case is
€ (K)=111%.

5.2 Penny Shaped Crack

The second problem is a circular crack in a cube as illustrigigure 10. The objectives of this example are
to evaluate the parallel efficiency and accuracy of the pseggaralleGFEM9 with master-sub local prob-
lem approach. The effect of the sorting techniques discliss8ection 4.2.2 and the validity of Equation
(12) are also investigated.

A tensile traction of magnitude is applied in they-direction at the top and bottom surfaces of the
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Figure 10: Solution of a cube with a penny shaped crack usiagarallelGFEMY with master-sub local
approach. Only 8 out of 495 sub-local problems are illusttam the figure.

domain. The following parameters are assumed in this pnobléube dimensionl2= 2.0; crack radius
a=0.5; vertical tractiono = 1.0; Young’s modulu€ = 2.0 x 10°; Poisson'’s ratio’ = 0.3.

The solution of this problem is computed following the sarteps described in Section 5.1. The global
domain is discretized with a uniform coarse mesh of @0 x 10 x 10) tetrahedral elements as shown in
Figure 10. In contrast with the previous example, the cracki discretized in the initial global problem.
A single master-local domain containing the entire circetack surface is created from the coarse global
mesh. It has 495 clouds around the crack surface. Diricldah&ary conditions provided by the initial
global problem are used in each sub-local problem. The mkxstal domain is locally refined around the
crack front such that the ratio of element size to charastiercrack lengthl(c/a) along the crack front is
0.0280. The master local domain is subdivided into 495 subtldomains and solved in parallel. Both
Heaviside and Westergaard enrichment functions are us#tkitocal problems. The solutions of these
sub-local problems are used as enrichment functions indaese global domain as illustrated in Figure 10.
Cubic polynomial shape functions are used in both globallaca problems.
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5.2.1 Paralle Performance

In this section, we investigate the parallel performancéhef proposed paralldsFEMY for the penny
shaped crack example. The total CPU time required for thallphsolution of all 495 sub-local problems
is measured for several number of processors. These rasellisen used to compute parallel efficiency and

speed-up using [33]
Sequential execution time

Parallel execution time
Parallel speed-up
Number of processors used
The two sorting techniques discussed in Section 4.2.2 aé asd their effects on the parallel efficiency
are examined. Equation (12) predicts that load unbalarmressb occur aNhay = 22.6 if the sorting in
descending order is used. The accuracy of this estimatealsaed by comparing it with the numerical
result presented in this section.

Parallel speed-up:

Parallel efficiency=

Tables 1 and 2 show the total CPU required for the paralleitsol of sub-local problems, the parallel
efficiency and speed-up with respect to the number of CPUshfotwo sorting criteria. The maximum
number of CPUs provided for the parallel computation is 822 by referring to the estimate given by
Equation (12). It can be observed from the results in theetathlat the sorting in descending order delivers
much higher parallel efficiency, which is above 90 % for 22ems| processors, than the sorting in ascending
order. For example, when 22 processors are used, the paféiteency obtained by the former is 90.7 %,
while that obtained by the latter is only 67.4 %.

Table 1: Parallel performance for the penny shaped cradilgmowith sorting of sub-local problems in
descending order.

Number of processors CPU time (sec.) Parallel efficiency| Speed-up

1 4653.0 N/A N/A

2 2423.8 0.960 1.920
4 1218.7 0.955 3.818
8 612.5 0.950 7.597
16 309.3 0.940 15.046
20 247.1 0.942 18.834
22 233.1 0.907 19.960
32 219.8 0.662 21.169

The results in Tables 1 and 2 are plotted in Figure 11. Thezbotal axis represents the total number
of processors used and the vertical axes on the left andsidétindicate parallel efficiency and speed-up,
respectively. The speed-up obtained by the sorting in awlag order exhibits almost linear scalability up
to Np = 22 and then the slope drops at arolNyd= 22. The curve obtained by the sorting in ascending order
has a similar shape, but it starts deviating from the lineatability atN, = 8 and its parallel efficiency is
much lower.

We display the number of sub-local problems solved and Cilg fipent in each processor in Figure 12
in order to investigate the load balance among processahg itwo sorting cases whéy, = 8. From this
plot, the following observations can be made. First, thérspin descending order distributes the workload
uniformly among processors, while the number of sub-locablems solved in each processor is uneven.
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Table 2: Parallel performance for the penny shaped cradigmowith sorting of sub-local problems in
ascending order.

Number of processors CPU time (sec.) Parallel efficiency| Speed-up
1 4653.0 N/A N/A
2 2441.0 0.953 1.906
4 1254.1 0.928 3.710
8 707.0 0.823 6.581
16 3844 0.757 12.105
20 325.2 0.715 14.308
22 313.7 0.674 14.834
32 282.2 0.515 16.491
1.2 1 35
% =25
0.8 O
> O I
2 1"s
5 (] P 0 415 %
g 0.4 1 g — B— Speed-up: Descend sort
A
/ —@— Speed-up: Ascend sort ] 10
Linear Speed-up
0.2 / ° ---0--- Efficiency: Descend sort{ 5
---O--- Efficiency: Ascend sort
"""" Perfect efficiency
0.0 T T T T T T 0
0 5 10 15 20 25 30 35

Number of Processors

Figure 11: Parallel performance for the penny shaped creaple.
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(b) Sorting in ascending order.

Figure 12: Effect of the sorting criteria on the load balaaoceng processors i, = 8.
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As shown in Figure 12(a), the CPU time spent in each processdmost the same. Second, the sorting

in ascending order does exactly the opposite. Almost theesaimber of sub-local problems are solved

in each processor, but the workload is not uniformly distigél among processors, leading to an uneven
amount of CPU time spent in each processor.

Next, we investigate why the parallel efficiency suddenlgpdr atN, = 22 even with the sorting in
descending order. Figure 13 shows the same quantities sinokigure 12 but for the caseéd, = 20 and
Np = 22. These results are obtained by using the sorting in ddsugporder. Figure 13(a) indicates that the
workload is uniformly distributed to each processor wherpgfcessors are used and the number of sub-
local problems solved in each processor is quite uneven tigeinase witiN, = 8. However, an uniform
distribution of the workload can no longer be achieved if 2&cpssors are used since the cost to solve the
largest sub-local problem is larger than the averaged wadkhssigned to other processors. Figure 13(b)
shows that the computational cost to solve each of the twge$trsub-local problems is larger than the
averaged workload of other processors. This is preciselg#ise that Equation (11) describes. Therefore,
if more than 22 CPUs are used, parallel efficiency is detatdor as already shown in Figure 11.

The results shown in Figure 13 confirm that the estimate ofcthé balance limit provided by Equation
(12) is quite accurate. Although the proposed master-scdil faroblem approach has a limitation in the
number of processors at which load balance can be maintaimedmit is determined by the cost to solve
the largest sub-local problem, which is in our experienss than five minutes because a sub-local domain
is defined by a single cloud in the coarse global mesh as dieduis Section 4.1. Thus, this limitation is
not relevant from a practical point of a view.

The numerical results in this section indicate that the aremtib local problem approach with sorting
in descending order can achieve parallel efficiency abov&9ip to the load balance limit provided by
Equation (12). This demonstrates a high scalability of tt@ppsed paralleGFEM? technique which is
possible due to its unique feature that does not require amninication among processors during the
parallel solution of sub-local problems.

5.2.2 Quality of Extracted Stress|ntensity Factors

Figure 14 presents the Mode | SIF extracted from the par&EMY solution. A reference SIF value
provided by Li et al. [23] is given by,

2.213
TO’\/T[_a (15)
wherea denotes the crack radius aads the magnitude of the traction applied at the bottom andtwfaces
of the rectangular domain. Li et al. [23] repdfi at pointA indicated in Figure 10, which corresponds to
6 = 0° or 360" in Figure 14. Although this value does not repreg@nalong the whole crack front due to
the finite size of the domain, the exadgt only slightly varies from it. Therefore, we use it as a refee
value for the Mode | SIF along the whole crack front.

Klref. —

Similar to the edge cracked bar example presented in Segtiothe quality of boundary conditions used
on sub-local problems created along the crack front is pidbieir boundaries are intersected by the crack
front. Therefore, we follow the same procedure used in 8ed&il.1 and the SIF shown in Figure 14 are
extracted from the enriched global solution obtained dlftexe global-local cycles. Figure 14 shows the SIFs
extracted from th€FEM?' solutions computed with polynomial shape functions of degr= 1, 2,3. It can
be noted from the figure th&j; converges to the reference value as the order of polynomagesfunctions
increases. The SIF for the cage= 3 shows a good agreement with the reference SIF and the mdgruf
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(b) Workload distribution to each processor iy = 22.

Figure 13: Load balance limit for the penny shaped crack g@kamSub-local problems are sorted in de-
scending order.
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Figure 14: SIFs extracted along the circular crack frontifferent order of polynomial shape functions.

the oscillations is small along the crack front. The relatvror for this case i€ (K;) = 0.05%.

5.3 Mechanical Manifold with Multiple Cracks

In this section, we analyze a problem with an industrial l@feomplexity using the parall€sFEM9' and
investigate the performance of the parallel solution of-kgal problems. The problem is a mechanical
manifold with multiple cracks, which is a thin tube-like stture. The geometry and boundary conditions
are shown in Figure 15. The Young’s modulus and Poissoris aae assumed to bg = 2.0 x 10° and

v = 0.3, respectively.

The top, front and back views of the manifold are providediguFes 15, 16 and 17, respectively. Six
cracks are modeled in the regions with stress concentratimre they are likely to nucleate and grow
under the given geometry and boundary conditions. The firdtsscond cracks shown in Figures 16 and
17 have two crack fronts due to the geometry of the domain. Atemdocal domain is created at each
crack front. All other cracks, from the third to the sixth otve only one crack front and one master-
local domain is created in the neighborhood of each frontisTh total of eight master-local domains are
extracted from the global mesh. Each master-sub local domsdocally refined around its crack front and
enriched with Heaviside and singular Westergaard funstidsext, master-local domains 1 through 8 are
subdivided into 229, 172, 116, 191, 26, 37, 109 and 103 schk-firoblems, respectively. The total number
of sub-local problems created is 983. Quartic polynomiajpshfunctions are used in all sub-local problems.
The 983 sub-local problems lead to additional 2,949 degse&sedom in the enriched global problem. A
comparableénp-GFEM discretization with the same level of mesh refinement asérstib-local problems
and quartic polynomial shape functions would have 1,60b@&rees of freedom.
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Figure 15: Top view of the mechanical manifold with multiplkacks. The structure is subjected to displace-
ment boundary conditions represented by yellow arrows.pFascribed displacement vectors in the positive
and negative x-directions atey, uy, u;) = (0.02,0,0) and(ux, uy,u;) = (—0.02,0,0), respectively. Homo-
geneous traction boundary conditions are applied elsewtrethe boundary. The 5th and 6th master-local
domains extracted around the 3rd and 4th crack surfacggatigely, are also shown in the figure.
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Figure 16: Front view of the mechanical manifold with mukigracks. The 1st, 3rd and 7th master-local
domains extracted around the 1st, 2nd and 5th cracks, ttasggcare shown in the figure.
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Figure 17: Back view of the mechanical manifold with mukigracks. The 2nd, 4th and 8th master-local
domains extracted around the 1st, 2nd and 6th cracks, itesggcare shown in the figure.

5.3.1 Paralld Performance

The parallel performance of the sub-local problem compuriatis examined in this section. The total
CPU time required for the parallel solution of all 983 subdbproblems is measured for several number of
processors. The parallel efficiency and speed-up are cedjnaim those results. The sorting in descending
order is used in all computations. The load balance limistgwated adNhax = 20.1 using Equation (12).

Table 3 lists the CPU time required to solve all sub-locabpems in parallel, the efficiency and speed-up
with respect to the number of processors. It can be noted fhemable that a high parallel efficiency is
maintained up tdN, = 20 (89.1 % when 20 processors are provided). Figure 18 fletslata in Table 3.
The horizontal axis represents the total number of processed and the vertical axes on the left and right
side indicate parallel efficiency and speed-up, respdgti@milar to the results in Figure 11, the speed-up
curve shows nearly linear scalability upNp = 18 and then the slope drops.

Table 3: Parallel performance of a mechanical manifold gotamwith sorting in descending order.

Number of processors CPU time (sec.) Parallel efficiency| Speed-up

1 1537.4 N/A N/A

2 778.1 0.988 1.976
4 392.1 0.980 3.921
8 198.3 0.969 7.752
16 101.1 0.951 15.214
18 92.3 0.926 16.666
20 86.3 0.891 17.823
32 66.4 0.724 23.161

Figures 19(a) and 19(b) present the number of sub-locallgmbsolved and the CPU time in each
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Figure 18: Parallel performance of the mechanical maniéakimple.

processor foN, = 18 andN, = 20, respectively. Figure 19(a) indicates that the CPU tipeson the last
processor is slightly larger than on the others and only abdacal problem is solved in that processor when
18 processors are provided. This means that the compuhtiost to solve the largest sub-local problem
is larger than the average workload assigned to other psoreand perfect load balance among processors
is not maintained. Figure 19(b) shows a situation wherellghedficiency is slightly more deteriorated and
the cost to solve the two largest sub-local problems excedsveraged workload per processor. However,
there is no significant practical relevance to further redine analysis time by providing more processors
since the CPU time spent whély = 20 is just 86.3 seconds.

The parallel performance and load balance described alwve &gain a good agreement with the esti-
mate provided by Equation (12), whichighax = 20.1. All of the numerical results in this section demon-
strate that high parallel efficiency can be achieved by th@sed paralleGFEMY with the master-sub
local problem approach up to the load balance limit.

5.4 Structural Component

The proposed parall@FEMY' is not restricted to the analysis of 3-D cracks. It can be usgaxample, to
perform aggressiviep-extensions in large computational models while adding timee degrees of freedom
per node enriched with global-local functions. This cafighdf the method is demonstrated in this section.
The geometry and boundary conditions of the problem are showrigure 20. The global mesh used in
this example consists of 3,849 nodes and 15,527 tetraheldraknts. Linear elastic material properties are
assumed with Young’s modulis= 10° and Poisson’s ratio = 0.33.

Figure 21 illustrates the discretization used for the palrablution procedure. A single master domain
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Figure 19: Load balance limitation for the mechanical maldiexample.
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that is equal to the global domain is created. To investidreffectiveness of the proposed paraBEEMY!

for large problems, different levels of uniform mesh refimgtare performed at the master-local domain.
A total of 3,849 sub-local problems are extracted from tHimeel master-local mesh. This is equal to the
number of nodes in the coarse global mesh. These problemslaesl in parallel and their solutions used to
enrich the global problem. Cubic polynomial functions asediin both the global and sub-local problems.

Table 4 lists the number of degrees of freedom (DOFs) rediigethe paralleGFEMY analysis when
utilizing three levels of uniform mesh refinement (hereadtenoted Levels 1, 2 and 3). The initial global
problem has 115,470 DOFs while the enriched global has T05,8x (3,849) = 127,017 DOFsegardless
of the size of the sub-local problems. The range of sub-local problem sizes is also listed for déexdl of
mesh refinement. The numbers of DOFs that would be requireahfbp-GFEM analysis of this example
are presented in the table. They are obtained by assuminghiaame level of mesh refinement and
polynomial enrichment used in the master-local domainrsatly performed on the global mesh. It can be
noted from the table that thg-GFEM analysis with Level 3 mesh refinement requires more then [gomil
DOFs, which would be very difficult, if possible at all, to gelon a single processor. In contrast, the largest
number of DOFs needed for the para@®FEMY analysis is 127,017, which is still solvable on a single
processor and the largest sub-local problem created byl Bexweesh refinement requires around 40,000
DOFs.

Table 4: Number of degrees of freedom requiredHpiGFEM and parallelGFEMY' analyses with three
different levels of uniform mesh refinement.

ParallelGFEMY
Level of uniform | hp-GFEM | Initial Sub-local Enriched
mesh refinement global | Minimum | Maximum | global
1 1,150,590 420 5,580
2 3,377,550| 115,470 720 15,180 | 127,017
3 9,235,530 1,590 40,170
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Figure 21: Solution of a structural component using thelpf@FEMY' with the master-sub local approach.
The refined master-local domain mesh in the figure corresptindevel 1 of mesh refinement. Only 4 out
of 3,849 sub-local problems are illustrated in the figure.
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54.1 Paralle Performance

The performance of the parallBFEM?' is investigated in this section. The total CPU time to soivpar-
allel all 3,849 sub-local problems is measured for up to I”28gssors. The parallel efficiency is computed
for three levels of mesh refinement as shown in Table 5. Thepatational load and required memory for
mesh refinement Levels 2 and 3 are large and more than onesporceust be used. The required minimum
number of processors is determined for each case. TheglagHiitiency is measured with respect to the
CPU time obtained with the minimum number of processorswiibt respect to the serial solution as was
the case in previous examples. Sub-local problems aredsorteescending order.

Table 5: Parallel performance for three levels of mesh refer@ at sub-local problems.

CPU time (sec.) Parallel efficiency
Number of processorsLevel 1 | Level 2 | Level 3 | Level 1 | Level 2| Level 3
1 3534.3 N/A
2 1843.6 | 18951.8 0.959 N/A
4 938.0 | 9842.6 0.942 | 0.963
8 479.4 | 5067.5 0.922 | 0.935
16 240.6 | 2829.5| 17895.8| 0.918 | 0.837 N/A
32 126.0 | 1449.1 | 9780.7 | 0.877 | 0.817 | 0.913
64 553.8 | 5220.6 1.069 | 0.856
128 2145.9 1.068

The load balance limits for mesh refinement Levels 1, 2 andeqN&ex = 5387, Nbax = 3706 and
Nhax= 386.7, respectively, according to the estimate provided by Equ#12). All of them are well above
the maximum number of processors used in our computatiansl®8 processors). As expected, from the
estimate, the results in Table 5 show that high parallelieffizy is maintained up to the maximum number of
processors considered. For instance, the parallel efeigitmn mesh refinement Level 3 is about 85 % when
64 processors are provided. It can also be observed fronabie that superlinear scalability is achieved
when 64 and 128 processors for Levels 2 and 3, respectivelysed. This is likely due to cache memory
and memory latency effects of the Non-Uniform Memory Aca@dMA) system, on which the SGI Altix
3700 is based. Since the problem size is very large for Le&alsd 3, a processor uses memory from other
processors in the NUMA system when a small number of processe assigned for parallel computations.
However, it does not use cache memory from other processbngs, when the number of processors
performing computations is increased, more cache memaryad, even if the total number of processors
locked for the parallel computation remains the same. Taisantribute to superlinear scalability. In
addition, when a processor uses memory from several otlbeegsors, memory access latency increases.
Thus, as the number of processors performing computatimneases, the latency decreases if the number
of processors locked for the parallel computations reminiassame. This also contributes to superlinear

scalability.

The results in the table confirm that high parallel efficiensey be achieved by the proposed parallel
GFEMY' and increasing the number of processors does not resuginiifisant deterioration of efficiency.
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6 Summary and Concluding Remarks

In this paper, we introduced a parallel generalized finiggngint method that uses customized enrichment
functions for applications where limited a priori knowledgbout the solution is available. The enrichment
functions can be efficiently constructed through paralehputations. The methodology involves the paral-
lel solution of local boundary value problems using bougidanditions from a coarse global problem. The
local solutions are in turn used to enrich the global spagggubke partition of unity of framework. In this
procedure, load unbalance is addressed by defining a langarer of small local problems than the number
of parallel processors and by sorting and solving the looalems based on estimates of their workload.
The compatibility between local meshes in overlappingargiis guaranteed by the master-sub local prob-
lem approach presented in Section 4.1. A simple and efieetimate of the largest number of processors
where load balance among processors is maintained is @dpd$e effectiveness of the method was in-
vestigated in terms of accuracy and parallel efficiencyughoseveral three-dimensional fracture mechanics
examples. The main conclusions of this paper are as follows:

e The proposed paralléd6FEMY' allows efficient parallel solution of practical enginegriproblems
such as the analysis of three-dimensional cracks that Hieuttito solve using available numerical
methodologies. The numerical experiments performed is plaiper show that parallel efficiency
above 80 % can be achieved up to the load balance limit;

e The sorting of sub-local problems in descending order ivgsgarallel efficiency significantly and
the proposed estimate for the load balance limit expresgéaibation (12) shows good accuracy;

e The quality of the paralleGBFEMY solutions can be improved by performing additional gloloakl
cycles when sub-local problems are subjected to poor boyrdaditions. The solutions computed
with the proposed approach are of comparable quality todhtde hp-GFEM [31, 32].
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