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Abstract

This paper presents a parallel generalized finite element method (GFEM) that uses customized en-
richment functions for applications where limited a prioriknowledge about the solution is available. The
procedure involves the parallel solution of local boundaryvalue problems using boundary conditions
from a coarse global problem. The local solutions are in turnused to enrich the global solution space us-
ing the partition of unity methodology. The parallel computation of local solutions can be implemented
using a single pair of scatter-gather communications. Several numerical experiments demonstrate the
high parallel efficiency of these computations. For problems requiring non-uniform mesh refinement
and enrichment, load unbalance is addressed by defining a larger number of small local problems than
the number of parallel processors and by sorting and solvingthe local problems based on estimates of
their workload. A simple and effective estimate of the largest number of processors where load balance
among processors is maintained is also proposed. Several three-dimensional fracture mechanics prob-
lems aiming at investigating the accuracy and parallel performance of the proposedGFEM are analyzed.

KEY WORDS: Generalized FEM; Extended FEM; Parallel computation; OpenMP; Global-local analysis;
Fracture.

1 Introduction

Realistic simulations of many practical fracture mechanics problems are still formidable tasks for the finite
element method (FEM) [38]. The accurate solution of three-dimensional fracture mechanics problems re-
quires aggressive mesh refinement and polynomial enrichment around crack fronts. This creates difficulties
in the parallel solution of the problem since load balancingbecomes non-trivial. Typical parallelFEM im-
plementations partition the computational domain and distribute the partitions among processors such that
each processor processes the same computational load [15–19, 22]. However,FEM discretizations with non-
uniform element sizes and/or polynomial orders are difficult to partition since estimating the computational
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load of each partition is not trivial [26]. Furthermore, thecomputation load in each partition changes during
the simulation as theFEM mesh is adapted and/or the crack propagates. The use of massive computational
power by itself is not sufficient. Instead, advances in existing techniques and the development of scalable
algorithms for this class of problems are needed.

The Generalized or eXtended Finite Element Method (G/XFEM) [2–4, 8, 25, 27, 35, 36] allows straight-
forward construction of discrete solution spaces using non-polynomial functions while preserving the spar-
sity of global matrices. These functions are chosen carefully to mimic known properties of the function to be
approximated like discontinuities or singularities. Mostapplications of these methods have relied on analyt-
ically derived enrichment functions. However, while thesefunctions add flexibility and robustness to these
methods, they are in general not able to deliver accurate solutions on coarse three-dimensional meshes. To
overcome this limitation, local mesh refinement must be performed as in the standard finite element method
[14, 31]. This creates several of the drawbacks of theFEM with remeshing, in particular, low scalability in
a parallel environment.

In [7, 9, 10, 20, 21] we presented a generalized finite elementmethod based on the solution of interde-
pendent global (structural) and local (crack) scale problems. The local problems focus on the resolution of
fine scale features of the solution in the vicinity of 3-D cracks while the global problem addresses the macro-
scale structural behavior. The local solutions are embedded into the global solution space using the partition
of unity method. The local problems are accurately solved using anhp-GFEM for 3-D cracks [31, 32] and
thus the method does not rely on analytical solutions. The methodology enables accurate modeling of 3-D
cracks on meshes with elements that are orders of magnitude larger than those required by theFEM or
previously availableGFEM. As a result, a single global mesh can be used to analyze any crack configura-
tion [21] or multiple interacting cracks [20]. Furthermore, only a few degrees of freedom are hierarchically
added to the global (coarse-scale) discretization, regardless of the number of degrees of freedom required
to solve the local problems [9]. We denote this class of methods as aGFEM with global-local enrichment
functions (GFEMgl). Global-local enrichment functions also enable the analysis of problems with sharp
thermal gradients using coarse meshes, as demonstrated in [28, 29].

In this paper, we formulate theGFEMgl such that the bulk of the computations can be efficiently done
in parallel. In this approach, a local problem is defined for each node of the global mesh whose shape
function support intersects a region of interest – like a neighborhood of a crack. These local problems can be
efficiently solved in parallel, since no communication among processors solving different local problems is
required. In the parallelGFEMgl presented here, load balancing among processors is addressed by defining
a larger number of local problems than the number of parallelprocessors, and by sorting and solving the
local problems based on estimates of their workload. A simple and effective estimate of the largest number
of processors below which load balance among processors is maintained is also presented.

The remainder of this paper is organized as follows. Sections 2 and 3 review theGFEM and in particular
theGFEM with global-local enrichment functions presented in [21].In Section 4, an approach to handle the
numerical integration on global elements enriched with global-local enrichment functions computed at dif-
ferent local problems is presented. The implementation of the proposed parallelGFEMgl using the OpenMP
(Open Multi-Processing) programming model [30] and a sorting algorithm to improve the computational
load balancing among processors are also discussed in Section 4. In Section 5, numerical examples demon-
strating the accuracy and the parallel efficiency of the methodology are presented. Finally, the conclusions
of this paper are drawn in Section 6.
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2 Generalized Finite Element Method: A Summary

The generalized FEM [2, 3, 8, 27, 35] is an instance of the so-called partition of unity method (PUM)
which has its origins in the works of Babuškaet al. [1, 3, 24] and Duarte and Oden [6, 11–13, 27]. The
generalized FEM (GFEM) denotes a PUM with the partition of unity provided by Lagrangian finite element
shape functions. The same method is also known as the eXtended FEM (XFEM) [4, 25]. A recent review of
Generalized/eXtended FEMs along with a brief history of their developments can be found in [5].

Generalized FEM approximation spaces (i.e., trial spaces)consist of three components – (a) patches
or clouds, (b) a partition of unity, and (c) the patch or cloudapproximation spaces. We describe these
components as follows:

Figure 1: Construction of a
generalized FEM shape func-
tion. Here,ϕα is the function
at the top,Lα i is the function
in the middle and the general-
ized FE shape function,φα i, is
shown at the bottom.

(a)Patches or Clouds ωα : In the generalized finite element method, a cloud
ωα is given by the union of the finite elements sharing nodeα of the finite
element mesh covering the domain of interestΩ. The set{ωα}N

α=1, in a
finite element mesh withN nodes, is an open cover ofΩ, i.e.,Ω =∪N

α=1ωα .

(b) Partition of Unity Subordinate to the Cover {ωα}N
α=1: The Lagrangian

finite element shape functionsϕα , α = 1, . . . ,N, constitute a partition of
unity, i.e.,∑N

α=1 ϕα(xxx) = 1 for all xxx in Ω. This is a key property used in
partition of unity methods.

(c) Cloud Approximation Spaces χα : To each cloudωα , we associate a
DL(α)-dimensional spaceχα of functions defined onωα , namely,

χα = span{Lα i, 1≤ i ≤ DL(α), Lα i ∈ H1(ωα)}.

The basis functionsLα i above are also known asenrichment functions. A
cloud approximationuuuhp

α (xxx) ∈ χα of uuu|ωα – the restriction toωα of a func-
tion uuu defined onΩ – can be written as

uuuhp
α (xxx) =

DL

∑
i=1

uuu α iLα i(xxx)

whereuuu α i, i = 1, . . . ,DL(α), are degrees of freedom.

The trial space for theGFEM is given by

XXX(Ω) ≡
N

∑
α=1

ϕα χα = span{φα i := ϕαLα i, 1≤ i ≤ DL(α), 1≤ α ≤ N} (1)

The function
φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (2)

whereα is a node in the finite element mesh, is called aGFEM shape function. Figure 1 illustrates the
construction ofGFEM shape functions in a two-dimensional domain.
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A GFEM approximationuuuhp(xxx) ∈ XXX(Ω) of a vector value functionuuu can be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuu α iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuu α iϕα(xxx)Lα i(xxx)

=
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

uuu α iLα i(xxx) =
N

∑
α=1

ϕα(xxx)uuuhp
α (xxx)

3 Parallel Solution of Two-Scale Problems Using Global-Local Enrichments

A global-local approach to build enrichment functions for the generalized FEM was introduced in [9, 10, 21].
The approach is based on the solution of interdependent global (structural) and local (crack) scale problems.
The local problems focus on the resolution of fine scale features of the solution in the vicinity of 3-D cracks
while the global problem addresses the macro-scale structural behavior. We denote this class of methods
as aGFEM with global-local enrichment functions (GFEMgl). In this section, we formulate theGFEMgl

presented in [21] such that the bulk of the computations can be efficiently done in parallel. In the approach
presented below, a local problem is defined for each node of the global mesh whose shape function support
intersects a region of interest – like a neighborhood of a crack. It is also conceivable that the region of
interest be the entire global domain.

3.1 Formulation of Coarse-Scale Global Problem

Consider the domain̄Ω = Ω∪ ∂ Ω ⊂ IR3. The boundary is decomposed as∂ Ω = ∂ Ωu ∪ ∂ Ωσ with ∂ Ωu ∩
∂ Ωσ = /0.

The strong form of the equilibrium and constitutive equations are given by

∇ ·σσσ = 000 σσσ = CCC : εεε in Ω, (3)

whereCCC is Hooke’s tensor. The following boundary conditions are prescribed on∂ Ω

uuu = ūuu on ∂ Ωu σσσ ·nnn = t̄tt on ∂ Ωσ , (4)

wherennn is the outward unit normal vector to∂ Ωσ andt̄tt andūuu are prescribed tractions and displacements,
respectively.

Let uuu0
G denote the generalized or standard FEM solution of the problem defined by (3), (4). This is

hereafter denoted as theinitial global problem. The approximationuuu0
G is the solution of the following

problem:

Find uuu0
G ∈ XXX0

G(Ω) ⊂ H1(Ω) such that,∀ vvv0
G ∈ XXX0

G(Ω)

∫

Ω
σσσ(uuu0

G) : εεε(vvv0
G)dxxx+η

∫

∂Ωu
uuu0

G · vvv0
Gdsss =

∫

∂Ωσ
t̄tt · vvv0

Gdsss+η
∫

∂Ωu
ūuu · vvv0

Gdsss (5)

where,XXX0
G(Ω) is a discretization ofH1(Ω), a Hilbert space defined onΩ, built with generalized or standard

FEM shape functions. In this paper, theGFEM is used and the spaceXXX0
G(Ω) is given by (1). The enrichment

functionsLα i, α = 1, . . . ,N, i = 1, . . . ,DL, are taken as polynomials of degree less than or equal top−1.
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Details can be found, for example, in Section 3.2 of [31]. SpaceXXX0
G(Ω) can also be defined using standard

polynomialFEM shape functions since cracks arenot discretized in the initial global problem.

The parameterη in (5) is a penalty parameter determined based on the Young’smodulusE and the
Jacobian of elements with a face on∂ Ωu. Other methods to impose Dirichlet boundary conditions canbe
used as well.

The mesh used to solve problem (5) is typically a coarse quasi-uniform mesh,regardless of the presence
of cracks in the domain. Figure 2 illustrates one example of such discretization. This mesh and the solution
uuu0

G are often available from the initial design stage of a structure or mechanical component.

Figure 2: Illustration of parallel computation of global-local enrichment functions using a cracked bar under
tension. Several local problems used for the computation ofglobal-local enrichments are created around the
crack front. Each local problem can be sent to a different processor and efficiently solved in parallel.The
crack is shown in the global domain for illustration purposes only. In theGFEMgl, cracks arenot discretized
in the global problem. Instead, global-local enrichment functions are used.

3.2 Formulation of Local Problems

Let Ωgl ⊂ Ω denote a region of interest like the shaded neighborhood of the crack front shown in Figure 2.
We assume thatΩgl is the union of cloudsωα from a global mesh coveringΩ. Thus

Ωgl =
⋃

α∈Igl

ωα

whereIgl denotes an index set of clouds from the global mesh. The parallel GFEMgl involves the solution
of local boundary value problems defined on cloudsωα , α ∈ Igl , of the macroscale (global) mesh. Each
cloud ωα , α ∈ Igl, is taken as the domainΩα

L of a local boundary value problem. It is also conceivable
to use more than one global cloud to define the local domains orto takeΩgl = Ω. In this paper, we take
Ωα

L = ωα . Thus, for each crack, a large number of local problems are defined. Figure 2 illustrates the
neighborhoodΩgl of a 3-D crack front and local domainsΩα

L , α ∈ Igl .

Having the solution of the initial global problem,uuu0
G computed as described in the previous section, the
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following local problems are solved in parallel for allα ∈ Igl :

Find uuuα
L ∈ XXXhp

L (Ωα
L ) ⊂ H1(Ωα

L ) such that,∀ vvvα
L ∈ XXXhp

L (Ωα
L )

∫

Ωα
L

σσσ(uuuα
L ) : εεε(vvvα

L )dxxx+η
∫

∂Ωα
L ∩∂Ωu

uuuα
L · vvvα

L dsss+κ
∫

∂Ωα
L \(∂Ωα

L ∩∂Ω)
uuuα

L · vvvα
L dsss =

∫

∂Ωα
L ∩∂Ωσ

t̄tt · vvvLdsss+η
∫

∂Ωα
L ∩∂Ωu

ūuu · vvvα
L dsss+

∫

∂Ωα
L \(∂Ωα

L ∩∂Ω)
(ttt(uuu0

G)+κuuu0
G) · vvvα

L dsss (6)

whereXXXhp
L (Ωα

L ) is a discretization ofH1(Ωα
L ) defined using theGFEM shape functions presented in [31, 32].

Details can be found in Section 3.2 of [21].

A key aspect of problem (6) is the use of the coarse-scale solution to compute the boundary condition
prescribed on∂ Ωα

L \(∂ Ωα
L ∩∂ Ω). Exact boundary conditions are prescribed on portions of∂ Ωα

L that inter-
sect either∂ Ωu or ∂ Ωσ . The traction vector,ttt(uuu0

G), that appears in the integral over∂ Ωα
L \(∂ Ωα

L ∩ ∂ Ω) is
computed from the coarse-scale solution using Cauchy’s relation, i.e.,

ttt(uuu0
G) = nnn ·σσσ(uuu0

G) = nnn · (CCC : εεε(uuu0
G)) (7)

with nnn the outward unit normal vector to∂ Ωα
L . The parameterκ is a spring stiffness defined on∂ Ωα

L \(∂ Ωα
L ∩

∂ Ω). If the spring stiffnessκ is zero or equal to a large (penalty) value, the boundary condition on
∂ Ωα

L \(∂ Ωα
L ∩∂ Ω) becomes a Neumann or a Dirichlet boundary condition, respectively. Intermediate values

lead to a spring boundary condition. Our numerical experiments presented in [21] show that any value of
κ comparable to or larger than the stiffness of the coarse global mesh near∂ Ωα

L \(∂ Ωα
L ∩∂ Ω) is acceptable

and provides global-local enrichment functions with good approximation properties. For three-dimensional
linear elasticity problems, the following spring stiffnessκ is recommended [21]:

κ =
E

n
√

V0J
(8)

whereE is the Young’s modulus,n is the number of spacial dimensions of the problem,V0 is the volume
of the master element used andJ is the Jacobian of the global element across the local boundary where the
spring boundary condition is imposed. For further details,refer to [21].

The local problems defined onΩα
L , α ∈Igl , can be efficiently solved in parallel, sinceno communication

among processors solving different local problems is required. This feature of the method is discussed in
details in Section 4 and numerical evidence is presented in Section 5.

3.3 Global-Local Enrichment Functions and Enriched Global Problem

The solutionsuuuα
L of the local problems onΩα

L , α ∈ Igl, can be used to build generalized FEM shape
functions for the coarse global mesh. Equation (2) is used with the partition of unity function,ϕα , provided
by the coarse global FE mesh and the enrichment function given by uuuα

L , i.e.,

φφφ α(xxx) = ϕα(xxx)uuuα
L (xxx) (no summation onα) (9)

The local solutionsuuuα
L , α ∈ Igl , have the role of basis functions for the cloud spacesχα(ωα), α ∈ Igl .

Hereafter,uuuα
L is denoted aglobal-local enrichment function and the global problem enriched with these

functions is denoted anenriched global problem. The formulation of this problem is given by
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Find uuuE
G ∈ XXXE

G(Ω) ⊂ H1(Ω) such that,∀ vvvE
G ∈ XXXE

G(Ω)

∫

Ω
σσσ(uuuE

G) : εεε(vvvE
G)dxxx+η

∫

∂Ωu
uuuE

G · vvvE
Gdsss =

∫

∂Ωσ
t̄tt · vvvE

Gdsss+η
∫

∂Ωu
ūuu · vvvE

Gdsss (10)

where,XXXE
G(Ω) is the spaceXXX0

G(Ω) defined in (1) augmented withGFEM functions (9). In the case of 3-D
elasticity problems, global-local enrichments add only three degrees of freedom to nodesα ∈ Igl of the
coarse global mesh –The number of enrichment functions per global node does not depend on the number
of degrees of freedom of the local problems (several thousands in general). Furthermore, the hierarchical
nature of global-local enrichments implies that the stiffness matrix of the initial global problem is nested in
the one of the enriched global problem. Due to these featuresof the method, the enriched global problem
can be efficiently solved using the static condensation scheme introduced in Section A.2 of [9]. In most
practical engineering applications, the computational cost to solve the enriched global problem with this
strategy is small as demonstrated in [21]. Therefore, in this paper, we focus on the efficiency and accuracy
of the parallel solution of the local problems. The reader may also refer to Section 3.3 of [21] for further
discussion on spaceXXXE

G(Ω). Figure 2 illustrates the enrichment of a global mesh with the solution of local
problems defined in a neighborhood of a 3-D crack.

4 Parallel Computation of Global-Local Enrichment Functions

In this section, some technical issues related to the parallel implementation of local problem computations
are discussed. Hereafter, the methodology described in theprevious sections and its parallel implementation
are referred to the parallelGFEMgl.

4.1 Master-Sub Local Problem Approach

The key idea of the parallelGFEMgl is to define a large number of small local problems on a region of
interestΩgl ⊂ Ω as described in Section 3.2. The smallest possible local subdomainΩα

L corresponds to
a single cloudωα in the global domainΩ. We adopt these local domains in the parallel implementation
described in this paper.

Figure 3(a) shows two clouds represented by dashed lines in asimple two-dimensional global mesh.
Each cloud is used to define a local problem as illustrated in Figure 3(b). The solution of these problems
are, in turn, used to enrich the corresponding global clouds. The main technical difficulty with the procedure
illustrated in Figure 3 is how to handle the numerical integration over global elements enriched with distinct
local solutions, i.e., elements belonging to the intersection of two or more local domains. If all nodes of
a global element are enriched with the same local solution, the numerical integration can be performed
with the aid of the local elements nested in the global element. This approach was proposed in [9] and is
illustrated in Figure 4. This procedure, however, cannot beused on global elements enriched with solutions
from distinct local problems if the local meshes are not compatible at the intersection of local domains (Cf.
Figure 3(c)). Neither of the two local meshes shown in Figure3(b) is, in general, adequate for numerical
integration.

We address the above issue using the concepts ofmaster andsub-local problems as illustrated in Figure
5. Instead of directly creating local problem discretizations from the global mesh, we create first amaster-
local domain extracted from the coarse global mesh. This domain can behp-adapted as if a single local
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Global domain

Local Problems

Enrich global domain with local solutions

(a)

(b)

(c)

Figure 3: Incompatibility of local meshes nested in global elements enriched with distinct local solutions. (a)
Two clouds used to define small local problems. (b) Local discretizations after refinement. (c) Enrichment
of global elements with solutions from the two distinct local problems.

Figure 4: Illustration of numerical integration scheme in the global elements enriched with local solutions
[9]. Dashes lines in the figure represent local problem elements nested in global elements. These elements
are used to define quadrature points in elements enriched with local solution. Crosses represent quadrature
points.
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Global domain

Extract master local domain

Refine master local domain

Create sub local problems Enrich global domain with sub

local problem solutions

Figure 5: Master-sub local problem approach. Sub-local domains are created from a master local domain.
This strategy leads to sub-local problems that have compatible meshes at the intersection of their domains.

problem is created around a crack. Next, clouds from the coarse global mesh are used to extractsub-local
domains from thehp-adapted master-local domain. No further refinement is doneon the sub-local domains
after their creation. The sub-local problems defined on sub-local domains can be solved in parallel and
their solutions used to enrich global elements. Each cloud from the global mesh contained in the master
local domain defines a single local problem in our current implementation. Thus, a large number of small
sub-local problems is created. This, as demonstrated in subsequent sections, is beneficial for balancing the
workload among processors. Incompatibility between sub-local meshes no longer exists. Therefore, the
integration procedure illustrated in Figure 4 can again be used on global elements.

In some applications, sub-local domains may be created around a region where the solution has strong
gradients, is highly oscillatory or is singular, such as in the case of fracture mechanics problems. The quality
of the initial global solution is in general poor in those regions. As a result, some sub-local problems may
be subjected to poor boundary conditions which may result inglobal-local enrichment functions with poor
approximation properties. This problem can be addressed byperforming additional global-local cycles as
proposed in [28]. The solution of the enriched global problem is used as boundary conditions for the local
problems and the process proceeds as before – solve the localproblems and enrich the global discretization
with local solutions. One important feature of this approach is that we can obtain improved enriched global
solutions with a small amount of additional computations. Since only the boundary conditions provided by
the global problem are changed in the sub-local problems (cf. Equation (6)), the stiffness matrix of each
sub-local problem factorized in the first global-local cycle can be reused. Therefore, it is only necessary
to rebuild the right-hand side and perform backward and forward substitutions in each sub-local problem.
Furthermore, since shape functions built with global-local enrichments are hierarchically added to the global
problem, the solution of the enriched global problem can be obtained at a low cost using the algorithm
introduced in Section A.2 of [9]. Examples of the application of this approach are presented in sections 5.1
and 5.2.
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4.2 Parallelization Issues

This section focuses on the implementation and load balancing issues of the parallelGFEMgl. A simple
sorting technique is proposed to improve the parallel efficiency of the algorithm. We also provide an estimate
of the largest number of CPUs at which a near uniform distribution of workload among processors can be
maintained.

4.2.1 Parallel Implementation Algorithm

A key advantage of the parallelGFEMgl is that it does not require any communication among processors,
and only a pair of scatter-gather communications is involved. All information needed to solve each sub-
local problem is obtained from the initial global problem before starting the parallel analysis (a scatter
communication). After the parallel solution of each sub-local problem, their solutions are sent back to the
global problem for enrichment (a gather communication). This feature of the method greatly simplifies its
parallel implementation.

The Open Multi-Processing (OpenMP) programming model [30]is used in our implementation. OpenMP
is suitable to run parallel jobs on shared-memory multi-processor platforms. The implementation of the par-
allel GFEMgl using OpenMP can be summarized as follows:

(i) Create sub-local problems using the master-sub local problem approach discussed in Section 4.1 and
store them in a list.

(ii) Sort the sub-local problems in the list based on estimates of their computational workload. Sorting
criteria are discussed in Section 4.2.2.

(iii) Activate Np processors (user-defined value).

(iv) Select the first sub-local problem in the list and removeit from the list. This operation must be done
in a critical region to avoid the so-calledrace condition. Only one processor is allowed to enter into
the critical region.

(v) Solve the selected sub-local problem in parallel. Most of CPU time is spent in this step.

(vi) If not all sub-local problems in the list have been solved, go to step (iv) and repeat the procedure.
Otherwise, finish the parallel solution of sub-local problems.

High parallel efficiency can be achieved with this algorithmbecause no processor becomes idle until all
sub-local problems in the list are solved. The critical region set up in this algorithm may slightly deteriorate
the parallel efficiency, but it is almost negligible when a sufficient large number of local problems is solved
in parallel as demonstrated later. The parallelization scheme described above is illustrated in Figure 6.

In the numerical experiments presented in this paper, the parallelization of the code is done on a SGI
Altix 3700 with 1024 Intel Itanium 2 processors located at NCSA (National Center for Supercomputing
Applications), Urbana, Illinois, U.S. This machine adoptsthe Linux operating system by default and was
ranked 489th in the top 500 supercomputer list released in November of 2007 [37].
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Create sub-local problems using the master-sub local problem approach and store them in a list;
Sort sub-local problems in the list;
ActivateNp processors;
foreach processor i, i = 1, . . . ,Np do

while not all of the sub-local problems in the list are solved do
while the OpenMP lock is not available do

Wait until the OpenMP lock becomes available;
endw
set an OpenMP lock;
select the first sub-local problem in the list and remove it from the list;
unset the OpenMP lock;
solve the selected sub-local problem;

endw
endfch

Figure 6: Parallel algorithm for the solution of sub-local problems implemented using OpenMP. A
critical region can be set using the OpenMP lock and only one processor is allowed to enter into the
critical region.

4.2.2 Sorting of Sub-Local Problems

The computational cost to solve each sub-local problem may be significantly different if local mesh refine-
ment orp-enrichment is performed. For example, in fracture problems, a high-level of mesh refinement
and enrichment with Westergaard singular functions are performed in elements around the crack front to
accurately approximate the solution. As a result, sub-local problems intersecting the crack front have a
larger number of degrees of freedom and/or more integrationpoints than sub-local problems far from the
crack front [31]. This may cause load unbalance among processors even with the parallel algorithm intro-
duced in Section 4.2.1 and result in low parallel efficiency.We observe that a similar difficulty exists when
partitioning a domain with adaptive mesh refinement and enrichment in the standardFEM [26]. This load
unbalance issue can be addressed by sorting the sub-local problems in the list used in the algorithm shown
in Figure 6 based on estimates of their computational load. Figure 7(a) illustrates the worst possible distri-
bution of sub-local problems in the list. In the figure, sub-local problems are represented by circles and their
computational load is represented by the size of the circles. The sub-local problems are sorted in ascending
order of their workload – the smallest problem is solved firstand the largest one last, thus load unbalance
among processors exists if the difference in workload amongsub-local problems is significant. Figure 7(b)
represents the opposite case. The sub-local problems are sorted in descending order - the largest problem is
solved first and the smallest one last, thus load unbalance among processors can be minimized. If no sorting
is done, the parallel efficiency will be somewhere between these two extremes. The parallel performance of
these sorting criteria is compared in Section 5.2.

4.2.3 Load Balance Limit

The sorting of sub-local problems in descending order is performed to evenly distribute the workload among
processors and improve parallel efficiency. However, even if this sorting criterion is used, there is a limit
in the number of CPUs at which load balance among processors can be maintained. This occurs when the
computational load of the sub-local problems is significantly different. If the average workload assigned to
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(a) Sorting in ascending order (b) Sorting in descending order

Figure 7: Analogy to sorting of sub-local problems in descending and ascending order.

each processor is smaller than the computational load to solve the largest sub-local problem, load balance
among processors cannot be maintained. Therefore, the condition for load balance among processors can be
stated by the following inequality

∑Ns
i=1 Qi

Np
≥ Qmax, (11)

whereNs denotes the number of sub-local problems created,Np the number of processors provided,Qi an
estimate of the computational cost to solve thei-th sub-local problem andQmax= max(Q1,Q2, ...,QNs). The
left and right hand sides of Equation (11) represent the average workload assigned to each processor and the
cost to solve the largest sub-local problem created, respectively.

The largest number of CPUs that satisfies inequality (11),N p
max, is given by

N p
max =

∑Ns
i=1 Qi

Qmax
. (12)

This equation provides an estimate for the largest number ofCPUs where load balance among processors
can be achieved by assuming that a sufficiently large number of sub-local problems are created.

In addition to the difference in workload among sub-local problems, there are other factors such as
initial multi-processor activation cost, processor reactivation cost and cache effect, which may also affect
parallel efficiency. Therefore, it is recommended that Equation (12) be used as a guide to select the number
of processors used for a parallel analysis. Another challenge in the application of this equation is how to
estimate the computational load to solve each sub-local problem (Qi) before performing the parallel analysis.
According to our numerical experience, the number of floating point operations required to factorize the
stiffness matrix of a sub-local problem is a reasonable estimate of the cost to solve a sub-local problem
since in general the factorization of the stiffness matrix is the most time-consuming procedure in a finite
element analysis. This information is provided by most sparse direct solvers currently available before
starting the factorization of a matrix. The validity of Equation (12) is evaluated in the numerical examples
of Sections 5.2 and 5.3.
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5 Numerical Experiments

In this section, we analyze several numerical examples to verify the effectiveness and accuracy of the pro-
posed parallel generalized finite element technique.

5.1 Edge Cracked Bar

As a first example, we analyze a rectangular bar with a through-the-thickness crack with the goal of demon-
strating the accuracy of the proposed parallelGFEMgl. This example has been analyzed by several re-
searchers [23, 34] and thus reliable solutions for the Mode Istress intensity factors,KI , along the crack front
are available. The geometry of the domain and the boundary conditions are illustrated in Figure 8. The
following parameters are used in this example: Poisson’s ratio ν = 1/3; Young’s modulusE = 1.0; Domain
dimensionsh/t = 0.875,a/t = 0.5, w/t = 1.5. andt = 2.0.

Figure 8 illustrates the discretization used in the analysis. The initial global mesh is coarse and is com-
posed of 6× (10×15×15) tetrahedral elements. Heaviside enrichment functions areused to approximate
the solution on elements cut by the crack surface. The crack ends at faces of elements. Westergaard singular
enrichment functions are not used in the initial global problem.

The master local domain is created from the coarse global mesh and it has 480 clouds around the crack
front. It is hp-adapted and enriched with both Heaviside and Westergaard functions. Details on this process
can be found in [31, 32]. Next, the master local domain is subdivided into 480 sub-local domains and solved
in parallel as illustrated in Figure 8. Spring boundary conditions provided by the initial global solution are
used in each sub-local problem. The spring stiffness is selected using Equation (8). The mesh of the master
local domain is designed such that the ratio of the element size to the characteristic length of the crack (Le/a)
is 0.0192 for the elements intersecting the crack front. Thesolution of the sub-local problems are used to
enrich 480 nodes around the crack front in the global domain.Cubic polynomial shape functions are used
in both global and local problems.

5.1.1 Quality of Mode I Stress Intensity Factor

Mode I stress intensity factor (SIF),KI , extracted along the crack front is normalized using

K̄I =
KI

σ
√

πa
, (13)

whereK̄I denotes the normalized Mode I SIF andσ is the magnitude of the traction applied at the bottom
and top surfaces of the rectangular domain.

Figure 9 presents the normalized SIF extracted along the crack front using both thehp-GFEM for the 3D
fractures presented in [31, 32] and the proposed parallelGFEMgl. The results are plotted in the parametric
coordinate system defined on the crack front wheres/w = 0.0 ands/w = 0.5 correspond to the center of the
crack front and a crack vertex, respectively. Thehp-GFEM solution corresponds to the case in which the
global mesh is refined and enriched with Heaviside and Westergaard functions as described in [31]. Figure
9 also presents the reference solution provided by Li et al. [23].

The SIF extracted from the (first) global solution enriched with sub-local solutions has an errorer(KI) =

13



Figure 8: Solution of an edge cracked bar using the parallelGFEMgl with the master-sub local approach.
Only 8 out of 480 sub-local problems are illustrated in the figure.
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3.01%, whereer(KI) is a normalized discreteL2-norm of the difference between the computed SIF and the
reference solution defined by

er(KI) :=
‖eI‖L2

‖K̂I‖L2

=

√

√

√

√

Next

∑
j=1

(

K j
I − K̂ j

I

)2

√

√

√

√

Next

∑
j=1

(

K̂ j
I

)2

(14)

whereNext is the number of extraction points along the crack front,K̂ j
I andK j

I are the reference and com-
puted stress intensity factor values for Mode I at the crack front point j, respectively. This low accuracy
happens because the boundary of some sub-local domains intersects the crack front where the quality of the
boundary conditions provided by the initial global solution is usually poor. This problem can be addressed
by performing an additional global-local cycle as discussed in Section 4.1. It can be noted from Figure 9
that the quality of the second enriched global solution is greatly improved. The relative error in this case is
er(KI) = 1.11%.

5.2 Penny Shaped Crack

The second problem is a circular crack in a cube as illustrated Figure 10. The objectives of this example are
to evaluate the parallel efficiency and accuracy of the proposed parallelGFEMgl with master-sub local prob-
lem approach. The effect of the sorting techniques discussed in Section 4.2.2 and the validity of Equation
(12) are also investigated.

A tensile traction of magnitudeσ is applied in they-direction at the top and bottom surfaces of the
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Figure 10: Solution of a cube with a penny shaped crack using the parallelGFEMgl with master-sub local
approach. Only 8 out of 495 sub-local problems are illustrated in the figure.

domain. The following parameters are assumed in this problem: Cube dimension 2L = 2.0; crack radius
a = 0.5; vertical tractionσ = 1.0; Young’s modulusE = 2.0×105; Poisson’s ratioν = 0.3.

The solution of this problem is computed following the same steps described in Section 5.1. The global
domain is discretized with a uniform coarse mesh of 6× (10×10×10) tetrahedral elements as shown in
Figure 10. In contrast with the previous example, the crack is not discretized in the initial global problem.
A single master-local domain containing the entire circular crack surface is created from the coarse global
mesh. It has 495 clouds around the crack surface. Dirichlet boundary conditions provided by the initial
global problem are used in each sub-local problem. The master local domain is locally refined around the
crack front such that the ratio of element size to characteristic crack length (Le/a) along the crack front is
0.0280. The master local domain is subdivided into 495 sub-local domains and solved in parallel. Both
Heaviside and Westergaard enrichment functions are used inthe local problems. The solutions of these
sub-local problems are used as enrichment functions in the coarse global domain as illustrated in Figure 10.
Cubic polynomial shape functions are used in both global andlocal problems.
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5.2.1 Parallel Performance

In this section, we investigate the parallel performance ofthe proposed parallelGFEMgl for the penny
shaped crack example. The total CPU time required for the parallel solution of all 495 sub-local problems
is measured for several number of processors. These resultsare then used to compute parallel efficiency and
speed-up using [33]

Parallel speed-up=
Sequential execution time

Parallel execution time

Parallel efficiency=
Parallel speed-up

Number of processors used
.

The two sorting techniques discussed in Section 4.2.2 are used and their effects on the parallel efficiency
are examined. Equation (12) predicts that load unbalance starts to occur atN p

max = 22.6 if the sorting in
descending order is used. The accuracy of this estimate is evaluated by comparing it with the numerical
result presented in this section.

Tables 1 and 2 show the total CPU required for the parallel solution of sub-local problems, the parallel
efficiency and speed-up with respect to the number of CPUs forthe two sorting criteria. The maximum
number of CPUs provided for the parallel computation is set to 32 by referring to the estimate given by
Equation (12). It can be observed from the results in the tables that the sorting in descending order delivers
much higher parallel efficiency, which is above 90 % for 22 or less processors, than the sorting in ascending
order. For example, when 22 processors are used, the parallel efficiency obtained by the former is 90.7 %,
while that obtained by the latter is only 67.4 %.

Table 1: Parallel performance for the penny shaped crack problem with sorting of sub-local problems in
descending order.

Number of processorsCPU time (sec.) Parallel efficiency Speed-up
1 4653.0 N/A N/A
2 2423.8 0.960 1.920
4 1218.7 0.955 3.818
8 612.5 0.950 7.597
16 309.3 0.940 15.046
20 247.1 0.942 18.834
22 233.1 0.907 19.960
32 219.8 0.662 21.169

The results in Tables 1 and 2 are plotted in Figure 11. The horizontal axis represents the total number
of processors used and the vertical axes on the left and rightside indicate parallel efficiency and speed-up,
respectively. The speed-up obtained by the sorting in descending order exhibits almost linear scalability up
to Np = 22 and then the slope drops at aroundNp = 22. The curve obtained by the sorting in ascending order
has a similar shape, but it starts deviating from the linear scalability atNp = 8 and its parallel efficiency is
much lower.

We display the number of sub-local problems solved and CPU time spent in each processor in Figure 12
in order to investigate the load balance among processors inthe two sorting cases whenNp = 8. From this
plot, the following observations can be made. First, the sorting in descending order distributes the workload
uniformly among processors, while the number of sub-local problems solved in each processor is uneven.
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Table 2: Parallel performance for the penny shaped crack problem with sorting of sub-local problems in
ascending order.

Number of processorsCPU time (sec.) Parallel efficiency Speed-up
1 4653.0 N/A N/A
2 2441.0 0.953 1.906
4 1254.1 0.928 3.710
8 707.0 0.823 6.581
16 384.4 0.757 12.105
20 325.2 0.715 14.308
22 313.7 0.674 14.834
32 282.2 0.515 16.491
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Figure 11: Parallel performance for the penny shaped crack example.
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(a) Sorting in descending order.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

800

N
um

be
r o

f S
ub

-lo
ca

l P
ro

bl
em

s 
So

lv
ed

Processor ID

   Number of sub-local problems solved in each processor
   CPU time spent in each processor

 C
PU

 ti
m

e 
(s

ec
)

(b) Sorting in ascending order.

Figure 12: Effect of the sorting criteria on the load balanceamong processors forNp = 8.
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As shown in Figure 12(a), the CPU time spent in each processoris almost the same. Second, the sorting
in ascending order does exactly the opposite. Almost the same number of sub-local problems are solved
in each processor, but the workload is not uniformly distributed among processors, leading to an uneven
amount of CPU time spent in each processor.

Next, we investigate why the parallel efficiency suddenly drops atNp = 22 even with the sorting in
descending order. Figure 13 shows the same quantities shownin Figure 12 but for the casesNp = 20 and
Np = 22. These results are obtained by using the sorting in descending order. Figure 13(a) indicates that the
workload is uniformly distributed to each processor when 20processors are used and the number of sub-
local problems solved in each processor is quite uneven as inthe case withNp = 8. However, an uniform
distribution of the workload can no longer be achieved if 22 processors are used since the cost to solve the
largest sub-local problem is larger than the averaged workload assigned to other processors. Figure 13(b)
shows that the computational cost to solve each of the two largest sub-local problems is larger than the
averaged workload of other processors. This is precisely the case that Equation (11) describes. Therefore,
if more than 22 CPUs are used, parallel efficiency is deteriorated as already shown in Figure 11.

The results shown in Figure 13 confirm that the estimate of theload balance limit provided by Equation
(12) is quite accurate. Although the proposed master-sub local problem approach has a limitation in the
number of processors at which load balance can be maintained, the limit is determined by the cost to solve
the largest sub-local problem, which is in our experience less than five minutes because a sub-local domain
is defined by a single cloud in the coarse global mesh as discussed in Section 4.1. Thus, this limitation is
not relevant from a practical point of a view.

The numerical results in this section indicate that the master-sub local problem approach with sorting
in descending order can achieve parallel efficiency above 90% up to the load balance limit provided by
Equation (12). This demonstrates a high scalability of the proposed parallelGFEMgl technique which is
possible due to its unique feature that does not require any communication among processors during the
parallel solution of sub-local problems.

5.2.2 Quality of Extracted Stress Intensity Factors

Figure 14 presents the Mode I SIF extracted from the parallelGFEMgl solution. A reference SIF value
provided by Li et al. [23] is given by,

Kref.
I =

2.213
π

σ
√

πa (15)

wherea denotes the crack radius andσ is the magnitude of the traction applied at the bottom and topsurfaces
of the rectangular domain. Li et al. [23] reportKI at pointA indicated in Figure 10, which corresponds to
θ = 0◦ or 360◦ in Figure 14. Although this value does not representKI along the whole crack front due to
the finite size of the domain, the exactKI only slightly varies from it. Therefore, we use it as a reference
value for the Mode I SIF along the whole crack front.

Similar to the edge cracked bar example presented in Section5.1, the quality of boundary conditions used
on sub-local problems created along the crack front is poor if their boundaries are intersected by the crack
front. Therefore, we follow the same procedure used in Section 5.1.1 and the SIF shown in Figure 14 are
extracted from the enriched global solution obtained afterthree global-local cycles. Figure 14 shows the SIFs
extracted from theGFEMgl solutions computed with polynomial shape functions of degreep = 1,2,3. It can
be noted from the figure thatKI converges to the reference value as the order of polynomial shape functions
increases. The SIF for the casep = 3 shows a good agreement with the reference SIF and the magnitude of
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(a) Workload distribution to each processor forNp = 20.
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(b) Workload distribution to each processor forNp = 22.

Figure 13: Load balance limit for the penny shaped crack example. Sub-local problems are sorted in de-
scending order.
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Figure 14: SIFs extracted along the circular crack front fordifferent order of polynomial shape functions.

the oscillations is small along the crack front. The relative error for this case iser(KI) = 0.05%.

5.3 Mechanical Manifold with Multiple Cracks

In this section, we analyze a problem with an industrial level of complexity using the parallelGFEMgl and
investigate the performance of the parallel solution of sub-local problems. The problem is a mechanical
manifold with multiple cracks, which is a thin tube-like structure. The geometry and boundary conditions
are shown in Figure 15. The Young’s modulus and Poisson’s ratio are assumed to beE = 2.0× 105 and
ν = 0.3, respectively.

The top, front and back views of the manifold are provided in Figures 15, 16 and 17, respectively. Six
cracks are modeled in the regions with stress concentrationwhere they are likely to nucleate and grow
under the given geometry and boundary conditions. The first and second cracks shown in Figures 16 and
17 have two crack fronts due to the geometry of the domain. A master-local domain is created at each
crack front. All other cracks, from the third to the sixth one, have only one crack front and one master-
local domain is created in the neighborhood of each front. Thus, a total of eight master-local domains are
extracted from the global mesh. Each master-sub local domain is locally refined around its crack front and
enriched with Heaviside and singular Westergaard functions. Next, master-local domains 1 through 8 are
subdivided into 229, 172, 116, 191, 26, 37, 109 and 103 sub-local problems, respectively. The total number
of sub-local problems created is 983. Quartic polynomial shape functions are used in all sub-local problems.
The 983 sub-local problems lead to additional 2,949 degreesof freedom in the enriched global problem. A
comparablehp-GFEM discretization with the same level of mesh refinement as in the sub-local problems
and quartic polynomial shape functions would have 1,605,960 degrees of freedom.
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Figure 15: Top view of the mechanical manifold with multiplecracks. The structure is subjected to displace-
ment boundary conditions represented by yellow arrows. Theprescribed displacement vectors in the positive
and negative x-directions are(ux,uy,uz) = (0.02,0,0) and(ux,uy,uz) = (−0.02,0,0), respectively. Homo-
geneous traction boundary conditions are applied elsewhere on the boundary. The 5th and 6th master-local
domains extracted around the 3rd and 4th crack surfaces, respectively, are also shown in the figure.

Figure 16: Front view of the mechanical manifold with multiple cracks. The 1st, 3rd and 7th master-local
domains extracted around the 1st, 2nd and 5th cracks, respectively, are shown in the figure.
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Figure 17: Back view of the mechanical manifold with multiple cracks. The 2nd, 4th and 8th master-local
domains extracted around the 1st, 2nd and 6th cracks, respectively, are shown in the figure.

5.3.1 Parallel Performance

The parallel performance of the sub-local problem computations is examined in this section. The total
CPU time required for the parallel solution of all 983 sub-local problems is measured for several number of
processors. The parallel efficiency and speed-up are computed from those results. The sorting in descending
order is used in all computations. The load balance limit is estimated asN p

max = 20.1 using Equation (12).

Table 3 lists the CPU time required to solve all sub-local problems in parallel, the efficiency and speed-up
with respect to the number of processors. It can be noted fromthe table that a high parallel efficiency is
maintained up toNp = 20 (89.1 % when 20 processors are provided). Figure 18 plots the data in Table 3.
The horizontal axis represents the total number of processors used and the vertical axes on the left and right
side indicate parallel efficiency and speed-up, respectively. Similar to the results in Figure 11, the speed-up
curve shows nearly linear scalability up toNp = 18 and then the slope drops.

Table 3: Parallel performance of a mechanical manifold example with sorting in descending order.

Number of processorsCPU time (sec.) Parallel efficiency Speed-up
1 1537.4 N/A N/A
2 778.1 0.988 1.976
4 392.1 0.980 3.921
8 198.3 0.969 7.752
16 101.1 0.951 15.214
18 92.3 0.926 16.666
20 86.3 0.891 17.823
32 66.4 0.724 23.161

Figures 19(a) and 19(b) present the number of sub-local problems solved and the CPU time in each
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Figure 18: Parallel performance of the mechanical manifoldexample.

processor forNp = 18 andNp = 20, respectively. Figure 19(a) indicates that the CPU time spent on the last
processor is slightly larger than on the others and only one sub-local problem is solved in that processor when
18 processors are provided. This means that the computational cost to solve the largest sub-local problem
is larger than the average workload assigned to other processors and perfect load balance among processors
is not maintained. Figure 19(b) shows a situation where parallel efficiency is slightly more deteriorated and
the cost to solve the two largest sub-local problems exceedsthe averaged workload per processor. However,
there is no significant practical relevance to further reduce the analysis time by providing more processors
since the CPU time spent whenNp = 20 is just 86.3 seconds.

The parallel performance and load balance described above show again a good agreement with the esti-
mate provided by Equation (12), which isN p

max = 20.1. All of the numerical results in this section demon-
strate that high parallel efficiency can be achieved by the proposed parallelGFEMgl with the master-sub
local problem approach up to the load balance limit.

5.4 Structural Component

The proposed parallelGFEMgl is not restricted to the analysis of 3-D cracks. It can be used, for example, to
perform aggressivehp-extensions in large computational models while adding only three degrees of freedom
per node enriched with global-local functions. This capability of the method is demonstrated in this section.
The geometry and boundary conditions of the problem are shown in Figure 20. The global mesh used in
this example consists of 3,849 nodes and 15,527 tetrahedralelements. Linear elastic material properties are
assumed with Young’s modulusE = 105 and Poisson’s ratioν = 0.33.

Figure 21 illustrates the discretization used for the parallel solution procedure. A single master domain
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(a) Workload distribution for each processor forNp = 18.
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(b) Workload distribution for each processor forNp = 20.

Figure 19: Load balance limitation for the mechanical manifold example.
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Figure 20: Boundary conditions and mesh for a structural component.

that is equal to the global domain is created. To investigatethe effectiveness of the proposed parallelGFEMgl

for large problems, different levels of uniform mesh refinement are performed at the master-local domain.
A total of 3,849 sub-local problems are extracted from the refined master-local mesh. This is equal to the
number of nodes in the coarse global mesh. These problems aresolved in parallel and their solutions used to
enrich the global problem. Cubic polynomial functions are used in both the global and sub-local problems.

Table 4 lists the number of degrees of freedom (DOFs) required for the parallelGFEMgl analysis when
utilizing three levels of uniform mesh refinement (hereafter denoted Levels 1, 2 and 3). The initial global
problem has 115,470 DOFs while the enriched global has 115,470 + 3×(3,849) = 127,017 DOFs,regardless
of the size of the sub-local problems. The range of sub-local problem sizes is also listed for eachlevel of
mesh refinement. The numbers of DOFs that would be required for anhp-GFEM analysis of this example
are presented in the table. They are obtained by assuming that the same level of mesh refinement and
polynomial enrichment used in the master-local domain is directly performed on the global mesh. It can be
noted from the table that thehp-GFEM analysis with Level 3 mesh refinement requires more then 9 million
DOFs, which would be very difficult, if possible at all, to solve on a single processor. In contrast, the largest
number of DOFs needed for the parallelGFEMgl analysis is 127,017, which is still solvable on a single
processor and the largest sub-local problem created by Level 3 mesh refinement requires around 40,000
DOFs.

Table 4: Number of degrees of freedom required forhp-GFEM and parallelGFEMgl analyses with three
different levels of uniform mesh refinement.

ParallelGFEMgl

Level of uniform hp-GFEM Initial Sub-local Enriched
mesh refinement global Minimum Maximum global

1 1,150,590 420 5,580
2 3,377,550 115,470 720 15,180 127,017
3 9,235,530 1,590 40,170
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Figure 21: Solution of a structural component using the parallel GFEMgl with the master-sub local approach.
The refined master-local domain mesh in the figure corresponds to Level 1 of mesh refinement. Only 4 out
of 3,849 sub-local problems are illustrated in the figure.
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5.4.1 Parallel Performance

The performance of the parallelGFEMgl is investigated in this section. The total CPU time to solve in par-
allel all 3,849 sub-local problems is measured for up to 128 processors. The parallel efficiency is computed
for three levels of mesh refinement as shown in Table 5. The computational load and required memory for
mesh refinement Levels 2 and 3 are large and more than one processor must be used. The required minimum
number of processors is determined for each case. The parallel efficiency is measured with respect to the
CPU time obtained with the minimum number of processors, notwith respect to the serial solution as was
the case in previous examples. Sub-local problems are sorted in descending order.

Table 5: Parallel performance for three levels of mesh refinement at sub-local problems.

CPU time (sec.) Parallel efficiency
Number of processorsLevel 1 Level 2 Level 3 Level 1 Level 2 Level 3

1 3534.3 N/A
2 1843.6 18951.8 0.959 N/A
4 938.0 9842.6 0.942 0.963
8 479.4 5067.5 0.922 0.935
16 240.6 2829.5 17895.8 0.918 0.837 N/A
32 126.0 1449.1 9780.7 0.877 0.817 0.913
64 553.8 5220.6 1.069 0.856
128 2145.9 1.068

The load balance limits for mesh refinement Levels 1, 2 and 3 are N p
max = 538.7, N p

max = 370.6 and
N p

max = 386.7, respectively, according to the estimate provided by Equation (12). All of them are well above
the maximum number of processors used in our computations (i.e. 128 processors). As expected, from the
estimate, the results in Table 5 show that high parallel efficiency is maintained up to the maximum number of
processors considered. For instance, the parallel efficiency for mesh refinement Level 3 is about 85 % when
64 processors are provided. It can also be observed from the table that superlinear scalability is achieved
when 64 and 128 processors for Levels 2 and 3, respectively, are used. This is likely due to cache memory
and memory latency effects of the Non-Uniform Memory Access(NUMA) system, on which the SGI Altix
3700 is based. Since the problem size is very large for Levels2 and 3, a processor uses memory from other
processors in the NUMA system when a small number of processors are assigned for parallel computations.
However, it does not use cache memory from other processors.Thus, when the number of processors
performing computations is increased, more cache memory isused, even if the total number of processors
locked for the parallel computation remains the same. This can contribute to superlinear scalability. In
addition, when a processor uses memory from several other processors, memory access latency increases.
Thus, as the number of processors performing computations increases, the latency decreases if the number
of processors locked for the parallel computations remainsthe same. This also contributes to superlinear
scalability.

The results in the table confirm that high parallel efficiencycan be achieved by the proposed parallel
GFEMgl and increasing the number of processors does not result in significant deterioration of efficiency.
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6 Summary and Concluding Remarks

In this paper, we introduced a parallel generalized finite element method that uses customized enrichment
functions for applications where limited a priori knowledge about the solution is available. The enrichment
functions can be efficiently constructed through parallel computations. The methodology involves the paral-
lel solution of local boundary value problems using boundary conditions from a coarse global problem. The
local solutions are in turn used to enrich the global space using the partition of unity of framework. In this
procedure, load unbalance is addressed by defining a larger number of small local problems than the number
of parallel processors and by sorting and solving the local problems based on estimates of their workload.
The compatibility between local meshes in overlapping regions is guaranteed by the master-sub local prob-
lem approach presented in Section 4.1. A simple and effective estimate of the largest number of processors
where load balance among processors is maintained is proposed. The effectiveness of the method was in-
vestigated in terms of accuracy and parallel efficiency through several three-dimensional fracture mechanics
examples. The main conclusions of this paper are as follows:

• The proposed parallelGFEMgl allows efficient parallel solution of practical engineering problems
such as the analysis of three-dimensional cracks that are difficult to solve using available numerical
methodologies. The numerical experiments performed in this paper show that parallel efficiency
above 80 % can be achieved up to the load balance limit;

• The sorting of sub-local problems in descending order improves parallel efficiency significantly and
the proposed estimate for the load balance limit expressed by Equation (12) shows good accuracy;

• The quality of the parallelGFEMgl solutions can be improved by performing additional global-local
cycles when sub-local problems are subjected to poor boundary conditions. The solutions computed
with the proposed approach are of comparable quality to thatof thehp-GFEM [31, 32].
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