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Abstract

A hybrid computational method for solving boundary-value problems is introduced which combines features of the meshless Ap-cloud
methods with features of conventional finite elements. The method admits straightforward nonuniform Ap-type approximations, easy
implementation of essential boundary conditions, is robust under severe distortions of the mesh, and can deliver exponential rates of
convergence. Results of numerical experiments are presented.

1. The method

Recent developments made in the context of meshless methods have demonstrated the simplicity of adding
hierarchical refinements to a low order set of shape functions which satisfy the partition of unity (PU)
requirement [1-4,6,7]. In particular, in the Ap-cloud method introduced in [2], one covers the domain {2 of the

solution of a boundary-value problem with a collection of open sets w,, Qc U” _, w,), the sets w, being the
clouds, and constructs on the clouds a set of global basis functions ¢, which form a PU on {2:

> em=1, x&n

a=1
One can then build spectral (p-type approximations by constructing products of the ¢, with higher-order
spectral approximations to produce enriched basis functions ¢,L,, L, being a polynomial of degree p. This idea
has been used successfully in generating exponentially convergent approximations of elliptic boundary-value
problems in which convergence is obtained by appropriate A-refinement, h = max h,, h, being the diameters of
the clouds w,, or p-enrichment, p being the order of the polynomial carried by the basis functions ¢, L,
[2-4,6,7). Here, the basic building block for such approximation is the PU, and, as observed in [1], this partition
of unity can be furnished by a conventional finite element method. While such a PU on a finite element mesh
will destroy the ‘meshless’ quality of the approach, ample compensation for this loss is provided by a number of
advantages over conventional Ap-finite element methods.

Consider, for example, the conventional finite element meshes of triangles or quadrilaterals shown in Figs. 1

and 2, respectively, on which continuous global basis functions (shape functions) N, are constructed at each
nodal point x_, @ =1,2,...,n. These functions are such that
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Fig. 1. Global finite element shape function N_ built on a mesh of triangles.

Fig. 2. Global finite element shape function N, built on a mesh of quadrilaterals.

2N =1, atanyx&f

a=1
and thus form a PU. By setting ¢, = N,, we can build /sip-cloud approximations on this PU and thereby produce
a cloud basis that has all of the useful convergence properties of the hp-clouds but which combines features of
conventional FEMs, such as exhibiting the Kronecker-delta property at boundary nodes. Some examples of
cloud-type basis functions are shown in Figs. 3-5. Notice from the figures that (see also Figs. 6-8)

e The clouds w, need not be disks or even convex polygons,
® The mesh parameter i (or h,) is the diameter of the cloud (the patch surrounding node x,) and not the

diameter of an element in the cloud.
Fig. 8 shows a conventional hierarchic field as used today in many codes and introduced in the manner

described originally by Zienkiewicz et al. [11] and later elaborated on by others [8,10].
(a) The conventional hierarchic polynomial are introduced using local, element based, co-ordinates. These

Fig. 3. Bi-linear shape function associated with a node at (0, 0).

Fig. 4. Higher-order hierarchical shape function built from the product of the bilinear shape function shown in Fig. 3 and the monomial x
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Fig. 5. Higher-order hierarchical shape function built from the product of the bilinear shape function shown in Fig. 3 and the monomial y°.

Fig. 6. Overlapping patches corresponding to clouds w, and «w,. Polynomials of differing degree p, and p,, can be associated with nodes at
x, and x, so as to produce non-uniform hp-cloud/finite element approximations.

provide complete Cartesian polynomials only up to the linear terms when isoparametric distortion is introduced.
This completeness can be extended to quadrilateral elements using quadratic terms only by introduction of the 9
node expansion (as shown in [12]). For higher order terms, performance of elements may well deteriorate; viz.
(5).

On the contrary, the new cloud-based hierarchic forms give the terms of quadratic and higher-order expansion
in terms of Cartesian coordinates throughout and will always retain the accuracy corresponding to the spectral
order. Indeed, some saving in degrees of freedom necessary for a given accuracy is available.

(b) The new hierarchic form concentrates all the unknown degrees of freedom at corner nodes of the elements
(cf. Fig. 7). This ensures a more compact band structure than that arising from the conventional hierarchic form.

(c) Remarkably, the structure of this approximation allows the use of different values of the spectral order p
on each cloud. Thus, other than basic connectivity of the low-order FEM mesh, none of the complications of
high-order constraint conditions used in hp-finite element methods are necessary. Non-uniform h and p
approximation can be easily accommodated over the mesh, as suggested in Fig. 6.

(d) Further, the elimination of corner degrees of freedom follows precisely the same pattern as that used for

o Linear

@ Linear + Quadratic O Quadratic
Linear + Quadratic + Cubic @ Quadratic + Cubic

Fig. 7. Cloud-based hierarchic fields in two-dimensional space.

Fig. 8. Conventional hierarchic fields in two-dimensional space.
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the underlying linear element repeating the same elimination steps in the equation solver. This means that
vectorization / parallelization of the algorithms is relatively easy. What is more, if adaptive steps are used in the
refinement, insertion of higher-order terms at any node does not alter the computational sequence and can be
simply accomplished.

(e) The new process presents no difficulties on the boundaries if Dirichlet (prescribed displacement)
boundaries occur and no higher order terms are introduced in boundary nodes than a simple specification of
corner displacement suffices.

With higher-order terms on boundary nodes and with locally curved boundaries, additional constraints may be
required (exactly as in standard hierarchic elements).

For Neumann (prescribed traction) boundaries, no such difficulties arise providing the integration is carried
out on the exact curves.

1.1. Construction of linearly independent basis functions

The cloud-based Ap finite element basis functions are defined above as
¢ai = NaLi

where N, is a finite element shape function and L; is a polynomial of degree p. Since the shape functions form a
PU

Y b =2 NL=L2N,=L ()

Therefore, the polynomials L, can be recovered through linear combinations of the cloud basis functions ¢,;.
The finite element shape functions have the property that there exist a,, a,,, €R, a =1,..., n such that

2 axaNa =X
a

ya©

Ea: a, N, =y
Now if we take L, =x or L, =y we have from (1) that
ZNax:x ENay‘—‘y
Therefore, the set {N,, N x}"_, is not linearly independent. This can be avoided by a careful choice of the

functions L, used to build the cloud basis functions. For example, the elements from the space span{N, } must not
be used to build the cloud basis functions.

2. Numerical experiments

2.1. Ilustration of the basic ideas

As a first numerical experiment, we consider the solution of the following boundary-value problem:

Find « such that

—Au=0 in=(-1,HX-11 (2)
ou 0 2

T Ra(s? 3
on an Re(z") on af2 3)

where x + iy = z € C and Re( ) denotes the real part of ( ). The value of u is fixed at (1, 1) in order to make the
solution unique.

Fig. 9 depicts the solution u. The initial finite element discretization is represented in Fig. 10. It is composed
of only two quadrilateral bi-linear finite elements. The corresponding finite element solution obtained with this
discretization is depicted in Fig. 11 which has an error in the energy norm of
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Fig. 9. Solution of problem (2), (3).

Fig. 10. Initial finite element mesh composed of two bi-linear elements.
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Quadratic shape functions like those depicted in Figs. 4 and 5 are then added to node 0, as shown in Fig. 12.
The corresponding finite element solution is shown in Fig. 13.

Fig. 14 shows the finite element discretization in which nodes 0, 1, 3 and 4 have quadratic approximation
associated with them, while nodes 2 and 5 have bilinear approximations. The corresponding finite element
solution is shown in Fig. 15. The discretization error associated with this discretization is

”_u - Mhp”E

e

=34.78%

0 1

Fig. 11. Finite element solution obtained using the discretization of Fig. 10.

Fig. 12. Cloud-finite element discretization with one quadratic node.
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Fig. 13. Finite element solution obtained using the discretization of Fig. 12.

Fig. 14. Cloud-finite element discretization with four quadratic nodes.

Fig. 16 shows the finite element solution obtained using quadratic shape function at all nodes of the
discretization. As expected, the error for this discretization is of

Hu - “}m“[i

=0(10" "

It is emphasized that the enrichment of the finite element spaces, as described above, is one on a nodal basis

Fig. 15. Finite element solution obtained using the discretization of Fig. 14.

Fig. 16. Finite element solution obtained using quadratic shape functions at all nodes of the mesh.
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Fig. 17. Distorted mesh of quadratic cloud-finite elements.

Fig. 18. Finite element solution obtained using the discretization of Fig. 17.

and the polynomial order associated with a node does not depend on the polynomial order associated with
neighboring nodes.

The insensitivity of the cloud-based approximations to element distortion is next demonstrated. Fig. 17 shows
the finite element discretization used. All nodes have quadratic cloud-based approximations. Fig. 18 shows the
corresponding finite element solution. As before, we get

“” - “/,p”g

e

2.2. hp adaptivity

=0(107%)

We shall now consider the problem of an L-shaped plane elastic body loaded by the tractions associated with
the following stress field

o, (r,0)=A"""[(2= QA+ 1)) cos(A — 1)f — (A — 1) cos(A — 3)8]
o, (r.8)=Ar" T [(2+ Q(A + 1)) cos(A— 16 + (A — 1) cos(A — 3)6] 1))
o, (r,0) = Ar" " '[(A — 1) sin(A — 3)0 + Q(/\ + 1) sin(A — 1)6]

where (r, 8) is the polar coordinate system shown in Fig. 19, A =0.544 483 737, Q =0.543 075 579.
The stress field (4) corresponds to the first term of the symmetric part of the expansion of the elasticity
solution in the neighborhood of the corner A shown in Fig. 19 [9].
Plane strain conditions, unity thickness and Poisson’s ratio of 0.3 are assumed. The strain energy of the exact
solution is given by [9]
2A

E(u) = 4.15454423 a—E—

where E is the modulus of elasticity and a is the dimension shown in Fig. 19. The values E =a = 1 are assumed
in the calculations.
Two sequences of discretizations, &, and %, are used to solve this problem. In the former, the uniform mesh
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Fig. 19. L-shaped elastic body.
Fig. 20. Uniform mesh and p distribution for the L-shaped body.

shown in Fig. 20 is used and the polynomial order of the approximations ranges from 1 to 8. A strongly graded
mesh, as shown in Fig. 21, and non-uniform p distributions are used in the second sequence of discretizations.
Geometric factors ¢ = 0.10 and ¢ = 0.15 for the size of the elements are used (cf. Fig. 22). Figs. 22 and 23 show
the p distribution used in the fourth step of this sequence. The polynomial order of the clouds decrease linearly
towards the singularity while the size of the finite elements decrease geometrically.

The relative error, measured in the energy norm, versus the number of degrees of freedom is shown in Fig. 24
for the sequences of discretizations &, and &, (with g =0.10 and g = 0.15). As expected, the uniform mesh
gives an algebraic rate of convergence while the strongly graded meshes lead to an exponential rate of
convergence. This kind of behavior is typical of hp-finite element methods. However, the construction of
non-uniform A- and p-discretizations in a cloud based framework is considerably more straightforward than in
conventional sip-finite element methods. For this problem, the strongly graded mesh with g = 0.10 gives slightly
better results than the case g = 0.135.
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Fig. 21. Geometric mesh for the L-shaped body. A geometric factor of ¢ =0.15 is adopted in the computations.

Fig. 22. Polynomial order associated with the clouds at the fourth step of the sequence of discretizations %,
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L-Shaped Domain: Cloud-FEM Results
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Fig. 23. Zoom at clouds near the re-entrant corner of Fig. 22.

Fig. 24. Convergence in the energy norm for uniform and non-uniform cloud-based hp-distributions.

3. Conclusions

In this investigation, we have explored the use of lower-order finite element approximations to generate
partitions of unity on which hierarchical Ap-cloud approximations can be constructed. The resulting methodolo-
gy has a number of useful features. Among these are that non-uniform hp-meshing with variable and
hierarchical order p over clouds can be easily generated. The spectral convergence of p- and hp-methods is
retained and the method is very robust, the accuracy being quite insensitive to mesh distortion. Also, by building
cloud approximations on finite element meshes. Dirichlet boundary conditions are easily handled.

The hp-convergence properties seem to differ from traditional p-version elements, but exponential conver-
gence is attained. Applications to problems with singularities are easily handled using cloud schemes. In all, this
hybrid finite-element / cloud methodology appears to have a number of useful and attractive features that could
prove to be important in broad engineering applications.
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