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A new methodology to build discrete models of boundary-value problems is presented. The h-pcloud method 
is applicable to arbitrary domains and employs only a scattered set of nodes to build approximate solutions 
to BVPs. This new method uses radial basis functions of varying size of supports and with polynomial- 
reproducing properties of arbitrary order. The approximating properties of the h-p cloud functions are 
investigated in this article and a several theorems concerning these properties are presented. Moving least 
squares interpolants are used to build a partition of unity on the domain of interest. These functions are 
then used to construct, at a very low cost, trial and test functions for Galerkin approximations. The method 
exhibits a very high rate of convergence and has a greater -exibility than traditional h-p finite element 
methods. Several numerical experiments in I-D and 2-D are also presented. @ 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In most large-scale numerical simulations of physical phenomena, a large percentage of the 
overall computational effort is expended on technical details connected with meshing. These 
details include, in particular, grid generation, mesh adaptation to domain geometry, element or 
cell connectivity, grid motion and separation to model fracture, fragmentation, free surfaces, etc. 
Moreover, in most computer-aided design work, the generation of an appropriate mesh constitutes, 
by far, the costliest portion of the computer-aided analysis of products and processes. 

These are among the reasons that interest in so-called meshless methods has grown rapidly 
in recent years. Most meshless methods require a scattered set of nodal points in the domain of 
interest. In these methods, there may be no fixed connectivities between the nodes, unlike the 
finite element or finite difference methods. This feature has significant implications in modeling 
some physical phenomena that are characterized by a continuous change in the geometry of the 
domain under analysis. The analysis of problems such as crack propagation, penetration, and 
large deformations, can, in principle, be greatly simplified by the use of meshless methods. A 
growing crack, for example, can be modeled by simply extending the free surfaces that correspond 
to the crack [ 11. The analysis of large deformation problems by, e.g., finite element methods, may 
require the continuous remeshing of the domain to avoid the breakdown of the calculation due to 
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excessive mesh distortion. The use of a method that does not require successive remeshings, even 
after very large deformations have occurred, can dramatically simplify the modeling of this class 
of problems. Even in problems where only one mesh is needed for an analysis, mesh generation 
can be a far more time-consuming and expensive task than the construction and solution of the 
discrete set of equations. Therefore, a method that can deliver accurate solutions to boundary- 
value problems without the need of explicitly partitioning the domain could have a positive impact 
on many aspects of computer simulations. 

Among the first methods of these types used in numerical solution of boundary-value problems 
are the generalized finite difference method of Liszka and Orkisz [2-4]  and smoothed particle 
hydrodynamics (SPH) [5-  81. More recently, the importance of meshless methods is reflected by 
the number of new methods that have been proposed: the diffuse element method (DEM) [9], the 
element free Galerkin method (EFGM) [ 1, lo], wavelet Galerkin methods [ 1 1 - - I  31, multiquadrics 
[ 14, 151, reproducing kernel particle methods [ 16, 171 and the free mesh method [ 181. 

Behind all these methods, there is an underlying approximation technique that can handle 
arbitrarily spaced data on complex domains; the DEM and the EFGM are based on the moving 
least squares method (MLSM) [ 19. 201; the kernel estimates of Monaghan [7] forms the basis 
for the SPH method. Therefore, the first step in understanding any of these methods is the 
study of the underlying approximation (interpolation) technique and properties. Also, the study 
of the corresponding approximation technique of a meshless method can reveal its strength and 
weakness and reveal methods for improvement. 

A comprehensive review of the meshless methods found in the literature has been prepared 
by Duarte [21]. The conclusion of that study is that, from the point of view of accuracy and 
efficiency, in spite of the variety of the meshless methods found in the literature, all the reviewed 
methods have serious limitations that, in most situations, can negate some of the advantages of 
these methods over more reliable methods such as h-p finite element methods. 

The SPH method appears to be one of the most flexible of the meshless methods and is simple 
to implement. The SPH method uses collocation at the nodes to build a discrete set of equations 
governing the problem [22] and, therefore, does not require a background quadrature scheme. 
The price of this simplicity and flexibility is the poor accuracy of the method. A large number of 
nodes are usually required to achieve reasonably accuracy in practical applications. The reason 
for this poor accuracy is that the kernel estimation technique used in the SPH method is equivalent 
to the use of Shepard interpolants [21, 231, which are well known for their poor accuracy [24]. 
Another problem of the SPH method is the spatial instability of the method, often known as tensile 
instability [22]. 

The EFGM [ 1, 101 and the DEM [9] have only two major differences [ l ,  211: the EFGM 
includes certain terms in the derivatives of the interpolants that are omitted in the DEM, and the 
EFGM employs Lagrange multipliers to enforce essential boundary conditions. Both methods 
use moving least squares functions [ 191 as a means of spatial discretization. These functions are 
used to construct a finite dimensional subspace of, e.g., H'(R), and then a Galerkin method is 
employed to find an approximate solution in this subspace [ l ,  101. Both methods have some 
very attractive characteristics. The MLSM can produce functions with any degree of regularity, 
even C" (O),  at no extra cost. Therefore, the EFGM can give, e.g., C' (a) approximations of the 
solution of a second-order BVP. Therefore, the smoothing of fluxes used in the FEM to obtain 
a continuous flux may be completely unnecessary in the EFGM and DEM. These methods are 
applicable to arbitrary domains, and Belytschko and colleagues [ I ,  10, 251 have reported that 
the EFGM is very accurate and can achieve high rates of convergence. The method does not 
exhibit volumetric locking, and performance apparently is only minimally affected by irregular 
placement of nodes. The main drawbacks of the method are the cost of building the moving 
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least squares functions and the need of a background quadrature scheme to evaluate the integrals 
that appear in the weak forms used by the Galerkin method. Another difficulty appears in the 
construction of the MLS functions. There must be an increase in the size of the support of these 
functions, if one wants to increase the polynomial degree that the MLS functions can represent 
through linear combinations. Also, there are some nodal arrangements that can break down the 
algorithm used to construct the MLS functions [21]. 

Another limitation of the meshless methods found in the literature is that none of them, except 
the wavelet method in one dimension [12] and the generalized finite difference method, has a 
rich mathematical background to justify their use. That is, mathematical proofs of conditions 
sufficient to guarantee that these methods will converge to the true solution are not available. 

This article presents a new family of meshless methods for the solution of boundary-value 
problems. The h-p cloud method is applicable to arbitrary domains and employs only a scattered 
set of nodes to build approximate solutions to boundary-value problems. The method uses radial 
basis functions of varying size of supports and with polynomial reproducing properties of arbitrary 
order. The first numerical experiments with this technique show very promising results. 

The next sections of this article describe in detail the h-p cloud method. Following this 
introduction, Section I1 introduces the h-p cloud family of spaces 3;’. a-priori error estimates 
for the h version of the method are presented in Section 111. Finally, Sections IV and V present 
the results of numerical experiments involving approximation of functions by h-p clouds and 
solutions of boundary-value problems in one and two dimensions. 

II. H - P  CLOUDS: HIGH-ORDER APPROXIMATION OF SCAlTERED DATA 

A. Introduction 

In this section, a technique for approximating functions defined on an open bounded domain 
R E K‘, R = 1 ,2 ,  or 3 is presented. The method employs only an arbitrarily scattered set of 
nodes belonging to R. 

6. Partition of Unity 

One fundamental idea used in the construction of the h-p cloud spaces is that of a partition of 
unity. In this section, the construction of the partition of unity used in the h-p cloud method is 
described. Some properties of these functions are also investigated. We begin by introducing 
some notation used throughout the article. 

We assume that R is an open bounded domain in R’” n = 1,2,  or 3. Q N  denotes an arbitrarily 
chosen set of N nodes x,, E R. 

Q N  = {xi,x2,...,xN}.x,, E 0. 

The set QN is used to define a finite open covering 7~ := {we},”=, of R composed of N 
balls w, centered at the points x,,, Q = 1, .  . . , N, where 

w,, := {y E R’l : 11x,\ - yll0p.t < h,} 

N 
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FIG. I .  Open covering in 2-D with balls centered at the nodes. 

A class of functions {cpct is called a partition of unity subordinate to the open covering 
7 ~ ,  if it possesses the following properties: 

1) cpn € c;(%)l 1 5 5 N 
N 

2) Cp,,(.r) = 1. b's E ( 2 .  
< t = 1  

Construction of a Partition of Unity 

There is no unique way to build a partition of unity as defined above. In the h-p cloud method 
we use the following approach: 

Let W,, : R" -+ R denote a weighting function that belongs to the space Ci;(wc,), s 2 0, with 
the following properties: 

Wcv(Y) 20 b'Y E 

Wct(Y) := ld'ct(Y - G,), 

where the functions W,, E C; (&,> ), s 2 0, and are defined over a ball B,,,, of radius h,, centered 
at the origin 

BtL<, = {Z E R" : ) ) ~ 1 1 ~ * ,  < h c , } .  

Next, we introduce a family of functionals defined over continuous functions defined on Q by 

N 

(f,Q), := c W,,(y)f(.b)g(s,,), f , g  : --$ R , f , g  E C W J  2 0 .  (2.1) 
(r=  1 

Assumption 2.1. Given a set of m functions IP = { P I ,  Pi, . . . , P,,,), P, : R - R, P, E 
C'(S2),1 >_ 0 for i = 1, .  . . ni, the weighting functions Wet defined above and the functions 
P, are such that b'x E i?l there holds 

l l l  

~ q . ( P ~ . , f l ) , - ~ O f o r l  = 1 , . . . ,  nzi fandonly i fak=Ofork= 1 , . . . ,  nz. 
k =  I 

The following result is due to Ainsworth [26]. 

Proposition 2.1. Ifthe Assuniption 2.1 holds. then the functional (., .)I defined in (2 .1)  is un 
inner producr on spun( IF'). 
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Proof. The proof involves only standard algebraic manipulations. Details can be found 

The next theorem gives us necessary, and in some cases sufficient, conditions for the satisfaction 
in [27]. 

of Assumption 2.1. 

Theorem 2.1. 
y ,  E SZ there exist indices ~ 1 , .  . . , a k ,  k 2 #P = m, dependent on y. such that 

A necessary condition for the satisfaction of the Assumption 2.1 is that for any 

If #P = 1 , then the above condition is also sufficient. I f  fi C R2 and P = { 1 , x, y} and in 
addition to the above condition x , , ~  , . . . , x,,, contains a subset of 3 points not aligned, then the 
above condition is also sufficient. 

Proof. Let y be an arbitrary point in fi and suppose that the indices crl , . . . , a k  are such that 
( 2 . 2 )  is true. Then the matrix A(y)  := (Pt ,  PJ)lv can be written as 

0 W,,(Y) " '  0 

0 0 . . .  W<lA(Y) 0 I *  Wn,(Y) 0 . . '  '1 ( 2 < X ,  ) '1 ( x , 2 )  ' ' ' '1 (x<kA ) 
p J ( 2 < Z ] )  pJ(2<X1) " .  p2(z<?A) 

Prri(xol) Prri(x<m,) ' .  ' Pm(xir,.) 

The rank of F ,  and consequently of A, will be at most equal to k, so, for A to be positive definite, 
we must have k 2 m. 

Now suppose that #P = 1 and, without loss of generality, that PI = 1. In this case, the matrix 
(PA., Pl), reduces to a single entry 

k 

3 = 1  

which is a positive number from the definition of the weighting functions and from (2.2). There- 
fore, in this case, the conditions of the theorem are also sufficient. 

Let fi C R2, P = { 1,x ,  y}, and x,,", z,)~, xcr, be the three points not aligned. In this case, the 
matrix F defined before reduces to 

1 1 ' . '  

Yo,, Y*rc, . ' . Ym, 

The rows of F are linearly independent, since 

Ycr,. Yo,, Y<rc 
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where A is the area of a triangle having the nodes x,,<, , x C l b ,  x,lc as vertices. Thus, the rank( F) = 
3 and rank( F‘) = 3. Also W is positive definite since W,,, (y) > 0, j = 1, . . . , k. These imply 

We are now in a position to define the partition of unity used in the h-p cloud method. The 
that A is positive-definite. 

partition of unity function (P,, associated with the ball w,, is defined by 

cp,t(x) := P7’ (x )A- ’ (4B , , (4 ,  (2.3) 

where: 

.P(x) := { P , ( x ) , & ( x ) ,  . . . , P,,2(5)}T,  3P, s.t. P,(x)  3z 1 

.A* , (z )  := (P*,  P,),, 

.B,,(x) := W(l(z)P(z<l). 

Theorem 2.2. I fP , , i  = 1 , .  . . ,m, E C’(R),I 2 0, and W,,,a = 1,. . . , N ,  E Cq(O),q 2 0, 
then (p,, (x) as defined above E Cn’in(‘,‘j) (0). 

Proof. Define 

C,?(Z) := Ap’ ( z )Bc l (x ) ,  

then 

and 

A(x)C, , (z)  = B, , (x) .  

Thus, using the Leibniz formula [28], 

The last expression makes sense, since by Assumption 2.1 A-’ exists, and by the assumptions 
on the differentiability of W,, and P,, DI’B,, and D/’A also exists, if 101 5 min(l, 4). The lower- 
order derivatives of C,, that appear on the right-hand side can be computed recursively using the 
above expression. So, we conclude that C,, E C”’i”(‘-q)(R), and the conclusion of the theorem 
is immediate. 
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Theorem 2.3. 
any element PJ E P, the following holds Vx E 0 : 

The partition of unity functions (pa are P-reducible for the set Q N ;  that is, given 

N 

P, (x )  = c pj(~,t)Cp<,(x). 

CcP,(z) = 1 

l k = 1  

Ifthe constant 1 E PI then 
N 

vx E 0. 
r r = l  

Proof. Let Pl E P. From the definition of (pft given in (2.3), 

N N m 

(2.4) 

7n 

j , k = l  

which shows that the functions (p,, are P-reducible for the set QN . 
Since 1 E P, the above gives 

N N 

<t= 1 r t = l  

The set of functions P is, in general, a set of complete polynomials in R" and, therefore, they 
are C"(fl) functions. The weighting functions W, can be constructed in such a way that they 
are also C"(fl) functions [21]. Therefore, the two previous theorems show that if the functions 
P, and the weighting functions W, are sufficiently smooth, the definition of (p,? given in (2.3) 
satisfies the definition of a partition of unity and, in addition, they are P-reducible for the set Q N .  

Remark. The partition of unity functions defined in (2.3) are known as moving least squares 
functions (MLSF) [I91 and they can also be built using a constructive approach 1271. 

C. The Families F:" 
The most important step in the h-p  cloud method is the construction of the family of functions 
F2p using a partition of unity {~p~} :=~ as the one defined in the previous section. This class 
of functions can be constructed at a very low cost and has the important property that Pp c 
~ p a n { F $ ~ } ,  where PTl denotes the space of polynomials of degree less or equal p .  In this 
section, we describe the construction of F,$p and prove some theorems concerning fundamental 
properties of these functions. 

Let Lp denote a set of tensor product complete polynomials LIJm in R3 : 

L2Jm = L Z ( 5 1 ) L J ( 2 2 ) L 7 7 2 ( 5 3 ) ,  5 z I j Y m  5 p .  

Other sets of complete polynomials can be used as well, e.g., the smallest set of complete polyno- 
mials nP. In the following, the set Sk := {cpk},"=, denotes apartition of unity that is &-reducible 
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for the set Q N ,  that is, given any element LLJ,,, E LA., the following holds Vx E 0 : 
N 

The idea behind the definition in (2 .5)  is to add, hierarchically, appropriate elements to the set 
Sh such that the resulting set can represent, through linear combinations, polynomials of degree 
p 2 k .  Because of property 2 )  of a partition of unity, those elements are precisely the product of 
the functions cp;; with the elements from the set C,, that are missing from the set C k .  Figures 2 and 
3 illustrate the situation for the case n = 2, k = 1, and p = 3, when C,, and Lk. are sets of tensor 
product polynomials in R2,  and when C,, and C k  are equal to n,(R')  and n k ( R 2 ) ,  respectively. 

For consistent results, regardless of the scale of the problem, the h-p  cloud functions introduced 
in (2 .5)  are implemented using maps given by 

F,, w,, + w,, 

where 

i jn  := {< E R" : ll<llw.t < 1) 

is a sphere/circle/segment of radius one, and 

w,, := {x E R" : Ilz,l - 211R" < h(,} 

is the support of the function p<, . 
The h-p cloud function p ~ , L I J T I 1 ( x )  is implemented in R,' by 

pl,L,,n(x) := p,,(x)(L,,,, 0 F,;'(x)), 

where i,,,,,(<) is a tensor product polynomial defined on [-I ,  I].$. 

FIG. 2. The elements L,, used to build the family F ~ = 1 ~ r ' ~ ' 3  , when tensor product polynomials are used, 
are those underlined. 
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Lo Lo 

L2L LlLl LL2 
k = l  LlLO LOLl 

p = 3 &&) LzLq LIL? 

FIG. 3. The elements L,, used to build the family F~T1”’=3 ,when the sets r I k 7 ~ ( R 2 )  and nP,3(R2) are 
used, are those underlined. 

The family 3;” represents a generalization of some classes of functions used in diverse fields 
such as interpolation of functions [ 19, 291 and solution of boundary-value problems [ 3 ] .  The 
Shepard functions [29] corresponds to the family 

3;=0.p=0 0 

3;=2.p=2 - 2 
- {P:,cp’;,...IPN). 

= {P?, $4, . . . > PN ). 

The approximation technique developed by Liszka (with the appropriate choice of the stars, see 
[3] for more details) [2, 31 corresponds to the family 

The moving least squares method developed by [ 191 and used in the element free Galerkin method 
[ 1, 101 corresponds to the use of the families 

32r>=k = {cp?,&. . . ,‘PN}. k 

The class of functions used in the h-p cloud method is a generalization of the above: 

M = ( ( p  + 1)” - (k + 1)”). 

where M depends on the set of polynomials used. If tensor product polynomials are used in R“, 
then 

Theorem 2.4. The set 35’ has the following properties: 

i )  Ifthe partition of uniryfunctions {cpk},”=, are linearly independent in R”, then the set 

i i )  dim 35p = N + N ( ( p  + 1)” - (k + l)7L),  iftensorproductpolynomials are used in Rrl. 
iii) dim 32” = N + N ( ( p Z T L )  - (kz7L)), ifthe sets nk(WL) and n p ( R T ‘ )  of completepoly- 

35p is also a linearly independent set offunctions in RrL.  

nomials are used in Rrl. 

Proof. (for n = 3) Suppose that 
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Since { p ~ } ~ = = ,  is a linearly independent set, we must have 

Since the set {15~ ,~ , ! }  is a linearly independent set and there is no linear combination of the 
functions L l 1 7 r L ( z )  that is equal to a constant, we must have 

art E 0, b c t i j i r i  0. 

The proofs of (ii) and (iii) follow directly from the definition (2.5). 

Theorem 2.5. CI, c span{3 ;” } .  
Proof. If L r h f ,  0 5 T ,  s, t 5 p E span{.F;I’}, then 3a,, and bnIJrr1 such that 

If T ,  s, and t 5 k ,  then 

b(tIJ”1 = 0 

will work, since the functions pk are &-reducible. 
If T or s or t > k ,  then take 

a,, E 0 

1 i f i = r , j = s , m = t  
0 otherwise 

a =  1, . . . , N ,  b<t?]T, l  = 

then 

Plot of the h p  Cloud Shape Functions 

The definition of the partition of unity functions give in (2.3) shows that, except for special cases, 
there is no closed form for these functions. The same applies for the cloud functions from the 
families .F;” defined in (2.5). In this section, h-p cloud functions corresponding to various 
choices of k and p are plotted in 2-D. 
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The following weighting function is used to build the partition of unity: 

where h,, is the radius of the circle w,, . 
Figure 4 shows the node arrangement and the associated covering 1 ~ ~ 2 ~  used to build the 

partition of unity functions cpk. The domain 0 is either the square (- 1 , l )  x (- 1, l )  or the square 
(0 , l )  x (0 , l ) .  The set P, used to build the functions cpk, is composed of tensor product of one- 
dimensional polynomials of degree less or equal to k .  The families 3;' are also built using tensor 
product polynomials as defined in (2.5). 

The following algorithm is used to automatically set the size h,, of the support of the functions. 
The algorithm guarantees that Assumption 2.1 is satisfied when k is equal to 0 or 1 .  If k 2 2, 
the algorithm guarantees that the necessary conditions for the satisfaction of Assumption 2.1 are 
met. In next sections, we show that in the h-p cloud method there is no advantage in using k > 0 ,  
which justifies the use of the algorithm in practical computations. The algorithm is described 
for the two-dimensional case. The extension to the three-dimensional case is straightforward. A 
similar algorithm has recently been proposed by [30] in the context of the element-free Galerkin 
method. 

Let Q denote the index set of all points in 0 that we want to build a cloud function using 
partition of unity functions cp'. 
For all balls w,, set h,, = 0. 
For all points <' E Q do: 

Build a list List of all nodes that fall within a searching square centered at <k and with 
sides equal to 2 * R, where R = upper boundfor hct. Ifdirn(List) < diiii(P) increase the 
size of the searching square and try again. 
Build a list Dist with the distance from the nodes in List to the point <k .  

Sort the list Dist. 
Enforce that <k belongs to the support ofthe dirn(P) closest nodes in List. This is accom- 
plished using the list Dist and the values of h,, . 
I f  k = 1 ,  check ifthere are at least 3 nodes in the list of the tlim(P) closest nodes that are 
not aligned. Ifnecessary, enforce that <k belongs also to the support of other nodes in the 
list List. 

FIG. 4. Node arrangement and support of functions. 
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End do. 
Multiply the radius h,, of the balls w,, by a factor p = 1.5. 

The above algorithm requires an efficient means of determining which nodes fall within a 
specified region of the domain. This same kind of problem appears in the smoothed particle 
hydrodynamics method [ 2 2 ] .  Swegle and colleagues [22] developed a very efficient algorithm to 
perform this kind of search. The algorithm can be used in any dimension, and the total execution 
time of the algorithm is of order dim(&) log(N), where N is the total number of nodes. This 
algorithm is used in our implementation. 

Figure 5(a) shows the function &{,, associated with node 513 = (0,O). This function belongs 
k=l,p>l to the families FNZ2:, . The product of the function qj,",z::, with y2 is shown in Fig. 5(b). This 

corresponds to the h-p cloud function y'cp,",,{,, which belongs to the families FN=i5 . Figure 
5(c) shows the h-p cloud function r c ~ ~ ( p , " , Z \ : ~ ,  which was built by multiplying the function shown 
in Fig. 5(a) by xy2. This function belongs to the families FN,;;5)-'. The partition of unity function 
cp,",z: associated with node x1 = (-1, -1) is depicted in Fig. 5(d). Note that the function is not 
defined outside of S 2 .  This function belongs to the families FLE?$2. 

k = l  p 2 2  

k = l  > 

111. APPROXIMATION THEORY FOR THE H - P  CLOUD METHOD-H CONVERGENCE 

A. Introduction 

In this section, we consider the problem of determining estimates in appropriate norms and semi- 
norms of the difference (u - ulI) ,  where u is a function that belongs to a given Sobolev space 
X and ul17) is an approximation of u built using h-p cloud methods and belonging to a subspace 

The strategy used to derive the local estimates follows closely that of [31, 321 in the context 
XhI) of x. 
of finite element methods. The approach used to derive the global estimates follows [33, 341. 

B. Preliminaries 

We define a ball in Iw" as the triple ( G , t ,  E!:JJ, IL)L,), where: 

( i )  W,,  is a closed subset of Iw'& given by 

w,, := {y E R" : - yllOe.2 < h<?} x,, E 0. 

(i i )  E;:7' is a space of real-valued functions defined over the set W,, and given by 

E::J' := span{F;i'I,,, 1 f 

where F;" is the set of global cloud functions defined in previous section, a',' E basis of 
=hi1 -<, , that is, it is a shape function, and I is an index set. 

( i i i )  IL% is a set of linearly independent linear forms a [ ,  where 1 E I ,  defined over the space 
E!:JJ and given by 
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z 

I ? 

( c )  2-D fiiiiction: zy29k=:3 ( d )  2-D function: 9;~: 

FIG. 5 .  Plot of 2-D h-p cloud functions. 

0 Mi; (a;‘, Cp;‘)L’(,,,) = J,,, @;‘@,;ds. 

The functionals al are denoted by degrees of freedom. 

Given a ball (W<,, Z!:?’, IL;>), and given a function v : W,, --f R sufficiently smooth so that the 
degrees of freedom a! ,  1 E I ,  are well defined, we let 

denote the L2-approximation of the function v over the domain W,, . 
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Proposition 3.1. It follows from the definition of the operator II:, that over the space Z!:P C 
dotnnf,, the operator reduces to the identity operator, i.e., 

Vg E d i / J  2 -<, 3 n, ,g  = g3 

that is, nf, is a projection operator. 
Proof. The proof is immediate. Details can be found in [27]. 

Corollary 3.1. The projection operator II;, preserves polynomials of degree 5 p ;  that i s  

8 

ngt = t Vt  E P J W , , ) .  

where p is the parameter that appears in the definition of the space E!:”. 
Proof. It follows immediately from previous proposition and Theorem 2.5. 8 

We say that the open set w,, is affine equivalent to the open set G(,, if there is a mapping 
between w,, and w,, of the form 

F,,(E) = h,,E + C, I E G,,, 
and V y  E w,, , 3  4‘ E w(, such that y = F , , ( < ) .  

Once we have established the bijection 

E E G,, - y = Fm(€) E 

between the points of the sets w,, and w,, , it is natural to associate the space 

S::JJ := {&:I : G,, -+ RI&:, = @:‘ o F, , (<) ,@i’  E Sj:lJ} 

(3.3) 

with the space Z;’:!’. 
With these definitions in mind, we are in a position to give the following definition: 
Two balls (W, , ,  Z!:l’, Lf,) and (G,,, 2::J’. If.;,) are said to be equivalent, if there is a mapping F,,  

between w,, and ij(, such that the following relations hold: 

where 

(3.4) 

Theorem 3.1. Let (w,,, g::/’. L;,)” and (w,,, E;:J’, L;,) be two equivalent balls with degrees of 
freedotn in the form (3.1 ). Then if@:’.  i E I ,  are the basis functions of the ball w,,, the functions 

i E I ,  are the basis functions ofthe bull w,, , the projection operators nf, and fIf, are such 
that 

’ ’) 
A n:, u = n, ir 
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for any functions 6 E dornfi:, , and u E dornn; associated in the correspondence 

6 E domfI:p ---f u = 6 o F-' E domII:p. 

Proof. The L2-approximation operator n:r is of the form 

where 

Thus, 

Then 

L E I  

The next theorem is useful later on. D 

Theorem 3.2. 
a linear continuous operator from W"+ 
degree 5 p ;  that is 

[32] Let W"+','(R) -+ WT'L,s(R) and let II E L(WP+','(R), WrrL,'(R)) be 
(R) onto W""." (a), which preserves polynomials of 

nt = t 
Then there exists a constant C = C(Q)  such that, for every v E W7)+'3'(Q), 

v t  E P,(R). 
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Theorem 3.3. Let w,, and w(, be two equivalent open sets in R“. I f a  function u E W 7 r 1 3 h ( ~ , t )  
for  some integer m 2 0 and some number s 2 1 ,  the function 6 = u o F,, belongs to the space 
I.I; T I  1 ~ h ( LJ(, ), and, in addition. V u E W”“.” (w,, ) the following holds: 

161 r r i  ,.v,Gc. = h:: - r i ’ s  Iu 1 r r i  ..+.rJ,, 

where h,, is the parameter appearing in the mapping F r , ( < )  = h,,< + C‘, < E w,,. 
Analogously, one has V 6 E W”‘.” (w(,) 

- h,; 7 r ~  + r i  /,\ 
I 4 7 I l , S , , < >  - l f i l r r i , . v , ~ , ,  . 

321. rn 

Proof. The proof involves standard algebraic manipulations. The details can be found in [27, 

We are now in a position to prove an important property of polynomial preserving operators. 
The key idea is to go from an open set 0 to an equivalent set 6, and then go back to 0. The 
following theorem is restricted to the case of maps defined in (3.3), which is the kind of mappings 
we are interested on. A more general version of i t  can be found in [31]. 

Theorem 3.4. 
wp+l.r(fi) and ~ 7 r i . *  ( fi) be Sobolev spaces satisfying the inclusion 

For some integers p 2 0 and ni 2 0 and some numbers T ,  s E [l,  001, let 

Wij+l~r( f i )  Lt , , T r i . . + ( f i ) ,  

and let fI E L(W1’+’3”(6), W77‘3,’(<1)) be a mapping such thai 
^ ^  

v i  E PJfi) nt = i. 

For any open set 0, which is equivalent to fi, let the mapping nclv be defined by 
h 

(nrpJ) = nfi (3.5) 

for allfunctions 6 E W P + ’ . ” ( f i )  and u E W7”3.‘(fi) in the correspondence 

fi = 7) o F ( < )  F ( < )  = h< + C. (3.6) 

Then there exists a constant C(fI, fi) such that, for  all equivalent sets Q , V v  E W“+‘ . ’ - (0 ) ,  

with h given by (3.6). 
Proof. See [27, 311 

C. Estimates of the Approximation Error Iv - I I ~ U ~ ~ , ~ , ~ ,  for a Ball 

By specializing Theorem 3.4 to balls, we obtain estimates of the approximation error Iu - 
~ I ~ , U ~ ~ , ~ , , ~ , ~ , ,  . Before that we need a few more results. 

Theorem 3.5. 
in the space W”‘.” (Gck)) is continuous. 

Proof. Let 6 E WP+197.(G(,) then, from the definition of fI:,, 

Thelinearmapping fI: : WT’”,” (G,,) ---t W”‘,” (Gcz) (the space s:kp is contained 

(fC,fi)(<) = ~W+w€),  
I E I  
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where 

and 

Thus, 

Assume, without loss of generality, that the functions , 1  E I ,  have been orthonormalized 
with respect to the inner product (., . )I ,L(G,>).  This implies that 

l@iJ = hiJ = ( f4 iJ) - '  

and 

F,x\&fG*l =T,y,hiJ =dim(??). 

This leads us to an interesting observation: If we use only the family 3:P=b, that is, only the 
partition of unity functions (p(\'s, the dimension of the space 2:: is independent of k (the degree 
of the polynomial that the functions (pa  can reproduce). On the other hand, if we use the family 
.F:",p > k, the dimension of the space cF will increase as we increase p and keep k fixed. 
Thus, we can write 

1 E I  J E l  161 J E I  

Note that C is independent of k .  
Collecting everything we get 

Theorem 3.6. 
the following holds for some integers m 2 0, p 2 0, and for some numbers r ,  s E [ 1, m] : 

wp+ 1 ,T ( G ~ ~ )  Lf wrrt ,.s 

Let (Gcr, 2;:p,cfr) be a ball with 5 2  and c:r defined us before. Suppose that 

(20 
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Then there exists a constant C(w(,, ?!kiJ(p), i:,) such that. for the equivalent ball (w,,, 
Z!kl'(p), Lf,) and all functions u E W'+'.'(u,,), 

(3.8) )v - n;,z~l,,,,,~,,,, 5 C(G,,, s : :1 ' (p )7  i ;~)hf :+1~"1+tT ' / " -71/~  l ~ I / l + l , ~ . U < ,  2 

where h,, is the parameter thut appears in the mapping between ii,, and w,, . 
Proof. By Corollary 3.1 we have that 

v i  E P?,(G(,) n;,i = i .  
Also, by Theorem 3.5 we have that 

Iy, E L(w/'+l.r (G(,), IVr",.s(G,,)). 

Since the projection operators nf, and fI:, are related through the correspondence 

for any functions u E damn?, and 6 E domfif, (cf. Theorem 3. I ) ,  we may apply Theorem 3.4, 
and inequality (3.8) is just a restatement of inequality (3.7) in the present case. 

Note that: 

(1) 

( i i )  

( i i i )  

The rate of convergence given by (3.8) does not depend on the polynomial degree that 
the partition of unity functions can reproduce. but only on the degree p that the functions 
a',' can reproduce. That is, the rate given by the h-refinement using the family F$ J' 
is the same as the rate using the family F>"'. This is in agreement with our numerical 
experiments of Section IV. Note, however, that the definition of the families F;/' implies 
that p 2 k .  If p = k ,  then the rate of convergence is given by the polynomial degree that 
the partition of unity can reproduce. 
The constant that appears in the inequality (3 .8)  does not depend on the polynomial degree 
that the partition of unity functions can reproduce, but only on the degree that the func- 
tions can reproduce. This indicates that p-refinement using only moving least squares 
functions will probably not decrease the approximation error. Again, this is in agreement 
with our numerical experiments of Section I \ .  
There is no aspect ratio effect in the inequality (3.8). unlike in the finite element method. 
This phenomenon has been reported by Belytschko and colleagues in the element-free 
Galerkin method [ I ,  101, which is a special case of the h-p cloud method. This is a 
consequence of the kind of mappings used between the master ball G(, and the balls w,, . 

D. Global Estimates 

In this section, we present an estimate of the difference ( u  - I L / , , , ) ,  where u E H ' ( O ) ,  1 2 1, and 
u/r,l is an approximation of u built using h - p  cloud methods and belonging to a subspace XhYJ of 
H'(R).  The approach used to derive the estimate follows that of Babuika and Rheinboldt [33] 
and of Melenk [34]. 

The proofs are given for the case where the partition of unity {P,,}:=~ is built using only the 
constant 1, that is, the case k = 0 in the definition given by (2.5). This does not represent a 
limitation in practice, since the numerical experiments of Section IV show that the case k = 0 is 
indeed the best choice for the h-p cloud method. 

Let X : y ( w : : )  denote a two-parameter family of spaces defined by 
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The mapping F,,  is defined in (3.3) and the basis functions il  are chosen such that the following 
conditions are satisfied: 

L * ( x )  E 1 

D ( n , p )  depends on the choice of the set { i!}. If, for example, L,  are tensor product polyno- 
mials in R” , then 

D ( n , p )  = ( p +  , ) ’ I .  

The restriction of the elements of X:: to ( ( 1  n w! : )  are denoted by X::]’. 

Definition 3.1. 
family of open coverings of (1, where 

Let0 C R” b e a n o p e n s e t a n d I ~ ( , , )  = {~i:}rz), h > 0,  beaone-parameter 

iiiax h,, 5 h, 
, t = l . .  . , N ( / I )  

and h,, is the radius of the ball w!:. The familv I N ( / , )  is said to satisfy the overlapping condition 
i f3 p E N such that V h > 0 and V x  E R 

card{a : 5 E w::}  5 p .  

we associate with the family of open coverings 7 N ( ) , )  a family of partitions of unity { ‘p It } N ( j 1 )  
ft , I =  1 

built using only the constant 1 (k = 0). The index h is used to emphasize that { ‘ p : ~ } ~ ~ ~ )  is an 
element of a family of partitions of unity. 

Assumption 3.1. The family of partitions of unity {‘p::}::;) satisfy the following additional 
conditions: 

1 )  l l ‘p9l!,y$2) I cx 
2 )  llvv:;llL=($~) I 

for  some C,  , Cc; > 0 independent ($ h. 

Definition 3.2. 
The spuce X“?’ is defined by 

Let Xl? C H’ (51  nw l : )  be the two-parameter family of spaces defined above. 

Lemma 3.1. X h P  = ~pan{F‘”’~).~’ N ( h )  } ’  
Proof. From the definition of XIL7’ we have that 
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w h e r e L I  = 1. 
Consequently, 

8 

Theorem 3.7 [34]. Let f l , 7 N ( / t l  = { u ~ ~ } ~ ~ ' ~ ) ,  { p ~ ~ } ~ ~ ~ ) ,  and X!:]' be as defined above. Let 
u E Hi (O),  1 2 1, and suppose that for f ixed h and p the function u can be approximated locally 
by functions in X::T' ,  i.e., for each a 3 u:i7' E X::7' such that 

- d " l 1 L 2 ( ( ? n u ; ]  I h!p)lluIIH1(f2~uj:)  

b - ~%1(i2nd!:) I ~ ( a ,  h, p)li ull jff(f2nd;). 

Then 3 ulIp E X"$' such that 

where the constants 6, and Cc; were defined in Assumption 3.1. 

of unity, we  have 
Proof. [26] From the definition of the space X/17' and the fact that { cp,';};:) form a partition 

Using the Schwarz inequality and the fact that for a fixed x E fl there are no more than p nonzero 
terms in the above sum, we get 

I2 
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The semi-norm estimate follows as above [27]. 
Suppose now that in Sections B and C we define Z,’:7’ := X(l”,  then we can carry over all 

the proofs given there, since as in the case of the space E::p, Pp c X;tp.  We then conclude the 
following theorem. 

Theorem 3.8. Suppose that the following holds for  some integers m 2 0,  p 2 0 and for  some 
numbers r ,  s E 11, w] : 

h h 

(R n 4;) W7)+1.”((2 n wI;) W T T L . . S  

- l i p  - h 

Let (0 n w!;, X , ,  , Lf,) be a ball with X: and c;, defined as before. Then there exists a 
constant C(R n w k ,  X , ,  , Lf,) such that, for  any equivalent ball (R n w:;, X;:l’, Lf,) and all 
functions u E W7’+ * .T‘ (0 n w:;) , 

~ I t  1’ - h 

h 

where h,, is the parameter that appears in the mapping between (0 n w: ) and ( R  n u R ) .  
Theorem 3.9. Suppose that the conditions of Theorem 3.8 hold for  all master balls (0 n 
w::, X , ,  , L:k). Let u E H7’+’(R),p 2 0,  then for  f ixed h and p there is u ~ ~ ~ ’  E X h p  such 
that 

~ I1p - 

~ hli - h 

where the constants C, and GG were def ined in Assumption 3.1, the constant C,, 
is the same as in Theorem 3.8, and h = max,,=l ,... . N ( l r )  h,,. 

G( R n w: , X,, , La) 

Proof. The above relations are direct consequences of Theorems 3.7 and 3.8. 

IV. NUMERICAL EXPERIMENTS 

In this section we perform several numerical experiments to investigate the approximating prop- 
erties of the h-p cloud functions introduced in previous sections. The h and p convergence of the 
method are investigated, and the results compared with the a-priori error estimate derived in the 
previous section. 

In the h version of the method, the parameters k and p are kept fixed, and the size h,, of the 
balls w, are changed. Of course, this has to be followed by an increase in the number of nodes 
in the discretization when the sizes of the balls are decreased. 

The p version of the method can have more than one variant. One, for example, can fix the 
size h,, of the balls and change the parameter p while keeping k fixed. Another possibility is to 
increase simultaneously k and p .  Nonetheless, our analysis in Section 111 shows that the constant 
that appears in the error estimate given by Theorem 3.6 does not depend on k ,  but only on p .  
Thus, it may not be advantageous to increase the value of k .  
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In all the numerical experiments, the weighting functions W,, are implemented using cubic 
B-splines in the following way: 

W<,(Y) := w ( l ( 2 )  := w ( z ( l ) ,  (4.1 ) 

if 0 2 z,, < 1 

if 1 5 z,, < 2 

if zll 2 2. 

(4.2) 

(4.3) 

(4.4) 

In all experiments done in this section and in Section V, the domain integrals are computed using 
a background cell structure that exactly covers the domain. In all cases, there is no relationship 
between the background cell structure and the set of nodes CJN used in the discretizations. 

A. Test 1 : L2 Projection of a Smooth Function in 1-D 

We compute the L2 projection, u/L1l ,  of the function u = sin(47rx),.x E (0, l ) ,  on a subspace 
spanned by cloud functions. Many subfamilies of the general family 3;71 are tested. The results 
for the h and p convergence of these subfamilies are presented and analyzed next. 

H Convergence 
In this section we investigate the behavior of the error u - u ~ , , ~  in the L2 norm when uniform h 
refinement is performed. The number of nodes ranges from 9-129, always evenly distributed in 

FIG. 6. Nine nodes arrangement for Test I 



. . . H p  CLOUDS- -AN h-p MESHLESS METHOD 695 

the interval [0, 11 with one node at each end of the domain. The nine node distribution is shown 
in Fig. 6. In the experiments, k and p ranges from 0 2. 

Figure 7(a) shows the h convergence, in the L2 norm, of u ~ l p .  The results are shown for three 
cases: k = p = 0, k = p = 1, and k = p = 2 .  The curves show that the rate of convergence is 
equal to p + 1, which is in agreement with the estimate given by Theorem 3.9. 

Figure 7(b) shows the results when the basis functions from the spaces .F:T$2T:9, F9<i5  
and 395 129 are used. That is, we compare the rates of convergence when different values of 
p are used and k is kept constant. The curves show that the rate of convergence is equal to p + 1, 
again in agreement with Theorem 3.9. Another test on the dependence of the rate of convergence 
on k and p was performed by comparing the rates of convergence when using different values of 
k while keeping p constant. The results are shown in Fig. 8(a). It can be observed that the rate 
of convergence is always approximately equal to p + 1 and does not depend on the value of k .  
Figure 8(b) shows the same results, but this time the error u - ullp is plotted against the number 
of degrees of freedom instead of the size of the balls. The conclusions in this case are the same 
as before. 

k=0 p =  1 
- 

k=O p = 2  

P Convergence 

In this section we analyze the effect of uniform p enrichment of the h - p  cloud space on the error 
u - utlp measured in the L2 and HI norms. More than one variant of the p version are investigated. 
We denote by variant pl the case when k and p are simultaneously increased and by variant p 2 ,  

the case when k is kept fixed while p is increased. In all experiments reported in this section, the 
nine node arrangement shown in Fig. 6 is used and the algorithm previously described is used to 
automatically set the size of the balls. 

0 1  

0 01 

c ,  - I 0 001 

2 - 

- - c- 
3 

0 0001 

I c-0s 

I e-06 

lip cloud. h convergence. TI 
I 

0 

, 

hp cloud h convcrgcnce. TI  

0 .5 01 005 001 0005 0 .5 0 1  005 0.0 I 0 00s 
I1 II 

FIG. 7.  H convergence in the L2 norm. 
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Figure 9(a) shows the results for the variant p1 with 1 5 k = p 5 5 ,  and for the variant 
p~ when k = 0 , l  5 p 5 7;  k = 1 , l  5 p 5 7 and k = 2 , 2  5 p 5 7. The variant p 2  with 
k = 0 gives, for all values of p ,  the smallest error. The rate of convergence increases with p in 
all experiments using the variant 632. As Fig. 9(a) shows, the rate of convergence ranges from 
2.02 17.26 when the variant p 2  with k = 0 is used. This behavior is typical of spectral methods 
like the p version of the finite element method. These results confirm the dependence on p of 
the constant that appears in the error estimate of theorem 3.9. The results obtained with variant 
631 are also shown in Fig. 9(a). It can be observed that this variant does not converge. This is 
probably a consequence that the constant of the error estimate (3.8) does not depend on k .  

Figure 9(a) shows that for a fixed value of p the variant p 2  with k = 0 gives, for this problem, 
the smallest error. Nonetheless, it can not be concluded that the choice of k = 0 is the best in 
terms of error versus number of degrees of freedom. This happens because the definition of the 
family F$IJ given in (2.5) implies that dirn{F:,lJ} > d i m { F ~ " }  if k2  > k l .  Figure 9(b) 
shows the same results of Fig. 9(a), but this time we plot the error of the L' projection versus the 
number of degree of freedom. It can be observed that in all the cases ( k  = 0, k = 1 or k = 2 )  the 
error, for a fixed number of degrees of freedom, is almost the same, with only a slight advantage 
in favor of the case k = 0. We should now recall that the definition of the moving least squares 
(partition of unity) functions p,, given by (2.3) involves the inversion of a matrix of dimensions 
(diniP) x (d imP)  and that dirriP is at least equal to (ki''). Thus, we conclude that, for this 
problem, the family F;=').'' is the most economical, since it does not involve the inversion of any 
matrix in the construction of the moving least squares functions cp , ,  and gives the same level of 
accuracy of the other families for a fixed number of degree of freedom. Figures 10(a) and 10(b) 
are similar to Figs. 9(a) and 9(b), respectively, but this time the error u - uhJJ is measured in the 
HI norm. The conclusions are the same as before. 

hp cloud: I1 convergence. T I  hp cloud: h convergence. TI 
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FIG. 8. H convergence in the L' norm 
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hp cloud. p convergence. TI hp cloud: p convergence. TI 

FIG. 9. P convergence in the L' norm. 

6. Test 2: L2 Projection of a Rough Function 

We shall now illustrate the performance of the cloud functions in approximating a function with 
a high gradient in some small part of the domain. The model function is 

We test the case y = 50 (y controls the magnitude of the gradient at 5 0 )  with 5 0  = 0.2. du/dx 
is shown in Fig. 12(a). 

We perform a p convergence analysis using the variant p 2  and the same families used in the 
previous experiment. The nine node arrangement shown in Fig. 6 is also used in this experiment. 
Figure 12(b) shows the results when k = 0 , l  5 p 5 7; k = 1,1 5 p 5 7 and k = 2 , 2  5 p 5 7. 
Figure 13(a) shows the same results of Fig. 12(b) with the exception that the abscissa shows the 
number of degrees of freedom instead of the value of p .  We can draw the same conclusions as in 
the previous test case, namely, we get spectral c onvergence with the rate of convergence ranging 
from 0.90 to 8.30, and the family .?'i="'p is the best choice. 

We next investigate the possibility of getting even higher rates of convergence using a node 
distribution that takes into account the behavior of the function u around 5 0  = 0.2. We use the 
graded node arrangement shown in Fig. 1 1. The results obtained are plotted against the previous 
ones in Fig. 13(b). We can observe a clear increase in the rate of convergence when the graded 
node distribution is used. The results shown are for the family F;=0,'5p57 with N = 9 (in the 
case of the uniform node arrangement) and N = 29 (in the case of the graded node arrangement). 

The conclusion from this experiment is that, like in the finite element method, the use of 
adaptivity to automatically select the node arrangement and spectral orders in the h-p cloud 
method can possibly lead to substantial savings in computations. 
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lip cloud. p convergencc. TI 
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( b )  P convergence. 0 5 I; 5 2.  5 1 1  _< i .  

FIG. 10. P convergence in the H '  norm. 

V. SOLUTION OF BVPS USING THE FAMILIES F c 3 p  AND THE GALERKIN 
METHOD ~ THE H - P  CLOUD METHOD 

A. Introduction 

In the following sections, the h-p  cloud method denotes a numerical technique to solve boundary- 
value problems, where one uses the h-pcloud functions to construct appropriate finite dimensional 
subspaces of functions used in a Galerkin method. The use of the Galerkin method is only a 
question of choice. Other techniques, such as collocation, can be used as well. 

One- and two-dimensional boundary-value problems are solved using the h-p cloud method. 
Some of the results are compared with the solutions obtained using the FEM. 

B. Heat Conduction Equation in One Dimension 

The following boundary-value problem is solved using the p version of the h-p cloud method: 
Find u = u(z)  such that 

u = u1 a t z =  -1 

FIG. I I .  Graded node arrangement for Test 2. 
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du 
- = 0 2  a t z = I .  dx 

The parameters f ,  U I  , and 02 are chosen such that the solution u is given by 

that is, the Legendre polynomial of fourth degree. 
A five-node arrangement uniformly distributed in the domain is used in the computations. 

The value of the parameter k is kept fixed at zero, and the parameter p ranges from 0 3 .  The 
discretization using the family .FLT(;7'=" gives, as expected, the exact solution within round-off 
and quadrature errors. The essential boundary condition at z = - 1 is imposed using a Lagrange 
multiplier. 

This problem is also solved using the p version of the finite element method. A uniform mesh 
of four elements is used in the discretization. The degree of the finite elements ranges from 1 ~ 3 .  

The first difficulty in comparing the h-p cloud method with the FEM is to decide how to do 
a fair comparison. One can compare based on the value of p or on the number of degrees of 
freedom. We compare the solutions corresponding to approximately the same number of degrees 
of freedom. 

Figure 14(a) shows the pointwise error, u , , ~  - u ~ ) , ~ ,  when using the h-p cloud method with 
k = 0, p = 0, and the FEM with p = 1. In both cases, the number of degrees of freedom is equal 
to 5. It can be observed that the error in the maximum norm is almost the same in both cases, but 
the derivative of the h-p cloud solution does not exhibit discontinuities like the derivative of the 
FE solution. The results when k = 0, p = 1 in the h-p cloud method, and p = 2 in the FEM are 

(a) Derivative of the l011gh function. ( b )  P convergence. 0 5 k 5 2,  1 5 p 5 'i 
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FIG. 12. Derivative of the rough function and p convergence in the L2 norm. 
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FIG. 13. P convergence in the L2 norm. 

shown in Fig. 14(b). The error in the maximum norm of the h-p cloud flux is about three times 
smaller than the corresponding error of the FE flux. It can be observed that the h-p cloud solution 
is at least a C' ((1) function. 

I i p C h d  k=O pl - 
I1 p=2 . .- 

FIG. 14. H - p  cloud and FE error in flux. 
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+ L  

' c  

FIG. 15. Node arrangement. 

C. Poisson's Equation on a Square Domain 

In this section, we focus o n  the solution o f  a Poisson problem in which a function u = u(z )  is  
sought satisfying 

-Au = f i n 0  = (-1,l) x (-1,1) 

u = o  

lip cloud- p conveigencc. L=O. p = I - 1  

I I 

IC 

I 
- c 
3 

2 

01 

001 

hp clotid. p convsigsncs. Ld. p d - 7  

6 13'. \ 

I 2 3 4 5 6 1 8  5 10 so loo 200 
P N W F  

(a) P convergeiice, k = 0 ,  1 5 11 5 i .  ( I , )  I' convergeiicc, k = 0 ,  0 5 p 5 i. 

FIG. 16. P convergence in the L' and H' norms. 



702 DUARTE AND ODEN 

(a)  H - p  cloud solution. ( I ) )  X derivnt ivc ibf tlie h 1' cloud solu- 
t ion. 

FIG. 17. H - p  cloud solution and I derivative of the h-p cloud solution. 

where A is the Laplacian, and f, g, and 11,  are chosen such that the solution ti is 

u = (1 -z ' l)cosh(7ry).  

The domain 0 and the node arrangement used are represented in Fig. 15. 
This problem is solved using its weak formulation and the Galerkin method. The subspaces 

for the Galerkin method are built using the h - p  cloud functions described in previous sections. 
The Dirichlet boundary condition is imposed using Lagrange multipliers. Details on the imple- 
mentation of the Lagrange multipliers can be found in, e.g., [lo]. 

The variant p2 of the p version of the h - p  cloud method is used. The value of k is kept fixed at 
k = 0 and p ranges from 0 to 7. Figure 16(a) shows the error u - uj,, measured in the H '  and L2 
norms, versus the value of p .  The rate of convergence in the L' norm ranges from 1.58 -9.14 and, 
in the H'  norm, it ranges from 1.03-9.67. This kind of behavior is typical of spectral methods. 
Figure 16(b) shows the error u - up versus the total number of degrees of freedom (including the 
degrees of freedom corresponding to the Lagrange multipliers). 

Figure 17(a) shows the h-p  cloud solution u,, and Fig. 17(b) shows its z derivative. It can 
be observed that i)u,,/ax is continuous, and it is, therefore, unnecessary to perform any flux 
smoothing. 
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VI. CONCLUSIONS 

In this article, a new meshless method to solve a large class of boundary-value problems is pro- 
posed. The method involves the placement of h-p approximations in spheres centered at arbitrary 
points in the domain. The method can be used in one, two, as well as three dimensions. a-priorier- 
ror estimates for the h version of the method are derived. The method appears to be robust enough 
to handle problems where the solution exhibits localized behavior, such as boundary layers. The 
numerical experiments show that one can expect exponential rates of convergence when the h-p 
version of the method is used. Another remarkable feature of the h-p cloud method is the regularity 
of the solution one can get. We were able to obtain C2(n) approximate solutions of a second-order 
boundary-value problem without any difficulty. Higher-order of regularity can be attained at no 
extra cost. 

Much additional work remains to be done, but the results presented in this article show that 
the h-p cloud method has a great potential to become a very competitive method for the solution 
of a broad class of boundary-value problems. 

The support of this work by the Army Research Office under contract DAAL03-92- 
G-0253 and the CNPq Graduate Fellowship Program’s support of Armando Duarte is 
gratefully acknowledged. 
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