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1. INTRODUCTIONThere are many important pratial situations where the solution of a boundary-value problemhas a very strong gradient in one diretion but is relatively at in others. This is the ase,for example, in problems where boundary or internal layers our. One very eÆient approahto solve this lass of problems is to use p-orthotropi approximations, that is, approximationsthat have di�erent polynomial orders assoiated with eah enrihment diretion. This tehniqueis well-known in the �nite element ommunity, but is infrequently used, mainly for pratialreasons. In the �nite element method the analyst must know a-priori the preferential diretionsof the solution and build the �nite element mesh aordingly. However, in most pratial ases,the geometry of the domain or the use of automati mesh generators, preludes the onstrutionof a �nite element mesh along these diretions. This onstraint is inherent to the FEM andfores the use of isotropi approximations to solve this lass of problems. The partition of unityframework used in the generalized �nite element method (GFEM) [5, 6, 7, 11, 10, 13, 14, 9, 3℄provides muh more opportunities to eÆiently solve this lass of problems. The proedureproposed here is based on the observation that GFEM shape funtions an be onstruted frompolynomials de�ned in any oordinate system. This allows the onstrution of shape funtionsof presribed polynomial order along any given diretion, regardless of the underlying mesh,type of element used or omplexity of the geometry of the domain. The proedure presentedis an extension of the one proposed by Duarte [8℄ in the framework of the hp loud method.Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 3Following this introdution, the onstrution of mesh independent p-orthotropi GFEMshape funtions is presented in Setion 2. Numerial examples demonstrating the e�etivenessof the proposed approah are given in Setion 3. Finally, in Setion 4, the onlusions areoutlined. 2. MESH INDEPENDENT P -ORTHOTROPIC APPROXIMATIONSLet the funtions '�; � = 1; : : : ; N , denote a linear �nite element partition of unity withsupports !� (often alled louds). Here, N is the number of vertex nodes in the �nite elementmesh and !� is the union of the �nite elements sharing the vertex node x�.Let ��(!�) = spanfLi�gi2I(�) denote loal spaes de�ned on !�; � = 1; : : : ; N , whereI(�); � = 1; : : : ; N , are index sets and Li� denotes loal approximation funtions de�ned overthe loud !�.The generalized �nite element shape funtions assoiated with a vertex node x� are de�nedby ��i = '�Li�; i 2 I(�) (no sum on �) (1)Details on the formulation of the GFEM an be found in, e.g., [6, 7, 11, 13℄Let us onsider the ase in whih the funtions fLi�gi2I(�) are polynomials de�ned as followsLi�(x) = bLi ÆT�1� (x)where:bL(b!) := fbLigi2I ; are polynomials de�ned in a Cartesian system (�; �; �) and b! is theunit sphere b! := f� 2 IR3 : j�jIR3 � 1g;Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



4 C. A. DUARTE AND I. BABU�SKAT�1� is a mapping from the global Cartesian oordinate system to a nodal Cartesiansystem given by T�1� : x = (x; y; z)! � = (�; �; �)� = R�1� (x� x�)=h�where R�1� 2 IR3 � IR3, with rows given by the base vetors of the oordinate system(�; �; �) written with respet of the base vetors of the oordinate system (x; y; z) andh� is taken as the diameter of the largest element onneted to node x�.The oordinate system (�; �; �) is illustrated in Figure 1. Note that the transformationsT�1� ; � = 1; : : : ; N , do not depend on the partition of unity (in this ase a �nite element mesh).Also, from the de�nition of T�1� ; � = 1; : : : ; N , we have that if x 2 !� then � = T�1� (x) 2 b!sine jx� x�jIR3=h� � 1 and R�1� ; � = 1; : : : ; N , represent rotations.[Figure 1 about here.℄2.1. Loal approximation for p-orthotropi enrihmentIn this setion, details about the elements of the set bL(b!) used in our omputations areprovided. This set is omposed of monomials of degree (p�; p� ; p�) along the loal (nodal)Cartesian diretions �; �; �, respetively.In the ase of isotropi enrihment, i.e., p� = p� = p� = p, the set bL(b!) is taken from thePasal triangle [12℄ and the notation bLp(b!) is used.bLp(b!) = Q0p(b!) := f�i�j�k : 0 � i+ j + k � p; i; j; k = 0; : : : ; p; (�; �; �) 2 b!gLet the set of tensor produt polynomials of degree (p�; p�; p�) be denoted byQ(p�;p�;p�)(b!) := f�i�j�k : 0 � i � p�; 0 � j � p�; 0 � k � p� ; (�; �; �) 2 b!gCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 5In the general ase of orthotropi nodal enrihment, the following set of polynomials is usebL(p�;p�;p�)(b!) := Q0�p(b!) \Q(p�;p�;p�)(b!)where �p = maxfp�; p�; p�g.This set is omplete of degree (p� ; p�; p�) in the diretions �; �; �, respetively, while havingless elements than the set Q(p�;p�;p�).Let (p1; p2; p3) denote the degree of the GFEM shape funtion as de�ned in (1). Then wehave that p1 = p�+1; p2 = p�+1; p3 = p�+1 sine the partition of unity is a linear polynomial(linear �nite element shape funtions). Examples of loal approximations bL are(i) Linear basis in three-dimensional spaebL(p�=p�=p�=1) = f1; �; �; �gThe resulting GFEM shape funtions are quadrati (and omplete) in the diretions(�; �; �), i.e., p1 = p2 = p3 = 2.(ii) Cubi basis in the diretion � and quadrati in the diretion �, i.e. (p� = 3; p� = 2), in atwo-dimensional spaebL(p�=3;p�=2) = Q0�p=3 \Q(p�=3;p�=2) = f1; �; �2; �3; �; ��; �2�; ��2; �2gIn this ase, the resulting GFEM shape funtions are of degree p1 = 4; p2 = 3.3. NUMERICAL EXPERIMENTS3.1. Boundary layersThe solution of uid ow problems and of plate- or shell-like strutural models in solidmehanis generally ontains the so-alled boundary layers. These are rapidly varyingCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



6 C. A. DUARTE AND I. BABU�SKAomponents of the solution that deay exponentially with respet to the distane from theboundary. As an illustration of this phenomenon, onsider the plate-like struture depitedin Figure 2. The body is assumed to be linear elasti with Young's modulus E = 2:1e11 PAand Poisson's ratio � = 0:3. The dimensions Lx; Ly and d are taken as Lx = Ly = � m andd = 0:02 m, respetively. A distributed load q(x; y) = Q=2 osx PA is applied at the lower(z = 0) and upper (z = d) surfaes in the diretion shown in the �gure. The onstant Q istaken as Q = 10; 000. The surfae y = 0 is free and symmetry boundary onditions are appliedat the surfaes x = 0; x = Lx and y = Ly as indiated in Figure 2.[Figure 2 about here.℄The solution of the Reissner-Mindlin plate model of the body shown in Figure 2 an representwell the 3-dimensional linear elastiity solution with appropriate modi�ations of the elastionstants [4, 15℄. The Reissner-Mindlin solution an also approximate well the boundary layerbehavior of the 3-dimensional solution. For the boundary onditions shown in Figure 2 and LysuÆiently large, the shear stress omponent �xz omputed from the solution of the Reissner-Mindlin model is given by [15, 1℄�xz = �Qd3 �d2 + C22Dd e�y � C4de�yd � sinx (2)where  = p12�+ d2D = Ed312(1� �2)C2 = �G�d3DfC4 = 2�G�fCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 7f = �2�G+ (1� �) ��G� Dd3 ( � d)2�G = E2(1 + �)and � is the shear orretion fator.The exponential terms in (2) auses the transversal shear stress �xz to have a high rate ofhange in the diretion y near the free boundary, i.e., y = 0. This boundary layer behaviorbeomes stronger as the plate thikness dereases. However, in all other diretions �xz isonstant or a very smooth funtion. As a result, the approximation of this type of funtionusing isotropi polynomials is far from optimal.The problem of Figure 2 was solved using the GFEM with the hexahedral mesh of Figure 3(top view). The mesh has 2, 18 and 1 element in the x-, y- and z-diretion, respetively. Thesize of the elements dereases in geometri progression towards y = 0 with a geometri fatorg = 1:=1:2. The �rst layer of nodes at the free boundary, i.e., nodes loated at (x; 0; 0) and(x; 0; d); 0 � x � Lx, and the next layer of nodes are enrihed to (p1 = 5; p2 = 8; p3 = 4) in thex-, y- and z-diretions, respetively. The p-order of all other nodes are (p1 = 5; p2 = 5; p3 = 4)in the x-, y- and z-diretions, respetively. The p-enrihment is done as desribed in Setion 2or in, e.g., [6℄. The total number of equations for this disretization is 40,942 and we refer to itas the overkill disretization. The orresponding solution is taken as the referene solution inall subsequent omputations in this setion. The auray of this solution was investigated byomparing it with other solutions omputed with a varying number of elements and degree ofapproximation. In all disretizations investigated, the omputed value of �zy at x = (2:0; 0; d=2)were within 0.01% of eah other. [Figure 3 about here.℄Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



8 C. A. DUARTE AND I. BABU�SKAFigure 4 shows point wise values of the shear stress omponent �xz along the segment[2:0; y; d=2℄; 0 � y � Ly, omputed with the overkill disretization. The �gure shows that theshear stress �xz varies very rapidly near the free edge of the thin-body (y = 0) as predited by(2). [Figure 4 about here.℄In this setion, we investigate the e�etiveness of the mesh independent p-orthotropienrihment tehnique presented in Setion 2 to model boundary layers in thin solids. Weuse the uniform tetrahedral mesh shown in Figure 5 and several p-enrihment strategies toanalyze the problem of Figure 2. This mesh was generated by �rst reating a hexahedral meshwith 2, 20 and 1 element in the x-, y- and z-diretion, respetively. Eah element was thendivided into 6 tetrahedral elements. This mesh is denoted by 2� 20� 1(�6).A loal oordinate system parallel to the xyz global oordinate system is de�ned at eah nodeof the mesh. These nodal systems are used to build shape funtions of presribed polynomialorders in the diretions of the loal oordinate axes as desribed in the previous setion.A representation of suh nodal oordinate systems is shown in Figure 6. The grey level ofeah oordinate axis indiates the polynomial order of the nodal shape funtions along thatdiretion. [Figure 5 about here.℄[Figure 6 about here.℄The modeling of thin solids like that of Figure 2 with the GFEM or the FEM brings the issueof shear loking. As the body beomes thin, the transverse shear strain beomes negligible.Low order solid elements based on a displaement formulation an not represent this state ofCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 9zero transverse shear strain and the �nite element solution will be overly sti�. One remedy forthis problem is to use elements of polynomial order p � 4 [2℄. We adopt this approah in ouromputations.Figure 7 shows the relative error Er(wp) = ����w � wpw ���� (3)of the transversal displaement omputed with the mesh of Figure 5 and GFEM shape funtionsof degree (4; 4; 4). The relative error is omputed along the segment [2:0; y; d=2℄; 0 � y � Ly,using the overkill solution. The maximum relative error is of only 0.144 %. This disretizationis e�etive to model the transversal displaement beause it does not exhibit the boundarylayer behavior like the shear stress does [1℄. However, this disretization is not appropriate tomodel the near boundary behavior of engineering quantities like the transversal shear stresses.Figure 8 shows the relative error Er(�pxz) = �����xz � �pxz�xz ���� (4)of the shear stress omponent �xz omputed with the same disretization and along the samesegment. The error at y = 0, whih is the loation of the maximum value of �xz, is of 43.49 %.[Figure 7 about here.℄[Figure 8 about here.℄We investigate four sequenes of p-enrihment on the tetrahedral mesh 2�20�1(�6) with thegoal of �nding the best approah to model the boundary layer behavior of �xz. The sequenesare the following:Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



10 C. A. DUARTE AND I. BABU�SKASequene 1: All nodes are enrihed to (p1; p2; 4); 4 � p1; p2 � 7. This hoie of enrihmentis motivated by the fat that the dimension of the domain in the z-diretion is muhsmaller than in the other diretions.Sequene 2: The �rst two layers of nodes at or near the free boundary, i.e., nodes loated at(x; 0; 0); (x; 0; d); (x; Ly=20; 0); (x; Ly=20; d); 0 � x � Lx, are isotropially enrihed to(q; q; q); 4 � q � 8. The p-order of all other nodes are kept at (4; 4; 4).This strategy of enrihment is based on the observation that the boundary layer e�etis restrited to the region very lose to the free boundary (y = 0). Away from there,the solution is very smooth (Cf. (2)). Note that the enrihment of the �rst two layers ofnodes is equivalent to the enrihment of the �rst layer of elements. We hose to enrihisotropially to mimi the limitations of the �nite element method on tetrahedral meshes.The performane of this sequene will give us a good estimate of the performane of the�nite element method on this problem.Sequene 3: In this sequene, like in the previous one, only the �rst two layers of nodes areenrihed. However, here we use an orthotropi enrihment. The nodes at the �rst twolayers are enrihed to (4; p2; 4); 4 � p2 � 8, while all other nodes have degree (4; 4; 4).Sequene 4: This is exatly like the previous one exept that only the �rst layer of nodes, i.e,nodes loated at (x; 0; 0); (x; 0; d); 0 � x � Lx, are enrihed to (4; p2; 4); 4 � p2 � 8,while all other nodes have degree (4; 4; 4).The performane of the above sequenes of enrihment is measured by the onvergene ofthe shear stress omponent �xz at x = (2:0; 0; d=2). We take�xz(2:0; 0; d=2) = 1:948e7;Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 11omputed with the overkill disretization, as the referene value.Figure 9 shows the relative error (4) versus the number of degrees of freedom for Sequenes1-4. All four sequenes show an exponential onvergene of the shear stress at x = (2:0; 0; d=2).This is expeted beause of the regularity of the solution. Sequene 1 is the least e�etive. Thisindiates that enrihing the nodes far from the boundary layer is not e�etive. Sequene 2,whih we expet to represent the behavior of the �nite element method on this mesh, is theseond least e�etive strategy. This indiates that enrihing the approximation in diretionsother than that of the boundary layer (as required by the FEM) is not e�etive. The moste�etive sequene is Sequene 4. This shows that the most e�etive strategy to model theboundary layer is simply to enrih the nodes at the boundary in the diretion of the boundarylayer. Figure 9 shows that, for the same number of degrees of freedom, the point wise errorof the stress omponents in Sequene 4 an be up to one order of magnitude smaller than inSequene 2. [Figure 9 about here.℄[Table 1 about here.℄Figure 10 shows the point wise values of (4) along the segment [2:0; y; d=2℄; 0 � y � Ly, fordisretization 2 � 20 � 1(�6) and p-order (4; 4; 4) with and without enrihment of the nodesat the boundary layer. As mentioned previously, the disretization with p-order (4; 4; 4) hasa relative error on �xz of 43.49% at (2:0; 0; d=2). The enrihment of the �rst layer of nodesredues this error to just 1.83 %. These data are also available in Table I (Sequene 4 data).The enrihment of the �rst layer of nodes a�ets only the orresponding layer of elementswhih is of dimension Ly=20 = 0:157 in the y-diretion. However, as an be observed in FigureCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



12 C. A. DUARTE AND I. BABU�SKA10, the bene�ial e�ets of the enrihment extends beyond the �rst layer of elements.[Figure 10 about here.℄Figures 11 and 12 are analogous to Figure 10 but for the ase of tetrahedral meshes with2 � 30 � 1(�6) and 2 � 60 � 1(�6) elements, respetively. The disretization 2 � 30 � 1(�6)with p-order (4; 4; 4) has a relative on �xz of 27.45% at (2:0; 0; d=2). The enrihment of the�rst layer of nodes to (4; 8; 4) redues this error to 0.12 %. The �rst layer of elements hasdimension Ly=30 = 0:105 in the y-diretion. Figure 11 shows that, as in the ase of Figure 10,the redution of the error in �xz extends beyond the �rst layer of elements. The e�et of thisenrihment an be observed up to about y = 0:64 (that is about the �rst 6 layers of elements).[Figure 11 about here.℄[Figure 12 about here.℄3.2. Internal layerLet us onsider the following Neumann problem for the linear elastiity equations on 
 =f(x; y; z) 2 IR3 : 0 < x < 10; 0 < y < 10; 0 < z < 0:1g�ij;j + bi = 0 in 
 (5)�ij = Dijkl�kl�ij = 12(ui;j + uj;i)�ijnj = Ti on �
whereDijkl is the tensor of elasti onstants for a homogeneous isotropi material with Young'smodulus E = 1:0 MPA and Poisson's ratio � = 0:3. The body fores, bi; i = 1; 2; 3, and trationCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 13omponents, Ti; i = 1; 2; 3, are suh that the solution u = (u1; u2; u3) is given byu1 = u2 = u3 = f(r) = exp (� 449r2 + 87r) (6)where r =p(x+ 1)2 + (y + 1)2. All the dimensions are in SI units.The funtion f(r) is analyti in 
 and has a large gradient in the r diretion and is onstantin the � and z diretions. Here, (r; �; z) is a ylindrial oordinate system parallel to the globalCartesian system (x; y; z) with origin at (�1;�1; 0). This funtion was hosen to investigatethe performane of the p-orthotropi enrihment tehnique proposed in Setion 2 to modelinternal layers. Figure 13 shows f(r).[Figure 13 about here.℄We solve the problem de�ned in (5) using the GFEM with shape funtions as de�ned inthe previous setion. The mesh used to build the partition of unity is shown on Figure 14. Ithas 5� 5� 1(�6) = 150 elements and does not take into aount the behavior of the solution.Assoiated with eah vertex node there is a Cartesian oordinate system with the diretions�; �; � parallel to the diretions r; �; z, respetively. The ylindrial system (r; �; z) is the sameused to de�ne funtion f(r) in (6). The nodal Cartesian systems are illustrated in Figure 15.Note that, unlike in the previous problem, the orientation of the nodal oordinate systemsused here varies from node to node.[Figure 14 about here.℄[Figure 15 about here.℄Three sequenes of enrihment are used. In the �rst ase isotropi p-enrihment with1 � p � 5 is used. This is typially what must be used in the �nite element method sineCopyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls



14 C. A. DUARTE AND I. BABU�SKAdiretional p-enrihment on tetrahedral meshes is almost impossible to be done in pratie.The relative error in the energy norm as a funtion of the number of oating point operations(NFLOPS) for the numerial fatorization of the sti�ness matrix is shown in Figure 16.The seond and third sequenes use p-orthotropi shape funtions. The enrihment isdone along the diretions of the oordinate systems of the nodes. In the seond sequene,1 � p1 � 7; p2 = p3 = 1. In the third sequene, 1 � p1 � 8; p2 = 2; p3 = 1. The relative error inthe energy norm for both sequenes is shown in Figure 16. The e�etiveness of p-orthotropiapproximations an learly be observed. The use of p-orthotropi enrihment made possibleby the partition of unity framework used in the GFEM leads to quite substantial savings interms of NFLOPS. For a given omputational e�ort, the relative error in the energy normfor sequene two or three an be about one order of magnitude smaller than for sequene one(isotropi enrihment). However, it an be observed that the onvergene rate of sequenes 2and 3 dereases for p1 � 4, in the ase of sequene 2, and p1 � 7 in the ase of sequene 3.Here, only the nodal diretion � is enrihed while the p-order in the other two diretions arekept �xed. However, depending on the level of the disretization error, the diretion � is notthe optimal diretion for enrihment, as an be observed in Figure 16. By optimal we meanthe diretion that gives the largest redution in the disretization error for a given number ofadditional degrees of freedom. The optimal diretion for enrihment an be found, for example,using the so-alled diretional a-posteriori error indiators.
[Figure 16 about here.℄Copyright  2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.ls
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Figure 1. Coordinate system assoiated with a node x� of a �nite element mesh.
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YZFigure 5. Uniform tetrahedral mesh 2� 20� 1(�6).
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Figure 6. Coordinate system at nodes used to build p-orthotropi shapefuntions on a tetrahedral mesh.
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Figure 7. Relative point wise error in transversal displaement w forthe mesh of Figure 5 and p-order (4; 4; 4).
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Figure 11. Relative point wise error in �xz for disretization 2� 30� 1(�6) and p-order (4; 4; 4) withand without enrihment of the �rst layer of nodes.
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Figure 12. Relative point wise error in �xz for disretization 2� 60� 1(�6) and p-order (4; 4; 4) withand without enrihment of the �rst layer of nodes.
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Figure 13. Funtion f(r).
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FIGURES 31
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YZFigure 14. Tetrahedral mesh 5� 5� 1(�6) used to solve problem (5).
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32 FIGURES

Figure 15. Coordinate system at nodes used to build p-orthotropi shape funtions on a tetrahedralmesh. The oordinate systems are oriented along the oordinate lines of a ylindrial system parallelto the global system xyz and with origin at (�1;�1; 0).
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TABLES 35Table I. Convergene of �xz for mesh 2�20�1(�6) and p-Sequenes 1-4. Here, Er(�pxz) = j�xz��pxzj=j�xz jomputed at x = (2:0; 0; d=2) and Ni is the number of degrees of freedom of Sequene i.Sequene 1 Sequene 2 Sequene 3 Sequene 4N1 Er(�pxz) N2 Er(�pxz) N3 Er(�pxz) N4 Er(�pxz)7560 0.4349 7560 0.4349 7560 0.4349 7560 0.434912852 0.2436 8100 0.2482 8028 0.2476 7794 0.250219656 0.1058 8856 0.1103 8568 0.1106 8064 0.118227972 0.0363 9864 0.0398 9144 0.0381 8352 0.046611160 0.0088 9720 0.0097 8640 0.0183
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