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SUMMARY

This paper is aimed at presenting a simple and yet effective procedure to implement a mesh
independent p-orthotropic enrichment in the generalized finite element method. The procedure is
based on the observation that shape functions used in the GFEM can be constructed from polynomials
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1. INTRODUCTION

There are many important practical situations where the solution of a boundary-value problem
has a very strong gradient in one direction but is relatively flat in others. This is the case,
for example, in problems where boundary or internal layers occur. One very efficient approach
to solve this class of problems is to use p-orthotropic approximations, that is, approximations
that have different polynomial orders associated with each enrichment direction. This technique
is well-known in the finite element community, but is infrequently used, mainly for practical
reasons. In the finite element method the analyst must know a-priori the preferential directions
of the solution and build the finite element mesh accordingly. However, in most practical cases,
the geometry of the domain or the use of automatic mesh generators, precludes the construction
of a finite element mesh along these directions. This constraint is inherent to the FEM and
forces the use of isotropic approximations to solve this class of problems. The partition of unity
framework used in the generalized finite element method (GFEM) [5, 6, 7, 11, 10, 13, 14, 9, 3]
provides much more opportunities to efficiently solve this class of problems. The procedure
proposed here is based on the observation that GFEM shape functions can be constructed from
polynomials defined in any coordinate system. This allows the construction of shape functions
of prescribed polynomial order along any given direction, regardless of the underlying mesh,
type of element used or complexity of the geometry of the domain. The procedure presented
is an extension of the one proposed by Duarte [8] in the framework of the hp cloud method.
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 3

Following this introduction, the construction of mesh independent p-orthotropic GFEM
shape functions is presented in Section 2. Numerical examples demonstrating the effectiveness
of the proposed approach are given in Section 3. Finally, in Section 4, the conclusions are

outlined.

2. MESH INDEPENDENT P-ORTHOTROPIC APPROXIMATIONS

Let the functions ¢,, a = 1,..., N, denote a linear finite element partition of unity with
supports w, (often called clouds). Here, N is the number of vertex nodes in the finite element
mesh and w, is the union of the finite elements sharing the vertex node .

Let Xa(wa) = span{L;, }iez(a) denote local spaces defined on w,, a = 1,..., N, where
Z(a), a« =1,..., N, are index sets and L;, denotes local approximation functions defined over
the cloud w,.

The generalized finite element shape functions associated with a vertex node x,, are defined
by

0 = paLia, | € I(a) (no sum on «) (1)
Details on the formulation of the GFEM can be found in, e.g., [6, 7, 11, 13]
Let us consider the case in which the functions {Lia }jc7() are polynomials defined as follows
Lio(x) = L; o T, (z)

where:
E(G) = {Ei}iez, are polynomials defined in a Cartesian system (&,7,() and @ is the
unit sphere

De={neR’ :|ngs <1}
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4 C. A. DUARTE AND 1. BABUSKA

T_! is a mapping from the global Cartesian coordinate system to a nodal Cartesian
system given by
T, iz =(r,y,2) = €= (£n.0)
£= Rc_yl(m —Za)/ha

where R ! € R? x R®, with rows given by the base vectors of the coordinate system
(&,m, ¢) written with respect of the base vectors of the coordinate system (z,y,2) and

hq is taken as the diameter of the largest element connected to node x,,.

The coordinate system (£,7,() is illustrated in Figure 1. Note that the transformations
T,!, a=1,...,N, donot depend on the partition of unity (in this case a finite element mesh).
Also, from the definition of T,!,a = 1,..., N, we have that if x € w, then & = T !(z) € @

since |z — To|gms/ha <1 and R7!, a =1,..., N, represent rotations.

[Figure 1 about here.]

2.1. Local approxzimation for p-orthotropic enrichment

In this section, details about the elements of the set £(@) used in our computations are
provided. This set is composed of monomials of degree (pe,py,pc) along the local (nodal)
Cartesian directions &, 1, (, respectively.

In the case of isotropic enrichment, i.e., p¢ = p, = p¢ = p, the set EA((D) is taken from the

Pascal triangle [12] and the notation Ep(@) is used.
L,@) = Q@) ={¢n¢":0<i+j+k<p ijik=0,....p, (&n.0) €}
Let the set of tensor product polynomials of degree (pe, py, pc) be denoted by

Q ey we) (@) = {ENCF:0<i<pe, 0<j<py, 0<k<p, (§n,() €D}
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT )

In the general case of orthotropic nodal enrichment, the following set of polynomials is use

~

(pespmpe) (@) 1= Q5(D) N Qpe,pyy,pe) (D)

)

where p = max{pe¢, py, ¢}

This set is complete of degree (pg, py, pc) in the directions &, n, ¢, respectively, while having
less elements than the set Qp, p, p¢)-
Let (p1,p2,p3) denote the degree of the GFEM shape function as defined in (1). Then we

have that p; = p¢+1, p» = py+1, ps = pc+1 since the partition of unity is a linear polynomial

(linear finite element shape functions). Examples of local approximations L are

(i) Linear basis in three-dimensional space

~

ﬁ(ps=pn=p<=1) ={1,¢&n, ¢}
The resulting GFEM shape functions are quadratic (and complete) in the directions
(5777: C)a i'e': P1=p2=p3 = 2.

(ii) Cubic basis in the direction ¢ and quadratic in the direction 7, i.e. (p¢ =3, p, =2),in a

two-dimensional space

-~

E(p¢:3,pn:2) = Q}):3 N Q(p¢:3,pn:2) = {1: 5752753777: 5777527775772: 772}

In this case, the resulting GFEM shape functions are of degree py =4, py = 3.

3. NUMERICAL EXPERIMENTS

3.1. Boundary layers

The solution of fluid flow problems and of plate- or shell-like structural models in solid
mechanics generally contains the so-called boundary layers. These are rapidly varying
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6 C. A. DUARTE AND 1. BABUSKA

components of the solution that decay exponentially with respect to the distance from the
boundary. As an illustration of this phenomenon, consider the plate-like structure depicted
in Figure 2. The body is assumed to be linear elastic with Young’s modulus E = 2.1el1 PA
and Poisson’s ratio v = 0.3. The dimensions L., L, and d are taken as L, = L, = m# m and
d = 0.02 m, respectively. A distributed load ¢(z,y) = Q/2cosxz PA is applied at the lower
(z = 0) and upper (z = d) surfaces in the direction shown in the figure. The constant @Q is
taken as Q = 10,000. The surface y = 0 is free and symmetry boundary conditions are applied

at the surfaces x =0, z = L, and y = L, as indicated in Figure 2.

[Figure 2 about here.

The solution of the Reissner-Mindlin plate model of the body shown in Figure 2 can represent
well the 3-dimensional linear elasticity solution with appropriate modifications of the elastic
constants [4, 15]. The Reissner-Mindlin solution can also approximate well the boundary layer
behavior of the 3-dimensional solution. For the boundary conditions shown in Figure 2 and L,
sufficiently large, the shear stress component 7., computed from the solution of the Reissner-

Mindlin model is given by [15, 1]

Q

D v| .,
Toz =~ d? + CQQEe_y — Cydye 7| sinz (2)
where
v = V12k+d?
E 3
p - P&
12(1 — 1/2)
Gvd?
02 _ KRGV
Df
2kG
04 _ KRGV
f
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 7

f = —26G+(1-v) nG—%(’y—d)Q
E
¢ = 2(1 + v)

and k is the shear correction factor.

The exponential terms in (2) causes the transversal shear stress 7., to have a high rate of
change in the direction y near the free boundary, i.e., y = 0. This boundary layer behavior
becomes stronger as the plate thickness decreases. However, in all other directions 7,, is
constant or a very smooth function. As a result, the approximation of this type of function
using isotropic polynomials is far from optimal.

The problem of Figure 2 was solved using the GFEM with the hexahedral mesh of Figure 3
(top view). The mesh has 2, 18 and 1 element in the x-, y- and z-direction, respectively. The
size of the elements decreases in geometric progression towards y = 0 with a geometric factor
g = 1./1.2. The first layer of nodes at the free boundary, i.e., nodes located at (z,0,0) and
(z,0,d), 0 <z < L,, and the next layer of nodes are enriched to (p; = 5,p2 = 8,p3 = 4) in the
x-, y- and z-directions, respectively. The p-order of all other nodes are (p1 = 5,p2 = 5,p3 = 4)
in the x-, y- and z-directions, respectively. The p-enrichment is done as described in Section 2
or in, e.g., [6]. The total number of equations for this discretization is 40,942 and we refer to it
as the overkill discretization. The corresponding solution is taken as the reference solution in
all subsequent computations in this section. The accuracy of this solution was investigated by
comparing it with other solutions computed with a varying number of elements and degree of
approximation. In all discretizations investigated, the computed value of 7., at & = (2.0,0,d/2)

were within 0.01% of each other.

[Figure 3 about here.]
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8 C. A. DUARTE AND 1. BABUSKA

Figure 4 shows point wise values of the shear stress component 7., along the segment
[2.0,y,d/2], 0 <y < L,, computed with the overkill discretization. The figure shows that the
shear stress 7,, varies very rapidly near the free edge of the thin-body (y = 0) as predicted by
(2).

[Figure 4 about here.]

In this section, we investigate the effectiveness of the mesh independent p-orthotropic
enrichment technique presented in Section 2 to model boundary layers in thin solids. We
use the uniform tetrahedral mesh shown in Figure 5 and several p-enrichment strategies to
analyze the problem of Figure 2. This mesh was generated by first creating a hexahedral mesh
with 2, 20 and 1 element in the x-, y- and z-direction, respectively. Each element was then
divided into 6 tetrahedral elements. This mesh is denoted by 2 x 20 x 1(x6).

A local coordinate system parallel to the zyz global coordinate system is defined at each node
of the mesh. These nodal systems are used to build shape functions of prescribed polynomial
orders in the directions of the local coordinate axes as described in the previous section.
A representation of such nodal coordinate systems is shown in Figure 6. The grey level of
each coordinate axis indicates the polynomial order of the nodal shape functions along that

direction.

[Figure 5 about here.]

[Figure 6 about here.]

The modeling of thin solids like that of Figure 2 with the GFEM or the FEM brings the issue
of shear locking. As the body becomes thin, the transverse shear strain becomes negligible.
Low order solid elements based on a displacement formulation can not represent this state of
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 9

zero transverse shear strain and the finite element solution will be overly stiff. One remedy for
this problem is to use elements of polynomial order p > 4 [2]. We adopt this approach in our
computations.

Figure 7 shows the relative error

w — wp

Exlwy) = 3)

w

of the transversal displacement computed with the mesh of Figure 5 and GFEM shape functions
of degree (4,4,4). The relative error is computed along the segment [2.0,y,d/2], 0 <y < L,,
using the overkill solution. The maximum relative error is of only 0.144 %. This discretization
is effective to model the transversal displacement because it does not exhibit the boundary
layer behavior like the shear stress does [1]. However, this discretization is not appropriate to
model the near boundary behavior of engineering quantities like the transversal shear stresses.

Figure 8 shows the relative error

_ D
& (rp,) = |2 Tz (4)

Tez

of the shear stress component 7,, computed with the same discretization and along the same

segment. The error at y = 0, which is the location of the maximum value of 7., is of 43.49 %.

[Figure 7 about here.]

[Figure 8 about here.]

We investigate four sequences of p-enrichment on the tetrahedral mesh 2x20x 1(x6) with the
goal of finding the best approach to model the boundary layer behavior of 7,,. The sequences
are the following:

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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10 C. A. DUARTE AND 1. BABUSKA

Sequence 1: All nodes are enriched to (p1,p2,4), 4 < p1,p2 < 7. This choice of enrichment
is motivated by the fact that the dimension of the domain in the z-direction is much

smaller than in the other directions.

Sequence 2: The first two layers of nodes at or near the free boundary, i.e., nodes located at
(2,0,0), (z,0,d), (z,L,/20,0), (z,L,/20,d), 0 <z < L,, are isotropically enriched to

(¢,9,q), 4 < q¢ < 8. The p-order of all other nodes are kept at (4,4, 4).

This strategy of enrichment is based on the observation that the boundary layer effect
is restricted to the region very close to the free boundary (y = 0). Away from there,
the solution is very smooth (Cf. (2)). Note that the enrichment of the first two layers of
nodes is equivalent to the enrichment of the first layer of elements. We chose to enrich
isotropically to mimic the limitations of the finite element method on tetrahedral meshes.
The performance of this sequence will give us a good estimate of the performance of the

finite element method on this problem.

Sequence 3: In this sequence, like in the previous one, only the first two layers of nodes are
enriched. However, here we use an orthotropic enrichment. The nodes at the first two

layers are enriched to (4,p2,4), 4 < ps < 8, while all other nodes have degree (4,4,4).

Sequence 4: This is exactly like the previous one except that only the first layer of nodes, i.e,

nodes located at (z,0,0), (z,0,d), 0 < z < L,, are enriched to (4,p2,4), 4 < ps < 8,

while all other nodes have degree (4,4, 4).

The performance of the above sequences of enrichment is measured by the convergence of

the shear stress component 7., at = (2.0,0,d/2). We take

722(2.0,0,d/2) = 1.948¢7,

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 11

computed with the overkill discretization, as the reference value.

Figure 9 shows the relative error (4) versus the number of degrees of freedom for Sequences
1-4. All four sequences show an exponential convergence of the shear stress at = (2.0,0,d/2).
This is expected because of the regularity of the solution. Sequence 1 is the least effective. This
indicates that enriching the nodes far from the boundary layer is not effective. Sequence 2,
which we expect to represent the behavior of the finite element method on this mesh, is the
second least effective strategy. This indicates that enriching the approximation in directions
other than that of the boundary layer (as required by the FEM) is not effective. The most
effective sequence is Sequence 4. This shows that the most effective strategy to model the
boundary layer is simply to enrich the nodes at the boundary in the direction of the boundary
layer. Figure 9 shows that, for the same number of degrees of freedom, the point wise error
of the stress components in Sequence 4 can be up to one order of magnitude smaller than in

Sequence 2.

[Figure 9 about here.]

[Table 1 about here.]

Y

Figure 10 shows the point wise values of (4) along the segment [2.0,y,d/2], 0 <y < L,, for
discretization 2 x 20 x 1(x6) and p-order (4,4,4) with and without enrichment of the nodes
at the boundary layer. As mentioned previously, the discretization with p-order (4,4,4) has
a relative error on 7, of 43.49% at (2.0,0,d/2). The enrichment of the first layer of nodes
reduces this error to just 1.83 %. These data are also available in Table I (Sequence 4 data).
The enrichment of the first layer of nodes affects only the corresponding layer of elements
which is of dimension L, /20 = 0.157 in the y-direction. However, as can be observed in Figure

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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12 C. A. DUARTE AND 1. BABUSKA

10, the beneficial effects of the enrichment extends beyond the first layer of elements.
[Figure 10 about here.]

Figures 11 and 12 are analogous to Figure 10 but for the case of tetrahedral meshes with
2 x 30 x 1(x6) and 2 x 60 x 1(x6) elements, respectively. The discretization 2 x 30 x 1(x6)
with p-order (4,4,4) has a relative on 7, of 27.45% at (2.0,0,d/2). The enrichment of the
first layer of nodes to (4,8,4) reduces this error to 0.12 %. The first layer of elements has
dimension L, /30 = 0.105 in the y-direction. Figure 11 shows that, as in the case of Figure 10,
the reduction of the error in 7., extends beyond the first layer of elements. The effect of this

enrichment can be observed up to about y = 0.64 (that is about the first 6 layers of elements).
[Figure 11 about here.]

[Figure 12 about here.]

3.2. Internal layer

Let us consider the following Neumann problem for the linear elasticity equations on Q =

{(z,y,2) ER® :0<x<10,0<y<10,0<2<0.1}

o +bi = 0 in Q (5)
0ij = Dijrien
1
eij = Hluig+us)
Oin; = Ti on 0N}

where D1, is the tensor of elastic constants for a homogeneous isotropic material with Young’s
modulus E = 1.0 MPA and Poisson’s ratio v = 0.3. The body forces, b;,i = 1,2, 3, and traction

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 13

components, T;,7 = 1,2, 3, are such that the solution u = (u, ua,u3) is given by

wr = s =y = f(r) = ezp(~ 47 + 27) (®

where r = \/(z + 1)2 + (y + 1)2. All the dimensions are in SI units.

The function f(r) is analytic in 2 and has a large gradient in the r direction and is constant
in the 6 and 2 directions. Here, (7,0, 2) is a cylindrical coordinate system parallel to the global
Cartesian system (z,y, z) with origin at (—1,—1,0). This function was chosen to investigate
the performance of the p-orthotropic enrichment technique proposed in Section 2 to model

internal layers. Figure 13 shows f(r).
[Figure 13 about here.]

We solve the problem defined in (5) using the GFEM with shape functions as defined in
the previous section. The mesh used to build the partition of unity is shown on Figure 14. It
has 5 x 5 x 1(x6) = 150 elements and does not take into account the behavior of the solution.
Associated with each vertex node there is a Cartesian coordinate system with the directions
&, n, ¢ parallel to the directions r, 8, z, respectively. The cylindrical system (r, 0, z) is the same
used to define function f(r) in (6). The nodal Cartesian systems are illustrated in Figure 15.
Note that, unlike in the previous problem, the orientation of the nodal coordinate systems

used here varies from node to node.
[Figure 14 about here.]
[Figure 15 about here.]

Three sequences of enrichment are used. In the first case isotropic p-enrichment with
1 < p < 5 is used. This is typically what must be used in the finite element method since

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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14 C. A. DUARTE AND 1. BABUSKA

directional p-enrichment on tetrahedral meshes is almost impossible to be done in practice.
The relative error in the energy norm as a function of the number of floating point operations

(NFLOPS) for the numerical factorization of the stiffness matrix is shown in Figure 16.

The second and third sequences use p-orthotropic shape functions. The enrichment is
done along the directions of the coordinate systems of the nodes. In the second sequence,
1 <p; <7,ps =p3 = 1. In the third sequence, 1 < p; < 8, p2 = 2,p3 = 1. The relative error in
the energy norm for both sequences is shown in Figure 16. The effectiveness of p-orthotropic
approximations can clearly be observed. The use of p-orthotropic enrichment made possible
by the partition of unity framework used in the GFEM leads to quite substantial savings in
terms of NFLOPS. For a given computational effort, the relative error in the energy norm
for sequence two or three can be about one order of magnitude smaller than for sequence one
(isotropic enrichment). However, it can be observed that the convergence rate of sequences 2
and 3 decreases for p; > 4, in the case of sequence 2, and p; > 7 in the case of sequence 3.
Here, only the nodal direction £ is enriched while the p-order in the other two directions are
kept fixed. However, depending on the level of the discretization error, the direction £ is not
the optimal direction for enrichment, as can be observed in Figure 16. By optimal we mean
the direction that gives the largest reduction in the discretization error for a given number of
additional degrees of freedom. The optimal direction for enrichment can be found, for example,

using the so-called directional a-posteriori error indicators.

[Figure 16 about here.]

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
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4. CONCLUSIONS

In this paper, we propose a simple but very generic approach to implement directional p-
enrichment in the GFEM. The resulting technique can be used in any dimension and with
any type of element without modifications. This is in contrast with the classical finite element

method where directional p-enrichment is coupled with the mesh and type of element used.
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18 FIGURES

Figure 1. Coordinate system associated with a node x, of a finite element mesh.
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FIGURES 19
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Figure 2. Boundary conditions for a plate-like structure.
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20 FIGURES

Figure 3. Hexahedral mesh used for overkill discretization (top view).
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Boundary Layer in aThin Solid
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Figure 4. Boundary layer behavior of the shear stress component 7., near the free edge y = 0. The
computation was done with the overkill discretization.
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Figure 5. Uniform tetrahedral mesh 2 x 20 x 1(x6).
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&,

Figure 6. Coordinate system at nodes used to build p-orthotropic shape
functions on a tetrahedral mesh.
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24 FIGURES

Tet mesh 2x20x1 (*6)
Thicknessd = 0.02
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Figure 7. Relative point wise error in transversal displacement w for
the mesh of Figure 5 and p-order (4,4, 4).
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Tet mesh 2x20x1 (*6)
Thicknessd = 0.02
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Figure 8. Relative point wise error in shear stress 7, for discretization of Figure 5 and p-order (4,4, 4).

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1-16
Prepared using nmeauth.cls



26 FIGURES

Tetrahedral mesh 2x20x1(*6), Thicknessd = 0.02
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Figure 9. Convergence of 7. at = (2.0,0,d/2) for mesh 2 x 20 x 1(*6) and p-Sequences 1-4.
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Tet mesh 2x20x1 (*6)
Thicknessd = 0.02
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Figure 10. Relative point wise error in 7., for discretization 2 x 20 x 1(x6) and p-order (4,4,4) with
and without enrichment of the first layer of nodes.
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28 FIGURES
Tet mesh 2x30x1 (*6)
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Figure 11. Relative point

y (x=2.0,z=0.01)

wise error in 7. for discretization 2 x 30 x 1(*6) and p-order (4,4, 4) with
and without enrichment of the first layer of nodes.
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FIGURES

Tet mesh 2x60x1 (*6)
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Figure 12. Relative point wise error in 7, for discretization 2 x 60 x 1(x6) and p-order (4, 4,4) with
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S

Figure 13. Function f(r).
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Figure 14. Tetrahedral mesh 5 x 5 x 1(x6) used to solve problem (5).
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32 FIGURES

Figure 15. Coordinate system at nodes used to build p-orthotropic shape functions on a tetrahedral
mesh. The coordinate systems are oriented along the coordinate lines of a cylindrical system parallel
to the global system zyz and with origin at (—1,—1,0).
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Convergence in the Energy Norm
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Figure 16. Convergence in the energy norm for isotropic and orthotropic p-enrichments.
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TABLES

35

Table I. Convergence of 7. for mesh 2x20x 1(x6) and p-Sequences 1-4. Here, &, (7F,) = oz —72.|/|T2-|
computed at & = (2.0,0,d/2) and N; is the number of degrees of freedom of Sequence i.

Sequence 1 Sequence 2 Sequence 3 Sequence 4
Ny Er(Th) Ny En(Th,) N3 Er(TE,) Ny En(Th,)
7560 0.4349 7560 0.4349 7560 0.4349 7560 0.4349
12852 0.2436 8100 0.2482 8028 0.2476 7794 0.2502
19656 0.1058 8856 0.1103 8568 0.1106 8064 0.1182
27972 0.0363 9864 0.0398 9144 0.0381 8352 0.0466
11160 0.0088 9720 0.0097 8640 0.0183
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