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Mesh independent p-orthotropi
 enri
hment using the generalized�nite element methodC. A. Duarte1y�and I. Babu�ska2z1 Universidade de S~ao Paulo, EESC, Dep. de Estruturas, Av. Trabalhador S~aoCarlense 400,S~ao Carlos, SP, 13566-590, Brazil2 TICAM, The University of Texas at Austin, Austin, TX, 78712, USASUMMARYThis paper is aimed at presenting a simple and yet e�e
tive pro
edure to implement a meshindependent p-orthotropi
 enri
hment in the generalized �nite element method. The pro
edure isbased on the observation that shape fun
tions used in the GFEM 
an be 
onstru
ted from polynomialsde�ned in any 
oordinate system regardless of the underlying mesh or type of element used. Numeri
alexamples where the solution possesses boundary or internal layers are solved on 
oarse tetrahedralmeshes with isotropi
 and the proposed p-orthotropi
 enri
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hment
1. INTRODUCTIONThere are many important pra
ti
al situations where the solution of a boundary-value problemhas a very strong gradient in one dire
tion but is relatively 
at in others. This is the 
ase,for example, in problems where boundary or internal layers o

ur. One very eÆ
ient approa
hto solve this 
lass of problems is to use p-orthotropi
 approximations, that is, approximationsthat have di�erent polynomial orders asso
iated with ea
h enri
hment dire
tion. This te
hniqueis well-known in the �nite element 
ommunity, but is infrequently used, mainly for pra
ti
alreasons. In the �nite element method the analyst must know a-priori the preferential dire
tionsof the solution and build the �nite element mesh a

ordingly. However, in most pra
ti
al 
ases,the geometry of the domain or the use of automati
 mesh generators, pre
ludes the 
onstru
tionof a �nite element mesh along these dire
tions. This 
onstraint is inherent to the FEM andfor
es the use of isotropi
 approximations to solve this 
lass of problems. The partition of unityframework used in the generalized �nite element method (GFEM) [5, 6, 7, 11, 10, 13, 14, 9, 3℄provides mu
h more opportunities to eÆ
iently solve this 
lass of problems. The pro
edureproposed here is based on the observation that GFEM shape fun
tions 
an be 
onstru
ted frompolynomials de�ned in any 
oordinate system. This allows the 
onstru
tion of shape fun
tionsof pres
ribed polynomial order along any given dire
tion, regardless of the underlying mesh,type of element used or 
omplexity of the geometry of the domain. The pro
edure presentedis an extension of the one proposed by Duarte [8℄ in the framework of the hp 
loud method.Copyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 3Following this introdu
tion, the 
onstru
tion of mesh independent p-orthotropi
 GFEMshape fun
tions is presented in Se
tion 2. Numeri
al examples demonstrating the e�e
tivenessof the proposed approa
h are given in Se
tion 3. Finally, in Se
tion 4, the 
on
lusions areoutlined. 2. MESH INDEPENDENT P -ORTHOTROPIC APPROXIMATIONSLet the fun
tions '�; � = 1; : : : ; N , denote a linear �nite element partition of unity withsupports !� (often 
alled 
louds). Here, N is the number of vertex nodes in the �nite elementmesh and !� is the union of the �nite elements sharing the vertex node x�.Let ��(!�) = spanfLi�gi2I(�) denote lo
al spa
es de�ned on !�; � = 1; : : : ; N , whereI(�); � = 1; : : : ; N , are index sets and Li� denotes lo
al approximation fun
tions de�ned overthe 
loud !�.The generalized �nite element shape fun
tions asso
iated with a vertex node x� are de�nedby ��i = '�Li�; i 2 I(�) (no sum on �) (1)Details on the formulation of the GFEM 
an be found in, e.g., [6, 7, 11, 13℄Let us 
onsider the 
ase in whi
h the fun
tions fLi�gi2I(�) are polynomials de�ned as followsLi�(x) = bLi ÆT�1� (x)where:bL(b!) := fbLigi2I ; are polynomials de�ned in a Cartesian system (�; �; �) and b! is theunit sphere b! := f� 2 IR3 : j�jIR3 � 1g;Copyright 
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4 C. A. DUARTE AND I. BABU�SKAT�1� is a mapping from the global Cartesian 
oordinate system to a nodal Cartesiansystem given by T�1� : x = (x; y; z)! � = (�; �; �)� = R�1� (x� x�)=h�where R�1� 2 IR3 � IR3, with rows given by the base ve
tors of the 
oordinate system(�; �; �) written with respe
t of the base ve
tors of the 
oordinate system (x; y; z) andh� is taken as the diameter of the largest element 
onne
ted to node x�.The 
oordinate system (�; �; �) is illustrated in Figure 1. Note that the transformationsT�1� ; � = 1; : : : ; N , do not depend on the partition of unity (in this 
ase a �nite element mesh).Also, from the de�nition of T�1� ; � = 1; : : : ; N , we have that if x 2 !� then � = T�1� (x) 2 b!sin
e jx� x�jIR3=h� � 1 and R�1� ; � = 1; : : : ; N , represent rotations.[Figure 1 about here.℄2.1. Lo
al approximation for p-orthotropi
 enri
hmentIn this se
tion, details about the elements of the set bL(b!) used in our 
omputations areprovided. This set is 
omposed of monomials of degree (p�; p� ; p�) along the lo
al (nodal)Cartesian dire
tions �; �; �, respe
tively.In the 
ase of isotropi
 enri
hment, i.e., p� = p� = p� = p, the set bL(b!) is taken from thePas
al triangle [12℄ and the notation bLp(b!) is used.bLp(b!) = Q0p(b!) := f�i�j�k : 0 � i+ j + k � p; i; j; k = 0; : : : ; p; (�; �; �) 2 b!gLet the set of tensor produ
t polynomials of degree (p�; p�; p�) be denoted byQ(p�;p�;p�)(b!) := f�i�j�k : 0 � i � p�; 0 � j � p�; 0 � k � p� ; (�; �; �) 2 b!gCopyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 5In the general 
ase of orthotropi
 nodal enri
hment, the following set of polynomials is usebL(p�;p�;p�)(b!) := Q0�p(b!) \Q(p�;p�;p�)(b!)where �p = maxfp�; p�; p�g.This set is 
omplete of degree (p� ; p�; p�) in the dire
tions �; �; �, respe
tively, while havingless elements than the set Q(p�;p�;p�).Let (p1; p2; p3) denote the degree of the GFEM shape fun
tion as de�ned in (1). Then wehave that p1 = p�+1; p2 = p�+1; p3 = p�+1 sin
e the partition of unity is a linear polynomial(linear �nite element shape fun
tions). Examples of lo
al approximations bL are(i) Linear basis in three-dimensional spa
ebL(p�=p�=p�=1) = f1; �; �; �gThe resulting GFEM shape fun
tions are quadrati
 (and 
omplete) in the dire
tions(�; �; �), i.e., p1 = p2 = p3 = 2.(ii) Cubi
 basis in the dire
tion � and quadrati
 in the dire
tion �, i.e. (p� = 3; p� = 2), in atwo-dimensional spa
ebL(p�=3;p�=2) = Q0�p=3 \Q(p�=3;p�=2) = f1; �; �2; �3; �; ��; �2�; ��2; �2gIn this 
ase, the resulting GFEM shape fun
tions are of degree p1 = 4; p2 = 3.3. NUMERICAL EXPERIMENTS3.1. Boundary layersThe solution of 
uid 
ow problems and of plate- or shell-like stru
tural models in solidme
hani
s generally 
ontains the so-
alled boundary layers. These are rapidly varyingCopyright 
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6 C. A. DUARTE AND I. BABU�SKA
omponents of the solution that de
ay exponentially with respe
t to the distan
e from theboundary. As an illustration of this phenomenon, 
onsider the plate-like stru
ture depi
tedin Figure 2. The body is assumed to be linear elasti
 with Young's modulus E = 2:1e11 PAand Poisson's ratio � = 0:3. The dimensions Lx; Ly and d are taken as Lx = Ly = � m andd = 0:02 m, respe
tively. A distributed load q(x; y) = Q=2 
osx PA is applied at the lower(z = 0) and upper (z = d) surfa
es in the dire
tion shown in the �gure. The 
onstant Q istaken as Q = 10; 000. The surfa
e y = 0 is free and symmetry boundary 
onditions are appliedat the surfa
es x = 0; x = Lx and y = Ly as indi
ated in Figure 2.[Figure 2 about here.℄The solution of the Reissner-Mindlin plate model of the body shown in Figure 2 
an representwell the 3-dimensional linear elasti
ity solution with appropriate modi�
ations of the elasti

onstants [4, 15℄. The Reissner-Mindlin solution 
an also approximate well the boundary layerbehavior of the 3-dimensional solution. For the boundary 
onditions shown in Figure 2 and LysuÆ
iently large, the shear stress 
omponent �xz 
omputed from the solution of the Reissner-Mindlin model is given by [15, 1℄�xz = �Qd3 �d2 + C22Dd e�y � C4d
e�
yd � sinx (2)where 
 = p12�+ d2D = Ed312(1� �2)C2 = �G�d3DfC4 = 2�G�fCopyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 7f = �2�G+ (1� �) ��G� Dd3 (
 � d)2�G = E2(1 + �)and � is the shear 
orre
tion fa
tor.The exponential terms in (2) 
auses the transversal shear stress �xz to have a high rate of
hange in the dire
tion y near the free boundary, i.e., y = 0. This boundary layer behaviorbe
omes stronger as the plate thi
kness de
reases. However, in all other dire
tions �xz is
onstant or a very smooth fun
tion. As a result, the approximation of this type of fun
tionusing isotropi
 polynomials is far from optimal.The problem of Figure 2 was solved using the GFEM with the hexahedral mesh of Figure 3(top view). The mesh has 2, 18 and 1 element in the x-, y- and z-dire
tion, respe
tively. Thesize of the elements de
reases in geometri
 progression towards y = 0 with a geometri
 fa
torg = 1:=1:2. The �rst layer of nodes at the free boundary, i.e., nodes lo
ated at (x; 0; 0) and(x; 0; d); 0 � x � Lx, and the next layer of nodes are enri
hed to (p1 = 5; p2 = 8; p3 = 4) in thex-, y- and z-dire
tions, respe
tively. The p-order of all other nodes are (p1 = 5; p2 = 5; p3 = 4)in the x-, y- and z-dire
tions, respe
tively. The p-enri
hment is done as des
ribed in Se
tion 2or in, e.g., [6℄. The total number of equations for this dis
retization is 40,942 and we refer to itas the overkill dis
retization. The 
orresponding solution is taken as the referen
e solution inall subsequent 
omputations in this se
tion. The a

ura
y of this solution was investigated by
omparing it with other solutions 
omputed with a varying number of elements and degree ofapproximation. In all dis
retizations investigated, the 
omputed value of �zy at x = (2:0; 0; d=2)were within 0.01% of ea
h other. [Figure 3 about here.℄Copyright 
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8 C. A. DUARTE AND I. BABU�SKAFigure 4 shows point wise values of the shear stress 
omponent �xz along the segment[2:0; y; d=2℄; 0 � y � Ly, 
omputed with the overkill dis
retization. The �gure shows that theshear stress �xz varies very rapidly near the free edge of the thin-body (y = 0) as predi
ted by(2). [Figure 4 about here.℄In this se
tion, we investigate the e�e
tiveness of the mesh independent p-orthotropi
enri
hment te
hnique presented in Se
tion 2 to model boundary layers in thin solids. Weuse the uniform tetrahedral mesh shown in Figure 5 and several p-enri
hment strategies toanalyze the problem of Figure 2. This mesh was generated by �rst 
reating a hexahedral meshwith 2, 20 and 1 element in the x-, y- and z-dire
tion, respe
tively. Ea
h element was thendivided into 6 tetrahedral elements. This mesh is denoted by 2� 20� 1(�6).A lo
al 
oordinate system parallel to the xyz global 
oordinate system is de�ned at ea
h nodeof the mesh. These nodal systems are used to build shape fun
tions of pres
ribed polynomialorders in the dire
tions of the lo
al 
oordinate axes as des
ribed in the previous se
tion.A representation of su
h nodal 
oordinate systems is shown in Figure 6. The grey level ofea
h 
oordinate axis indi
ates the polynomial order of the nodal shape fun
tions along thatdire
tion. [Figure 5 about here.℄[Figure 6 about here.℄The modeling of thin solids like that of Figure 2 with the GFEM or the FEM brings the issueof shear lo
king. As the body be
omes thin, the transverse shear strain be
omes negligible.Low order solid elements based on a displa
ement formulation 
an not represent this state ofCopyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 9zero transverse shear strain and the �nite element solution will be overly sti�. One remedy forthis problem is to use elements of polynomial order p � 4 [2℄. We adopt this approa
h in our
omputations.Figure 7 shows the relative error Er(wp) = ����w � wpw ���� (3)of the transversal displa
ement 
omputed with the mesh of Figure 5 and GFEM shape fun
tionsof degree (4; 4; 4). The relative error is 
omputed along the segment [2:0; y; d=2℄; 0 � y � Ly,using the overkill solution. The maximum relative error is of only 0.144 %. This dis
retizationis e�e
tive to model the transversal displa
ement be
ause it does not exhibit the boundarylayer behavior like the shear stress does [1℄. However, this dis
retization is not appropriate tomodel the near boundary behavior of engineering quantities like the transversal shear stresses.Figure 8 shows the relative error Er(�pxz) = �����xz � �pxz�xz ���� (4)of the shear stress 
omponent �xz 
omputed with the same dis
retization and along the samesegment. The error at y = 0, whi
h is the lo
ation of the maximum value of �xz, is of 43.49 %.[Figure 7 about here.℄[Figure 8 about here.℄We investigate four sequen
es of p-enri
hment on the tetrahedral mesh 2�20�1(�6) with thegoal of �nding the best approa
h to model the boundary layer behavior of �xz. The sequen
esare the following:Copyright 
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10 C. A. DUARTE AND I. BABU�SKASequen
e 1: All nodes are enri
hed to (p1; p2; 4); 4 � p1; p2 � 7. This 
hoi
e of enri
hmentis motivated by the fa
t that the dimension of the domain in the z-dire
tion is mu
hsmaller than in the other dire
tions.Sequen
e 2: The �rst two layers of nodes at or near the free boundary, i.e., nodes lo
ated at(x; 0; 0); (x; 0; d); (x; Ly=20; 0); (x; Ly=20; d); 0 � x � Lx, are isotropi
ally enri
hed to(q; q; q); 4 � q � 8. The p-order of all other nodes are kept at (4; 4; 4).This strategy of enri
hment is based on the observation that the boundary layer e�e
tis restri
ted to the region very 
lose to the free boundary (y = 0). Away from there,the solution is very smooth (Cf. (2)). Note that the enri
hment of the �rst two layers ofnodes is equivalent to the enri
hment of the �rst layer of elements. We 
hose to enri
hisotropi
ally to mimi
 the limitations of the �nite element method on tetrahedral meshes.The performan
e of this sequen
e will give us a good estimate of the performan
e of the�nite element method on this problem.Sequen
e 3: In this sequen
e, like in the previous one, only the �rst two layers of nodes areenri
hed. However, here we use an orthotropi
 enri
hment. The nodes at the �rst twolayers are enri
hed to (4; p2; 4); 4 � p2 � 8, while all other nodes have degree (4; 4; 4).Sequen
e 4: This is exa
tly like the previous one ex
ept that only the �rst layer of nodes, i.e,nodes lo
ated at (x; 0; 0); (x; 0; d); 0 � x � Lx, are enri
hed to (4; p2; 4); 4 � p2 � 8,while all other nodes have degree (4; 4; 4).The performan
e of the above sequen
es of enri
hment is measured by the 
onvergen
e ofthe shear stress 
omponent �xz at x = (2:0; 0; d=2). We take�xz(2:0; 0; d=2) = 1:948e7;Copyright 

 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:1{16Prepared using nmeauth.
ls



MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 11
omputed with the overkill dis
retization, as the referen
e value.Figure 9 shows the relative error (4) versus the number of degrees of freedom for Sequen
es1-4. All four sequen
es show an exponential 
onvergen
e of the shear stress at x = (2:0; 0; d=2).This is expe
ted be
ause of the regularity of the solution. Sequen
e 1 is the least e�e
tive. Thisindi
ates that enri
hing the nodes far from the boundary layer is not e�e
tive. Sequen
e 2,whi
h we expe
t to represent the behavior of the �nite element method on this mesh, is these
ond least e�e
tive strategy. This indi
ates that enri
hing the approximation in dire
tionsother than that of the boundary layer (as required by the FEM) is not e�e
tive. The moste�e
tive sequen
e is Sequen
e 4. This shows that the most e�e
tive strategy to model theboundary layer is simply to enri
h the nodes at the boundary in the dire
tion of the boundarylayer. Figure 9 shows that, for the same number of degrees of freedom, the point wise errorof the stress 
omponents in Sequen
e 4 
an be up to one order of magnitude smaller than inSequen
e 2. [Figure 9 about here.℄[Table 1 about here.℄Figure 10 shows the point wise values of (4) along the segment [2:0; y; d=2℄; 0 � y � Ly, fordis
retization 2 � 20 � 1(�6) and p-order (4; 4; 4) with and without enri
hment of the nodesat the boundary layer. As mentioned previously, the dis
retization with p-order (4; 4; 4) hasa relative error on �xz of 43.49% at (2:0; 0; d=2). The enri
hment of the �rst layer of nodesredu
es this error to just 1.83 %. These data are also available in Table I (Sequen
e 4 data).The enri
hment of the �rst layer of nodes a�e
ts only the 
orresponding layer of elementswhi
h is of dimension Ly=20 = 0:157 in the y-dire
tion. However, as 
an be observed in FigureCopyright 
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12 C. A. DUARTE AND I. BABU�SKA10, the bene�
ial e�e
ts of the enri
hment extends beyond the �rst layer of elements.[Figure 10 about here.℄Figures 11 and 12 are analogous to Figure 10 but for the 
ase of tetrahedral meshes with2 � 30 � 1(�6) and 2 � 60 � 1(�6) elements, respe
tively. The dis
retization 2 � 30 � 1(�6)with p-order (4; 4; 4) has a relative on �xz of 27.45% at (2:0; 0; d=2). The enri
hment of the�rst layer of nodes to (4; 8; 4) redu
es this error to 0.12 %. The �rst layer of elements hasdimension Ly=30 = 0:105 in the y-dire
tion. Figure 11 shows that, as in the 
ase of Figure 10,the redu
tion of the error in �xz extends beyond the �rst layer of elements. The e�e
t of thisenri
hment 
an be observed up to about y = 0:64 (that is about the �rst 6 layers of elements).[Figure 11 about here.℄[Figure 12 about here.℄3.2. Internal layerLet us 
onsider the following Neumann problem for the linear elasti
ity equations on 
 =f(x; y; z) 2 IR3 : 0 < x < 10; 0 < y < 10; 0 < z < 0:1g�ij;j + bi = 0 in 
 (5)�ij = Dijkl�kl�ij = 12(ui;j + uj;i)�ijnj = Ti on �
whereDijkl is the tensor of elasti
 
onstants for a homogeneous isotropi
 material with Young'smodulus E = 1:0 MPA and Poisson's ratio � = 0:3. The body for
es, bi; i = 1; 2; 3, and tra
tionCopyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 13
omponents, Ti; i = 1; 2; 3, are su
h that the solution u = (u1; u2; u3) is given byu1 = u2 = u3 = f(r) = exp (� 449r2 + 87r) (6)where r =p(x+ 1)2 + (y + 1)2. All the dimensions are in SI units.The fun
tion f(r) is analyti
 in 
 and has a large gradient in the r dire
tion and is 
onstantin the � and z dire
tions. Here, (r; �; z) is a 
ylindri
al 
oordinate system parallel to the globalCartesian system (x; y; z) with origin at (�1;�1; 0). This fun
tion was 
hosen to investigatethe performan
e of the p-orthotropi
 enri
hment te
hnique proposed in Se
tion 2 to modelinternal layers. Figure 13 shows f(r).[Figure 13 about here.℄We solve the problem de�ned in (5) using the GFEM with shape fun
tions as de�ned inthe previous se
tion. The mesh used to build the partition of unity is shown on Figure 14. Ithas 5� 5� 1(�6) = 150 elements and does not take into a

ount the behavior of the solution.Asso
iated with ea
h vertex node there is a Cartesian 
oordinate system with the dire
tions�; �; � parallel to the dire
tions r; �; z, respe
tively. The 
ylindri
al system (r; �; z) is the sameused to de�ne fun
tion f(r) in (6). The nodal Cartesian systems are illustrated in Figure 15.Note that, unlike in the previous problem, the orientation of the nodal 
oordinate systemsused here varies from node to node.[Figure 14 about here.℄[Figure 15 about here.℄Three sequen
es of enri
hment are used. In the �rst 
ase isotropi
 p-enri
hment with1 � p � 5 is used. This is typi
ally what must be used in the �nite element method sin
eCopyright 
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14 C. A. DUARTE AND I. BABU�SKAdire
tional p-enri
hment on tetrahedral meshes is almost impossible to be done in pra
ti
e.The relative error in the energy norm as a fun
tion of the number of 
oating point operations(NFLOPS) for the numeri
al fa
torization of the sti�ness matrix is shown in Figure 16.The se
ond and third sequen
es use p-orthotropi
 shape fun
tions. The enri
hment isdone along the dire
tions of the 
oordinate systems of the nodes. In the se
ond sequen
e,1 � p1 � 7; p2 = p3 = 1. In the third sequen
e, 1 � p1 � 8; p2 = 2; p3 = 1. The relative error inthe energy norm for both sequen
es is shown in Figure 16. The e�e
tiveness of p-orthotropi
approximations 
an 
learly be observed. The use of p-orthotropi
 enri
hment made possibleby the partition of unity framework used in the GFEM leads to quite substantial savings interms of NFLOPS. For a given 
omputational e�ort, the relative error in the energy normfor sequen
e two or three 
an be about one order of magnitude smaller than for sequen
e one(isotropi
 enri
hment). However, it 
an be observed that the 
onvergen
e rate of sequen
es 2and 3 de
reases for p1 � 4, in the 
ase of sequen
e 2, and p1 � 7 in the 
ase of sequen
e 3.Here, only the nodal dire
tion � is enri
hed while the p-order in the other two dire
tions arekept �xed. However, depending on the level of the dis
retization error, the dire
tion � is notthe optimal dire
tion for enri
hment, as 
an be observed in Figure 16. By optimal we meanthe dire
tion that gives the largest redu
tion in the dis
retization error for a given number ofadditional degrees of freedom. The optimal dire
tion for enri
hment 
an be found, for example,using the so-
alled dire
tional a-posteriori error indi
ators.
[Figure 16 about here.℄Copyright 
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MESH INDEPENDENT P-ORTHOTROPIC ENRICHMENT 154. CONCLUSIONSIn this paper, we propose a simple but very generi
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hment in the GFEM. The resulting te
hnique 
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lassi
al �nite elementmethod where dire
tional p-enri
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Figure 1. Coordinate system asso
iated with a node x� of a �nite element mesh.
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Figure 2. Boundary 
onditions for a plate-like stru
ture.
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20 FIGURES
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ZFigure 3. Hexahedral mesh used for overkill dis
retization (top view).
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Figure 4. Boundary layer behavior of the shear stress 
omponent �xz near the free edge y = 0. The
omputation was done with the overkill dis
retization.
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22 FIGURES

X
YZFigure 5. Uniform tetrahedral mesh 2� 20� 1(�6).
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FIGURES 23

Figure 6. Coordinate system at nodes used to build p-orthotropi
 shapefun
tions on a tetrahedral mesh.
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Figure 7. Relative point wise error in transversal displa
ement w forthe mesh of Figure 5 and p-order (4; 4; 4).
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Figure 8. Relative point wise error in shear stress �xz for dis
retization of Figure 5 and p-order (4; 4; 4).
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Figure 10. Relative point wise error in �xz for dis
retization 2� 20� 1(�6) and p-order (4; 4; 4) withand without enri
hment of the �rst layer of nodes.
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Figure 11. Relative point wise error in �xz for dis
retization 2� 30� 1(�6) and p-order (4; 4; 4) withand without enri
hment of the �rst layer of nodes.
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Figure 12. Relative point wise error in �xz for dis
retization 2� 60� 1(�6) and p-order (4; 4; 4) withand without enri
hment of the �rst layer of nodes.
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tion f(r).
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FIGURES 31

X

YZFigure 14. Tetrahedral mesh 5� 5� 1(�6) used to solve problem (5).
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32 FIGURES

Figure 15. Coordinate system at nodes used to build p-orthotropi
 shape fun
tions on a tetrahedralmesh. The 
oordinate systems are oriented along the 
oordinate lines of a 
ylindri
al system parallelto the global system xyz and with origin at (�1;�1; 0).
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e in the energy norm for isotropi
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 p-enri
hments.
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34 FIGURESList of TablesI Convergen
e of �xz for mesh 2�20�1(�6) and p-Sequen
es 1-4. Here, Er(�pxz) =j�xz � �pxzj=j�xzj 
omputed at x = (2:0; 0; d=2) and Ni is the number of degreesof freedom of Sequen
e i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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TABLES 35Table I. Convergen
e of �xz for mesh 2�20�1(�6) and p-Sequen
es 1-4. Here, Er(�pxz) = j�xz��pxzj=j�xz j
omputed at x = (2:0; 0; d=2) and Ni is the number of degrees of freedom of Sequen
e i.Sequen
e 1 Sequen
e 2 Sequen
e 3 Sequen
e 4N1 Er(�pxz) N2 Er(�pxz) N3 Er(�pxz) N4 Er(�pxz)7560 0.4349 7560 0.4349 7560 0.4349 7560 0.434912852 0.2436 8100 0.2482 8028 0.2476 7794 0.250219656 0.1058 8856 0.1103 8568 0.1106 8064 0.118227972 0.0363 9864 0.0398 9144 0.0381 8352 0.046611160 0.0088 9720 0.0097 8640 0.0183
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