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Abstract

A mapping method is developed to integrate weak singuaritihich result from enrichment func-
tions in the generalized/extended FEM. The integratioreswhis applicable to 2D and 3D prob-
lems including arbitrarily shaped triangles and tetrabetinplementation of the proposed scheme
in existing codes is straightforward. Numerical exampte2D and 3D problems demonstrate the
accuracy and convergence properties of the technique.
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1 Introduction

Physical phenomena can be simulated by several numeri¢abd® such as finite element meth-
ods (FEMs) and boundary element methods (BEMs). These meaharethods are developed on
the basis of governing differential equations. For inséamgeak formulations in the FEM are ob-
tained from governing differential equations, and are apjpnated by using shape functions. In
the standard FEM, shape functions are usually based onquoigts. FEM shape functions can
be generalized/extended by introducing custom-builtofimnient functions using the partition of
unity methodology [3, 17, 32]. Accordingly, the resultingthod is named either GFEM [14, 42]
or X-FEM [10, 29, 43] in the technical literature. In the BEBQhundary integral equations are
formulated using singular Green'’s functions to solve thgsptal problems of interest [20, 45, 46].

In the standard FEM, numerical integrations are relatieglgy compared to the BEM, because
the integrands usually consist of smooth functions suctospmials while the BEM in general
involves singular Kernels. The standard Gaussian integratherefore, provides accurate results
for given polynomial orders.

When non-polynomial enrichment functions, such as Hed&ifinctions, singular functions,
or trigonometric functions, are used in the GFEM/X-FEM, muiwal integration should be per-
formed with care. For example, in linear elastic fracturely@ms, polynomial functions can be
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used for the smooth field, while singular functions can beohiced for the weakly singular field
to capture the crack tip behavior, as described in Figurerilth® basis of the Westergaard stress
functions, branch functions are utilized as enrichmentfions [6, 31]. Due to the branch func-
tions, the strain-displacement matrB)(contains the 1,/r singularity, and therefore, some entries
in the integrand of the element stiffness mat#) (have the 1r singularity. To obtain accurate
numerical integration of the element stiffness matrix, yneregration points are necessary when
standard quadrature rules for polynomials are employed;hwkad to the increase of computa-
tional cost [5, 13, 25]. Recently, Bechet et al. [5] utilizéée polar transformation technique to
integrate singular functions for 2D problems. Laborde ef28] also developed a new integration
rule, called the ‘almost polar integration,’ for 2D problenXiao and Karihaloo [51] utilized the
adaptive integration algorithm (DECUHR [19]) with higheder Gauss-Legendre quadrature for
2D problems. They stated that “an adaptive control of thegrdtion error using DECUHR is very
time-consuming” (page 1381) and that “a very high order gaiade is required for all elements
enriched with crack tip branch functions” (page 1404). ¥ #nrichment functions satisfy the
equilibrium equations, the domain integral used to computan be transformed into equivalent
boundary integrals. Ventura et al. [50] have shown thatfthi® is computationally more efficient
than the domain form when the enrichment functions are wesikbjular or discontinuous.
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Figure 1: Example of singular behavior in linear elastic fracture rhanics problems. The notations are
the following: K denotes the element stiffness matBxs the strain-displacement matrig) indicates the
constitutive matrix; A is the element area.

In the BEM, numerical integrations are an important issueabee of inherent singularities.
The singularities in the integrand make computational fatrans much less accurate if one uses
standard quadrature rules. Whenever elements containraes(eig. loading) point, the inte-
grand becomes singular for— 0 wherer is the distance from a source point. When the inte-
gral of a singular function exists, and is continuous at thgudarity, we name the integrand as
weakly singular [9, 20, 23]. For example»at 0, the Inx| function is singular, but the integrand
[In|x|dx= xIn|x| — x4+ ¢, wherec is a constant, is continuous, as verified by applying the atile
L'Hospital: )I(im)xln IX| = )I(iLnOIn IX|/(1/X) = )I(iLnO(l/x)/(—l/xz) = 0. Weakly singular techniques
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for 2D problems are used to integrate the kingularity while weakly singular techniques for
3D problems are used to integrate th& Singularity. A review of general singular integration
techniques can be found in references [20, 45]. Moreoverstiacalled singular and hypersingu-
lar boundary integrals need to be evaluated for the symen@tilerkin boundary element method
(SGBEM) [8, 45], and the interested reader is referred disegvfor further details [44, 47]. In
order to reduce errors from numerical integration of siagties, several singular integration tech-
niques have been developed in conjunction with the BEM [30435]. For the weak singularity in
3D BEM, transformation techniques have been widely utilize that the Jacobian cancels the sin-
gularity. The polar transformation can be utilized to imedg the singularity exactly. However, it
results in curved integration intervals, which leads to ddiittonal transformation to the reference
square domain. This can result in higher computation (ealpedor nonlinear problems), and
accumulated round off error [30]. The Lachat-Watson trammsation was developed on the basis
of special solutions of boundary integral equations [26ghlrajan and Mukherjee [30] developed
a mapping method to evaluate integralsQ@ifl/r), over two-dimensional triangular (curved or
straight) domains. These singular integral techniqued@reloped only for a 2D domain because
the integration of 3D domains is not necessary for the BEM. [#bother words, the BEM reduces
the dimension of the problem by one - thus 3D problems ar¢ciiiday means of 2D integrations,
while 2D problems are treated by means of 1D integrations.

Integration of singular functions in 3D has been an opereisgsthe GFEM/X-FEM literature.
In recent papers published in 2005 in this journal, Labords.e[25] indicated that extension of
their work to “tridimensional problems is an open quest&ingce the singularities are difficult to
express” (page 380). Similarly, Bechet et al. [5] remarket they “do not have singular integra-
tion scheme yet available for arbitrary 3D meshes” (pag&).0bhe present paper addresses such
issue by means of a tailored mapping method to handle 3D lsinigegration, which is applicable
to arbitrarily shaped (i.e. straight edge or curved edgegttedra elements. The present mapping
method is also used to integrate 2D domains. Our GFEM/X-FEMpmg method is an exten-
sion of the BEM work by Nagarajan and Mukherjee [30]. The ms®d mapping method leads to
convergence of strain energy and stress intensity faabofsacture problems, while requiring less
integration points (to obtain accurate results) than steshduadrature rules. For comparison pur-
poses, convergence analysis for fracture problems arerpggti using both the proposed mapping
method and standard quadratures (e.g. Keast [24]). Foiathe tevel of accuracy, the proposed
mapping method requires considerably less number of iatiegr points than standard quadrature
rules. Moreover, its implementation in existing codes iiaightforward.

The present paper is organized as follows. First, conversyehdifferent types of branch func-
tions used in the GFEM/X-FEM are investigated. The mappieghed for both 2D and 3D sin-
gular integrations is presented in Section 3. Next, thegoerdnce of the mapping method is
compared with that of standard quadrature rules througbrétieal and engineering examples.
Finally, Section 5 concludes the paper. Two appendicesengnt the text. Appendix A provides
a MATLAB code to generate integration points and weightssiagular integration in 2D, which
can be readily extended to 3D. Appendix B provides quadeatues for both 2D and 3D.



2 GFEM/X-FEM for Fracture Mechanics

In computational simulations of linear elastic fracturelgems, the mesh quality is an important
issue because of the singularity at a crack tip. When weetilie standard FEM, not only the crack
geometry should correspond to the finite element mesh, buh#sh should also be refined around
a crack tip in order to obtain accurate results. In additmnhiese techniques, the generalized
or extended finite element method (GFEM/X-FEM) providesafexibility in generating finite
element meshes and improving the solution quality. Thegibiléies and capabilities are achieved
through the concept of a partition of unity in conjunctiorttwliocal enrichment functions. Details
of the GFEM/X-FEM for this class of problems are provideceelsere [10, 11, 14, 15, 29, 43]. In
this section, we focus only on the enrichment functions &ed singular behavior.

2.1 Enrichment Functions

In the standard FEM, a crack is described by double nodegalmack surfaces. Thus, finite
element meshes should correspond to crack surfaces. INRE&I(X-FEM, a crack can be repre-
sented by a discontinuous function, and therefore, fingeneht meshes do not need to coincide
with the geometry of crack surfaces. A node whose suppouxti¢ard) has a crack is enriched by
a discontinuous (e.g. Heaviside) function. The enrichnoases of the Heaviside function with
respect to the crack geometry is shown in Figure 2.

Pttt
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D Fully cut elements: Enriched with discontinuous functioms ()

D Partially cut element: Enriched with branch functioms ()

Figure 2. Enrichment cases with respect to the crack geometry.

However, the Heaviside function is unable to represent ekandnich partially cuts an element
(e.g. dark gray element in Figure 2). In this case, one cdimaibranch functions to enrich a node
whose support (or cloud) has a crack tip. Since branch fonstare based on the Westergaard
stress functions, the branch functions are able to repregegular stress behavior, and to provide
accurate computational results. Oden and Duarte [31]dntred branch functions (these functions



are hereafter denotéaD),
1 6 1 360 3 .6 1 _ 36
Ltip-x = {\/F KK — §) cos — écos?] AT [(K+ 5) sin + Esm?} }

Ltip-y = {\/F KK+ %) sing — %sin?} AT KK — g) cosg +%cos?} } (1)

wherer and@ are polar coordinates at the crack tip (see Figure &,a material constant (34v),
andv is the Poisson’s ratio. Thiejp_x, Ltip—y branch functions are used as enrichments around a
crack tip along the locad andy direction, respectively. Enrichments for 3D problems amglable

in references [14, 15]. Belytschko and Black [6] utilizedtch functions (these functions are
hereafter denotedB),

Ltip = {\ﬂsing,\ﬂcosg,\ﬁsingsine,\ﬁcosgsine} 2)

which are used as enrichments around a crack tip for hathdy directions. The same branch
functions are utilized for 3D fracture problems [29]. In ttese of 2D problems, th@D branch
functions introduces four additional local enrichmentdtions per node, while thBB branch
functions generate eight additional local enrichment fioms per node.

2.2 Comparison Betwee@D and BB Branch Functions

The OD andBB branch functions lead to singular entries in the integrdrti®element stiffness
matrix, and thus are difficult to integrate with standarddragure rules. This Section compares the
performance of these two family of functions, while Sect®bpresents a mapping method for the
numerical integration of these functions for 2D and 3D peofd. In order to compare ti@D and

BB branch functions, a single edge notched (SEN) tensionst@stestigated, as shown in Figure 3.
The elastic modulusH) is 1 and the Poisson’s ratio)(is 0.3. Uniform tractionT = 1) is applied
under the assumption of unity thickness and the plane staaidition, as illustrated in Figure 3.
For this boundary value problem, the reference strain gngkg;) is taken as 9.198545583 [12].

Three different cases are investigated with respect to msshetization. First, the finite ele-
ment mesh grid consists of an even number of elements alergpitizontal and vertical directions
such as 4x8, 8x16, 16x32 and 32x64 (Case ). In this case réol cnatches the finite element
meshes. Next, the finite element mesh grid consists of anraveber of elements along the hor-
izontal direction and an odd number of elements along thece¢direction such as 4x9, 8x17,
16x33 and 32x65 (Case II). In this case, the crack cuts thr@lgments while the crack tip is
located at an element boundary (or edge). Finally, the meashcgnsists of an odd number of
elements along the horizontal and vertical directions agbx9, 9x17, 17x33 and 33x65 (Case
[l). In this case, both the crack surface and the crack t@lacated within elements. Figure 4
illustrates examples of finite element meshes for each easdpcal enrichment types. Solid rect-
angles illustrate the local enrichment of the Heavisidefiom, and solid circles describe the local
enrichment of the branch functions. With respect to thellensichment types, one can introduce
different numerical integration schemes during compateti implementation, as discussed in the
next section. The numerical integration of the stiffnessrixaf elements enriched with singular
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Fiaure 3: Geometrv of problem and mesh arids for each case.
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Figure4: Finite element meshes for each case and local enrichmectifurtypes; (a) case | with the mesh
grid of 8x16; (b) case Il with the mesh grid of8L7; (c) case Il with the mesh grid ofaL7.

functions is done using the technique described in Secti®m2d a large number of integration
points. Thus, the results presented below are not affegt@utdgration errors.

Figure 5 compares the relative errors in the energy norm resgpect to the branch functions
such as thé@D branch functions and thBB branch functions. For all the cases, B branch



functions provide slightly lower errors in the energy notmart theOD branch functions. This
is because th8B branch functions provide 8 degrees of freedom per node wnd©D branch
functions provides 4 degrees of freedom per node in two déoeal problems. In other words,
the BB branch functions span a slightly larger solution space.iFhersion provides convergence
rate close to the theoretical values (0.25), while heersion results in higher convergence rates
(1.1 ~ 1.8) either for theOD or the BB branch functions. The domain of influence, union of the
support (or cloud) enriched with branch functions, progredy increases for each case (case I,
case I, case Il), and so does the convergence rates f@réieesion. This fact is also investigated
by Laborde et al. [25] and Bechet et al. [5].

Additionally, the total number of evaluation is estimatgdnhultiplying the number of integra-
tion points by the number df entries. For instance, when we use polynomial ofgler 1 and
the OD branch functions, we have 6 DOFs per node around the crack tipn, the number of
K entries is 576. If one uses 100 integration points, the ta@ahber of evaluations is 57,600.
Similarly, when we use thBB branch function, we have 10 DOFs per node around the cragck tip
and therefore, the number Kfentries is 1,600. The total number of evaluations becom@®06
with the 100 integration points. One observation we can niskeat, the choice between tRd
branch functions and thBB branch functions does not affect much the solution timeesthe
size of the system of equations is about the same. Howevegytaffect more significantly the
CPU time to integrate the stiffness matrix. Especially in 8i® BB branch functions leads to 6
more DOFs per node than tkiED branch functions. The difference in the number of evaluatio
required to integrat& may be significant. The elements with singular enrichmenttions may
require many integration points and thus, the number of Di@Hsese elements have a significant
impact on the CPU time required to compute their stiffnesgima

Based on the above investigation, hereafter@meenrichment functions are employed. The
general conclusions presented in this paper, however, fooldoth theOD and BB enrichment
functions.

2.3 Implementation of Numerical Integration

An element with a crack is subdivided into several triangelements in order to avoid discon-
tinuity in the integration domain [11, 28, 41]. When a craakyf cuts an element, we have two
sub-domains, i.e. upper and lower part of an element. Fdr galo-domain, one obtains the cen-
troid, and then creates triangles by connecting the cehtmthe vertices of a sub-domain. The
number of triangles is the same as the number of vertices obalemain. Next, when a crack
partially cuts an element, a crack tip is virtually extenttizdn edge so that one is able to perform
the same procedure as the previous case, as shown in Figlinee&-dimensional implementation
follows similar ideas, as described by Pereira et al. [3Y]yhich integration sub-element edges
fit the actual crack front. Alternatively, quadrature rul@striangular and tetrahedral elements are
available when the integrand consists of a quadratic fandtmes a Heaviside function [22].

Numerical integration schemes of subdivided triangulaments are described in Figure 6.
When elements are enriched with polynomials or discontisdonctions (e.g. white sub-triangles),
the standard quadrature rule is utilized with respect tergpolynomial orders. When branch func-
tions are enriched and sub-triangles do not have singe(g.g. light gray triangles), the standard
guadrature rule is also used. Sub-triangles around th& tipa(e.g. 4 dark gray elements) possess
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singularities, and thus a mapping method is utilized sodhatreduces the error from numerical
integrations. The detailed computational implementatibthe mapping method is discussed in
the following section.

C )

|| Integration for polynomial functions: Standard quadraturde
|| Integration for branch functions without singularity: Stard quadrature rule

[ Integration for singular functions: Mapping method

Figure 6: Numerical integration schemes with respect to enrichmamttfons.

3 Mapping Method

In this section, a mapping method for singular integratior2D and 3D domains is presented.
For a 3D mapping method, two types of singularities are adde in a tetrahedral element: (1)
elements with an edge on the singularity, (2) elements witbde on the singularity.

3.1 2D Mapping

For two dimensional integrals with/L singularity, a mapping method is introduced by Nagarajan
and Mukherjee [30]. The mapping method eliminates the dargy and therefore, one can per-
form accurate numerical integration with the standard Giansintegration points. The mapping
is given as B
Tv:(p,0) — (1.9

where _ _

r=pcos6, s=psiro. (3)
The inverse mappingTjy 1) transforms a right triangle (Figure 7 (b)) into a rectan@@eure 7
(c)). Because the Jacobian of the transformatigf) {s p sin(26), the 1/r singularity is eliminated
in the integrand.



The procedure of the mapping method is described as follBwst, a triangular element, which
has singularity at a vertex (e.g. dark gray shading in Fig)rds mapped from the Cartesian
coordinate X, y) system (Figure 7 (a)) to the area coordinates) system (Figure 7 (b)). When we
perform this transformation, the node, which correspoondsié crack tip, should be assigned as
the origin in the area coordinate system. Next, the mappargsforms the area coordinate system
into the rectangular coordinatp,(6) system.

s 0
/2
1
|is
X 0 1 3 0 1 )
(a) (b) (©)

Figure 7. (a) Triangle with a node on the singularity in the Cartesigysical) coordinate (x, y) system,
(b) triangle in the area coordinate (S) system, and (c) transformed rectangle in the mapped cwaisl(,
0) system.

3.1.1 Computational Implementation

The numerical integration of the mapping method is implet®@nvithin the same framework of
the standard numerical integration. For the standard riatiegn, subdivided triangular elements
(e.g. white and light gray shading in Figure 6) are integtatethe area coordinate,(s) system,

L

I:/Af(x,y)dA / (9% dids~ Y (7, §)IW (4)

wheren; is the number of integration points for a triangle, ahds the Jacobian, which relates
between the physical coordinates ¥) system and the master (area) coordinates)(system.
The standard triangular integration points §) and the weightsW) are listed in the reference by
Dunavant [18].

The mapping method requires the transformatidp () from the triangular domain to the
rectangular domain. Then, subdivided triangular elemam@ntegrated in the mapped coordinates
system,

rr/2
| = /f (r,s)%drd // Jtpsmzedpde
Ng1 Ng1

- / / F(EmAha(&mkdecn ~ 5 5 T&m)ddu(En) i (6)

whereng; is the number of quadrature points for 1D Gaussian quadratWhile J~M(E,n) is
equal to the transformation dfy = psin(26) to the integration coordinate syste 1), Jq is the
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Jacobian which relates between the mapped coordinﬁi@ 6ystem and the master coordinates
(€, n) system for a rectangle. Note that the Jacobiighi§ a constantr(/8).

For the computational implementation, the above expressao be written as

nql nql

S5 F(& 1) %3 WW, = 3 T(7.8)3 ©)
T T [

wherenq is the number of quadrature points for the mapping methoe ifitegration pointsr(,
S), which satisfyfv(f.,nj) = f(ri,s), is obtained by transforming the integration poir§s ;)

in the master coordinates system. Moreover, for the giveegmation pointsrg, , §), the quantity
(JM(E.,nJ)JqWVV,) is considered as the transformed weight§) ( A pseudo code to generate the
transformed integration points and weights is providedppé@ndix A, and examples of integration
points and weights are listed in Table 6.

In summary, the transformation procedures are eliminatéde computational implementation
of the mapping method, and therefore, one can utilize ariegisode by simply modifying the
integration rule for elements which have a singularity. thes words, the mapping method (or
transformation) generates the special integration rulesigtegration points and weights), which
are able to efficiently handle the singularities.

3.2 3D Mapping

This section presents extensions of the mapping methodée-ttimensional cases. For 3D ele-
ments, the singularity occurs either along an edge (Fig(a® 8r at a node (Figure 9(a)). Map-
pings for these two cases are presented below.

3.2.1 Elements with edge on singularity

Let _
T (r,st) — (X,¥,2) (7

denote the transformation from master (volume) coordsafea tetrahedral element to global
(physical) coordinates. The mappifigs implemented using standard tetrahedral shape functions
The Jacobian of this mapping, is, in the case of elements with straight edges, constaattbe
element.

We assume, without loss of generality, that the elementectivities are such that the element
edge on the singularity is mapped I'lyl to the edge along theaxis, as illustrated in Figure 8(b).
Thus, this case is similar to the two-dimensional one bexthessingularity is only influenced by
r ands. Therefore, one utilizes the following mapping,

where B B
r=pcosB, s=psito, t=t (8)

The inverse mappindgy 1, leads to the integration domain shown in Figure 8(c). Thé)@lane
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(a) (©)
Figure 8: (a) Tetrahedron Q) with an edge on the singularity in the Cartesian (physicaldrdinate (X,
Yy, z) system, (b) tetrahedro@@t) in the volume coordinate’(s,t) system; (c) transformed prismfrism)

in the mapped coordinatep( 8, t') system; (d) master prisnf)(,rism) in the master coordinateé( n, {)
system.

is transformed to theq 5) plane. With the increase tffrom 0 to 1, the integration domain of the
(p, 6) plane decreases from K71/2) to (0x 11/2). Within this integration domain, the singularity
is eliminated because the Jacobiagfis equal top sin 20.

An additional mapping is used to transform the prism showigure 8(c) to the master prism
shown in Figure 8(d), s
qul: (P79>fr)'—>(57’77z> . (9)
Standard quadrature rules for a prism can be defined usingréleict of a 1D Gauss quadrature
and a rule for triangular elements. In our computations, seeunavant rules [18]. The Jacobian

of transformatiorT is constant withly = 71/4.

3.2.2 Elements with a single node on singularity
For the case shown in Figure 9(a), the following mapping cansed,
r=pcosa, S=pcosP, t=pcody. (10)

On a plane, which is normal to a vectft, 1,1}, the proposed mapping satisfies the following
condition,
coga+cosf+cosdy=1. (11)

The substitution of the above expression intep cos’ y leads td = p(1—cos a —cos’ B). Then,
the Jacobian is given as

—psin(2a) 0 coga
0 —psin(2p) cogp
psin2a)  psin(2B) 1-coa—cospB

pZsin(2a)sin(2B) , (12)

and the transformed domain is described in Figure 9(c). Bsetéhe Jacobian hasod term, the
singularity is eliminated within the integration domain.
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Figure 9: (a) Tetrahedron with a node on the singularity in the Carms{physical) coordinate (X, y, z)
system, (b) tetrahedron in the volume coordinai&(t) system; (c) transformed hexahedron in the mapped
coordinate p, a, B) system.

3.2.3 Elements with a single node on singularity: Alternative Ayggh

In the approach presented in the previous section, the gtuadris performed in a hexahedral ele-
ment. Thus, for the same quadrature order, the number ofgumd points used in that approach
is much larger than the one from Section 3.2.1. For a rule @bietegrate an integrand of poly-
nomial degreg = 4, for example, the quadrature rule for a hexahedral elenegpires 27 points
while the corresponding rule for a prism has only 18 pointsmigrical experiments performed in
Section 4.3 show that integration errors introduced by el@swith an edge on a crack front is
more pronounced than for elements with a single node on & &raat.

Based on the above, we propose to use the integration rdemtesl in Section 3.2.1 for ele-
ments witheitheran edge or a single node on the crack front. Let, in the lats®,&g denote the
node on the crack front. L&t ose denote the element edgath nodexg that makes the smallest
angle with the singularity line (crack front). We assumethaut loss of generality, that the el-
ement connectivities are such that element egigg. is mapped byl; ! to the edge along the
axis, as illustrated in Figure 8(b). The rule for elementthvain edge on the crack front is then
used, without modifications, for this element. The perfarogaof this approach is investigated in
Section 4.3.

3.3 Computational Implementation

The computation implementation of quadrature rules foabetdral elements can be done using
the same ideas described in Section 3.1.1. The case of arm&rnth an edge on a crack front is
considered in this section.

Let f(x,Y,2) be a function we want to integrate over the tetrahef¥%al We assume that this
function has a line singularity and that the tetrahedramelat has an edge along this line. The
integral of f(x,y,z) can be computed as follows using the quadrature rule prgéntSection
3.2.1
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I
S

Q

= me,s?,tiuw. (13)

whereQiet, Qtet, Qprism andQprism are illustrated in Figures 8(a)-(d), respectivelly,Jy andJ, are
the Jacobian of the transformatiofis Ty andTq defined in Section 3.2.1, respectively, and

f(r,st) = foT(r,st
f(p,0,f) = foTu(p,6,t)
f(&,n.0) = foTy(&,n,Q
M(E.n.0) = ImoTy(&,n.Q)
W = Ju(&,mi,g)IW (14)

where 0" denotes the composition of two functions.

The quadrature point§éi, ni, i), and weights\W, i = 1,...,nq, are defined in the master prism
elementQyism. These points are mapped to quadrature pdimts;, t) defined inQet using

(ri,S,ti) = TmwoTq(&,ni, &) i=1...,nq. (15)

These points, together with quadrature weidhitsi = 1,..., Ng, can be used in the master element
Qretto integrate the singular functiok(r,s,t). Thus, as pointed out in Section 3.1.1, the numerical
integration off can be accurately performed by simply replacing the quadFaule used in an
existing FEM code by the rule defined above.

Table 7 lists quadrature rules fog = 1,6,8,18,21,48. These rules are based on prism rules
that can integrate polynomials of degmee- 1,2,3,4,5,6, respectively. The weights listed there,
W., were scaled by the volume of the master tetrahetﬁim,, i.e.,

W =W /(1/6) (16)

They should be scaled back before their use.

The sumzianA\/. is also listed in Table 7. We can observe that the weightsaladd to 1.0, as
one would expect. The quadrature rule in theirection of the master prisﬁiprism must integrate
the trigonometric function sinfrom the Jacobiady. Thus, a high enough rule in tledirection
should be used, regardless of the integrand fundtidtve can observe that the 18 point rule is able
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to integrate a constant function with an accuracy.060445 %. The deviation q{‘qw. from 1.0
is exactly the same in Tables 6 and 7 since the Jacakjas the same in both cases.

In the case of fracture mechanics problems, the singulastifums to be integrated involve
trigonometric functions, as discussed in Section 2.1. Thusioderate number of points must
be used anyway. The same is the case when high-order GFEM #lnagiions, like those intro-
duced in references [16, 37] are used. The integratiojafioes not introduce any overhead in
the computations.

Rules withng = 6 andng = 8 use the same 1D Gauss rule in thelirection. Thus, they provide
the same accuracy for the integration of the JacoliyarThe same holds for other rules like those
with ng = 18 andng = 21.

It is desirable that the quadrature rules exactly integaateast a constant function. This can be
achieved by scaling the weights such that they add to 1.0n®efi

Ng

W:W/(z\ﬂlj)a i:]-v"'anq (17)
J

The effect of the scaling is discussed in Section 4.1, andseghese scaled weights in all compu-
tations presented in Section 4.3.

4 Examples

Three classes of examples are presented in this section:

e Theoretical assessment
¢ Integration of branch functions

e Effect of integration errors on quantities of interest
Mode | fracture analysis on a coarse mesh
Mode | fracture analysis of an edge-cracked bar using lpceflned meshes
Mixed mode fracture analysis.

The aim of the theoretical assessment is to demonstraténtiraateristics of the mapping method
for integration of scalar functions over a triangular ar&ae integration of branch functions as-
sesses the convergence of their element stiffness matre®ffor fracture problems. Finally, the
effect of integration error on quantities of interest addes practical fracture problems on coarse
and fine meshes, including both mode | and mixed-mode prablem
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4.1 Theoretical Assessment

In order to demonstrate the efficiency of the singular magppiethod, convergence of the follow-
ing singular integration is investigated,

= [ fixyyda, (18)

A

whereA is the area of a triangle. A triangle has vertices at (0,0D)(and (0,1) inx—y physical
coordinates. Within the triangular domain (shown in Figta)), a scalar functionf(x,y)) such

as 1, ¥r and ¥/ /r (wherer = \/x2+y?) is integrated by using either the standard triangular
integration [18] or the singular mapping method. Figure &dnstrates convergence of a standard
triangular integration with respect to the number of in&ign points. It is clear that when the
integrand has higher singularity, convergence of theivelarror is slower. The singular mapping
method is compared with the standard integration, showigrE 11. Both the standard triangular
integration and the mapping method results in almost theesamvergence rate (or slope) for the
1/4/r singularity, while the mapping method leads to the higherveogence rate for the/t
singularity. The standard integration provides exactgragon with any number of integration
points for a constant function. However, the mapping metieaglires several integration points
to obtain accurate results. This is because the summatite aveights of the mapping method is
not exactly equal to one (although it converges to one), asslin Table 6.

Relative error

1 0—15_ M |

| |
10° 10" _ _ 10° 10°
Number of integration points

Figure 10: Convergence of numerical integration for the standardrigalar integration.

In order to obtain the integration rule which provides exatggration of a constant function,
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Figure 11: Comparison between the mapping method and the standagtatien.

the weights are scaled so that they add to 1.0, as discusseidysly. Figure 12 illustrates the
convergence of a constant functidi(X,y) = 1) and a singular functiorf(x,y) = 1/r) with respect

to different integration schemes: the mapping method wigtstaled weights, the mapping method
without scaling, and the standard triangular integratiime mapping method with scaled weights
results in the exact integration of a constant function, asewpected. Moreover, the mapping
method with scaled weights provides almost the same coemeegfor the 1r singularity as the
one without the scaled weights.

4.2 Integration of Branch Functions

We investigate convergence of the element stiffness matrikes, which is associated with the
integration of the branch functions. In this investigatitre OD branch functions are used for the
evaluation of the element stiffness matrix. Figure 13 tHates the convergence of the Frobenius-
norm of the element stiffness matrix associated with a sargub-triangle (i.e. gray sub-triangle
in the figure). It is clear that the mapping method converge®reentially while standard quadra-
ture converges algebraically.

In summary, Figures 10 to 13 also show that the mapping mathmddes a more monotonic
convergence and that it is as accurate as the standard tuadia low accuracy integration and
much more accurate in the high accuracy range. Given thaotm@utational cost of both quadra-
tures are exactly the same (for the same number of pointsjrenisnplementation as suggested
in the paper is as straightforward as the standard quadratir have a good case in favor of the
mapping method.
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Figure 12: The effect of the scaled weight in the mapping method.
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Figure 13: Convergence of the Frobenius-norm of the element stifimaggx associated with a singular
sub-triangle (shaded triangle).

18



4.3 3D Analysis and Effect of Integration Errors on Quantitiédraerest

In this section, we investigate the performance of the pged@D quadrature rules. Our focusis on
the influence of integration errors introduced by elementgked with theOD branch functions
on quantities of interest for engineering analysis. We camaphe strain energy and stress intensity
factors computed with different integration strategielse Thain goal is to select the most efficient
guadrature rule for tetrahedral elements based on the trge level of quantities of interest. The
analysis developed in this section is presented in thrempbes. In the first one, we analyze the
worst case scenario from the numerical integration pointe, i.e., very large elements enriched
with singular functions. In this case, the 3D model is sulgdt¢o appropriate boundary conditions
such that the exact values for strain energy and stresssititdactors are known. This approach
resembles the so-called boundary layer models in fractwehamnics [1, 34, 40]. In the second
example, we perform the integration error analysis fordgpmeshes used in engineering analysis,
i.e., elements with singular enrichments are small. Theregice solution used in this case is fully
3D. The third example presents a mixed-mode fracture aisalkxgain, the 3D model is subjected
to appropriate boundary conditions to obtain exact valeessfrain energy and stress intensity
factors. In this case, typical tetrahedral finite elemensimes are also used in the discretization.

4.3.1 Mode I fracture — Benchmark for the mapping method

In this example, we solve an edge-cracked problem in whielNbumman boundary conditions
are the tractions computed from the first term of the Mode |té&/gaard solution. Using these
boundary conditions and setting the Poisson'’s ratio to,z@re can ensure that the exact solution
in the domain of analysis is given by the first term of the asitip expansion. Thus, the strain
energy as well as the stress intensity factor for this prolddan be analytically defined. Figure 14
illustrates the domain of analysis and the boundary canttapplied. The main objective of the
analysis presented below is to investigate the performahtiee three-dimensional version of the
proposed integration scheme. In particular, the effengs of the numerical quadrature for edge
singularity presented in Section 3.2.1.

Generalized FEM shape functions of degpee 4 are used at all nodes, except at those on the
crack front. Crack front nodes have GFEM shape functionsegieep = 3 as well as the 3D
counterpart of thé®D singular functions (1). Further details on these enrichisiean be found in
[14, 15, 37, 38].

The integration rule applied to an element is selected daogito its position with respect to
the crack front. In the mesh shown in Figure 14, there arelsixents with one edge along the
crack front (elements with edge singularity), twelve elatsewith one node on the crack front
(elements with node singularity), and six elements with ades on the crack front. The later set
is integrated using Keast integration rule [24] of order @ 24 points. This rule integrates exactly
the stiffness matrix of these elements. It correspondslékB defined in Table 1.

In the first part of the analysis presented here, we condentrathe numerical integration of
elements with edge singularity. We compute the normalizeadrsenergy and normalized stress
intensity factors using the GFEM discretization describbdve and three numerical integration
strategies: Strategies 1, 6 and 7 described in Table 2. Heatlegy corresponds to a sequence
of pairs of integration rules of increasing accuracy. Theeliae is Strategy 1 which uses rules
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Figure 14: Edge cracked panel with mode | boundary conditions from asytic expansion.

K.2,...,K.10 for elements with vertex or edge singularity (Cf. Table 3jrategies 6 and 7 use
rulesM.1,...,M.14 andK.2,...,K.10, respectively, for elements with edge singularity and ru
K.10 for elements with vertex singularity. This ensures thatihtegration errors introduced by
these elements have no influence in the analysis. Ri8das used for elements without singular
enrichment functions. Table 1 provides details on all ruissd on this and subsequent sections.
Rules of lower order than those listed in the table are nosicened since they would not be able
to integrate the polynomial shape functions used in the 3EIGHiscretizations considered in
this paper.

Figures 15(a) and 15(b) show the variation of the normaliteain energyl /Uexac) and nor-
malized stress intensity factor (K exac) in Semi-log scale, respectively, for Strategies 1, 6 and
7. The horizontal axes show the sum of the number of quadramints used byll 24 elements
of the GFEM discretization. Figures 16(a) and 16(b) showarzm of these plots.

From Figures 15(a) and 16(a), we observe that Strategy &lguionverges to the strain energy
value corresponding to the highest rule used in this styatede M.14). In contrast, the conver-
gence of Strategy 7 to the value corresponding to KUl is quite slow. Another observation is
that the strain energy values computed with Keast rulesaagei than the exact one while those
computed with the mapping method are, in general, smaléar the exact one. This indicates that
the error in the case of the mapping method is mostly due twetization errors while in the case
of Keast rules it is also strongly affected by integratioroes. Comparing Strategies 1 and 6, we
can observe that integration errors introduced by elemeititsvertex singularity is not dominant
since corresponding points on these curves show appraadyrthe same error level. Similar ob-
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Table 1: Integration rules for tetrahedral elements. Ruled k K.5 are Keast rules [24]. Rules §—-K.10
are based on the tensor product of 1D Gaussian rules.

Keast and tensor product rules Mapping Method of Sectiorl3.2
Rule Num. points Pkeast Rule Num. points Pmap
K.1 11 4 M.1 18 4
K.2 15 5 M.2 21 5
K.3 24 6 M.3 48 6
K.4 31 7 M.4 52 7
K.5 45 8 M.5 80 8
K.6 125 9 M.6 95 9
K.7 216 11 M.7 150 10
K.8 343 13 M.8 198 11
K.9 512 15 M.9 231 12
K.10 729 17 M.10 259 13
M.11 336 14
M.12 488 15
M.13 549 17
M.14 730 19
M.15 1,331 21

Pkeast= pPolynomial order integrated by Keast or tensor product rule
Pmap=  polynomial order integrated by prism quadrature used tegea the
integration points used in the mapping method

Table 2: Integration strategies used on elements with singular stfapctions. Each strategy corresponds
to a sequence of pairs of integration rules of increasinguaacy. They combine Keast (or tensor product)
rules and the mapping method applied to elements with edgede on the crack front. For instance,
Strategyl applies Keast rule for all elements, Stratedgpplies the mapping method for elements with edge
singularity and Keast rule for elements with nodal singuigarStrategys applies the mapping method for
elements with edge singularity and elements with nodalusaniy, and so forth.

Integration rule
Strategy Elements with edge on front Elements with vertdrooin

1 K2,... K10 K2,... K10
2 M.1,...,M.10 K.1,...,K.10
3 M.1,...,M.8 K.3,...,K.10
4 M.1,...,M.7 K.4,... K.10
5 M.1,...,M.14 M.1,...,M.14
6 M.1,...,M.14 K.10

7 K.2,...,K.10 K.10
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servations can be made for the results of the mode | stremssity factor K;) shown in Figures
15(b) and 16(b). The main difference in behavior is thathmd¢ase of stress intensity factor, the
integration errors seem to be under control in all strateglie the case of strain energy however,
only Strategy 6 was able to control the effect of integratorors. This indicates that stress in-
tensity factors are apparently less sensitive to integmagirors in the computation of the stiffness
matrix than the strain energy.

The results above show that the mapping method applied toeglts with edge on the crack
front can integrate singular functions using far fewer pothan Keast integration rules. This is
confirmed by the numerical experiments presented in Sectidh2 and 4.3.3.

Strategies 6 and 7 can not be used in practical computatiocs they use a very large number
of integration points on elements with vertex singulasitiBelow, and in Sections 4.3.2 and 4.3.3,
we focus on the selection of the best scheme to integrate giesents and on the overall reduction
of the number of integration points for a given target erewel. Strategy 1 is again used as a
reference. We consider Strategies 2 — 5 described in Tablkh2.only difference among these
strategies is the integration rule used for elements wittexesingularity. All of them use the
mapping method for elements with edge singularity.

Figures 17(a) and 17(b) show the variation of the normaliziedin energy and normalized
stress intensity factors in semi-log scale, respectielyStrategies 1 — 5. In Figure 17(a), one
can observe that for Strategies 2 — 5, after a large enouglb@uaf integration points the error
is controlled only by the discretization error. This beloavs similar to Strategy 6 (Cf. Figure
15(a)). Before this point, the error in strain energy is colled by integration errors on elements
enriched with Westergaard functions. Strategies 2 and $ecga quicker than Strategies 3 and
4 to the strain energy value corresponding to the highestuséd. Similar observations can be
made for the results shown in Figure 17(b). Strategy 5 isquaatrly attractive because it exhibits
a more monotonic behavior than the other strategies. Insthagegy, we apply the edge singular
rule for elements with either edge or vertex singularitydascribed in Sections 3.2.1 and 3.2.3.
For those elements with nodal singularity, the integratide is set to the edge that is connected
to the singular vertex and has smallest angle with the cnak.f This approach has proved to be
efficient even in elements where the smallest angle is ardghd

Based on the results presented above, only Strategies 1gd 8 are considered in the next
examples. There, we use meshes with element sizes typitsalyin fracture mechanics problems
and select the quadrature rule based on the target errdoleyeantities of interest.
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4.3.2 Edge-cracked bar — Selection of Integration Order

In this section, an edge-cracked bar problem is considerbd. model consists of a rectangular
bar subjected to a uniform tensile traction applied at botisevith a through-the-thickness edge
crack as illustrated in Figure 18. Nodal displacement bawndonditions are applied only to
prevent rigid body motion. The geometric parameters arastett = 0.875,a/t = 0.5, w/t = 1.5.
Poisson’s ratio and Young's modulus are sevas1/3 andE = 1.0, respectively.

2h

Figure 18. Edge-cracked bar. Domain dimensions, boundary conditemmd mesh with localized refine-
ment.

This problem was also solved in references [39] and [27]gi8ie standard FEM with quarter-
point elements along the crack front and boundary elemehntgques, respectively. In this Sec-
tion, we focus our analysis on the convergence of the stnaémgy with respect to the number
integration points and on the effect of integration erronspeextensions performed on meshes
with localized refinement along the crack front. Integnattrategies 1, 2, and 5 (cf. Section
4.3.1) are used. The analysis is aimed at selecting integraile pairs from these strategies. As
demonstrated below, this selection depends on the tangetievel of the quantities of interest and
the level of refinement used near the crack front.

A closed form solution is not available for this problem. Hmw&r, one can usa posteriori
error estimates [48] to compute a reference value for trensemergy. The computed reference
value for the strain energy is, far= 0.5,

Uret = 1.73475171991776 10 °.

The discretizations used in the present analysis are bas#tep-version of the GFEM pre-
sented in [14], i.e., hierarchical polynomial enrichmentésmesh with double nodes is used to
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represent the discontinuity. Crack front nodes are alsiclesal with the 3D counterpart of thgD
branch functions (1) as described in [14, 15, 37].

Two meshes, denoted hereafter Mesh 1 and Mesh 2, are usedlsmthlations. In both cases,
the meshes are locally refined along the crack front as showigure 18 for the case of Mesh 1.
The ratio element size to crack sizke/a), at the crack front of Mesh 1isinthe rang®3 1073 <
Le/a<1.4x 10~2. This discretization leads ta @48 elements with an edge on the crack front and
6,144 elements with a node on the crack front. Details on meklagsl 2 are provided in Table 3.

Table 3: Details on meshes for edge-cracked bar. Beldw/a) denotes the ratio of element size to crack
size at the crack front.

Mesh 1 2
min(Le/a) 39%x103|16x1072
max(Le/a) 1.4x1072 | 5.7x 1072
# Elem. w/ edge sing. 2,048 512

# Elem. w/ vertex sing| 6,144 1,024

The first goal of this analysis is to select integration ruleselements with edge or vertex
singularities such that the effect of integration errorstencomputed strain energy is much smaller
than the discretization error. This analysis is performgdiiplying integration strategies 1, 2, and
5 to Mesh 1 enriched witlp = 4 polynomials and th€©D branch functions. We analyze the
convergence of the strain energy with respect to the totall®u of integration points used ail
elements that have a node enricl&d branch functions. Figure 19 presents the results. One can
observe that, for a sufficiently large number of integrag@mts and Strategy 2 or 5, the error in
strain energy is controlled only by the discretization eribhe difference between the results in
Strategy 1 and the plateau provided by Strategies 2 and Sheaagarded as due to integration
errors of the singular shape functions which, in this casemall due to the level of refinement
applied to the crack front.

Based on the above results, we select one integration riddrpm each strategy for further
investigation. These pairs are identified hereafter.as23 and 51. Details are provided in Table
4. Table 5 lists, for meshes 1 and 2 and integration pabs 23 and 51, the total number of
integration points used in elements with singular enrichisie We can observe that integration
rule pair 51 leads to a considerably smaller number of integrationtpdiran other pairs.

The second goal of this analysis is to investigate the effeicttegration errors on the computed
strain energy when integration rule pair$,123 and 51 are used. The-version of the GFEM
and Meshes 1 and 2 are used. In both cases, the polynomialajrttee GFEM functions are in
the range K p < 4. TheOD enrichment functions are used at nodes on the crack frorgfaseh
Figure 20 shows the results pfextensions on Mesh 1. Each curve in the figure corresponds to
a singleintegration rule pair. Thus, in contrast with previous cengence plots, the integration
rule is fixed for each curve and the discretization is charmyeidcreasing the order of the shape
functions. The strain energy and energy norm are plotteld me$pect to the number of degrees
of freedom of Mesh 1. One can observe that integration ruls @88 and 51 deliver exponential
convergence rates and virtually the same error valuesriminsgnergy as well as energy norm. Rule
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Figure 19: Convergence of strain energy with respect to the total nurabiategration points for elements
enriched with theOD branch functions, i.e. elements with either edge or noderankcfront. Semi-log
scale.

Table 4: Integration rule pairs used on elements with edge or verieyusarity. These pairs are members
of integration strategied, 2 or 5. Each strategy corresponds to a sequence of integratiom pairs as
discussed in Section 4.3.1. The naming convention useéntifiga pair is based on the sequence/strategy
number to which it belongs and the index of the rules it uses.

Integration rule and number of points
Rule pair ID Elements with edge on front Elements with veotekont

1.5 K.5 (45 points) K.5 (45 points)
2.3 M.3 (48 points) K.3 (24 points)
5.1 M.1 (18 points) M.1 (18 points)

Table5: Total number of integration points used in elements witlgliar enrichments.

Rule pairID Mesh1l Mesh?2

1.5 368640 69120
2.3 245760 49152
5.1 147456 27648
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pair 15 leads to a slight deviation from curves for pair8 2nd 51 when the polynomial order of
the approximation is greater than 3 and shows a faster agenee rate. This small deviation is
due to integration errors. The difference in the relativereof strain energy for pairs.8 and 51,
whenp = 4, is around M1%. In the case of the relative error in energy norm, theedifiice is
about 05%. These results show that pail §based on the mapping method) is very efficient since
it can achieve the same error level as palr (based on Keast rules) but using far less integration
points (Cf. Table 5).
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Figure 20: Convergence analysis of strain energy and energy norm wipect to the number of degrees
of freedom for Mesh. Log-log scale. The p-version of the GFEM is used.

In the case of integration rule pair5l the integration over elements with singular enrichmints
performed using Keast rules only. As shown in Figure 19, tibegration errors when Keast rules
are used may cancel out the discretization error. This beh&valso manifested in the results
shown in Figure 20. The integration errors are improvingdbevergence rate of the curve for
pair 15. This, however, isot alwayghe case. Integration errocan also deteriorate convergence
rates To illustrate this point, we repeat tpeconvergence analysis done above using Mesh 2 which
is coarser then Mesh 1. Details on this mesh are listed oreTabl

Figure 21 presents theconvergence analysis using Mesh 2. One can observe thabthe
vergence rate when pairSlis used deteriorates due to integration errors. In this,aagegration
errors when using integration rule pai5lis greater than.Q% in strain energy. In contrast with
the results for Mesh 1, the integration errors on Mesh 2 leaant overestimation of the strain
energy wherp > 3. The volume of the elements enriched with singular fumdis larger in Mesh
2 than in Mesh 1 and this introduces a larger error in the dveoéution when pair 15 is used.
Therefore, when using pair3 with a coarse mesh, one should increase the number of ati@gyr
points for elements with singular enrichments accordintpéxarget error level that is required for
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the analysis in order to make the integration errors ndgggi

Figure 21 also presents reference curves for strain eneryenergy norm. These reference
curves are computed with integration rife15 which uses 1331 integration points per element
enriched with singular functions. We can observe that gaBsand 51 show virtually the same
behavior as the reference curve. By using integration riflels with just 18 integration points
it is possible to achieve the same level of accuracy of thetgua rule with 1331 integration
points. RuleM.1 presents the best compromise between accuracy and cdiopakaost among
the integration strategies analyzed in this section. Ofsmuhese conclusions may only be valid
for the level of accuracy considered here (of the order of @@or larger in energy).
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¢ | & -e Energy norm - rule pair 1.5
© -© Energy norm - rule pair 2.3
= -m Energy norm - rule pair 5.1
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Figure 21: Convergence analysis of strain energy and energy norm wipect to the number of degrees
of freedom for MesR. Log-log scale.
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4.3.3 Mixed mode analysis — Effect of integration errors on SIFs

This example considers the same model analyzed in Sect®h But subjected to Neumman
boundary conditions from the first term of Mode | and Mode Iparsion of the elasticity solution
under the condition of the same Mode | and Mode Il stress sittgfactors (i.e.K; = Ky). Like

in the case solved in Section 4.3.1, the strain energy asasdhe stress intensity factors for this
problem can be analytically defined. Figure 22 illustratesmesh used in the analysis and the
boundary conditions applied.

Figure 22: Edge cracked panel with Mode | and Mode Il boundary condgitsam asymptotic expansion.

The main objective of this example is to investigate thegrenfince of the integration rule pairs
1.5, 23 and 51 (Cf. Table 4) in a mixed mode fracture problem. We perfgrextensions on a
tetrahedral mesh locally refined around the crack frontlastiated in Figure 22. The polynomial
order of shape functions ranges frgm= 1 to p = 4. Like in previous sections, crack front nodes
are also enriched with the 3D counterpart of e branch functions (1). The average ratio of
element size to characteristic crack lengtiLiga = 1.7 x 102, This ratio is representative of
GFEM meshes used in reference [37] to solve fracture meckammoblems. This discretization
leads to 896 elements with edge singularity antid® elements with nodal singularity. The total
number of integration points for the elements with sing@arichment is 138120, 95328 and
55,368 for integration rule pairs.3, 23 and 51, respectively.

Figures 23 and 24 present theonvergence analysis for the relative error in strain gynand
energy norm compared with the relative error for Mode | andd®ld stress intensity factors, re-
spectively. Both Figures also present a reference curvthérelative error in the strain energy.
The reference curve is again obtained by using integratite™M.15 with 1, 331 integration points
per element with singular enrichment. One can observe thiathe discretizations used in this
example, the integration errors start to affect the corererg of the solution when the strain en-
ergy error is smaller than.0% in the case of pair.% and about 1% in the case of pairs.2
and 51. Strategies 5 is highly affected by integration errors at strain energgrelevels below
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0.01%. The effect of integration errors is more pronouncechandase of pair.b because no
singular integration scheme is applied in this case. lategn pair 23 uses the mapping method
for elements with an edge on the crack front and, therefe@dd to smaller integration errors
than integration pair.b. Integration errors improve the convergence rate for palie 23 while

it significantly deteriorates the convergence for rule gt The difference in the relative error
of strain energy between the reference curve and that ajretien pair 51 is around 1% for

p = 3 and 0006% forp = 4. These results show the efficiency of the proposed mappetbad
since it can achieve acceptable error levels by using sugmifiy fewer integration points than the
other rules considered here.

Mode | and Il stress intensity factors show good agreemetit amalytical values. We can
observe that both quantities exhibit super-convergeneetheir convergence rates are comparable
with the convergence rates for strain energy [35, 36, 48,B@jthermore, the error levels for SIFs
are always within the relative error in energy norm and tHatike error in strain energy. We
can also observe that the stress-intensity factors arafesgted by integration errors. Integration
errors start to affect the convergence of the solution wherStF error is smaller than%, which
happens only fop = 4. This results suggest that, if the target error level ofthalysis is less than
0.1% in SIF, one should use more integration points for the efgrwith singular enrichments or
a more refined mesh. In other words, the results indicatetlleadiccuracy of the quadrature used
in the GFEM/XFEM must be consistent with the target erroelef quantities of interest. This is
in contrast with, e.g., the-version of the FEM where a single quadrature rule can peoexhct
integration and thus can be used for any target error leval r€sults are, nevertheless, consistent
with the numerical integration for meshless methods as detrated numerically and theoretically
by Babiska et al. in [4].
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Figure 23. Convergence analysis of relative error in strain energyergy norm and Mode | stress intensity
factor with respect to the number of degrees of freedom.lbggcale.
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Figure 24: Convergence analysis of relative error in strain energyengy norm and Mode 1l stress intensity
factor with respect to the number of degrees of freedom.lbggcale.

5 Conclusions

A mapping method is developed to integrate weakly singuiactions in the GFEM/X-FEM. The
method is applicable for both 2D and 3D problems includirgtearily shaped triangles and tetra-
hedra. For 2D problems, singularity occurs at a node, wisdmea8D problems, singularity occurs
either at a node or along an edge. The mapping method is abknitie all above cases. More-
over, one can easily implement the method in existing cogegplacing a standard integration
rule with a quadrature rule generated by the mapping methraalédments which have a singularity.
Therefore, the method does not require extra computatmosdl

The performance of the mapping method is assessed by trasgesl of examples: theoret-
ical assessment, integration of branch functions, and abtdre problems. In the theoretical
assessment, convergence of numerical integrations darsitadctions is investigated through the
comparison of the mapping method with standard integratides. The weights of a quadrature
rule generated by the mapping method are scaled so that tgbte/add to 1.0, which leads to the
exact integration of a constant function. The integratibbhranch functions demonstrates that the
mapping method provides exponential convergence whilestiwedard integration leads to alge-
braic convergence. In 3D fracture problems, this studystigates the effect of integration errors
on quantities of interest such as the strain energy, theygmarm of the solution, and the mode |
and mode Il stress intensity factors. Several numericabiattion strategies are presented, which
are combinations of Keast rules and the mapping method. dimgetational results illustrate that
the mapping method reduces integration error significargigg far fewer integration points com-
pared to standard integration rules (e.g. Keast rules).atbarate numerical integration (e.g. the
mapping method) leads to a monotonic convergence in theafgsextensions while integration
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errors can result in loss of convergence.

While in this paper we focus on the development and apptinaif the mapping method to the
GFEM/X-FEM method, the proposed quadrature rules are notdd to this case. The so-called
enriched FEM proposed in the 1970’s [7, 21] and further dgse&dl in, e.g., [2] also uses singular
functions from the assimptotic expansion of the elastisdiution in the neighborhood of cracks.
Therefore, it also can benefit from the quadrature rulesqsegp here.
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A Appendix

The following MATLAB code @D Singular IntegrationPointsWeights) generates the inte-
gration points and weights for the integration of a weakhgsiar function in a master triangle -
see Section 3.1.

function [r, s, wgt, n] = 2D_Singular_IntegrationPointsWeights (nIntPoints1D)
e
% K. Park, J.P. Pereira, C.A. Duarte, G.H. Paulino, 2008, Integration of

% singular enrichment functions in the generalized/extended finite element

%» method for three-dimensional problems, International Journal for Numerical
% Methods in Engineering, X(X), XXX-XXX.

e

% Input parameters: nIntPointsiD

yA nIntPoints1D: The number of standard integration points in 1D

% Output parameters: r, s, wgt, n

yA r, s: Coordinates of the singular integration points in 2D

b wgt : Weights of each singular integration point

yA n : The total number of the singular integration points

% External functions

pA StandardGaussRuleloc: Provide the standard Gauss points

yA StandardGaussRulewgt: Provide weights of the standard Gauss points
% Variables

yA J : Jacobian associated with rho-theta coord and ksi-eta coord
yA Area: Area of a triangle

yA N : Linear shape functions

34



yA ksi, eta : Standard integration points
yA iwgt, jwgt : Weights of the standard integration points

yA rho, theta : Integration points in rho-theta coord

% Coord_rho_theta: Integration domain of rho-theta coord
o
n=0;

J = pi/8;

Area = 0.5;

Coord_rho_theta = [0 , O; 1, O0; 1, pi/2; 0, pi/2];

for ipt = 1 : nIntPointsl1D

for jpt = 1 : nIntPointsl1D
% Obtain standard integration points and weights in the ksi-eta coord
% with respect to the number of integration points in 1D (nIntPointsi1D)

ksi = StandardGaussRuleloc(nIntPointsiD, ipt);
eta = StandardGaussRuleloc(nIntPointsliD, jpt);
iwgt = StandardGaussRulewgt(nIntPoints1D, ipt);
jwgt = StandardGaussRulewgt(nIntPointsiD, jpt);

% Define linear shape functions

N(1) 0.25 * (1. - ksi)*x(1. - eta);
N(2) = 0.25 % (1. + ksi)*(1. - eta);
N(3) = 0.25 % (1. + ksi)*(1. + eta);
N(4) 0.25 * (1. - ksi)*(1. + eta);

% Integration points in the rho-theta coordinates
rho = N*Coord_rho_theta(:,1);
theta = N*Coord_rho_theta(:,2);

% Integration points and weight in the r-s coordinates
n=n-+1;

r(n) rho*cos(theta)*cos(theta) ;

s(n) rho*sin(theta)*sin(theta);

wgt(n) = sin(2xtheta)*rhoxJxiwgt*jwgt/Area;

end
end
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B Quadrature Rulesfor Triangular and Tetrahedral Elements

Quadrature rules for triangular elements with singulaatts node are listed in Table 6, and quadra-
ture rules for tetrahedral elements with singularity alangedge are listed in Table 7. The coordi-
nates are given in the master atezs) and volumeg(r,s;t) coordinate system, illustrated in Figure
7(b) and Figure 8(b), respectively. For triangular eleragtite singularity occurs at a node which
corresponds to an origin in the area coordinate system efiahiedral elements, it is assumed that
the line singularity is along the coordinate akias illustrated in the Figure 8(b). Higher order

rules can be obtained by contacting the authors.

The weights in the table were divided by the area (or volunfethe master triangular (or
tetrahedral) element used in our computations. They shmeilokoperly scaled back prior to use.
In our computations, we also scale the weights such thagdon quadrature rule, they add to 1.0
(cf. Section 3.3).
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Table 6: Transformed integration points and weights.

ri

S

W

0.25

0.25
>W

1.5707963267949
1.5707963267949

0.08375842651774
0.70491670807708
0.02244300274473
0.18888186266046

0.70491670807708
0.08375842651774
0.18888186266046
0.02244300274473

>W

0.38168319089731
0.38168319089731
0.10227170276547
0.10227170276547

0.96790978732557

0.25
0.01550703374423
0.48449296625577
0.44364916731037
0.02751873043233
0.85977960418841
0.05635083268963
0.00349533705613
0.10920632832312

0.25
0.48449296625577
0.01550703374423
0.44364916731037
0.85977960418841
0.02751873043233
0.05635083268963
0.10920632832312
0.00349533705613

W

0.3102807559101

0.06723616800137
0.06723616800137
0.34413949747987
0.07457317486736
0.07457317486736
0.04371144740776
0.00947203513434
0.00947203513434

1.0006944568039

16

0.16447738503377
0.50551313675866
0.00793785538829
0.66205266640414
0.08101472221835
0.24899475598922
0.00390985757197
0.3260996206356
0.22844713750833
0.70212101828869
0.01102510439984
0.91954305139719
0.01704496974379
0.05238687445918
0.00082260856042
0.06860923564256

0.50551313675866
0.16447738503377
0.66205266640414
0.00793785538829
0.24899475598922
0.08101472221835
0.3260996206356
0.00390985757197
0.70212101828869
0.22844713750833
0.91954305139719
0.01102510439984
0.05238687445918
0.01704496974379
0.06860923564255
0.00082260856042

> W

0.19263169249859
0.19263169249859
0.02583212102757
0.02583212102757
0.09488236364543
0.09488236364543
0.01272382892596
0.01272382892596
0.14271218426271
0.14271218426271
0.01913786027712
0.01913786027712
0.01064808642104
0.01064808642104
0.00142792005600
0.00142792005600

0.99999211422886
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Table 7. Transformed integration points and weights for tetraheédrith edge singularity.

rT

S

ti

W

.166666666666666

.166666666666666

W

.333333333333332 57079632679489

1.57079632679489

0.14896642845625587
0.01770023821041067
0.59586571382502429
0.07080095284164279
0.14896642845625587
0.01770023821041067

0.01770023821041065
0.14896642845625585
0.07080095284164270
0.59586571382502417
0.01770023821041065
0.14896642845625585 A
5 Wy

0.666666666696
0.666666666666
0.166666666661
0.166666666661
0.166666666661
0.166666666661

0.08065914894379719
0.08065914894379723
0.32263659577518921
0.32263659577518943
0.08065914894379719
0.08065914894379723
.967909787325567

0.29793285691251170
0.03540047642082134
0.17875971414750718
0.02124028585249282
0.53627914244252161
0.06372085755747848
0.17875971414750718
0.02124028585249282

0.03540047642082130
0.29793285691251164
0.02124028585249280
0.17875971414750715
0.06372085755747840
0.53627914244252150
0.02124028585249280
0.17875971414750715 A
5 W

0.333333333398
0.333333333398
0.599999999997
0.599999999997
0.199999999998
0.199999999998
0.199999999998
0.199999999998

-0.27222462768531585
-0.27222462768531596
0.15123590426961994
0.15123590426962002
0.45370771280885979
0.45370771280886007
0.15123590426961994
0.15123590426962002

.967909787325567

18

0.43211781432231888
0.22297424545798252
0.01383067659364609
0.10475030386689888
0.05405150908403500
0.00335271430117109
0.43211781432231888
0.22297424545798252
0.01383067659364609
0.08873606264364056
0.04578810675488526
0.00284015086612995
0.79151380722425546
0.40842378649022953
0.02533376575620345
0.08873606264364056
0.04578810675488526
0.00284015086612995

0.01383067659364610
0.22297424545798247
0.43211781432231893
0.00335271430117109
0.05405150908403499
0.10475030386689891
0.01383067659364610
0.22297424545798247
0.43211781432231893
0.00284015086612994
0.04578810675488525
0.08873606264364056
0.02533376575620341
0.40842378649022942
0.79151380722425546
0.00284015086612994
0.04578810675488525
0.08873606264364056

38

0.1081108808999
0.108103608269
0.108103808269
0.445948896900
0.445948896900
0.445948896900
0.445948896900
0.445948896900
0.445948896900
0.816847543885
0.816847643885
0.816847543885
0.091576973662
0.0915769713662
0.0915769713662
0.0915769713662
0.0915769713662
0.091576973662

0.04521044714518826
0.20863669260505907
0.04521044714518824
0.01095952983064100
0.05057592217631448
0.01095952983064099
0.04521044714518826
0.20863669260505907
0.04521044714518824
0.00456974040704402
0.02108838962657404
0.00456974040704403
0.04076147306796418
0.18810561415815038
0.04076147306796421
0.00456974040704402
0.02108838962657404
0.00456974040704403



Ny

fi

of

ti

W

> W

1.000694456803870

21

0.32299531083717852
0.16666666666666651
0.01033802249615444
0.45556104639979350
0.23507103205255752
0.01458101770532146
0.05786383971194965
0.02985793589488500
0.00185203207782034
0.45556104639979350
0.23507103205255752
0.01458101770532146
0.09814520074965608
0.05064325366172826
0.00314130657380041
0.77269553101222443
0.39871349267654354
0.02473145434086246
0.09814520074965608
0.05064325366172826
0.00314130657380041

0.01033802249615442
0.16666666666666646
0.32299531083717852
0.01458101770532148
0.23507103205255744
0.45556104639979355
0.00185203207782034
0.02985793589488499
0.05786383971194965
0.01458101770532148
0.23507103205255744
0.45556104639979355
0.00314130657380041
0.05064325366172824
0.09814520074965610
0.02473145434086247
0.39871349267654343
0.77269553101222465
0.00314130657380041
0.05064325366172824
0.09814520074965610

W

0.333333333298
0.333333333398
0.333333333398
0.059715877060
0.0597158771060
0.059715877060
0.470142664409
0.470142664409
0.47014266:41409
0.470142664409
0.4701426641409
0.470142664409
0.797426968898
0.797426968898
0.797426968898
0.101286303830
0.101286383830
0.101286303830
0.101286383830
0.101286383830
0.101286383830

0.03403831005069069
0.15707963267948948
0.03403831005069071
0.02824910162929163
0.13036365497718521
0.02824910162929161
0.00358810636159924
0.01655835523137294
0.00358810636159924
0.02824910162929163
0.13036365497718521
0.02824910162929161
0.00578920842139905
0.02671597770230424
0.00578920842139905
0.04557834148939840
0.21033444752788957
0.04557834148939839
0.00578920842139905
0.02671597770230424
0.00578920842139905
1.000694456803870

48

0.24633326736932920
0.18808881678888075
0.06119792838202972
0.00295347780158129
0.49548575230108621
0.37833025917011581
0.12309625048806319
0.00594075735709287
0.24633326736932920
0.18808881678888075
0.06119792838202972
0.00295347780158129
0.06234155395686129
0.04760115937952347
0.01548785511197853

0.00295347780158129
0.06119792838202974
0.18808881678888075
0.24633326736932920
0.00594075735709286
0.12309625048806321
0.37833025917011581
0.49548575230108621
0.00295347780158129
0.06119792838202974
0.18808881678888075
0.24633326736932920
0.00074746053464071
0.01548785511197853
0.04760115937952347

39

0.501486809903
0.501426809663
0.501426809663
0.501426809663
0.24928609%048
0.24928609%048
0.24928609%048
0.24928609%048
0.24928609%048
0.24928609%048
0.24928609%048
0.24928609%048
0.8738216992688
0.8738216%92010
0.8738216%992610

0.00516368078880538
0.03850588067500381
0.03850588067500381
0.00516368078880538
0.01038645850642608
0.07745245073076008
0.07745245073076008
0.01038645850642609
0.00516368078880538
0.03850588067500381
0.03850588067500381
0.00516368078880538
0.00056894408398100
0.00424265052479945
0.00424265052479945



Ny

ri

s

ti

W

0.00074746053464071
0.86346917912602194
0.65930557398883038
0.21451639702816560
0.01035279189097407
0.06234155395686129
0.04760115937952347
0.01548785511197853
0.00074746053464071
0.30667548427742402
0.23416337383863913
0.07618907719514483
0.00367696675636001
0.05251540254899713
0.04009835956839377
0.01304669027642321
0.00062964729581986
0.62896140021332347
0.48024615934084435
0.15625633978055458
0.00754109890807559
0.62896140021332347
0.48024615934084435
0.15625633978055458
0.00754109890807559
0.30667548427742402
0.23416337383863913
0.07618907719514483
0.00367696675636001
0.05251540254899713
0.04009835956839377
0.01304669027642321
0.00062964729581986

0.06234155395686128
0.01035279189097402
0.21451639702816566
0.65930557398883038
0.86346917912602172
0.00074746053464071
0.01548785511197853
0.04760115937952347
0.06234155395686128
0.00367696675636000
0.07618907719514486
0.23416337383863913
0.30667548427742402
0.00062964729581986
0.01304669027642322
0.04009835956839377
0.05251540254899713
0.00754109890807558
0.15625633978055461
0.48024615934084435
0.62896140021332347
0.00754109890807558
0.15625633978055461
0.48024615934084435
0.62896140021332347
0.00367696675636000
0.07618907719514486
0.23416337383863913
0.30667548427742402
0.00062964729581986
0.01304669027642322
0.04009835956839377
0.05251540254899713

>W

0.8738216992688
0.0630890%8200
0.063089030200
0.0630890%8200
0.063089038200
0.0630890%8200
0.063089039200
0.0630890%8200
0.063089039200
0.053145089699
0.053145089380
0.053145089800
0.053145089699
0.636502499900
0.636502499900
0.636502499900
0.636502499900
0.310352338860
0.310352338060
0.310352338860
0.310352338060
0.0531450896899
0.053145089800
0.053145089300
0.053145089699
0.636502499900
0.636502499900
0.636502499900
0.636502499900
0.310352338060
0.310352338860
0.310352338060
0.310352338860

0.00056894408398100
0.00788022835464816
0.05876334055615853
0.05876334055615853
0.00788022835464818
0.00056894408398100
0.00424265052479945
0.00424265052479945
0.00056894408398100
0.00456059725198525
0.03400865018077964
0.03400865018077964
0.00456059725198525
0.00078096102502669
0.00582367370707741
0.00582367370707741
0.00078096102502669
0.00935333856299657
0.06974841268276395
0.06974841268276395
0.00935333856299657
0.00935333856299657
0.06974841268276395
0.06974841268276395
0.00935333856299657
0.00456059725198525
0.03400865018077964
0.03400865018077964
0.00456059725198525
0.00078096102502669
0.00582367370707741
0.00582367370707741
0.00078096102502669
0.999992114228862
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