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Abstract
A mapping method is developed to integrate weak singularities which result from enrichment func-
tions in the generalized/extended FEM. The integration scheme is applicable to 2D and 3D prob-
lems including arbitrarily shaped triangles and tetrahedra. Implementation of the proposed scheme
in existing codes is straightforward. Numerical examples for 2D and 3D problems demonstrate the
accuracy and convergence properties of the technique.
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1 Introduction

Physical phenomena can be simulated by several numerical methods, such as finite element meth-
ods (FEMs) and boundary element methods (BEMs). These numerical methods are developed on
the basis of governing differential equations. For instance, weak formulations in the FEM are ob-
tained from governing differential equations, and are approximated by using shape functions. In
the standard FEM, shape functions are usually based on polynomials. FEM shape functions can
be generalized/extended by introducing custom-built enrichment functions using the partition of
unity methodology [3, 17, 32]. Accordingly, the resulting method is named either GFEM [14, 42]
or X-FEM [10, 29, 43] in the technical literature. In the BEM,boundary integral equations are
formulated using singular Green’s functions to solve the physical problems of interest [20, 45, 46].

In the standard FEM, numerical integrations are relativelyeasy compared to the BEM, because
the integrands usually consist of smooth functions such as polynomials while the BEM in general
involves singular Kernels. The standard Gaussian integration, therefore, provides accurate results
for given polynomial orders.

When non-polynomial enrichment functions, such as Heaviside functions, singular functions,
or trigonometric functions, are used in the GFEM/X-FEM, numerical integration should be per-
formed with care. For example, in linear elastic fracture problems, polynomial functions can be

1



used for the smooth field, while singular functions can be introduced for the weakly singular field
to capture the crack tip behavior, as described in Figure 1. On the basis of the Westergaard stress
functions, branch functions are utilized as enrichment functions [6, 31]. Due to the branch func-
tions, the strain-displacement matrix (B) contains the 1/

√
r singularity, and therefore, some entries

in the integrand of the element stiffness matrix (K) have the 1/r singularity. To obtain accurate
numerical integration of the element stiffness matrix, many integration points are necessary when
standard quadrature rules for polynomials are employed, which lead to the increase of computa-
tional cost [5, 13, 25]. Recently, Bechet et al. [5] utilizedthe polar transformation technique to
integrate singular functions for 2D problems. Laborde et al. [25] also developed a new integration
rule, called the ‘almost polar integration,’ for 2D problems. Xiao and Karihaloo [51] utilized the
adaptive integration algorithm (DECUHR [19]) with higher order Gauss-Legendre quadrature for
2D problems. They stated that “an adaptive control of the integration error using DECUHR is very
time-consuming” (page 1381) and that “a very high order quadrature is required for all elements
enriched with crack tip branch functions” (page 1404). If the enrichment functions satisfy the
equilibrium equations, the domain integral used to computeK can be transformed into equivalent
boundary integrals. Ventura et al. [50] have shown that thisform is computationally more efficient
than the domain form when the enrichment functions are weakly singular or discontinuous.
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Figure 1: Example of singular behavior in linear elastic fracture mechanics problems. The notations are
the following:K denotes the element stiffness matrix;B is the strain-displacement matrix;D indicates the
constitutive matrix; A is the element area.

In the BEM, numerical integrations are an important issue because of inherent singularities.
The singularities in the integrand make computational simulations much less accurate if one uses
standard quadrature rules. Whenever elements contain a source (e.g. loading) point, the inte-
grand becomes singular forr → 0 wherer is the distance from a source point. When the inte-
gral of a singular function exists, and is continuous at the singularity, we name the integrand as
weakly singular [9, 20, 23]. For example, atx = 0, the ln|x| function is singular, but the integrand∫

ln |x|dx= xln |x|−x+c, wherec is a constant, is continuous, as verified by applying the ruleof
L’Hospital: lim

x→0
xln |x| = lim

x→0
ln |x|/(1/x) = lim

x→0
(1/x)/(−1/x2) = 0. Weakly singular techniques
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for 2D problems are used to integrate the lnr singularity while weakly singular techniques for
3D problems are used to integrate the 1/r singularity. A review of general singular integration
techniques can be found in references [20, 45]. Moreover, the so-called singular and hypersingu-
lar boundary integrals need to be evaluated for the symmetric Galerkin boundary element method
(SGBEM) [8, 45], and the interested reader is referred elsewhere for further details [44, 47]. In
order to reduce errors from numerical integration of singularities, several singular integration tech-
niques have been developed in conjunction with the BEM [20, 33, 45]. For the weak singularity in
3D BEM, transformation techniques have been widely utilized so that the Jacobian cancels the sin-
gularity. The polar transformation can be utilized to integrate the singularity exactly. However, it
results in curved integration intervals, which leads to an additional transformation to the reference
square domain. This can result in higher computation (especially for nonlinear problems), and
accumulated round off error [30]. The Lachat-Watson transformation was developed on the basis
of special solutions of boundary integral equations [26]. Nagarajan and Mukherjee [30] developed
a mapping method to evaluate integrals ofO(1/r), over two-dimensional triangular (curved or
straight) domains. These singular integral techniques aredeveloped only for a 2D domain because
the integration of 3D domains is not necessary for the BEM [45]. In other words, the BEM reduces
the dimension of the problem by one - thus 3D problems are treated by means of 2D integrations,
while 2D problems are treated by means of 1D integrations.

Integration of singular functions in 3D has been an open issue in the GFEM/X-FEM literature.
In recent papers published in 2005 in this journal, Laborde et al. [25] indicated that extension of
their work to “tridimensional problems is an open question,since the singularities are difficult to
express” (page 380). Similarly, Bechet et al. [5] remarked that they “do not have singular integra-
tion scheme yet available for arbitrary 3D meshes” (page 1053). The present paper addresses such
issue by means of a tailored mapping method to handle 3D singular integration, which is applicable
to arbitrarily shaped (i.e. straight edge or curved edge) tetrahedra elements. The present mapping
method is also used to integrate 2D domains. Our GFEM/X-FEM mapping method is an exten-
sion of the BEM work by Nagarajan and Mukherjee [30]. The proposed mapping method leads to
convergence of strain energy and stress intensity factors for fracture problems, while requiring less
integration points (to obtain accurate results) than standard quadrature rules. For comparison pur-
poses, convergence analysis for fracture problems are performed using both the proposed mapping
method and standard quadratures (e.g. Keast [24]). For the same level of accuracy, the proposed
mapping method requires considerably less number of integration points than standard quadrature
rules. Moreover, its implementation in existing codes is straightforward.

The present paper is organized as follows. First, convergence of different types of branch func-
tions used in the GFEM/X-FEM are investigated. The mapping method for both 2D and 3D sin-
gular integrations is presented in Section 3. Next, the performance of the mapping method is
compared with that of standard quadrature rules through theoretical and engineering examples.
Finally, Section 5 concludes the paper. Two appendices supplement the text. Appendix A provides
a MATLAB code to generate integration points and weights forsingular integration in 2D, which
can be readily extended to 3D. Appendix B provides quadrature rules for both 2D and 3D.
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2 GFEM/X-FEM for Fracture Mechanics

In computational simulations of linear elastic fracture problems, the mesh quality is an important
issue because of the singularity at a crack tip. When we utilize the standard FEM, not only the crack
geometry should correspond to the finite element mesh, but the mesh should also be refined around
a crack tip in order to obtain accurate results. In addition to these techniques, the generalized
or extended finite element method (GFEM/X-FEM) provides extra flexibility in generating finite
element meshes and improving the solution quality. These flexibilities and capabilities are achieved
through the concept of a partition of unity in conjunction with local enrichment functions. Details
of the GFEM/X-FEM for this class of problems are provided elsewhere [10, 11, 14, 15, 29, 43]. In
this section, we focus only on the enrichment functions and their singular behavior.

2.1 Enrichment Functions

In the standard FEM, a crack is described by double nodes along crack surfaces. Thus, finite
element meshes should correspond to crack surfaces. In the GFEM/X-FEM, a crack can be repre-
sented by a discontinuous function, and therefore, finite element meshes do not need to coincide
with the geometry of crack surfaces. A node whose support (orcloud) has a crack is enriched by
a discontinuous (e.g. Heaviside) function. The enrichmentcases of the Heaviside function with
respect to the crack geometry is shown in Figure 2.

Fully cut elements: Enriched with discontinuous functions (    )

Partially cut element: Enriched with branch functions (    )

θ

r

x̄
ȳ

Figure 2: Enrichment cases with respect to the crack geometry.

However, the Heaviside function is unable to represent a crack which partially cuts an element
(e.g. dark gray element in Figure 2). In this case, one can utilize branch functions to enrich a node
whose support (or cloud) has a crack tip. Since branch functions are based on the Westergaard
stress functions, the branch functions are able to represent singular stress behavior, and to provide
accurate computational results. Oden and Duarte [31] introduced branch functions (these functions
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are hereafter denotedOD),
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wherer andθ are polar coordinates at the crack tip (see Figure 2),κ is a material constant (3−4ν),
andν is the Poisson’s ratio. TheLtip−x̄, Ltip−ȳ branch functions are used as enrichments around a
crack tip along the local ¯x andȳ direction, respectively. Enrichments for 3D problems are available
in references [14, 15]. Belytschko and Black [6] utilized branch functions (these functions are
hereafter denotedBB),
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which are used as enrichments around a crack tip for both ¯x and ȳ directions. The same branch
functions are utilized for 3D fracture problems [29]. In thecase of 2D problems, theOD branch
functions introduces four additional local enrichment functions per node, while theBB branch
functions generate eight additional local enrichment functions per node.

2.2 Comparison BetweenOD andBB Branch Functions

TheOD andBB branch functions lead to singular entries in the integrand of the element stiffness
matrix, and thus are difficult to integrate with standard quadrature rules. This Section compares the
performance of these two family of functions, while Section3 presents a mapping method for the
numerical integration of these functions for 2D and 3D problems. In order to compare theOD and
BB branch functions, a single edge notched (SEN) tension test is investigated, as shown in Figure 3.
The elastic modulus (E) is 1 and the Poisson’s ratio (v) is 0.3. Uniform traction (T = 1) is applied
under the assumption of unity thickness and the plane straincondition, as illustrated in Figure 3.
For this boundary value problem, the reference strain energy (Uref) is taken as 9.198545583 [12].

Three different cases are investigated with respect to meshdiscretization. First, the finite ele-
ment mesh grid consists of an even number of elements along the horizontal and vertical directions
such as 4x8, 8x16, 16x32 and 32x64 (Case I). In this case, the crack matches the finite element
meshes. Next, the finite element mesh grid consists of an evennumber of elements along the hor-
izontal direction and an odd number of elements along the vertical direction such as 4x9, 8x17,
16x33 and 32x65 (Case II). In this case, the crack cuts through elements while the crack tip is
located at an element boundary (or edge). Finally, the mesh grid consists of an odd number of
elements along the horizontal and vertical directions suchas 5x9, 9x17, 17x33 and 33x65 (Case
III). In this case, both the crack surface and the crack tip are located within elements. Figure 4
illustrates examples of finite element meshes for each case,and local enrichment types. Solid rect-
angles illustrate the local enrichment of the Heaviside function, and solid circles describe the local
enrichment of the branch functions. With respect to the local enrichment types, one can introduce
different numerical integration schemes during computational implementation, as discussed in the
next section. The numerical integration of the stiffness matrix of elements enriched with singular
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Case II

1

2

4x8 / 8x16 / 16x32 / 32x64

2

2

Case III

4x9 / 8x17 / 16x33 / 32x65

5x9 / 9x17 / 17x33 / 33x65

Mesh Grid

Case I

T

E = 1

ν = 0.3

Uref = 9.198545583

Figure 3: Geometry of problem and mesh grids for each case.

(a) (b) (c)

Figure 4: Finite element meshes for each case and local enrichment function types; (a) case I with the mesh
grid of 8×16; (b) case II with the mesh grid of 8×17; (c) case III with the mesh grid of 9×17.

functions is done using the technique described in Section 2.3 and a large number of integration
points. Thus, the results presented below are not affected by integration errors.

Figure 5 compares the relative errors in the energy norm withrespect to the branch functions
such as theOD branch functions and theBB branch functions. For all the cases, theBB branch
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functions provide slightly lower errors in the energy norm than theOD branch functions. This
is because theBB branch functions provide 8 degrees of freedom per node whiletheOD branch
functions provides 4 degrees of freedom per node in two dimensional problems. In other words,
theBB branch functions span a slightly larger solution space. Theh-version provides convergence
rate close to the theoretical values (0.25), while thep-version results in higher convergence rates
(1.1∼ 1.8) either for theOD or theBB branch functions. The domain of influence, union of the
support (or cloud) enriched with branch functions, progressively increases for each case (case I,
case II, case II), and so does the convergence rates for thep-version. This fact is also investigated
by Laborde et al. [25] and Bechet et al. [5].

Additionally, the total number of evaluation is estimated by multiplying the number of integra-
tion points by the number ofK entries. For instance, when we use polynomial orderp = 1 and
the OD branch functions, we have 6 DOFs per node around the crack tip. Then, the number of
K entries is 576. If one uses 100 integration points, the totalnumber of evaluations is 57,600.
Similarly, when we use theBB branch function, we have 10 DOFs per node around the crack tip,
and therefore, the number ofK entries is 1,600. The total number of evaluations becomes 160,000
with the 100 integration points. One observation we can makeis that, the choice between theOD

branch functions and theBB branch functions does not affect much the solution time since the
size of the system of equations is about the same. However, itmay affect more significantly the
CPU time to integrate the stiffness matrix. Especially in 3D, theBB branch functions leads to 6
more DOFs per node than theOD branch functions. The difference in the number of evaluations
required to integrateK may be significant. The elements with singular enrichment functions may
require many integration points and thus, the number of DOFsin these elements have a significant
impact on the CPU time required to compute their stiffness matrix.

Based on the above investigation, hereafter theOD enrichment functions are employed. The
general conclusions presented in this paper, however, holdfor both theOD andBB enrichment
functions.

2.3 Implementation of Numerical Integration

An element with a crack is subdivided into several triangular elements in order to avoid discon-
tinuity in the integration domain [11, 28, 41]. When a crack fully cuts an element, we have two
sub-domains, i.e. upper and lower part of an element. For each sub-domain, one obtains the cen-
troid, and then creates triangles by connecting the centroid to the vertices of a sub-domain. The
number of triangles is the same as the number of vertices of a sub-domain. Next, when a crack
partially cuts an element, a crack tip is virtually extendedto an edge so that one is able to perform
the same procedure as the previous case, as shown in Figure 6.Three-dimensional implementation
follows similar ideas, as described by Pereira et al. [37], in which integration sub-element edges
fit the actual crack front. Alternatively, quadrature rulesfor triangular and tetrahedral elements are
available when the integrand consists of a quadratic function times a Heaviside function [22].

Numerical integration schemes of subdivided triangular elements are described in Figure 6.
When elements are enriched with polynomials or discontinuous functions (e.g. white sub-triangles),
the standard quadrature rule is utilized with respect to given polynomial orders. When branch func-
tions are enriched and sub-triangles do not have singularities (e.g. light gray triangles), the standard
quadrature rule is also used. Sub-triangles around the crack tip (e.g. 4 dark gray elements) possess

7



10 10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

 

 

h-version: OD branch function
h-version: BB branch function
p-version: OD branch function
p-version: BB branch function

Degrees of freedom

R
el

at
iv

e
er

ro
r

in
th

e
en

er
g

y
n

o
rm

1

1
0.26

1
1.1

(a)

10 10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

 

 

h-version: OD branch function
h-version: BB branch function
p-version: OD branch function
p-version: BB branch function

Degrees of freedom

R
el

at
iv

e
er

ro
r

in
th

e
en

er
g

y
n

o
rm

1

1
0.28

1
1.2

(b)

10 10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

 

 

h-version: OD branch function
h-version: BB branch function
p-version: OD branch function
p-version: BB branch function

Degrees of freedom

R
el

at
iv

e
er

ro
r

in
th

e
en

er
g

y
n

o
rm

1

1
0.27

1
1.8

(c)

Figure 5: Comparison between theOD branch functions and theBB branch functions; (a) case I; (b) case
II; (c) case III
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singularities, and thus a mapping method is utilized so thatone reduces the error from numerical
integrations. The detailed computational implementationof the mapping method is discussed in
the following section.

Integration for polynomial functions: Standard quadrature rule

Integration for branch functions without singularity: Standard quadrature rule

Integration for singular functions: Mapping method

Figure 6: Numerical integration schemes with respect to enrichment functions.

3 Mapping Method

In this section, a mapping method for singular integration in 2D and 3D domains is presented.
For a 3D mapping method, two types of singularities are addressed in a tetrahedral element: (1)
elements with an edge on the singularity, (2) elements with anode on the singularity.

3.1 2D Mapping

For two dimensional integrals with 1/r singularity, a mapping method is introduced by Nagarajan
and Mukherjee [30]. The mapping method eliminates the singularity, and therefore, one can per-
form accurate numerical integration with the standard Gaussian integration points. The mapping
is given as

TM : (ρ̄ , θ̄) 7−→ (r̄, s̄)

where
r̄ = ρ̄ cos2 θ̄ , s̄= ρ̄ sin2 θ̄ . (3)

The inverse mapping (TM
−1) transforms a right triangle (Figure 7 (b)) into a rectangle(Figure 7

(c)). Because the Jacobian of the transformation (JM) is ρ̄ sin(2θ̄), the 1/r singularity is eliminated
in the integrand.
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The procedure of the mapping method is described as follows.First, a triangular element, which
has singularity at a vertex (e.g. dark gray shading in Figure6), is mapped from the Cartesian
coordinate (x, y) system (Figure 7 (a)) to the area coordinate (¯r, s̄) system (Figure 7 (b)). When we
perform this transformation, the node, which corresponds to the crack tip, should be assigned as
the origin in the area coordinate system. Next, the mapping transforms the area coordinate system
into the rectangular coordinate (ρ̄ , θ̄ ) system.

(a) (b) (c)

x

y

1

1

10 0r̄

s̄ θ̄

ρ̄

π/2

Figure 7: (a) Triangle with a node on the singularity in the Cartesian (physical) coordinate (x, y) system,
(b) triangle in the area coordinate (̄r, s̄) system, and (c) transformed rectangle in the mapped coordinate (ρ̄ ,
θ̄ ) system.

3.1.1 Computational Implementation

The numerical integration of the mapping method is implemented within the same framework of
the standard numerical integration. For the standard integration, subdivided triangular elements
(e.g. white and light gray shading in Figure 6) are integrated in the area coordinate (¯r, s̄) system,

I =
∫

A
f (x,y)dA=

∫

A
f̄ (r̄, s̄)Jt dr̄ds̄≈

nt

∑
i

f̄ (r̄ i, s̄i)JtWi , (4)

wherent is the number of integration points for a triangle, andJt is the Jacobian, which relates
between the physical coordinates (x, y) system and the master (area) coordinates (¯r, s̄) system.
The standard triangular integration points ( ¯r i , s̄i) and the weights (Wi) are listed in the reference by
Dunavant [18].

The mapping method requires the transformation (TM
−1) from the triangular domain to the

rectangular domain. Then, subdivided triangular elementsare integrated in the mapped coordinates
system,

I =
∫

A
f̄ (r̄ , s̄)Jtdr̄ds̄=

∫ 1

0

∫ π/2

0
f̂ (ρ̄, θ̄)Jt ρ̄ sin2̄θdρ̄dθ̄

=
∫ 1

−1

∫ 1

−1
f̃ (ξ ,η)Jt J̃M(ξ ,η)Jqdξdη ≈

nq1

∑
i

nq1

∑
j

f̃ (ξi ,η j)Jt J̃M(ξi ,η j)JqWiWj (5)

wherenq1 is the number of quadrature points for 1D Gaussian quadrature. While J̃M(ξ ,η) is
equal to the transformation ofJM = ρ̄ sin(2θ̄) to the integration coordinate system (ξ , η), Jq is the
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Jacobian which relates between the mapped coordinates (ρ̄ , θ̄ ) system and the master coordinates
(ξ , η) system for a rectangle. Note that the Jacobian (Jq) is a constant (π/8).

For the computational implementation, the above expression can be written as

nq1

∑
i

nq1

∑
j

f̃ (ξi ,η j)Jt J̃M(ξi ,η j)JqWiWj =
nq

∑
i

f̄ (r̄ i, s̄i)JtW̃i , (6)

wherenq is the number of quadrature points for the mapping method. The integration points ( ¯r i ,
s̄i), which satisfy f̃ (ξi ,η j) = f̄ (r̄ i, s̄i), is obtained by transforming the integration points (ξi , η j )
in the master coordinates system. Moreover, for the given integration points ( ¯r i , s̄i), the quantity
(J̃M(ξi ,η j)JqWiWj ) is considered as the transformed weights (W̃i). A pseudo code to generate the
transformed integration points and weights is provided in Appendix A, and examples of integration
points and weights are listed in Table 6.

In summary, the transformation procedures are eliminated in the computational implementation
of the mapping method, and therefore, one can utilize an existing code by simply modifying the
integration rule for elements which have a singularity. In other words, the mapping method (or
transformation) generates the special integration rules (i.e. integration points and weights), which
are able to efficiently handle the singularities.

3.2 3D Mapping

This section presents extensions of the mapping method to three-dimensional cases. For 3D ele-
ments, the singularity occurs either along an edge (Figure 8(a)) or at a node (Figure 9(a)). Map-
pings for these two cases are presented below.

3.2.1 Elements with edge on singularity

Let
Tt : (r̄ , s̄, t̄) 7−→ (x,y,z) (7)

denote the transformation from master (volume) coordinates of a tetrahedral element to global
(physical) coordinates. The mappingTt is implemented using standard tetrahedral shape functions.
The Jacobian of this mapping,Jt , is, in the case of elements with straight edges, constant over the
element.

We assume, without loss of generality, that the element connectivities are such that the element
edge on the singularity is mapped byT−1

t to the edge along thēt axis, as illustrated in Figure 8(b).
Thus, this case is similar to the two-dimensional one because the singularity is only influenced by
r̄ ands̄. Therefore, one utilizes the following mapping,

TM : (ρ̄, θ̄ , t̄ ′) 7−→ (r̄ , s̄, t̄)

where
r̄ = ρ̄ cos2 θ̄ , s̄= ρ̄ sin2 θ̄ , t̄ = t̄ ′ (8)

The inverse mapping,TM
−1, leads to the integration domain shown in Figure 8(c). The (¯r, s̄) plane
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(a) (b) (c) (d)

r =
√

r̄2+ s̄2
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1
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1

1

1

1

1

−1

0

00 r̄

s̄

t̄

z ζ

ξ

η

ρ̄

π/2

θ̄

t̄ ′

Tt
−1 TM

−1 Tq
−1

Figure 8: (a) Tetrahedron (Ωtet) with an edge on the singularity in the Cartesian (physical)coordinate (x,
y, z) system, (b) tetrahedron (Ω̂tet) in the volume coordinate (̄r, s̄, t̄) system; (c) transformed prism (Ωprism)
in the mapped coordinate (̄ρ, θ̄ , t̄ ′) system; (d) master prism (Ω̂prism) in the master coordinate (ξ , η , ζ )
system.

is transformed to the (̄ρ , θ̄ ) plane. With the increase of̄t ′ from 0 to 1, the integration domain of the
(ρ̄, θ̄ ) plane decreases from (1×π/2) to (0×π/2). Within this integration domain, the singularity
is eliminated because the Jacobian ofTM is equal toρ̄ sin2θ̄ .

An additional mapping is used to transform the prism shown inFigure 8(c) to the master prism
shown in Figure 8(d),

Tq
−1 : (ρ̄ , θ̄ , t̄ ′) 7−→ (ξ ,η ,ζ ) . (9)

Standard quadrature rules for a prism can be defined using theproduct of a 1D Gauss quadrature
and a rule for triangular elements. In our computations, we use Dunavant rules [18]. The Jacobian
of transformationTq is constant withJq = π/4.

3.2.2 Elements with a single node on singularity

For the case shown in Figure 9(a), the following mapping can be used,

r̄ = ρ̄ cos2 α , s̄= ρ̄ cos2β , t̄ = ρ̄ cos2γ . (10)

On a plane, which is normal to a vector{1,1,1}, the proposed mapping satisfies the following
condition,

cos2α +cos2β +cos2γ = 1 . (11)

The substitution of the above expression intot̄ = ρ̄ cos2γ leads tōt = ρ̄(1−cos2α−cos2β ). Then,
the Jacobian is given as

∣∣∣∣∣∣

−ρ̄ sin(2α) 0 cos2α
0 −ρ̄ sin(2β ) cos2 β

ρ̄ sin(2α) ρ̄ sin(2β ) 1−cos2α −cos2β

∣∣∣∣∣∣
= ρ̄2sin(2α)sin(2β ) , (12)

and the transformed domain is described in Figure 9(c). Because the Jacobian has āρ2 term, the
singularity is eliminated within the integration domain.

12



z

(a) (b) (c)

r =
√

r̄2+ s̄2+ t̄2

x

y

1

1

1

1

0 0r̄

s̄

t̄

ρ̄

π/2

π/2

α

β

Figure 9: (a) Tetrahedron with a node on the singularity in the Cartesian (physical) coordinate (x, y, z)
system, (b) tetrahedron in the volume coordinate (r̄, s̄, t̄) system; (c) transformed hexahedron in the mapped
coordinate (̄ρ, α , β ) system.

3.2.3 Elements with a single node on singularity: Alternative Approach

In the approach presented in the previous section, the quadrature is performed in a hexahedral ele-
ment. Thus, for the same quadrature order, the number of quadrature points used in that approach
is much larger than the one from Section 3.2.1. For a rule ableto integrate an integrand of poly-
nomial degreep = 4, for example, the quadrature rule for a hexahedral elementrequires 27 points
while the corresponding rule for a prism has only 18 points. Numerical experiments performed in
Section 4.3 show that integration errors introduced by elements with an edge on a crack front is
more pronounced than for elements with a single node on a crack front.

Based on the above, we propose to use the integration rule presented in Section 3.2.1 for ele-
ments witheitheran edge or a single node on the crack front. Let, in the later case,xxxα denote the
node on the crack front. Leteclose denote the element edgewith node xxxα that makes the smallest
angle with the singularity line (crack front). We assume, without loss of generality, that the el-
ement connectivities are such that element edgeeclose is mapped byT−1

t to the edge along thēt
axis, as illustrated in Figure 8(b). The rule for elements with an edge on the crack front is then
used, without modifications, for this element. The performance of this approach is investigated in
Section 4.3.

3.3 Computational Implementation

The computation implementation of quadrature rules for tetrahedral elements can be done using
the same ideas described in Section 3.1.1. The case of an element with an edge on a crack front is
considered in this section.

Let f (x,y,z) be a function we want to integrate over the tetrahedralΩtet. We assume that this
function has a line singularity and that the tetrahedral element has an edge along this line. The
integral of f (x,y,z) can be computed as follows using the quadrature rule presented in Section
3.2.1

13



I =
∫

Ωtet

f (x,y,z)dxxx =
∫

Ω̂tet

f̄ (r̄, s̄, t̄)Jtdr̄ds̄dt̄

=
∫

Ωprism

f̌ (ρ̄, θ̄ , t̄ ′)JtJM(ρ̄ , θ̄)dρ̄dθ̄dt̄ ′

=
∫

Ω̂prism

f̃ (ξ ,η ,ζ )Jt J̃M(ξ ,η ,ζ )Jqdξdηdζ

≈

nq

∑
i=1

f̃ (ξi ,ηi ,ζi)J̃M(ξi ,ηi ,ζi)JqJtWi

=
nq

∑
i=1

f̄ (r̄ i , s̄i, t̄i)JtW̃i (13)

whereΩtet, Ω̂tet, Ωprism andΩ̂prism are illustrated in Figures 8(a)-(d), respectively,Jt , JM andJq are
the Jacobian of the transformationsTt , TM andTq defined in Section 3.2.1, respectively, and

f̄ (r̄ , s̄, t̄) = f ◦Tt(r̄, s̄, t̄)

f̌ (ρ̄, θ̄ , t̄ ′) = f̄ ◦TM(ρ̄, θ̄ , t̄ ′)

f̃ (ξ ,η ,ζ ) = f̌ ◦Tq(ξ ,η ,ζ )

J̃M(ξ ,η ,ζ ) = JM ◦Tq(ξ ,η ,ζ )

W̃i = J̃M(ξi ,ηi ,ζi)JqWi (14)

where “◦” denotes the composition of two functions.

The quadrature points,(ξi ,ηi ,ζi), and weights,Wi , i = 1, . . . ,nq, are defined in the master prism
elementΩ̂prism. These points are mapped to quadrature points(r̄ i , s̄i, t̄i) defined inΩ̂tet using

(r̄ i, s̄i , t̄i) = TM ◦Tq(ξi ,ηi ,ζi) i = 1, . . . ,nq . (15)

These points, together with quadrature weightsW̃i , i = 1, . . . ,nq, can be used in the master element
Ω̂tet to integrate the singular function̄f (r̄, s̄, t̄). Thus, as pointed out in Section 3.1.1, the numerical
integration of f̄ can be accurately performed by simply replacing the quadrature rule used in an
existing FEM code by the rule defined above.

Table 7 lists quadrature rules fornq = 1,6,8,18,21,48. These rules are based on prism rules
that can integrate polynomials of degreep = 1,2,3,4,5,6, respectively. The weights listed there,
Ŵi , were scaled by the volume of the master tetrahedron,Ω̂tet, i.e.,

Ŵi = W̃i/(1/6) (16)

They should be scaled back before their use.

The sum∑
nq
i Ŵi is also listed in Table 7. We can observe that the weights donot add to 1.0, as

one would expect. The quadrature rule in theη-direction of the master prism̂Ωprism must integrate
the trigonometric function sin 2̄θ from the JacobianJM. Thus, a high enough rule in theη-direction
should be used, regardless of the integrand functionf̃ . We can observe that the 18 point rule is able
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to integrate a constant function with an accuracy of 0.069445 %. The deviation of∑
nq
i Ŵi from 1.0

is exactly the same in Tables 6 and 7 since the JacobianJM is the same in both cases.

In the case of fracture mechanics problems, the singular functions to be integrated involve
trigonometric functions, as discussed in Section 2.1. Thus, a moderate number of points must
be used anyway. The same is the case when high-order GFEM shape functions, like those intro-
duced in references [16, 37] are used. The integration ofJM does not introduce any overhead in
the computations.

Rules withnq = 6 andnq = 8 use the same 1D Gauss rule in theη-direction. Thus, they provide
the same accuracy for the integration of the JacobianJM. The same holds for other rules like those
with nq = 18 andnq = 21.

It is desirable that the quadrature rules exactly integrateat least a constant function. This can be
achieved by scaling the weights such that they add to 1.0. Define

W̃i = Ŵi/(
nq

∑
j

Ŵj), i = 1, . . . ,nq (17)

The effect of the scaling is discussed in Section 4.1, and we use these scaled weights in all compu-
tations presented in Section 4.3.

4 Examples

Three classes of examples are presented in this section:

• Theoretical assessment

• Integration of branch functions

• Effect of integration errors on quantities of interest

Mode I fracture analysis on a coarse mesh

Mode I fracture analysis of an edge-cracked bar using locally refined meshes

Mixed mode fracture analysis.

The aim of the theoretical assessment is to demonstrate the characteristics of the mapping method
for integration of scalar functions over a triangular area.The integration of branch functions as-
sesses the convergence of their element stiffness matrix entries for fracture problems. Finally, the
effect of integration error on quantities of interest addresses practical fracture problems on coarse
and fine meshes, including both mode I and mixed-mode problems.
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4.1 Theoretical Assessment

In order to demonstrate the efficiency of the singular mapping method, convergence of the follow-
ing singular integration is investigated,

I =
∫

A

f (x,y)dA , (18)

whereA is the area of a triangle. A triangle has vertices at (0,0), (1,0) and (0,1) inx− y physical
coordinates. Within the triangular domain (shown in Figure7(a)), a scalar function (f (x,y)) such
as 1, 1/r and 1/

√
r (wherer =

√
x2 +y2) is integrated by using either the standard triangular

integration [18] or the singular mapping method. Figure 10 demonstrates convergence of a standard
triangular integration with respect to the number of integration points. It is clear that when the
integrand has higher singularity, convergence of the relative error is slower. The singular mapping
method is compared with the standard integration, shown in Figure 11. Both the standard triangular
integration and the mapping method results in almost the same convergence rate (or slope) for the
1/

√
r singularity, while the mapping method leads to the higher convergence rate for the 1/r

singularity. The standard integration provides exact integration with any number of integration
points for a constant function. However, the mapping methodrequires several integration points
to obtain accurate results. This is because the summation ofthe weights of the mapping method is
not exactly equal to one (although it converges to one), as shown in Table 6.
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Figure 10: Convergence of numerical integration for the standard triangular integration.

In order to obtain the integration rule which provides exactintegration of a constant function,
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Figure 11: Comparison between the mapping method and the standard integration.

the weights are scaled so that they add to 1.0, as discussed previously. Figure 12 illustrates the
convergence of a constant function (f (x,y) = 1) and a singular function (f (x,y) = 1/r) with respect
to different integration schemes: the mapping method with the scaled weights, the mapping method
without scaling, and the standard triangular integration.The mapping method with scaled weights
results in the exact integration of a constant function, as we expected. Moreover, the mapping
method with scaled weights provides almost the same convergence for the 1/r singularity as the
one without the scaled weights.

4.2 Integration of Branch Functions

We investigate convergence of the element stiffness matrixentries, which is associated with the
integration of the branch functions. In this investigation, theOD branch functions are used for the
evaluation of the element stiffness matrix. Figure 13 illustrates the convergence of the Frobenius-
norm of the element stiffness matrix associated with a singular sub-triangle (i.e. gray sub-triangle
in the figure). It is clear that the mapping method converges exponentially while standard quadra-
ture converges algebraically.

In summary, Figures 10 to 13 also show that the mapping methodprovides a more monotonic
convergence and that it is as accurate as the standard quadrature for low accuracy integration and
much more accurate in the high accuracy range. Given that thecomputational cost of both quadra-
tures are exactly the same (for the same number of points) andthe implementation as suggested
in the paper is as straightforward as the standard quadrature, we have a good case in favor of the
mapping method.
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Figure 12: The effect of the scaled weight in the mapping method.
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4.3 3D Analysis and Effect of Integration Errors on Quantities of Interest

In this section, we investigate the performance of the proposed 3D quadrature rules. Our focus is on
the influence of integration errors introduced by elements enriched with theOD branch functions
on quantities of interest for engineering analysis. We compare the strain energy and stress intensity
factors computed with different integration strategies. The main goal is to select the most efficient
quadrature rule for tetrahedral elements based on the target error level of quantities of interest. The
analysis developed in this section is presented in three examples. In the first one, we analyze the
worst case scenario from the numerical integration point ofview, i.e., very large elements enriched
with singular functions. In this case, the 3D model is subjected to appropriate boundary conditions
such that the exact values for strain energy and stress intensity factors are known. This approach
resembles the so-called boundary layer models in fracture mechanics [1, 34, 40]. In the second
example, we perform the integration error analysis for typical meshes used in engineering analysis,
i.e., elements with singular enrichments are small. The reference solution used in this case is fully
3D. The third example presents a mixed-mode fracture analysis. Again, the 3D model is subjected
to appropriate boundary conditions to obtain exact values for strain energy and stress intensity
factors. In this case, typical tetrahedral finite element meshes are also used in the discretization.

4.3.1 Mode I fracture – Benchmark for the mapping method

In this example, we solve an edge-cracked problem in which the Neumman boundary conditions
are the tractions computed from the first term of the Mode I Westergaard solution. Using these
boundary conditions and setting the Poisson’s ratio to zero, one can ensure that the exact solution
in the domain of analysis is given by the first term of the asymptotic expansion. Thus, the strain
energy as well as the stress intensity factor for this problem can be analytically defined. Figure 14
illustrates the domain of analysis and the boundary conditions applied. The main objective of the
analysis presented below is to investigate the performanceof the three-dimensional version of the
proposed integration scheme. In particular, the effectiveness of the numerical quadrature for edge
singularity presented in Section 3.2.1.

Generalized FEM shape functions of degreep = 4 are used at all nodes, except at those on the
crack front. Crack front nodes have GFEM shape functions of degreep = 3 as well as the 3D
counterpart of theOD singular functions (1). Further details on these enrichments can be found in
[14, 15, 37, 38].

The integration rule applied to an element is selected according to its position with respect to
the crack front. In the mesh shown in Figure 14, there are six elements with one edge along the
crack front (elements with edge singularity), twelve elements with one node on the crack front
(elements with node singularity), and six elements with no nodes on the crack front. The later set
is integrated using Keast integration rule [24] of order 6 and 24 points. This rule integrates exactly
the stiffness matrix of these elements. It corresponds to rule K.3 defined in Table 1.

In the first part of the analysis presented here, we concentrate on the numerical integration of
elements with edge singularity. We compute the normalized strain energy and normalized stress
intensity factors using the GFEM discretization describedabove and three numerical integration
strategies: Strategies 1, 6 and 7 described in Table 2. Each strategy corresponds to a sequence
of pairs of integration rules of increasing accuracy. The baseline is Strategy 1 which uses rules
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Figure 14: Edge cracked panel with mode I boundary conditions from asymptotic expansion.

K.2, . . . ,K.10 for elements with vertex or edge singularity (Cf. Table 2). Strategies 6 and 7 use
rulesM.1, . . . ,M.14 andK.2, . . . ,K.10, respectively, for elements with edge singularity and rule
K.10 for elements with vertex singularity. This ensures that the integration errors introduced by
these elements have no influence in the analysis. RuleK.3 is used for elements without singular
enrichment functions. Table 1 provides details on all rulesused on this and subsequent sections.
Rules of lower order than those listed in the table are not considered since they would not be able
to integrate the polynomial shape functions used in the 3D GFEM discretizations considered in
this paper.

Figures 15(a) and 15(b) show the variation of the normalizedstrain energy (U/Uexact) and nor-
malized stress intensity factors (KI/KIexact) in semi-log scale, respectively, for Strategies 1, 6 and
7. The horizontal axes show the sum of the number of quadrature points used byall 24 elements
of the GFEM discretization. Figures 16(a) and 16(b) show a zoom in of these plots.

From Figures 15(a) and 16(a), we observe that Strategy 6 quickly converges to the strain energy
value corresponding to the highest rule used in this strategy (rule M.14). In contrast, the conver-
gence of Strategy 7 to the value corresponding to ruleK.10 is quite slow. Another observation is
that the strain energy values computed with Keast rules are larger than the exact one while those
computed with the mapping method are, in general, smaller than the exact one. This indicates that
the error in the case of the mapping method is mostly due to discretization errors while in the case
of Keast rules it is also strongly affected by integration errors. Comparing Strategies 1 and 6, we
can observe that integration errors introduced by elementswith vertex singularity is not dominant
since corresponding points on these curves show approximately the same error level. Similar ob-
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Table 1: Integration rules for tetrahedral elements. Rules K.1 – K.5 are Keast rules [24]. Rules K.6 – K.10
are based on the tensor product of 1D Gaussian rules.

Keast and tensor product rules Mapping Method of Section 3.2.1
Rule Num. points pKeast Rule Num. points pmap

K.1 11 4 M.1 18 4
K.2 15 5 M.2 21 5
K.3 24 6 M.3 48 6
K.4 31 7 M.4 52 7
K.5 45 8 M.5 80 8
K.6 125 9 M.6 95 9
K.7 216 11 M.7 150 10
K.8 343 13 M.8 198 11
K.9 512 15 M.9 231 12
K.10 729 17 M.10 259 13

M.11 336 14
M.12 488 15
M.13 549 17
M.14 730 19
M.15 1,331 21

pKeast= polynomial order integrated by Keast or tensor product rule
pmap= polynomial order integrated by prism quadrature used to generate the

integration points used in the mapping method

Table 2: Integration strategies used on elements with singular shape functions. Each strategy corresponds
to a sequence of pairs of integration rules of increasing accuracy. They combine Keast (or tensor product)
rules and the mapping method applied to elements with edge ornode on the crack front. For instance,
Strategy1 applies Keast rule for all elements, Strategy2 applies the mapping method for elements with edge
singularity and Keast rule for elements with nodal singularity, Strategy5 applies the mapping method for
elements with edge singularity and elements with nodal singularity, and so forth.

Integration rule
Strategy Elements with edge on front Elements with vertex onfront

1 K.2, . . . ,K.10 K.2, . . . ,K.10
2 M.1, . . . ,M.10 K.1, . . . ,K.10
3 M.1, . . . ,M.8 K.3, . . . ,K.10
4 M.1, . . . ,M.7 K.4, . . . ,K.10
5 M.1, . . . ,M.14 M.1, . . . ,M.14
6 M.1, . . . ,M.14 K.10
7 K.2, . . . ,K.10 K.10
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servations can be made for the results of the mode I stress intensity factor (KI) shown in Figures
15(b) and 16(b). The main difference in behavior is that, in the case of stress intensity factor, the
integration errors seem to be under control in all strategies. In the case of strain energy however,
only Strategy 6 was able to control the effect of integrationerrors. This indicates that stress in-
tensity factors are apparently less sensitive to integration errors in the computation of the stiffness
matrix than the strain energy.

The results above show that the mapping method applied to elements with edge on the crack
front can integrate singular functions using far fewer points than Keast integration rules. This is
confirmed by the numerical experiments presented in Sections 4.3.2 and 4.3.3.

Strategies 6 and 7 can not be used in practical computations since they use a very large number
of integration points on elements with vertex singularities. Below, and in Sections 4.3.2 and 4.3.3,
we focus on the selection of the best scheme to integrate these elements and on the overall reduction
of the number of integration points for a given target error level. Strategy 1 is again used as a
reference. We consider Strategies 2 – 5 described in Table 2.The only difference among these
strategies is the integration rule used for elements with vertex singularity. All of them use the
mapping method for elements with edge singularity.

Figures 17(a) and 17(b) show the variation of the normalizedstrain energy and normalized
stress intensity factors in semi-log scale, respectively,for Strategies 1 – 5. In Figure 17(a), one
can observe that for Strategies 2 – 5, after a large enough number of integration points the error
is controlled only by the discretization error. This behavior is similar to Strategy 6 (Cf. Figure
15(a)). Before this point, the error in strain energy is controlled by integration errors on elements
enriched with Westergaard functions. Strategies 2 and 5 converge quicker than Strategies 3 and
4 to the strain energy value corresponding to the highest rule used. Similar observations can be
made for the results shown in Figure 17(b). Strategy 5 is particularly attractive because it exhibits
a more monotonic behavior than the other strategies. In thisstrategy, we apply the edge singular
rule for elements with either edge or vertex singularity, asdescribed in Sections 3.2.1 and 3.2.3.
For those elements with nodal singularity, the integrationrule is set to the edge that is connected
to the singular vertex and has smallest angle with the crack front. This approach has proved to be
efficient even in elements where the smallest angle is around45◦.

Based on the results presented above, only Strategies 1, 2 and 5 are considered in the next
examples. There, we use meshes with element sizes typicallyused in fracture mechanics problems
and select the quadrature rule based on the target error level of quantities of interest.
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Figure 15: Normalized energy and stress intensity factor (SIF) for Strategies1, 6 and 7. The horizontal
axes show the sum of the number of quadrature points used by all 24 elements of the GFEM discretization.
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Figure 16: Zoom in of plots of Figures 15(a) and 15(b).
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Figure 17: Normalized strain energy and stress intensity factor (SIF)for Strategies1, 2, 3, 4 and 5 with
respect to the sum of the total number of integration points used by all 24 elements.
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4.3.2 Edge-cracked bar – Selection of Integration Order

In this section, an edge-cracked bar problem is considered.The model consists of a rectangular
bar subjected to a uniform tensile traction applied at both ends with a through-the-thickness edge
crack as illustrated in Figure 18. Nodal displacement boundary conditions are applied only to
prevent rigid body motion. The geometric parameters are setash/t = 0.875,a/t = 0.5, w/t = 1.5.
Poisson’s ratio and Young’s modulus are set asν = 1/3 andE = 1.0, respectively.

a

t

σ

2h

w

Figure 18: Edge-cracked bar: Domain dimensions, boundary conditionsand mesh with localized refine-
ment.

This problem was also solved in references [39] and [27] using the standard FEM with quarter-
point elements along the crack front and boundary element techniques, respectively. In this Sec-
tion, we focus our analysis on the convergence of the strain energy with respect to the number
integration points and on the effect of integration errors on p-extensions performed on meshes
with localized refinement along the crack front. Integration Strategies 1, 2, and 5 (cf. Section
4.3.1) are used. The analysis is aimed at selecting integration rule pairs from these strategies. As
demonstrated below, this selection depends on the target error level of the quantities of interest and
the level of refinement used near the crack front.

A closed form solution is not available for this problem. However, one can usea posteriori
error estimates [48] to compute a reference value for the strain energy. The computed reference
value for the strain energy is, fora = 0.5,

Uref = 1.73475171991776×10−5.

The discretizations used in the present analysis are based on thep-version of the GFEM pre-
sented in [14], i.e., hierarchical polynomial enrichments. A mesh with double nodes is used to
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represent the discontinuity. Crack front nodes are also enriched with the 3D counterpart of theOD

branch functions (1) as described in [14, 15, 37].

Two meshes, denoted hereafter Mesh 1 and Mesh 2, are used in the simulations. In both cases,
the meshes are locally refined along the crack front as shown in Figure 18 for the case of Mesh 1.
The ratio element size to crack size,(Le/a), at the crack front of Mesh 1 is in the range 3.9×10−3≤
Le/a≤ 1.4×10−2. This discretization leads to 2,048 elements with an edge on the crack front and
6,144 elements with a node on the crack front. Details on meshes1 and 2 are provided in Table 3.

Table 3: Details on meshes for edge-cracked bar. Below,(Le/a) denotes the ratio of element size to crack
size at the crack front.

Mesh 1 2
min(Le/a) 3.9×10−3 1.6×10−2

max(Le/a) 1.4×10−2 5.7×10−2

# Elem. w/ edge sing. 2,048 512
# Elem. w/ vertex sing. 6,144 1,024

The first goal of this analysis is to select integration rulesfor elements with edge or vertex
singularities such that the effect of integration errors onthe computed strain energy is much smaller
than the discretization error. This analysis is performed by applying integration strategies 1, 2, and
5 to Mesh 1 enriched withp = 4 polynomials and theOD branch functions. We analyze the
convergence of the strain energy with respect to the total number of integration points used inall
elements that have a node enrichedOD branch functions. Figure 19 presents the results. One can
observe that, for a sufficiently large number of integrationpoints and Strategy 2 or 5, the error in
strain energy is controlled only by the discretization error. The difference between the results in
Strategy 1 and the plateau provided by Strategies 2 and 5, canbe regarded as due to integration
errors of the singular shape functions which, in this case, is small due to the level of refinement
applied to the crack front.

Based on the above results, we select one integration rule pair from each strategy for further
investigation. These pairs are identified hereafter as 1.5, 2.3 and 5.1. Details are provided in Table
4. Table 5 lists, for meshes 1 and 2 and integration pairs 1.5, 2.3 and 5.1, the total number of
integration points used in elements with singular enrichments. We can observe that integration
rule pair 5.1 leads to a considerably smaller number of integration points than other pairs.

The second goal of this analysis is to investigate the effectof integration errors on the computed
strain energy when integration rule pairs 1.5, 2.3 and 5.1 are used. Thep-version of the GFEM
and Meshes 1 and 2 are used. In both cases, the polynomial order of the GFEM functions are in
the range 1≤ p≤ 4. TheOD enrichment functions are used at nodes on the crack front as before.
Figure 20 shows the results ofp-extensions on Mesh 1. Each curve in the figure corresponds to
a single integration rule pair. Thus, in contrast with previous convergence plots, the integration
rule is fixed for each curve and the discretization is changedby increasing thep order of the shape
functions. The strain energy and energy norm are plotted with respect to the number of degrees
of freedom of Mesh 1. One can observe that integration rule pairs 2.3 and 5.1 deliver exponential
convergence rates and virtually the same error values for strain energy as well as energy norm. Rule
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enriched with theOD branch functions, i.e. elements with either edge or node on crack front. Semi-log
scale.

Table 4: Integration rule pairs used on elements with edge or vertex singularity. These pairs are members
of integration strategies1, 2 or 5. Each strategy corresponds to a sequence of integration rule pairs as
discussed in Section 4.3.1. The naming convention used to identify a pair is based on the sequence/strategy
number to which it belongs and the index of the rules it uses.

Integration rule and number of points
Rule pair ID Elements with edge on front Elements with vertexon front

1.5 K.5 (45 points) K.5 (45 points)
2.3 M.3 (48 points) K.3 (24 points)
5.1 M.1 (18 points) M.1 (18 points)

Table 5: Total number of integration points used in elements with singular enrichments.

Rule pair ID Mesh 1 Mesh 2
1.5 368,640 69,120
2.3 245,760 49,152
5.1 147,456 27,648
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pair 1.5 leads to a slight deviation from curves for pairs 2.3 and 5.1 when the polynomial order of
the approximation is greater than 3 and shows a faster convergence rate. This small deviation is
due to integration errors. The difference in the relative error of strain energy for pairs 1.5 and 5.1,
when p = 4, is around 0.01%. In the case of the relative error in energy norm, the difference is
about 0.5%. These results show that pair 5.1 (based on the mapping method) is very efficient since
it can achieve the same error level as pair 1.5 (based on Keast rules) but using far less integration
points (Cf. Table 5).
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Figure 20: Convergence analysis of strain energy and energy norm with respect to the number of degrees
of freedom for Mesh1. Log-log scale. The p-version of the GFEM is used.

In the case of integration rule pair 1.5, the integration over elements with singular enrichmentsis
performed using Keast rules only. As shown in Figure 19, the integration errors when Keast rules
are used may cancel out the discretization error. This behavior is also manifested in the results
shown in Figure 20. The integration errors are improving theconvergence rate of the curve for
pair 1.5. This, however, isnot alwaysthe case. Integration errorscan also deteriorate convergence
rates. To illustrate this point, we repeat thep-convergence analysis done above using Mesh 2 which
is coarser then Mesh 1. Details on this mesh are listed on Table 3.

Figure 21 presents thep-convergence analysis using Mesh 2. One can observe that thecon-
vergence rate when pair 1.5 is used deteriorates due to integration errors. In this case, integration
errors when using integration rule pair 1.5 is greater than 0.1% in strain energy. In contrast with
the results for Mesh 1, the integration errors on Mesh 2 lead to an overestimation of the strain
energy whenp≥ 3. The volume of the elements enriched with singular functions is larger in Mesh
2 than in Mesh 1 and this introduces a larger error in the overall solution when pair 1.5 is used.
Therefore, when using pair 1.5 with a coarse mesh, one should increase the number of integration
points for elements with singular enrichments according tothe target error level that is required for
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the analysis in order to make the integration errors negligible.

Figure 21 also presents reference curves for strain energy and energy norm. These reference
curves are computed with integration ruleM.15 which uses 1,331 integration points per element
enriched with singular functions. We can observe that pairs2.3 and 5.1 show virtually the same
behavior as the reference curve. By using integration rulesM.1 with just 18 integration points
it is possible to achieve the same level of accuracy of that using a rule with 1,331 integration
points. RuleM.1 presents the best compromise between accuracy and computational cost among
the integration strategies analyzed in this section. Of course, these conclusions may only be valid
for the level of accuracy considered here (of the order of 0.01 % or larger in energy).
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Figure 21: Convergence analysis of strain energy and energy norm with respect to the number of degrees
of freedom for Mesh2. Log-log scale.
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4.3.3 Mixed mode analysis – Effect of integration errors on SIFs

This example considers the same model analyzed in Section 4.3.1 but subjected to Neumman
boundary conditions from the first term of Mode I and Mode II expansion of the elasticity solution
under the condition of the same Mode I and Mode II stress intensity factors (i.e.KI = KII ). Like
in the case solved in Section 4.3.1, the strain energy as wellas the stress intensity factors for this
problem can be analytically defined. Figure 22 illustrates the mesh used in the analysis and the
boundary conditions applied.

Figure 22: Edge cracked panel with Mode I and Mode II boundary conditions from asymptotic expansion.

The main objective of this example is to investigate the performance of the integration rule pairs
1.5, 2.3 and 5.1 (Cf. Table 4) in a mixed mode fracture problem. We performp-extensions on a
tetrahedral mesh locally refined around the crack front as illustrated in Figure 22. The polynomial
order of shape functions ranges fromp = 1 to p = 4. Like in previous sections, crack front nodes
are also enriched with the 3D counterpart of theOD branch functions (1). The average ratio of
element size to characteristic crack length isLe/a = 1.7× 10−2. This ratio is representative of
GFEM meshes used in reference [37] to solve fracture mechanics problems. This discretization
leads to 896 elements with edge singularity and 2,180 elements with nodal singularity. The total
number of integration points for the elements with singularenrichment is 138,420, 95,328 and
55,368 for integration rule pairs 1.5, 2.3 and 5.1, respectively.

Figures 23 and 24 present thep-convergence analysis for the relative error in strain energy and
energy norm compared with the relative error for Mode I and Mode II stress intensity factors, re-
spectively. Both Figures also present a reference curve forthe relative error in the strain energy.
The reference curve is again obtained by using integration ruleM.15 with 1,331 integration points
per element with singular enrichment. One can observe that,for the discretizations used in this
example, the integration errors start to affect the convergence of the solution when the strain en-
ergy error is smaller than 0.1% in the case of pair 1.5 and about 0.01% in the case of pairs 2.3
and 5.1. Strategies 1.5 is highly affected by integration errors at strain energy error levels below
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0.01%. The effect of integration errors is more pronounced in the case of pair 1.5 because no
singular integration scheme is applied in this case. Integration pair 2.3 uses the mapping method
for elements with an edge on the crack front and, therefore, leads to smaller integration errors
than integration pair 1.5. Integration errors improve the convergence rate for rulepair 2.3 while
it significantly deteriorates the convergence for rule pair1.5. The difference in the relative error
of strain energy between the reference curve and that of integration pair 5.1 is around 0.01% for
p = 3 and 0.006% forp = 4. These results show the efficiency of the proposed mapping method
since it can achieve acceptable error levels by using significantly fewer integration points than the
other rules considered here.

Mode I and II stress intensity factors show good agreement with analytical values. We can
observe that both quantities exhibit super-convergence, i.e., their convergence rates are comparable
with the convergence rates for strain energy [35, 36, 48, 49]. Furthermore, the error levels for SIFs
are always within the relative error in energy norm and the relative error in strain energy. We
can also observe that the stress-intensity factors are lessaffected by integration errors. Integration
errors start to affect the convergence of the solution when the SIF error is smaller than 0.1%, which
happens only forp= 4. This results suggest that, if the target error level of theanalysis is less than
0.1% in SIF, one should use more integration points for the element with singular enrichments or
a more refined mesh. In other words, the results indicate thatthe accuracy of the quadrature used
in the GFEM/XFEM must be consistent with the target error level of quantities of interest. This is
in contrast with, e.g., theh-version of the FEM where a single quadrature rule can provide exact
integration and thus can be used for any target error level. Our results are, nevertheless, consistent
with the numerical integration for meshless methods as demonstrated numerically and theoretically
by Babǔska et al. in [4].
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Figure 23: Convergence analysis of relative error in strain energy, energy norm and Mode I stress intensity
factor with respect to the number of degrees of freedom. Log-log scale.
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Figure 24: Convergence analysis of relative error in strain energy, energy norm and Mode II stress intensity
factor with respect to the number of degrees of freedom. Log-log scale.

5 Conclusions

A mapping method is developed to integrate weakly singular functions in the GFEM/X-FEM. The
method is applicable for both 2D and 3D problems including arbitrarily shaped triangles and tetra-
hedra. For 2D problems, singularity occurs at a node, whereas for 3D problems, singularity occurs
either at a node or along an edge. The mapping method is able tohandle all above cases. More-
over, one can easily implement the method in existing codes by replacing a standard integration
rule with a quadrature rule generated by the mapping method for elements which have a singularity.
Therefore, the method does not require extra computationalcost.

The performance of the mapping method is assessed by three classes of examples: theoret-
ical assessment, integration of branch functions, and 3D fracture problems. In the theoretical
assessment, convergence of numerical integrations of scalar functions is investigated through the
comparison of the mapping method with standard integrationrules. The weights of a quadrature
rule generated by the mapping method are scaled so that the weights add to 1.0, which leads to the
exact integration of a constant function. The integration of branch functions demonstrates that the
mapping method provides exponential convergence while thestandard integration leads to alge-
braic convergence. In 3D fracture problems, this study investigates the effect of integration errors
on quantities of interest such as the strain energy, the energy norm of the solution, and the mode I
and mode II stress intensity factors. Several numerical integration strategies are presented, which
are combinations of Keast rules and the mapping method. The computational results illustrate that
the mapping method reduces integration error significantlyusing far fewer integration points com-
pared to standard integration rules (e.g. Keast rules). Theaccurate numerical integration (e.g. the
mapping method) leads to a monotonic convergence in the caseof p-extensions while integration
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errors can result in loss of convergence.

While in this paper we focus on the development and application of the mapping method to the
GFEM/X-FEM method, the proposed quadrature rules are not limited to this case. The so-called
enriched FEM proposed in the 1970’s [7, 21] and further developed in, e.g., [2] also uses singular
functions from the assimptotic expansion of the elasticitysolution in the neighborhood of cracks.
Therefore, it also can benefit from the quadrature rules proposed here.
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A Appendix

The following MATLAB code (2D Singular IntegrationPointsWeights) generates the inte-
gration points and weights for the integration of a weakly singular function in a master triangle -
see Section 3.1.

function [r, s, wgt, n] = 2D_Singular_IntegrationPointsWeights (nIntPoints1D)

%----------------------------------------------------------------------------

% K. Park, J.P. Pereira, C.A. Duarte, G.H. Paulino, 2008, Integration of

% singular enrichment functions in the generalized/extended finite element

% method for three-dimensional problems, International Journal for Numerical

% Methods in Engineering, X(X), XXX-XXX.

%----------------------------------------------------------------------------

% Input parameters: nIntPoints1D

% nIntPoints1D: The number of standard integration points in 1D

% Output parameters: r, s, wgt, n

% r, s: Coordinates of the singular integration points in 2D

% wgt : Weights of each singular integration point

% n : The total number of the singular integration points

% External functions

% StandardGaussRuleloc: Provide the standard Gauss points

% StandardGaussRulewgt: Provide weights of the standard Gauss points

% Variables

% J : Jacobian associated with rho-theta coord and ksi-eta coord

% Area: Area of a triangle

% N : Linear shape functions
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% ksi, eta : Standard integration points

% iwgt, jwgt : Weights of the standard integration points

% rho, theta : Integration points in rho-theta coord

% Coord_rho_theta: Integration domain of rho-theta coord

%----------------------------------------------------------------------------

n = 0;

J = pi/8;

Area = 0.5;

Coord_rho_theta = [0 , 0; 1, 0; 1, pi/2; 0, pi/2];

for ipt = 1 : nIntPoints1D

for jpt = 1 : nIntPoints1D

% Obtain standard integration points and weights in the ksi-eta coord

% with respect to the number of integration points in 1D (nIntPoints1D)

ksi = StandardGaussRuleloc(nIntPoints1D, ipt);

eta = StandardGaussRuleloc(nIntPoints1D, jpt);

iwgt = StandardGaussRulewgt(nIntPoints1D, ipt);

jwgt = StandardGaussRulewgt(nIntPoints1D, jpt);

% Define linear shape functions

N(1) = 0.25 * (1. - ksi)*(1. - eta);

N(2) = 0.25 * (1. + ksi)*(1. - eta);

N(3) = 0.25 * (1. + ksi)*(1. + eta);

N(4) = 0.25 * (1. - ksi)*(1. + eta);

% Integration points in the rho-theta coordinates

rho = N*Coord_rho_theta(:,1);

theta = N*Coord_rho_theta(:,2);

% Integration points and weight in the r-s coordinates

n = n + 1;

r(n) = rho*cos(theta)*cos(theta);

s(n) = rho*sin(theta)*sin(theta);

wgt(n) = sin(2*theta)*rho*J*iwgt*jwgt/Area;

end

end
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B Quadrature Rules for Triangular and Tetrahedral Elements

Quadrature rules for triangular elements with singularityat a node are listed in Table 6, and quadra-
ture rules for tetrahedral elements with singularity alongan edge are listed in Table 7. The coordi-
nates are given in the master area(r̄, s̄) and volume(r̄, s̄, t̄) coordinate system, illustrated in Figure
7(b) and Figure 8(b), respectively. For triangular elements, the singularity occurs at a node which
corresponds to an origin in the area coordinate system. For tetrahedral elements, it is assumed that
the line singularity is along the coordinate axist̄ as illustrated in the Figure 8(b). Higher order
rules can be obtained by contacting the authors.

The weights in the table were divided by the area (or volume) of the master triangular (or
tetrahedral) element used in our computations. They shouldbe properly scaled back prior to use.
In our computations, we also scale the weights such that, foreach quadrature rule, they add to 1.0
(cf. Section 3.3).
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Table 6: Transformed integration points and weights.

nq r̄ i s̄i W̃i

1 0.25 0.25 1.5707963267949
∑W̃i 1.5707963267949

4 0.08375842651774 0.70491670807708 0.38168319089731
0.70491670807708 0.08375842651774 0.38168319089731
0.02244300274473 0.18888186266046 0.10227170276547
0.18888186266046 0.02244300274473 0.10227170276547

∑W̃i 0.96790978732557
9 0.25 0.25 0.3102807559101

0.01550703374423 0.48449296625577 0.06723616800137
0.48449296625577 0.01550703374423 0.06723616800137
0.44364916731037 0.44364916731037 0.34413949747987
0.02751873043233 0.85977960418841 0.07457317486736
0.85977960418841 0.02751873043233 0.07457317486736
0.05635083268963 0.05635083268963 0.04371144740776
0.00349533705613 0.10920632832312 0.00947203513434
0.10920632832312 0.00349533705613 0.00947203513434

∑W̃i 1.0006944568039
16 0.16447738503377 0.50551313675866 0.19263169249859

0.50551313675866 0.16447738503377 0.19263169249859
0.00793785538829 0.66205266640414 0.02583212102757
0.66205266640414 0.00793785538829 0.02583212102757
0.08101472221835 0.24899475598922 0.09488236364543
0.24899475598922 0.08101472221835 0.09488236364543
0.00390985757197 0.3260996206356 0.01272382892596
0.3260996206356 0.00390985757197 0.01272382892596
0.22844713750833 0.70212101828869 0.14271218426271
0.70212101828869 0.22844713750833 0.14271218426271
0.01102510439984 0.91954305139719 0.01913786027712
0.91954305139719 0.01102510439984 0.01913786027712
0.01704496974379 0.05238687445918 0.01064808642104
0.05238687445918 0.01704496974379 0.01064808642104
0.00082260856042 0.06860923564255 0.00142792005600
0.06860923564256 0.00082260856042 0.00142792005600

∑W̃i 0.99999211422886
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Table 7: Transformed integration points and weights for tetrahedral with edge singularity.

nq r̄ i s̄i t̄i Ŵi

1 .166666666666666 .166666666666666 .333333333333332 1.57079632679489
∑Ŵi 1.57079632679489

6 0.14896642845625587 0.01770023821041065 0.66666666666666696 0.08065914894379719
0.01770023821041067 0.14896642845625585 0.66666666666666696 0.08065914894379723
0.59586571382502429 0.07080095284164270 0.16666666666666651 0.32263659577518921
0.07080095284164279 0.59586571382502417 0.16666666666666651 0.32263659577518943
0.14896642845625587 0.01770023821041065 0.16666666666666651 0.08065914894379719
0.01770023821041067 0.14896642845625585 0.16666666666666651 0.08065914894379723

∑Ŵi .967909787325567
8 0.29793285691251170 0.03540047642082130 0.33333333333333298 -0.27222462768531585

0.03540047642082134 0.29793285691251164 0.33333333333333298 -0.27222462768531596
0.17875971414750718 0.02124028585249280 0.59999999999999997 0.15123590426961994
0.02124028585249282 0.17875971414750715 0.59999999999999997 0.15123590426962002
0.53627914244252161 0.06372085755747840 0.19999999999999998 0.45370771280885979
0.06372085755747848 0.53627914244252150 0.19999999999999998 0.45370771280886007
0.17875971414750718 0.02124028585249280 0.19999999999999998 0.15123590426961994
0.02124028585249282 0.17875971414750715 0.19999999999999998 0.15123590426962002

∑Ŵi .967909787325567
18 0.43211781432231888 0.01383067659364610 0.10810301816806999 0.04521044714518826

0.22297424545798252 0.22297424545798247 0.10810301816806999 0.20863669260505907
0.01383067659364609 0.43211781432231893 0.10810301816806999 0.04521044714518824
0.10475030386689888 0.00335271430117109 0.44594849091596500 0.01095952983064100
0.05405150908403500 0.05405150908403499 0.44594849091596500 0.05057592217631448
0.00335271430117109 0.10475030386689891 0.44594849091596500 0.01095952983064099
0.43211781432231888 0.01383067659364610 0.44594849091596500 0.04521044714518826
0.22297424545798252 0.22297424545798247 0.44594849091596500 0.20863669260505907
0.01383067659364609 0.43211781432231893 0.44594849091596500 0.04521044714518824
0.08873606264364056 0.00284015086612994 0.81684757298045895 0.00456974040704402
0.04578810675488526 0.04578810675488525 0.81684757298045895 0.02108838962657404
0.00284015086612995 0.08873606264364056 0.81684757298045895 0.00456974040704403
0.79151380722425546 0.02533376575620341 0.09157621350977052 0.04076147306796418
0.40842378649022953 0.40842378649022942 0.09157621350977052 0.18810561415815038
0.02533376575620345 0.79151380722425546 0.09157621350977052 0.04076147306796421
0.08873606264364056 0.00284015086612994 0.09157621350977052 0.00456974040704402
0.04578810675488526 0.04578810675488525 0.09157621350977052 0.02108838962657404
0.00284015086612995 0.08873606264364056 0.09157621350977052 0.00456974040704403
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nq r̄ i s̄i t̄i Ŵi

∑Ŵi 1.000694456803870
21 0.32299531083717852 0.01033802249615442 0.33333333333333298 0.03403831005069069

0.16666666666666651 0.16666666666666646 0.33333333333333298 0.15707963267948948
0.01033802249615444 0.32299531083717852 0.33333333333333298 0.03403831005069071
0.45556104639979350 0.01458101770532148 0.05971587178977000 0.02824910162929163
0.23507103205255752 0.23507103205255744 0.05971587178977000 0.13036365497718521
0.01458101770532146 0.45556104639979355 0.05971587178977000 0.02824910162929161
0.05786383971194965 0.00185203207782034 0.47014206410511499 0.00358810636159924
0.02985793589488500 0.02985793589488499 0.47014206410511499 0.01655835523137294
0.00185203207782034 0.05786383971194965 0.47014206410511499 0.00358810636159924
0.45556104639979350 0.01458101770532148 0.47014206410511499 0.02824910162929163
0.23507103205255752 0.23507103205255744 0.47014206410511499 0.13036365497718521
0.01458101770532146 0.45556104639979355 0.47014206410511499 0.02824910162929161
0.09814520074965608 0.00314130657380041 0.79742698535308698 0.00578920842139905
0.05064325366172826 0.05064325366172824 0.79742698535308698 0.02671597770230424
0.00314130657380041 0.09814520074965610 0.79742698535308698 0.00578920842139905
0.77269553101222443 0.02473145434086247 0.10128650732345650 0.04557834148939840
0.39871349267654354 0.39871349267654343 0.10128650732345650 0.21033444752788957
0.02473145434086246 0.77269553101222465 0.10128650732345650 0.04557834148939839
0.09814520074965608 0.00314130657380041 0.10128650732345650 0.00578920842139905
0.05064325366172826 0.05064325366172824 0.10128650732345650 0.02671597770230424
0.00314130657380041 0.09814520074965610 0.10128650732345650 0.00578920842139905

∑Ŵi 1.000694456803870
48 0.24633326736932920 0.00295347780158129 0.50142650965817903 0.00516368078880538

0.18808881678888075 0.06119792838202974 0.50142650965817903 0.03850588067500381
0.06119792838202972 0.18808881678888075 0.50142650965817903 0.03850588067500381
0.00295347780158129 0.24633326736932920 0.50142650965817903 0.00516368078880538
0.49548575230108621 0.00594075735709286 0.24928674517091048 0.01038645850642608
0.37833025917011581 0.12309625048806321 0.24928674517091048 0.07745245073076008
0.12309625048806319 0.37833025917011581 0.24928674517091048 0.07745245073076008
0.00594075735709287 0.49548575230108621 0.24928674517091048 0.01038645850642609
0.24633326736932920 0.00295347780158129 0.24928674517091048 0.00516368078880538
0.18808881678888075 0.06119792838202974 0.24928674517091048 0.03850588067500381
0.06119792838202972 0.18808881678888075 0.24928674517091048 0.03850588067500381
0.00295347780158129 0.24633326736932920 0.24928674517091048 0.00516368078880538
0.06234155395686129 0.00074746053464071 0.87382197101699588 0.00056894408398100
0.04760115937952347 0.01548785511197853 0.87382197101699610 0.00424265052479945
0.01548785511197853 0.04760115937952347 0.87382197101699610 0.00424265052479945
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nq r̄ i s̄i t̄i Ŵi

0.00074746053464071 0.06234155395686128 0.87382197101699588 0.00056894408398100
0.86346917912602194 0.01035279189097402 0.06308901449150200 0.00788022835464816
0.65930557398883038 0.21451639702816566 0.06308901449150200 0.05876334055615853
0.21451639702816560 0.65930557398883038 0.06308901449150200 0.05876334055615853
0.01035279189097407 0.86346917912602172 0.06308901449150200 0.00788022835464818
0.06234155395686129 0.00074746053464071 0.06308901449150200 0.00056894408398100
0.04760115937952347 0.01548785511197853 0.06308901449150200 0.00424265052479945
0.01548785511197853 0.04760115937952347 0.06308901449150200 0.00424265052479945
0.00074746053464071 0.06234155395686128 0.06308901449150200 0.00056894408398100
0.30667548427742402 0.00367696675636000 0.05314504984481699 0.00456059725198525
0.23416337383863913 0.07618907719514486 0.05314504984481700 0.03400865018077964
0.07618907719514483 0.23416337383863913 0.05314504984481700 0.03400865018077964
0.00367696675636001 0.30667548427742402 0.05314504984481699 0.00456059725198525
0.05251540254899713 0.00062964729581986 0.63650249912139900 0.00078096102502669
0.04009835956839377 0.01304669027642322 0.63650249912139900 0.00582367370707741
0.01304669027642321 0.04009835956839377 0.63650249912139900 0.00582367370707741
0.00062964729581986 0.05251540254899713 0.63650249912139900 0.00078096102502669
0.62896140021332347 0.00754109890807558 0.31035245103378400 0.00935333856299657
0.48024615934084435 0.15625633978055461 0.31035245103378400 0.06974841268276395
0.15625633978055458 0.48024615934084435 0.31035245103378400 0.06974841268276395
0.00754109890807559 0.62896140021332347 0.31035245103378400 0.00935333856299657
0.62896140021332347 0.00754109890807558 0.05314504984481699 0.00935333856299657
0.48024615934084435 0.15625633978055461 0.05314504984481700 0.06974841268276395
0.15625633978055458 0.48024615934084435 0.05314504984481700 0.06974841268276395
0.00754109890807559 0.62896140021332347 0.05314504984481699 0.00935333856299657
0.30667548427742402 0.00367696675636000 0.63650249912139900 0.00456059725198525
0.23416337383863913 0.07618907719514486 0.63650249912139900 0.03400865018077964
0.07618907719514483 0.23416337383863913 0.63650249912139900 0.03400865018077964
0.00367696675636001 0.30667548427742402 0.63650249912139900 0.00456059725198525
0.05251540254899713 0.00062964729581986 0.31035245103378400 0.00078096102502669
0.04009835956839377 0.01304669027642322 0.31035245103378400 0.00582367370707741
0.01304669027642321 0.04009835956839377 0.31035245103378400 0.00582367370707741
0.00062964729581986 0.05251540254899713 0.31035245103378400 0.00078096102502669

∑Ŵi 0.999992114228862
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