
1Solution of Singular ProblemsUsing h-p CloudsJ. Tinsley Oden1 and C. Armando Duarte2Texas Institute for Computational and Applied MathematicsThe University of Texas at AustinTaylor Hall 2.400Austin, Texas, 78712, U.S.A.1Professor, Director, TICAM. e-mail: oden@ticam.utexas.edu2Research Assistant, TICAM. e-mail: armando@ticam.utexas.edu1.1 INTRODUCTIONThe h-p cloud technique [DO, DO95a] is a generalization of a family of so-calledmeshless methods (see, e.g., [BKOF96, LCJ+, Dua95] for an overview) proposed inrecent months that provide both h and p (spectral) type approximations of boundary-value problems while freeing the analyst from traditional di�culties due to meshconnectivities. In these methods, the bounded domain of the solution of an ellipticboundary-value problem is covered by the union of a collection of open sets (theclouds) over which spectral-type approximation can be constructed. The mathematicalfoundation of these techniques applied to linear elliptic problems is discussed in [DO].A-posteriori estimates and adaptive h-p clouds are developed in [DO95a].In the present investigation, the generalization of h-p clouds to problems withsingularities is presented. The theory of h-p clouds is reviewed following thisintroduction and adaptive h-p cloud techniques are outlined as well. Then theapplication of h-p clouds to problems with singularities is developed, particularattention being given to the calculation of stress intensity factors in linear fracturemechanics. A new scheme is presented for computing very accurate approximationsof stress intensity factors. Several numerical examples are presented to support thetheoretical developments.



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 21.2 H-P CLOUD APPROXIMATIONSThe fundamental idea in the h-p cloud method is to use a partition of unity to constructa hierarchy of functions that can represent polynomials of any degree. This familyof functions, called FpN , has many interesting properties like compact support andthe ability to reproduce, through linear combinations, polynomials of any degree.In addition, the functions FpN can be built with any degree of regularity. Anotherremarkable feature of the functions FpN is that there is no need to partition the domaininto smaller subdomains, e.g., �nite elements, to construct these functions|all thatis required is an arbitrarily placed set of nodes in the domain 
. The construction ofthe functions FpN , also known as h-p cloud functions, is described in the next section.1.2.1 CONSTRUCTION OF A PARTITION OF UNITYLet 
 be an open bounded domain in IRn, n = 1; 2 or 3 and QN denote an arbitrarilychosen set of N points x� 2 �
 referred to as nodes:QN = fx1;x2; : : : ;xNg; x� 2 �
Let TN := f!�gN�=1 denote a �nite open covering of 
 consisting of N clouds !�with centers at x�; � = 1; : : : ; N and having the following property�
 � N[�=1 �!� (1.1)
(a) Open covering build usingcircles. (b) Open covering build usingcircles, ellipses and rectangles.Figure 1 Examples of open coverings.A cloud !� can be almost anything. In two dimensions, for example, it can be arectangle, an ellipse or a circle. Figure 1 shows examples of valid open coverings and



3associated clouds. In this paper we shall restrict ourselves to the case where a cloud!� is de�ned by !� := fy 2 IRnj kx� � ykIRn < h�g (1.2)This corresponds to the case shown in Fig. 1(a).A class of functions SN := f'�gN�=1 is called a partition of unity subordinated tothe open covering TN if it possesses the following properties [OR76]:1) '� 2 C10 (!�); 1 � � � N2) PN�=1'�(x) = 1; 8 x 2 
Note that '�(x) may be negative.There is no unique way to build functions '� satisfying the above requirements.Each approach has its own merits and embedded costs. The choice of a particularpartition of unity should be based on� the class of problems to be solved, e.g. linear or non-linear problems,� the complexity of the geometry of the domain,� the regularity required from the approximation, e.g. C0, C1, or higher,� the importance of the meshless character of the approximation, etc.The following algorithm is currently used the h-p cloud method to build partitions ofunity.LetW� : IRn ! IR denote a weighting function with compact support !� that belongsto the space Cs0(!�); s � 0 and suppose thatW�(x) � 0 8 x 2 
In the case of the clouds de�ned in (1.2), the weighting functions W� can beimplemented with any degree of regularity using \ridge" functions. More speci�cally,the weighting functions W� can be implemented through the compositionW�(x) := g(r�)where g is, e.g., a B-spline with compact support [�1; 1] and r� is the functionalr� := kx� x�kIRnh�In the computations presented in Section 1.3, g is a quartic C3(
) B-spline. Detailson the construction of the B-splines can be found in, e.g., [deB78].The partition of unity functions '� can then be de�ned by'�(x) = W�(x)P�W�(x) (1.3)which are known as Shepard functions [She68]. The main advantages of this particularpartition of unity are� low computational cost and simplicity of computation,� it is meshless|there is no need to partition the domain to build this partition ofunity,� it can easily be implemented in any dimension,� it can be constructed with any degree of regularity� it allows easy implementation of h adaptivity, as is demonstrated in Section 1.3.1.



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 41.2.2 THE FAMILY FpNThe construction of the h-p cloud functions is very straightforward after a partitionof unity is derived, such as the one described above, for the domain 
.Let bLp := nbLioi2I , denote a set of basis functions bLi de�ned on the unit cloudb! := f� 2 IRnj k�kIRn < 1gsatisfying bL1(�) � 1 (1.4)Pp(b!) � span( bLp)In the above, I denotes an index set and Pp denotes the space of polynomials of degreeless or equal to p.The family of functions FpN is de�ned byFpN := n'�(x)�bLi �F�1� (x)� j � = 1; : : : ; N ; i 2 Io (1.5)where N is the number of nodes in the domain andF�1� : !� ! b! (1.6)F�1� (x) := x � x�h�According to the above de�nition, FpN is constructed by multiplying each partitionof unity function '� 2 SN by the elements from the set bLp. One element from thespace of h-p cloud functions can therefore be written asuhp(x) = NX�=1Xi2I ha�i'�(x)(bLi �F�1� (x))iThe following theorems are proved in [DO].Theorem 1 Let Lp := fLigi2I and Li be the same functions bLi but de�ned on 
.Then Lp � spanfFpNg,Therefore the elements from the set Lp can be recovered through linear combinationsof the h-p clouds functions. This is one of the most fundamental properties of the h-pcloud functions.Theorem 2 Let bLi; i 2 I, be the basis functions from the set bLp and W�; � =1; : : : ; N be the weighting functions used to construct the partition of unity functions'� de�ned in (1.3). Suppose that bLi; i 2 I 2 C l(b!) and W�; � = 1; : : : ; N 2 Cq0(!�).Then the h-p cloud functions FpN de�ned in (1.5) belong to the space Cmin(l;q)0 (
).Figure 2(a) shows the partition of unity function '� associated with a node x� atthe origin. A uniform 5� 5 node arrangement and quartic splines are used to build it.Figure 2(b) shows the function xy'� from the families Fp�2N=25.
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Z(b) 2-D h-p cloud function xy'� from thefamilies Fp�2N=25.Figure 2 2-D h-p cloud functions.Remark 1 There are many cases in which there is some knowledge about the functionbeing approximated and the requirement that Pp(b!) � span( bLp) can be weakenedwithout deteriorating the approximating properties of the set bLp [BM95]. There arealso situations in which the inclusion in the set bLp of specially tailored functions tomodel, e.g., boundary layers, shocks, singularities, etc., can be very advantageous. Thisis the case in the stress analysis of cracks where the quantities of interest are the stressintensity factors. This case is discussed in detail in Section 1.3.2.An a-priori estimateIn this section we summarize some results presented in [DO].Let Xhp� be the restriction to (
\ !�) of the elements from the two parameters (pand h(N )) family of spacesfXhp� (!�) := spannbLi �F�1� oi2Iwhere the mapping F�1� is de�ned in (1.6) and bLi 2 bLp.Theorem 3 Let u 2 Hr+1(
); r � 0. Suppose that the following hold for all localspaces Xhp� Pr(
 \ !�) � Xhp� � H1(
 \ !�)Then for �xed h and p there is uhp 2Xhp := spanfFpNg such thatku� uhpkL2(
) � C1hr+1 kukHr+1(
) ; (1.7)ku� uhpkH1(
) � C2hr kukHr+1(
) (1.8)



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 6where the constants C1 and C2 do not depend on h or u but depend on p, andh = max�=1;:::;N(h) h�.An a-posteriori error estimateLet 
 � IR2 be a bounded domain with Lipschitz boundary @
. Consider the modelelliptic boundary-value problem of �nding the solution u of��u+ cu = f in 
subject to the boundary conditions@u@n = g on �Nu = 0 on �DThe variational form of this problem is to �nd u 2 VD such thatB(u; v) = L(v) 8 v 2 VDwhere VD is the space VD = fv 2 H1(
) : v = 0 on �Dgand where B(u; v) = Z
 (ru � rv + cuv)dxL(v) = Z
 fvdx + Z�N gvdxSuppose that Xhp � VD is a subspace built using h-p clouds. Then the h-p cloud-Galerkin approximation of this problem is to �nd uhp 2Xhp such thatB(uhp; vhp) = L(vhp) 8 vhp 2XhpThe following is proved in [DO95a].Theorem 4 Suppose that Xhp � (C2(
) \ VD). Let r denote the interior residualr = f +�uhp � cuhp in 
and R denote the boundary residualR = g � @uhp@n on �NThen the energy norm of the discretization error e = u� uhp satis�eskekE;
 � �1=2 �C X� �2�!1=2



7where the contributions �� from the clouds !� are error indicators and are given by�2� = h2�p2� krk2L2(!�\
) + h�p� kRk2L2(@(!�\
)\�N ) (1.9)and � 2 IN satis�es cardf�jx 2 !�g � � 8 x 2 
The error indicators �� are used in Section 1.3.1 to implement h, p and h-padaptivity in the h-p cloud method.1.3 NUMERICAL EXAMPLESIn this section, the techniques described in Section 1.2 are used to constructappropriate �nite dimensional subspaces of functions used in the Galerkin method.The resulting approach is denoted as the h-p cloud method. Two problems are solvedin this section using the h-p cloud method. The �rst problem demonstrates how h, pand h-p adaptivity can be implemented in the h-p cloud method and how the methodcan handle the presence of a singularity. The second problem deals with the stressanalysis of cracks in linear elasticity and the computation of stress intensity factors.We explore the fact that the h-p cloud spaces are able include almost any kind offunction and develop a novel and very e�cient approach to extract stress intensityfactors. It is demonstrated numerically that the computed stress intensity factorsconverge at the same rate as the error in energy and, therefore, at twice the rate ofthe error in the energy norm.In all problems solved the following is adopted:� The essential boundary conditions are imposed using the method of Lagrangemultipliers.� The domain integrations are performed using a background cell structure thatexactly covers the domains. Nonetheless, there is no relationship between thebackground cell structures and the nodes x� used in the discretizations. It shouldbe noted that the generation of a background cell structure is much easier than thegeneration of a traditional �nite element mesh.� The algorithm presented in [DO95a] is used to handle re-entrant corners.� In all problems analyzed, the size of the supports of the h-p cloud functions areautomatically set using the algorithm presented in [DO95b, DO].1.3.1 POTENTIAL FLOW IN A L-SHAPED DOMAINIn this section, a potential 
ow problem in a L-shaped domain is solved using theh-p cloud method. The problem statement is given below. The domain 
 and theboundary segments �1 and �2 are depicted in Fig. 3. The value of u is set to zeroat (1; 1) in order to make the solution unique. This simple boundary-value problemis used to demonstrate how h, p and h-p adaptivity can be implemented in the h-pcloud method without using the concept of a mesh and how adaptivity can be usedin the h-p cloud method to handle the presence of singularities.



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 8Find u such that��u = 0 in 
�@u@n = 5 on �1 (1.10)�@u@n = �5 on �2�@u@n = 0 on @
n(�1 [ �2) Ω
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2Figure 3 Boundary conditions, initialnodal arrangement and background cellstructure used for quadrature.For this problem, the set of functions bLp(b!) de�ned in (1.4) is composed of thefollowing monomials: bLp(b!) = f�i�j j0 � i+ j � pgThat is, the family of h-p cloud functions, FpN , is constructed by multiplying thepartition of unity functions '�; � = 1; : : : ; N , by the smallest set of completepolynomials of degree less or equal to p.The background cell structure used to perform the numerical quadrature isrepresented in Fig. 3. The nodal arrangement used in the �rst step of h, p and h-padaptation is also shown in the �gure.h adaptivityTheorem 3 demonstrates that the discretization error of the h-p cloud solution canbe controlled by decreasing the radius h� of the clouds. This, of course, has to befollowed by the addition of more nodes to the discretization in order to guarantee thata valid covering for the domain still exists. It should be noted, however, that there is noconstraint on how these nodes are placed in the domain|they can simply be insertedinto the regions of interest. This strategy is denoted the h version of the h-p cloudmethod. This approach is demonstrated in the solution of problem (1.10). Details ofthe algorithm used in the h version of the h-p cloud method can be found [DO95a].The nodal arrangement represented in Fig. 3 and clouds with polynomial degree p = 1are used to obtain the �rst approximate solution. The error indicators given by (1.9)are then computed for each cloud !�. Clouds with errors above a preset value areselected to be re�ned while the polynomial order is kept �xed. The re�nement ofclouds involves the addition of news nodes around each of the re�ned clouds. The sizeof the supports !� are then automatically reset to take into account the new nodesadded to the discretization (details of the algorithm can be found in [DO]). A newsolution is then computed using the new discretization and the process is repeateduntil the quality of the solution is deemed acceptable.Figure 4 shows the nodal arrangement and the covering obtained after seven stepsof h adaptation. A high concentration of nodes near the corner at (0; 0) is observed.



9Figure 5 depicts the 
uxes computed using the discretization of Fig. 4. The colorassociated with each arrow represents the computed potential uh. The 
ux distributionindicates the presence of a singularity at the re-entrant corner at (0; 0).
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SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 10p = 7. Figure 6(b) represents the potential up computed using the discretization ofFig. 6(a).
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ux in the y direction using the discretization of Fig. 7. The presence of a singularityat (0; 0) is evident.1.3.2 MODELING OF CORNER SINGULARITIES AND COMPUTATION OFSTRESS INTENSITY FACTORS IN LINEAR FRACTURE MECHANICSIn this section, we demonstrate how corner singularities in plane elasticity problemscan be e�ciently modeled using the framework of h-p clouds. These singularities occurwhen the solution domain has corners, abrupt changes in boundary data or consistsof two or more materials [OB95]. The h-p cloud results are compared with those ofthe p version of the �nite element method. We also present a new approach for theextraction of the amplitude of the singular terms associated with corner singularities.The accuracy and simplicity of this novel approach is demonstrated numerically.
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SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 12Near crack tip expansionIn the neighborhood of a crack, assuming traction-free crack surfaces and in theabsence of body forces, each component of the displacement vector u = fux; uygTcan be written as [SB91, SB88]ux(r; �) = MXj=1 �A(1)j u(1)xj (r; �) +A(2)j u(2)xj (r; �)�+ ~ux(r; �) (1.11)uy(r; �) = MXj=1 �A(1)j u(1)yj (r; �) +A(2)j u(2)yj (r; �)�+ ~uy(r; �) (1.12)where (r; �) are the polar coordinates associated with the crack tip (cf. Fig. 9), ~ux(r; �)and ~uy(r; �) are functions smoother than any term in the sum and the eigenfunctionsare given byu(1)xj (r; �) = r�j2G n[��Q(1)j (�j + 1)] cos�j� � �j cos (�j � 2)�ou(2)xj (r; �) = r�j2G n[��Q(2)j (�j + 1)] sin�j� � �j sin (�j � 2)�ou(1)yj (r; �) = r�j2G n[�+Q(1)j (�j + 1)] sin�j� + �j sin (�j � 2)�ou(2)yj (r; �) = �r�j2G n[�+ Q(2)j (�j + 1)] cos�j� + �j cos (�j � 2)�owhere the eigenvalues �j are�1 = 12 ; �j = j + 12 j � 2and Q(1)j = � �1 j = 3; 5; 7; : : :��j j = 1; 2; 4; 6; : : : Q(2)j = � �1 j = 1; 2; 4; 6; : : :��j j = 3; 5; 7; : : :where �j = �j � 1�j + 1and the material constant � and G are� = � 3� 4� plane strain3��1+� plane stress G = E2(1 + �)where E is the Young's modulus and � is the Poisson's ratio.The coe�cients A(1)1 and A(2)1 in (1.11) and (1.12) are related to the Mode I andMode II stress intensity factors of linear elasticity fracture mechanics, usually denotedby KI and KII , as follows:A(1)1 = KIp2� A(2)1 = KIIp2�



13Enrichment of the h-p cloud spaces and extraction of stress intensityfactorsSuppose that the eigenfunctions u(1)xj ; u(2)xj ; u(1)yj ; u(2)yj ; j = 1; : : : ;M are added to theset bLp de�ned in Section 1.2.2 givingbL�p := nbLioi2I [ nu(1)xj ; u(2)xj ; u(1)yj ; u(2)yj oj=1;:::;M (1.13)Then, the enriched h-p cloud functions are de�ned as followsFp�N := n '�(x) hbLi �F�1� (x)i [ '�(x) h�u(1)xj (x); �u(2)xj (x); �u(1)yj (x); �u(2)yj (x)ij � = 1; : : : ; N ; i 2 I; j = 1; : : : ;M g (1.14)where �u(1)xj (x) := u(1)xj �T�1(x)and T�1 is the transformation from rectangular to polar coordinates. The other barquantities are computed similarly and the transformation F�1 is de�ned in (1.6). Notethat all elements from Fp�N have compact support.The h-p cloud approximation to the displacement �eld (1.11),(1.12) can be writtenas uhpx (x) = NX�=1Xi2I ha�ix '�(x)(bLi �F�1� (x))i+ NX�=1 MXj=1 hb(1)�j '�(x)�u(1)xj (x) + b(2)�j'�(x)�u(2)xj (x)iuhpy (x) = NX�=1Xi2I ha�iy '�(x)(bLi �F�1� (x))i+ NX�=1 MXj=1 hb(1)�j '�(x)�u(1)yj (x) + b(2)�j'�(x)�u(2)yj (x)iIn the above expansion, for a �xed x 2 �
, only a few terms are nonzero since allthe functions have compact support. The expansion for, e.g., uhpx can be rewritten asuhpx (x) = NX�=1Xi2I ha�ix '�(x)(bLi �F�1� (x))i| {z }polynomial reproducing part + MXj=1[�u(1)xj (x) A(1)jz }| {NX�=1 b(1)�j'�(x)]| {z }singular part



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 14+ MXj=1[�u(2)xj (x) A(2)jz }| {NX�=1 b(2)�j '�(x)]| {z }singular part (1.15)Comparing (1.15) with (1.11) leads to the following conclusion: the term ~ux can beapproximated very accurately by the polynomial part of uhpx since it is a smoothfunction. Therefore the di�erence between ~ux and the polynomial part of uhpx can bemade as small as we want (possibly exponentially) by increasing the polynomial orderassociated with the clouds; consequently we must expect thatNX�=1 b(1)�j '� p!1�! A(1)j and NX�=1 b(2)�j'� p!1�! A(2)jTherefore the amplitude of any number of generalized stress intensity factors can beobtained directly from the coe�cient of the h-p cloud functions without any additionalwork. The �rst and second stress intensity factors from linear fracture mechanics aretherefore given by KI = p2�A(1)1 = p2� NX�=1 b(1)�1'�KII = p2�A(2)1 = p2� NX�=1 b(2)�1'�Remark 2 The case of more complicated boundary conditions at the crack surfacescan be treated exactly as above [OB95]. In the case of anisotropic or nonhomogenousmaterials, the numerical approach proposed by [PB95] can be used to compute theeigenvalues and eigenfunctions of the asymptotic expansion near the crack tip. Theapproach described above can then be used without any modi�cations.Cracked panelIn this section, the edge-cracked panel shown in Fig. 9 is analyzed using the enrichedh-p cloud spaces Fp�N de�ned in (1.14). The h-p cloud results are compared with thosepresented by Szabo [Sza86] and Duarte and Barcellos [DdB91] for the p version ofthe �nite element method using strongly graded meshes.A state of plane-strain, Poisson's ratio of 0:3 and unity thickness are assumed.The tractions corresponding to the �rst symmetric term of the asymptotic expansion(1.11), (1.12) are applied on @
. The two components of the displacement at (0; 0)and the vertical component at (d; 0) are set to zero to make the solution unique.The components of the stress tensor associated with the �rst term of the asymptoticexpansion are given by [SB91]�(1)ij = KIp2�rf (1)ij (�) (1.16)
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SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 16problem the set bL�p has always the following elementsbL�p := f1; �; �g[ nu(1)xj ; u(2)xj ; u(1)yj ; u(2)yj oj=1;:::;p�1That is, the set bL�p has linear polynomials and p � 1 symmetric and antisymmetricmodes from the near crack tip expansion.Figure 11 shows the convergence in the energy norm of the h-p cloud and �niteelement solutions. There are two curves for the h-p cloud method. The solid curvecorresponds to the case in which all six nodes shown in Fig. 10 are enriched nodes.The error associated with this discretization is zero for p � 2 because bL�p�2 containthe exact solution (cf. Theorem 1). The error (of O(10�6) in strain energy) shown inFig. 11 for p = 2 is due to integration errors.
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17degree of freedoms than the �nite element counterpart. An additional advantage ofusing special functions, made possible by the partition of unity methods framework, isthat the stress intensity factors can be obtained, without using elaborate extractionsprocesses, via the approach described in Section 1.3.2.
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