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1.1 INTRODUCTION

The h-p cloud technique [DO, DO95a] is a generalization of a family of so-called
meshless methods (see, e.g., [BKOF96, LCJ*, Dua95] for an overview) proposed in
recent months that provide both k and p (spectral) type approximations of boundary-
value problems while freeing the analyst from traditional difficulties due to mesh
connectivities. In these methods, the bounded domain of the solution of an elliptic
boundary-value problem is covered by the union of a collection of open sets (the
clouds) over which spectral-type approximation can be constructed. The mathematical
foundation of these techniques applied to linear elliptic problems is discussed in [DO].
A-posteriori estimates and adaptive h-p clouds are developed in [DO95a].

In the present investigation, the generalization of h-p clouds to problems with
singularities is presented. The theory of h-p clouds is reviewed following this
introduction and adaptive h-p cloud techniques are outlined as well. Then the
application of h-p clouds to problems with singularities i1s developed, particular
attention being given to the calculation of stress intensity factors in linear fracture
mechanics. A new scheme 1s presented for computing very accurate approximations
of stress intensity factors. Several numerical examples are presented to support the
theoretical developments.
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1.2 H-P CLOUD APPROXIMATIONS

The fundamental idea in the h-p cloud method is to use a partition of unity to construct
a hierarchy of functions that can represent polynomials of any degree. This family
of functions, called F%;, has many interesting properties like compact support and
the ability to reproduce, through linear combinations, polynomials of any degree.
In addition, the functions FX; can be built with any degree of regularity. Another
remarkable feature of the functions F%; is that there is no need to partition the domain
into smaller subdomains, e.g., finite elements, to construct these functions—all that
is required 1s an arbitrarily placed set of nodes in the domain Q. The construction of
the functions FX;, also known as h-p cloud functions, is described in the next section.

1.2.1 CONSTRUCTION OF A PARTITION OF UNITY

Let © be an open bounded domain in R”, n = 1,2 or 3 and Qy denote an arbitrarily
chosen set of N points &, € 2 referred to as nodes:

Qy ={x1,22,..., 2N}, z, €0

Let Ty = {wo}Y_, denote a finite open covering of Q consisting of N clouds w,
with centers at ®,, « = 1,..., N and having the following property

) N
Qc | (1.1)
a=1

(a) Open covering build using (b) Open covering build using
circles. circles, ellipses and rectangles.

Figure 1 Examples of open coverings.

A cloud w, can be almost anything. In two dimensions, for example; it can be a
rectangle; an ellipse or a circle. Figure 1 shows examples of valid open coverings and



assoclated clouds. In this paper we shall restrict ourselves to the case where a cloud
wq 18 defined by
wo = {y € B |20 — gl < h) (1.2
This corresponds to the case shown in Fig. 1(a).
A class of functions Sy := {¢.}Y_; is called a partition of unity subordinated to
the open covering Ty if it possesses the following properties [ORT76]:

1) 9o € C§°(wa), 1<a<N

2) SN pale) =1, VaeQ
Note that ¢, (2) may be negative.
There is no unique way to build functions ¢, satisfying the above requirements.
Each approach has its own merits and embedded costs. The choice of a particular
partition of unity should be based on

e the class of problems to be solved, e.g. linear or non-linear problems,
e the complexity of the geometry of the domain,
o the regularity required from the approximation, e.g. C%, C*, or higher,
e the importance of the meshless character of the approximation, etc.
The following algorithm is currently used the A-p cloud method to build partitions of
unity.
Let W, : R" — R denote a weighting function with compact support w,, that belongs
to the space C§(wy), s > 0 and suppose that

Wa(x) >0 Vo e

In the case of the clouds defined in (1.2), the weighting functions W, can be
implemented with any degree of regularity using “ridge” functions. More specifically,
the weighting functions W, can be implemented through the composition

Weal(®) := g(ra)
where g is, e.g., a B-spline with compact support [—1, 1] and r is the functional

_ e~ ol
a - ha
In the computations presented in Section 1.3, g is a quartic C3(Q) B-spline. Details
on the construction of the B-splines can be found in, e.g., [deB78].
The partition of unity functions ¢, can then be defined by

We ()
pal() = =5
25 Wal(@)
which are known as Shepard functions [She68]. The main advantages of this particular
partition of unity are

(1.3)

e low computational cost and simplicity of computation,

e it is meshless—there is no need to partition the domain to build this partition of
unity,

e it can easily be implemented in any dimension,

e it can be constructed with any degree of regularity

e it allows easy implementation of & adaptivity, as is demonstrated in Section 1.3.1.
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1.2.2 THE FAMILY F¥

The construction of the h-p cloud functions is very straightforward after a partition
of unity 1s derived, such as the one described above, for the domain 2.

Let Ep = {El} , denote a set of basis functions EZ defined on the unit cloud
1€
W ={§ e R"| [|g]|m~ <1}

satisfying

Li(g) = 1 (1.4)
Pp(@) C span(fp)

In the above, Z denotes an index set and P, denotes the space of polynomials of degree
less or equal to p.
The family of functions F¥%; is defined by

Fii={pale) (LioFS (@) |a=1,...,N; ieT} (1.5)

where N 1s the number of nodes 1n the domain and

Foliw, =0 (1.6)
&r — &
F-! = x
2He) =

According to the above definition, F%,; is constructed by multiplying each partition

of unity function ¢, € Sy by the elements from the set Ep. One element from the
space of h-p cloud functions can therefore be written as

W () = 303 [aurpale) (B o F2 (@)

a=1i€l
The following theorems are proved in [DO].

Theorem 1 Let £, := {Li}z’ez and L; be the same functions EZ but defined on €.
Then L, C span{FX},

Therefore the elements from the set £, can be recovered through linear combinations
of the h-p clouds functions. This is one of the most fundamental properties of the h-p
cloud functions.

Theorem 2 Let Ei, t € I, be the basis functions from the set Ep and Wy, a =
L,..., N be the weighting functions used to construct the partition of unity functions
©o defined in (1.3). Suppose that L;, i € T € CY(&) and Wy, a=1,..., N € C(w,).
Then the h-p cloud functions F~, defined in (1.5) belong to the space C’Snm(l’q)(Q).
Figure 2(a) shows the partition of unity function ¢, associated with a node #, at

the origin. A uniform 5 x 5 node arrangement and quartic splines are used to build it.
Figure 2(b) shows the function zyp, from the families }"J’QZIZ%.
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(a) 2-D partition of unity function ¢q. (b) 2-D h-p cloud function zy¢s from the

B p>2
families }-N=25 .

Figure 2 2-D h-p cloud functions.

Remark 1 There are many cases in which there is some knowledge about the function

being approximated and the requirement that P,(&) C span(fp) can be weakened

without deteriorating the approrimating properties of the set L, [BM95]. There are

also situations in which the inclusion in the set L, of specially tailored functions to
model, e.q., boundary layers, shocks, singularities, etc., can be very advantageous. This
15 the case in the stress analysis of cracks where the quantities of interest are the stress
wntensity factors. This case is discussed in detail in Section 1.3.2.

An a-priori estimate

In this section we summarize some results presented in [DO].
Let XZ]’ be the restriction to (2 Nwy) of the elements from the two parameters (p
and h(N)) family of spaces

—~h ~
Xap(wa) ‘= span {Li o F;l}
1€L

where the mapping F_! is defined in (1.6) and L€ Ep.

Theorem 3 Let u € H"TH(Q), r > 0. Suppose that the following hold for all local
spaces X"P
Pr(QNw,) C X" c HY(QNw,)

Then for fized h and p there is up, € X" .= span{FR;} such that

Cu* fullgras (17)
Coh” ||u||Hr+1(ﬂ) (1.8)

[lu — uhp”m(n) <
<

||U—Uhp||H1(n)
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where the constants C1 and Cy do not depend on h or u but depend on p, and
h =maxa=1,. N(h) ha-

An a-posteriori error estimate

Let © C R? be a bounded domain with Lipschitz boundary 8. Consider the model
elliptic boundary-value problem of finding the solution u of

—Au+tcu=f m Q

subject to the boundary conditions

6_u
on

u = 0 on I'p

= g on I'y

The variational form of this problem is to find u € Vp such that
B(u,v) = L(v) VveVp
where Vp is the space
Vp={ve H'(Q):v=00onTp}
and where

Bu,v) = /(Vu~Vv—|—cuv)daz
Q

Lv) = /ﬂfvdaz—l—/FNgvdaz

Suppose that X" C Vp is a subspace built using h-p clouds. Then the h-p cloud-
Galerkin approximation of this problem is to find uy, € X" such that

B(unp, vnp) = Lvap) ¥ ooy € X
The following is proved in [DO95a].
Theorem 4 Suppose that X" C (C*(Q) NVp). Let r denote the interior residual
r=f+ Aupp — ctipp i
and R denote the boundary residual

3uhp

on

Then the energy norm of the discretization error e = u — up, satisfies

1/2
lellp g < p17C (Z nz)

R=yg

on I'ny



where the contributions 1, from the clouds w, are error indicators and are given by

2 h2

a 2 hoc 2
Mo = — ||r||L2(waﬂQ) +— ||R||L2(6(waﬂﬂ)ﬂr‘]\7) (1.9)
Po Pa
and p € IN satisfies
card{a|x Ewy} < p Vaell

The error indicators 7, are used in Section 1.3.1 to implement A, p and h-p
adaptivity in the h-p cloud method.

1.3 NUMERICAL EXAMPLES

In this section, the techniques described in Section 1.2 are used to construct
appropriate finite dimensional subspaces of functions used in the Galerkin method.
The resulting approach is denoted as the h-p cloud method. Two problems are solved
in this section using the hA-p cloud method. The first problem demonstrates how &, p
and h-p adaptivity can be implemented in the hA-p cloud method and how the method
can handle the presence of a singularity. The second problem deals with the stress
analysis of cracks in linear elasticity and the computation of stress intensity factors.
We explore the fact that the h-p cloud spaces are able include almost any kind of
function and develop a novel and very efficient approach to extract stress intensity
factors. It i1s demonstrated numerically that the computed stress intensity factors
converge at the same rate as the error in energy and, therefore, at twice the rate of
the error in the energy norm.
In all problems solved the following i1s adopted:

e The essential boundary conditions are imposed using the method of Lagrange
multipliers.

e The domain integrations are performed using a background cell structure that
exactly covers the domains. Nonetheless, there is no relationship between the
background cell structures and the nodes «, used in the discretizations. It should
be noted that the generation of a background cell structure is much easier than the
generation of a traditional finite element mesh.

e The algorithm presented in [DO95a] is used to handle re-entrant corners.

e In all problems analyzed, the size of the supports of the h-p cloud functions are
automatically set using the algorithm presented in [DO95b, DOJ.

1.3.1 POTENTIAL FLOW IN A L-SHAPED DOMAIN

In this section, a potential flow problem in a L-shaped domain is solved using the
h-p cloud method. The problem statement is given below. The domain €2 and the
boundary segments I'y and I's are depicted in Fig. 3. The value of u is set to zero
at (1,1) in order to make the solution unique. This simple boundary-value problem
is used to demonstrate how h, p and h-p adaptivity can be implemented in the h-p
cloud method without using the concept of a mesh and how adaptivity can be used
in the h-p cloud method to handle the presence of singularities.
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Y
Find u such that 10
—Au = 0 n r
L r (1.10) Q 1
877, = on 11 .
au 10 X
—a—n = -5 on Fz
ou
—a—n = 0 on 89\(F1 U Fz)

P
Figure 3 Boundary conditions, initial
nodal arrangement and background cell
structure used for quadrature.

For this problem, the set of functions Ep (W) defined in (1.4) is composed of the

following monomials: R
Ly(@) = {10 <i+j < p}

That is, the family of h-p cloud functions, F%;, is constructed by multiplying the
partition of unity functions ¢,, a« = 1,..., N, by the smallest set of complete
polynomials of degree less or equal to p.

The background cell structure used to perform the numerical quadrature is
represented in Fig. 3. The nodal arrangement used in the first step of A, p and h-p
adaptation is also shown in the figure.

h adaptivity

Theorem 3 demonstrates that the discretization error of the h-p cloud solution can
be controlled by decreasing the radius h, of the clouds. This, of course, has to be
followed by the addition of more nodes to the discretization in order to guarantee that
a valid covering for the domain still exists. It should be noted, however, that there is no
constraint on how these nodes are placed in the domain—they can simply be inserted
into the regions of interest. This strategy is denoted the h wversion of the h-p cloud
method. This approach is demonstrated in the solution of problem (1.10). Details of
the algorithm used in the h version of the A-p cloud method can be found [DO95a].
The nodal arrangement represented in Fig. 3 and clouds with polynomial degree p = 1
are used to obtain the first approximate solution. The error indicators given by (1.9)
are then computed for each cloud w,. Clouds with errors above a preset value are
selected to be refined while the polynomial order is kept fixed. The refinement of
clouds involves the addition of news nodes around each of the refined clouds. The size
of the supports w, are then automatically reset to take into account the new nodes
added to the discretization (details of the algorithm can be found in [DO]). A new
solution is then computed using the new discretization and the process is repeated
until the quality of the solution is deemed acceptable.

Figure 4 shows the nodal arrangement and the covering obtained after seven steps
of h adaptation. A high concentration of nodes near the corner at (0,0) is observed.



Figure 5 depicts the fluxes computed using the discretization of Fig. 4. The color
associated with each arrow represents the computed potential uj. The flux distribution
indicates the presence of a singularity at the re-entrant corner at (0, 0).
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V3
12.0964
11.2899
10.4835
9.6771
8.87068
8.06425
7.25782
6.4514
5.64497
4.83855
403212
3.2257
2.41927
1.61285
0.806425

Figure 5 Flux distribution.

p adaptivity

In the p version of the h-p cloud method, the solution space is enriched by keeping fixed
the size h, of the clouds and increasing the polynomial order p associated with each
cloud. It is noted that each cloud w, can have a different polynomial order associated
with it, independently of the polynomial order associated with neighboring clouds.
Figure 6(a) shows the polynomial orders associated with each cloud after six steps
of p adaptation. The polynomial orders assigned to each cloud i1s automatically chosen
using the error indicators given by (1.9). The polynomial orders range from p = 1 to



SOLUTION OF SINGULAR PROBLEMS USING H-P CLOUDS 10

p = 7. Figure 6(b) represents the potential u, computed using the discretization of

Fig. 6(a).

8.01979
7.21652
6.41325
5.60998
4.80671
4.00344
3.20017
2.3969
159364
0.790367

(a) Discretization obtained using p adaptivity. (b) Solution obtained using p adaptiv-
ity.

Figure 6 Results from the p version of the h-p cloud method

h-p adaptivity

The h-p version of the h-p cloud method is implemented by combining the A and
p algorithms described previously. Two or more steps of h adaptation are initially
performed in order to isolate any singularity present in the solution. This is followed
by a number of p steps until the estimated error is below a preset value. In the
case of problem (1.10), two h steps are initially performed, starting from the nodal
arrangement of Fig. 3. After that, the error is controlled through p enrichment of the
clouds. The final discretization is presented in Fig. 7. Figure 8(a) shows the computed
fluxes and potential. The three dimensional plot of Fig. 8(b) presents the computed
flux in the y direction using the discretization of Fig. 7. The presence of a singularity
at (0,0) is evident.

1.3.2 MODELING OF CORNER SINGULARITIES AND COMPUTATION OF
STRESS INTENSITY FACTORS IN LINFAR FRACTURE MECHANICS

In this section, we demonstrate how corner singularities in plane elasticity problems
can be efficiently modeled using the framework of h-p clouds. These singularities occur
when the solution domain has corners, abrupt changes in boundary data or consists
of two or more materials [OB95]. The h-p cloud results are compared with those of
the p version of the finite element method. We also present a new approach for the
extraction of the amplitude of the singular terms associated with corner singularities.
The accuracy and simplicity of this novel approach is demonstrated numerically.
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Figure 7 Discretization obtained using h-p adaptivity.

\é/x

1 \Z
B 11.653
[ ] 10.8689
10.0849
9.3009
8.51687
va 7.73284
6.94882
12,0923
11.2862 6.16479
10.48 5.38077
967388 459674
8.86772
8.06156 3.81271
7.25541 3.02869
6.44925 2.24466
564309 146064
I 4.83694 '
LHHTHEE 1HHH I 4.03078 0.67661
tt1 3.22463
2.41847
161231
0.806156
(a) Flux distribution. (b) Flux in the y direction

obtained using h-p adaptivity.

Figure 8 Results obtained using h-p adaptivity.
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Near crack tip expansion

In the neighborhood of a crack, assuming traction-free crack surfaces and in the
absence of body forces, each component of the displacement vector w = {ug, uy}T
can be written as [SB91, SB88§]

M

ug(r,0) = Z (A;l)u(xy(r, o)+ A;z)u(xi»)(r, 9)) + e (r,0) (1.11)
j=1
M

uy(r,0) = 3 (Ag.”u(yy(r, 6) + AP (o, 9)) +ay(r, 0) (1.12)
j=1

where (r, @) are the polar coordinates associated with the crack tip (cf. Fig. 9), @, (r, )
and uy(r, §) are functions smoother than any term in the sum and the eigenfunctions
are given by

P

1 1
u(xj)(r, 0) = 5G {[Kj - Q; )(/\j + 1)]cos A;8 — Ajcos (A; — 2)9}
Av
2 s 2 . .
u(xj)(r, 0) = 50 {[Kj - Q; )(/\j + 1)]sin A;8 — Ajsin (A — 2)9}
Av
1 o 1 . .
ug(/j)(r, 0) = 5 {[Kj + Q; )(/\j + 1)]sin A;6 + Ajsin (A — 2)9}
phi
uéi»)(r, ) = - 50 {[Kj + Q;z)(/\j + 1)]cos A;0 + Ajcos (A; — 2)9}
where the eigenvalues A; are
1 41
M= g, Aj = jT j=2
and
o\ = -1 j=357, Q¥ = -1 j=1,2,4,6,
7 _A] J = 1a2a4a6a _A] J = 3a5a7a
where \ )
Aj =2
J /\j +1
and the material constant k and G are
{ 3 —4v  plane strain E
K=< 3_, G=——
T plane stress 2(1+v)

where F 1s the Young’s modulus and v is the Poisson’s ratio.

The coefficients A(ll) and A(lz) in (1.11) and (1.12) are related to the Mode T and
Mode II stress intensity factors of linear elasticity fracture mechanics, usually denoted
by K; and Ky, as follows:

Ky
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Enrichment of the h-p cloud spaces and extraction of stress intensity
factors

(1) @ M @
wio Upiy Wy, Wy, j=1,..., M are added to the

set Ep defined in Section 1.2.2 giving

e S RNCI IS e
[/p - {Ll}iel’ U {Ux] ) ij ) ij s ij }jzly,,,yM (113)

Then, the enriched h-p cloud functions are defined as follows

Suppose that the eigenfunctions u

Fyo= { val) [Lio Pt @)] Uale) [a) (@), a2 @), ) (), 7 )

la=1,...,N;ieT; j=1,...,M} (1.14)

where

(1 (1 -1
u(xj)(az) = u(xj) oT™ (&)
and T~ is the transformation from rectangular to polar coordinates. The other bar
quantities are computed similarly and the transformation F~1 is defined in (1.6). Note
that all elements from F4 have compact support.

The h-p cloud approximation to the displacement field (1.11),(1.12) can be written
as

a=1j=1
N
@ = 33 o val)(lio Byl (@)
a=11€Z
N M
1 ~(1 2 e
#2000 [l eateal) @) + o el @)
a=1j=1

In the above expansion, for a fixed € , only a few terms are nonzero since all
the functions have compact support. The expansion for, e.g., u? can be rewritten as

A
7

oc] SDOC ]

||M2

2

j=1

polynomial reproducing part singular part
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+ D () D 0 ()] (1.15)

singular part

Comparing (1.15) with (1.11) leads to the following conclusion: the term @, can be
approximated very accurately by the polynomial part of u? since it is a smooth
function. Therefore the difference between @, and the polynomial part of u"? can be
made as small as we want (possibly exponentially) by increasing the polynomial order
associated with the clouds; consequently we must expect that

N N
3 b, P25 A and S0 e 77T AP

a=1 a=1

Therefore the amplitude of any number of generalized stress intensity factors can be
obtained directly from the coefficient of the h-p cloud functions without any additional
work. The first and second stress intensity factors from linear fracture mechanics are
therefore given by

N
Kr =v2rAl =var Yol e,
a=1

N
Krr = VA = var Y o,
a=1

Remark 2 The case of more complicated boundary conditions at the crack surfaces
can be treated exactly as above [OB95]. In the case of anisolropic or nonhomogenous
materials, the numerical approach proposed by [PB95] can be used to compute the
etgenvalues and eigenfunctions of the asymptotic expansion near the crack tip. The
approach described above can then be used without any modifications.

Cracked panel

In this section, the edge-cracked panel shown in Fig. 9 is analyzed using the enriched
h-p cloud spaces ]-"J’(,* defined in (1.14). The h-p cloud results are compared with those
presented by Szabo [Sza86] and Duarte and Barcellos [DdB91] for the p version of
the finite element method using strongly graded meshes.

A state of plane-strain, Poisson’s ratio of 0.3 and unity thickness are assumed.
The tractions corresponding to the first symmetric term of the asymptotic expansion
(1.11), (1.12) are applied on 9. The two components of the displacement at (0, 0)
and the vertical component at (d,0) are set to zero to make the solution unique.
The components of the stress tensor associated with the first term of the asymptotic
expansion are given by [SB91]

W _ Ko, 1.16
oy i 0) (1.16)
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crack ™

d 0.15d

2d

Figure 9 Cracked panel and geometric mesh with three layers of finite elements.

Figure 10 h-p cloud discretization for the cracked panel.

) = cos (g) [1 — sin (g) sin (?)] (1.17)
£35)(6) cos (g) [1 +sin (g) sin (%)] (1.18)
s (2) i () e (2) 19

where (7, 0) is the polar coordinate system shown in Fig. 9.

Due to symmetry, only half of the panel is modeled. The nodal arrangement and
associated covering used in the h-p cloud discretization are depicted in Fig. 10. No
special nodal arrangement is used near the singularity at (0,0). Figure 9 shows the
finite element mesh used by Szabo [Sza86]. The dimensions of the finite elements
decreases in geometric progression towards the singularity. Duarte and Barcellos
[DdB91] used a mesh with the same geometric progression but with five layers of
elements instead of the three layers as shown in Fig. 9.

The exact strain energy for half of the panel is [Sza86]

15(0)

d
U@y, ull)y = 0.23706469K7

The values ' = Ky = d = 1 are adopted in the calculations. R
In the following, an h-p cloud node is said to be enriched if the set £} defined in
(1.13) is used to build the h-p cloud functions associated with that node. For this
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problem the set E; has always the following elements
Px L @ 1) ((2)
Ly={LEmy {u”" Yog o Myj Uy }j:1,...,p—1

That 1s, the set E; has linear polynomials and p — 1 symmetric and antisymmetric
modes from the near crack tip expansion.

Figure 11 shows the convergence in the energy norm of the h-p cloud and finite
element solutions. There are two curves for the h-p cloud method. The solid curve
corresponds to the case in which all six nodes shown in Fig. 10 are enriched nodes.
The error associated with this discretization is zero for p > 2 because £;>2 contain
the exact solution (cf. Theorem 1). The error (of @(107°) in strain energy) shown in
Fig. 11 for p = 2 1s due to integration errors.

Cracked Panel. Hp Clouds and FE Convergence
T T

All Nodes Enriched —<—
One Enriched Node --- -
p FEM Graded Mesh(3) -+
p FEM Graded Mesh(5) -
- \‘\kk‘x
5 0lf 1
5 2
5} LN
3
S PO
= % \Aﬁp:B
= “‘
2 0.01 | “,“ 3 1
§ %o
\ X
‘,“ p:8
5
p=5
0.001 L L
10 100 1000

Number of degrees of freedom

Figure 11 Convergence in the energy norm of the h-p cloud and p finite element
solutions.

This problem was constructed so that the exact solution is equal to the first
symmetric mode all over the domain. In practical problems no such restriction applies
and the expansion (1.11) (1.12) is valid only in a neighborhood r < g, 7o > 0 [SB88].
However, far from the crack tip the solution is smooth and can be approximated well
by polynomials. Therefore in the general case enriched nodes should be used only in
the vicinity of the crack tip. The second curve for the h-p cloud method shown in Fig.
11 corresponds to the use of this strategy. More precisely, the curve corresponds to
the use of the discretization shown in Fig. 10 with only one enriched node-the one at
the crack tip. It can be observed that the h-p cloud solution converges at a very high
rate, as if the solution was smooth. The convergence of the p finite element solution
using graded meshes with three (cf. Fig. 9) and five layers of elements is also shown
in Fig. 11. It can be observed that the h-p cloud discretization requires much fewer
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degree of freedoms than the finite element counterpart. An additional advantage of
using special functions, made possible by the partition of unity methods framework, is
that the stress intensity factors can be obtained, without using elaborate extractions
processes, via the approach described in Section 1.3.2.

Cracked Panel Loaded with Mode | Cracked Panel Loaded with Mode |
12 T T T T T T T T T T T
K_I using hp clouds -&---
Strain Energy -
1F g Breeeenrneens [ REERREEE e a -
=2
p=2 p=5 oo} PR .
08 1 p=2e
S
g 06 |- 1 s
2 i 0001 | . a 4
g K_I using hp clouds -=--- g
= K_Tl using hp clouds -~ ® ®
S oaf . T
@ ‘o p=4
m "
0z r ] 0.0001 F i
0 - e
p=2 p=5 p=4
_02 1 1 1 1 1 1 1 1 1e_05 1 1 1
60 80 100 120 140 160 180 200 220 240 50 80 100 200
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Figure 12 Convergence of stress intensity factors.

Figure 12(a) shows the values of K; and Kjir obtained using the h-p cloud
discretization with only one enriched node and the technique described in Section
1.3.2. The relative errors in strain energy (not energy norm) and the absolute value of
the relative error in Ky, computed from the coefficients of the h-p cloud solution, are
plotted against the number of degrees of freedom in Fig. 12(b). The stress intensity
factor converges at about the same rate as the strain energy and therefore much faster
than the error in the energy norm.

Figure 13 shows the computed stress component os5. The h-p cloud solution
corresponds to the discretization with only one enriched node (at (0,0)) and p = 5. The
plot of Fig. 13(a) is in the (6,r), 0 < 6 < m, 0.00001 < r < 1, plane; @ corresponds
to the = direction and r corresponds to the y direction shown in the picture. The
effectiveness of the h-p cloud approximation to capture the singularity at (0,0) is
evident. Indeed i

P
Maxlows = 725 | _ ) 0go144
Max|o2s|
where the maximum is taken over all points used to plot Fig. 13(a). Figure 13(b) shows
the same results of Fig. 13(a) but this time the plot is done in the (z,y) plane.
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(a) Plot of 22 in the (6,r) plane. (b) Plot of 022 in the (z,y) plane.

Figure 13 Stress component g22 computed using h-p clouds.

1.4 CONCLUSIONS

The h-p cloud method is shown to be an extremely effective tool for handling
singularities and 1s particularly effective in computing stress intensity factors in
linear elastic fracture mechanics. Experiments suggests the method is exponentially
convergent and superior in performance to comparable A-p finite element methods.
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