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Abstract

An extension of the contour integral method (CIM) for the computation of stress intensity
factors for loaded cracks is presented. Numerical solutions of the two-dimensional linear elasticity
equations are computed with the p-version of the generalized finite element method. Polynomial
enrichment functions as well as enrichment with near crack tip asymptotic expansion are used.
The robustness of the formulation with respect to the size of the extraction domain and the
convergence of the computed stress intensity factors and energy release rate are analyzed.

keywords: Stress intensity factors, loaded cracks, contour integral method, generalized finite
element method.

1 Introduction

Crack behavior analysis involves the evaluation of parameters such as the energy release rate and
stress intensity factors (SIF). Several techniques have been proposed to extract these quantities using
numerical methods like the finite element and boundary element methods. Several of the extraction
methods are based on the J-integral [12] or on one of its variations like the domain equivalent integral
[5, 8]. The interaction energy integral method [8] is a popular technique for the extraction of mixed-
mode stress intensity factors. It is derived from the J-integral by considering auxiliary fields. A review
of methods for calculating energy release rates can be found in [5].

The Contour Integral Method (CIM) is a superconvergent technique for the extraction of stress
intensity factors proposed by Szabo and Babuska [16] within the framework of the p-version of the
finite element method. This method is based on the computation of functionals from numerical
solutions and the so-called extraction functions. It is a superconvergent technique since the computed
quantities converge to their true values at least as fast as the strain energy. This method can be
used to compute the amplitudes of any number of terms of the asymptotic expansion of the elasticity
solution at reentrant corners. In particular, it can be used to compute stress intensity factors from
mixed mode crack problems.

In the analysis of cracks in structures like thick walled pressured vessels, it is necessary for realistic
predictions to account for the internal pressure on the crack faces [1]. The analysis of cohesive crack
growth is another example in which crack faces are loaded. In this paper, the CIM is generalized
for the case of cracks with tractions applied to their faces. The formulation presented by Szabo and
Babuska [16] is shown to be a special case of the one presented here. Numerical examples demonstrate
that, like in the case of stress-free crack faces, computed stress intensity factors converge exponentially.



The p-version of the generalized finite element method [2, 9, 14] is used to compute approximate
solutions of the elasticity equations. Polynomial enrichment functions as well as enrichment with
Westergaard near crack tip expansion is investigated.

The cutoff function method (CFM) [16] is an extraction technique closely related to the CIM. The
extension of the CFM to the case of pressurized cracks is presented in [10].

The paper is organized as follows. After this introduction, an integral identity and the so-called
extraction functions are presented in Section 2. The formulation of the contour integral method for
cracks with tractions applied to their faces is presented in Section 2.1. A short summary of the
generalized finite element method is presented in Section 3. A Numerical example is presented next
and the main conclusions of this work are drawn in Section 5.

2 Extraction of Stress Intensity Factors

Consider a cracked plane elastic domain Ω and coordinate systems (x, y) and (x1, x2) as illustrated in
Fig. 1. Let

u(x1, x2) =

{

u1(x1, x2)
u2(x1, x2)

}

denote the displacement field in Ω written in terms of the local Cartesian coordinates (x1, x2) associated
with the crack tip.
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Figure 1: Coordinated systems, domain Ω and neighborhood Ωs around the crack tip. The crack
opening is shown for illustration only. The x1-axis is parallel to the crack faces.

The two dimensional linear elasticity equilibrium equations on a domain Ω, in the absence of body
forces, are given by

σ
(u)
ij,j = 0 in Ω

where

σ
(u)
ij = Dijklε

(u)
kl

ε
(u)
ij =

1

2
(ui,j + uj,i)

2



with Dijkl being the tensor of elastic constants for a homogeneous isotropic material with Young’s
modulus E and Poisson’s ratio ν. For two dimensional case,

D1111 = D2222 = A

D1122 = D2211 = νA

D1212 = E/(1 + ν)

where

A =

{

E/(1 − ν2) for plane stress
E(1 − ν)/[(1 + ν)(1 − 2ν)] for plane strain

and all other components of D are zero. The direction cosines of the normal to the boundary of the
body Ω at a point P are denoted by (n1, n2). The traction vector components at a point P ∈ ∂Ω are
given by

T
(u)
i = σ

(u)
ij nj on ∂Ω

where σ
(u)
ij and T

(u)
i denote stress components and the components of the traction vector on the

boundary ∂Ω, respectively, computed from the displacement field u.
Herein we assume that the crack faces, Γ3 and Γ4, are loaded by prescribed tractions given by

T
(u) =

{

p3 on Γ3

p4 on Γ4

Appropriate boundary conditions are applied on ∂Ω \ (Γ3 ∪ Γ4).
Let

v(x1, x2) =

{

v1(x1, x2)
v2(x1, x2)

}

denote a virtual displacement field defined on Ω.
Consider now a subdomain Ωs in the neighborhood of the crack tip with boundary ∂Ωs = Γ1 ∪

Γ2 ∪Γ3 ∪Γ4 and internal (external) radius ρ1 (ρ2) as illustrated in Fig. 1. Using the definitions above
and following the standard derivation of the Principle of Virtual Work (e.g. [17]) it can be shown that

∫

Ωs

σ
(u)
ij ε

(v)
ij dΩ =

∫

∂Ωs

T
(u)
i vidΓ (1)

holds for any virtual displacement field v with an associated finite strain energy in Ωs. In the above,
ε
(v)
ij denotes the strain components computed from the virtual displacement field v.

If the displacement field v satisfies the equilibrium equations, the equation above leads, after some
standard manipulations, to the so-called Betti’s law [16]

∫

∂Ωs

T
(v)
k ukdΓ =

∫

∂Ωs

T
(u)
i vidΓ (2)

The integral equation above is used in Section 2.1 to derive the contour integral method.
Let

ū(r, θ) =

{

ū1(r, θ)
ū2(r, θ)

}
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denote the displacement field in Ωs written in terms of the local polar coordinates (r, θ) associated with
the crack tip (Cf. Fig. 1). Herein, bar quantities, “̄ ”, are defined in terms of local polar coordinates.

If the internal radius, ρ1, of the subdomain Ωs is sufficiently small, the displacement field on Γ1

can be approximated by the first term of the asymptotic near-tip expansion [16]

ū(r, θ) =

{

ū1(r, θ)
ū2(r, θ)

}

=
KI

2G
√

2π

√
r

{

(κ − 1
2
) cos θ

2
− 1

2
cos 3θ

2

(κ + 1
2
) sin θ

2
− 1

2
sin 3θ

2

}

+
KII

2G
√

2π

√
r

{

(κ + 3
2
) sin θ

2
+ 1

2
sin 3θ

2

−[(κ − 3
2
) cos θ

2
+ 1

2
cos 3θ

2
]

}

(3)

where KI (KII) is the mode I (II) stress intensity factor, G is the shear modulus of rigidity and κ is
the Kolosov’s constant

κ =

{

(3 − ν)/(1 + ν) for plane stress
3 − 4ν for plane strain

The traction vector computed from the displacement field ū(r, θ) is denoted by T̄
(ū)

(r, θ).
Based on the displacement field presented in Eq. (3), the so-called extraction functions for mode

I and mode II are defined, respectively, by [17]

v̄−I(r, θ) =

{

v̄−I
1 (r, θ)

v̄−I
2 (r, θ)

}

=
B−I

2G
√

2π

1√
r

{

(κ − 3
2
) cos θ

2
+ 1

2
cos 5θ

2

−(κ + 3
2
) sin θ

2
+ 1

2
sin 5θ

2

}

(4)

v̄−II(r, θ) =

{

v̄−II
1 (r, θ)

v̄−II
2 (r, θ)

}

=
B−II

2G
√

2π

1√
r

{

−(κ + 1
2
) sin θ

2
− 1

2
sin 5θ

2

−[(κ − 1
2
) cos θ

2
− 1

2
cos 5θ

2
]

}

(5)

where B−I and B−II are constants defined later. Equations (4) and (5) play a key role in the definition
of the extraction method discussed here. The extraction function for a given mode is defined by taking
the same expression of the asymptotic expansion but using the negative of the eigenvalue associated
with the mode. A detailed procedure showing how to define the extraction functions can be found
in [17]. These functions do not have finite strain energy in Ω. However, they have finite strain energy
in Ωs and satisfy the equilibrium equations.

The traction vectors computed from v̄−I and v̄−II are denoted by T̄
(v̄−I)

and T̄
(v̄−II)

, respectively.
It is not difficult to verify that these tractions are zero on the crack faces, i.e., on Γ3 and Γ4.

2.1 The Contour Integral Method for Loaded Cracks

In this section, the integral identity (2) is used to derive the contour integral method (CIM) for cracks
with tractions applied to their faces. Let us consider first the integral on the left hand side of Eq. (2),
i.e.,

∫

∂Ωs

T
(v)
k ukdΓ ≡

∫

Γ1∪Γ2∪Γ3∪Γ4

T
(v)
k ukdΓ =

∫

Γ1∪Γ2∪Γ3∪Γ4

T̄
(v̄)
k ūkdΓ

Let v̄ denote the extraction function v̄−I or v̄−II . Then
∫

Γ3

T̄
(v̄)
k ūkdΓ =

∫

Γ4

T̄
(v̄)
k ūkdΓ = 0

since T̄
(v̄−I)

(r, θ) and T̄
(v̄−II)

(r, θ) are zero on the crack faces.

4



Let v̄ = v̄−I , then it can be shown that1

∫

Γ1

T̄
(v̄−I)
k ūkdΓ = C−I

l B−IKI (6)

where

C−I
l =

−(3κ + 1)

8G
and κ is the Kolosov’s constant.

Similarly, if v̄ = v̄−II , then,
∫

Γ1

T̄
(v̄−II)
k ūkdΓ = C−II

l B−IIKII (7)

where

C−II
l =

−(κ + 3)

8G

Let us now consider the integral on the right hand side of Eq. (2), i.e.,
∫

∂Ωs

T
(u)
i vidΓ ≡

∫

Γ1∪Γ2∪Γ3∪Γ4

T
(u)
i vidΓ =

∫

Γ1∪Γ2∪Γ3∪Γ4

T̄
(ū)
i v̄idΓ

Let v̄ = v̄−I , then it can be shown that
∫

Γ1

T̄
(ū)
i v̄−I

i dΓ = C−I
r B−IKI (8)

where

C−I
r =

(κ + 3)

8G

Similarly, if v̄ = v̄−II then,
∫

Γ1

T̄
(ū)
i v̄−II

i dΓ = C−II
r B−IIKII (9)

where

C−II
r =

(3κ + 1)

8G

From Eq. (2) and the above we have that

C−I
l B−IKI +

∫

Γ2

T̄
(v̄−I)
k ūkdΓ = C−I

r B−IKI +
∫

Γ2

T̄
(ū)
i v̄−I

i dΓ

+
∫

Γ3

p̄3
i v̄

−I
i dΓ +

∫

Γ4

p̄4
i v̄

−I
i dΓ

Therefore, adopting B−I := 1/(C−I
l −C−I

r ) = −2G/(κ+1), and using local Cartesian coordinates
instead of polar coordinates, we have that

KI =
∫

Γ2

T
(u)
i v−I

i dΓ −
∫

Γ2

T
(v−I)
k ukdΓ +

∫

Γ3

p3
i v

−I
i dΓ +

∫

Γ4

p4
i v

−I
i dΓ (10)

Similarly, KII can be computed using

KII =
∫

Γ2

T
(u)
i v−II

i dΓ −
∫

Γ2

T
(v−II)
k ukdΓ +

∫

Γ3

p3
i v

−II
i dΓ +

∫

Γ4

p4
i v

−II
i dΓ (11)

It is important to point out that

1We employ symbolic computation to compute integrals like the one in (6). The Maple code is available by contacting
the authors.

5



• The expressions above for KI and KII are exact. However, neither the solution u nor the cor-
responding traction T(u) are known. In this paper, we use instead numerical solutions provided
by the generalized finite element method (Cf. Section 3) to obtain approximations to KI and
KII .

• In the above, if p3 = p4 = 0 then Eqs. (10) and (11) reduce to the formulation presented in [16].

• The contour Γ2 can be as large as we wish, in other words, Γ2 does not have to be close to the
crack tip. This property of the CIM is confirmed in the numerical experiments presented in
Section 4. This is in contrast, for example, with the J-integral method. This is important since
numerical solutions are of lesser quality near the crack tip.

• The path Γ2 does not have to be circular as used in the derivations above. The choice of its
shape is mostly dictated by computational implementation issues. An implementation of the
CIM and the CFM that can be used with most numerical methods is proposed in [11].

3 The Generalized Finite Element Method – A Summary

The generalized finite element method [2,6,9,14] is used in the next section to compute approximate
solutions from which stress intensity factors are extracted. In this section, a brief description of the
method is presented. Additional details can be found in [2,6,9,14] and the references therein.

Consider a mesh of linear finite elements in IRn, n = 1, 2 or 3. Let xα denote a vertex node in this
mesh. The union of the finite elements sharing node xα is denoted by ωα and it corresponds to the
support of the global finite element shape function ϕα associated with that node. Let N denote the
number of nodes and shape functions in a finite element mesh. The functions ϕα, α = 1, . . . , N , have
the following property

∑

α

ϕα(x) = 1 ∀ x ∈ Ω, (12)

i.e., the finite element shape functions constitute a partition of unity. The generalized finite element
method explores this property to build shape functions as described below. The GFEM is mathemat-
ically equivalent to other methods like the hp Cloud method [3, 4] and the extended finite element
method [7,15].

Let χα(ωα) = span{Liα}i∈I(α) denote local spaces defined on ωα, α = 1, . . . , N , where I(α), α =
1, . . . , N , are index sets and Liα denotes local enrichment functions.

Suppose that the finite element shape functions, ϕα, are linear functions and that

Pp−1(ωα) ⊂ χα(ωα), α = 1, . . . , N,

where Pp−1 denotes the space of polynomials of degree less or equal to p − 1. The generalized finite
element shape functions of degree p are defined by [2,6,9,13,14]

Fp
N = {φα

i = ϕαLiα, α = 1, . . . , N, i ∈ I(α) (no sum on α)} (13)

There is considerable freedom in the choice of the local spaces χα. The most obvious choice for
a basis of χα is polynomial functions which can approximate smooth functions well. In this case,
the GFEM is essentially identical to the classical FEM. The enrichment functions can also be non
polynomial like those functions given by Eq. (3). This type of enrichment is used in the example of
Section 4 and it is very effective to model the behavior of the elasticity solution in the neighborhood
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of cracks. Additional details on the construction and implementation of this type of enrichment can
be found in, e.g., [2].

The GFEM shape functions defined in Eq. (13) are used to construct finite dimensional spaces
used in the Galerkin method, like in the standard finite element method. Details can be found in,
e.g., [2].

4 Center-Cracked Panel with Partially Loaded Crack Faces

In this section, a numerical example of a finite center-cracked panel with partially loaded crack faces
is presented. The geometry, boundary conditions and mesh used are illustrated in the Figure 2.

Figure 2: Domain of analysis and mesh design.

A state of plane stress is assumed and the following parameters are adopted: w = 1.0, a = w/10,
b = a/2, Poisson’s ratio ν = 0.3, Young’s Modulus E = 1.0, and unit thickness. Point Dirichlet
boundary conditions uxA

= uyA
= 0.0 and uyB

= 0.0 at points A and B, respectively, are set in order
to prevent rigid body motion. The tractions applied at the top, p3, and lower, p4, crack faces are
taken as (Cf. Fig. 2)

p3 = −σn − τt

p4 = −σn + τt

where n is the normal vector to the faces and t the tangent vector pointing away from a crack tip. In
the computations, σ = τ = 1.0 is adopted.

The p version of the GFEM is used to solve this problem. The nodes at the crack tips are enriched
with polynomial and the singular Westergaard functions given in (3). All other nodes are enriched
only with polynomial functions. The mesh used is quite coarse to resolve the singularity at the crack
tip using the standard finite element method. However, the use of singular enrichment functions at the
crack tip is very effective. Details on the p version of the GFEM can be found, for example, in [2,9].

The numerical solutions are computed using the computer program ”Illinois Scientific and Engi-
neering Toolkit (ISET)”. This software is an object oriented implementation of the generalized finite
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element method. The numerical integrations for the CIM is performed using 12 Gauss points for the
circular domain, Γ2. The integration along the crack faces is done only over the part of the face with
non-zero prescribed traction.

The example described here is a mixed mode problem. In order to validate the solution obtained
from the CIM implementation, the following reference values are used:

{

K inf
I

K inf
II

}

=
2

π

{

σ
τ

}

√

π
a

2
sin−1 b

a
= 0.13211091

{

σ
τ

}

These reference values hold for an infinite domain and they can be found in [18]. In the present case,
the computations are done on a finite domain. Therefore, due to the domain finiteness, it is expected
that the computed stress intensity factors are larger than those for an infinite domain. A detailed
discussion on the effect of finite domain size can be found in [1].

Figure 3(a) shows the computed stress intensity factors versus the number of degrees of freedom.
The polynomial order of the enrichment functions ranges from p = 1 to p = 7. Singular enrichment
functions are used at crack tip nodes as discussed above. In the computations, the radius of the
extraction domain for the CIM, ρ2, is taken as 0.040. Figure 3(a) and Table 1 show that the values
are in good agreement with the reference values for a infinite domain. The stress intensity factor KI

(KII) converges to a value about 2.5% (2.0%) larger than the reference value for an infinite domain.
Table 1 also shows the convergence of the energy release rate with the enrichment of the solution. The
energy release rate is computed using the following relation

G =
(

K2
I + K2

II

) 1 + κ

8G

The values computed for energy release rate are also in good agreement with the reference values.
The energy release rate converges to a value about 4.5% larger than the reference value.
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(a) Convergence of stress intensity factors.
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(b) Numerical verification of path independence.

Figure 3: Convergence of extracted quantities and numerical verification of path independence.

Figure 3(b) and Table 2 present the numerical verification of the path independence for the CIM.
In the computations, polynomial enrichment of degree p = 6 and singular enrichment functions at crack
tip nodes are used. The results show that the CIM for loaded cracks is quite robust to variations in the
dimension of the extraction domain. The values presented on Table 2 confirm that the variation on
the stress intensity factors values with respect to the radius is not significant. All the values computed
are very close to the average.
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Table 1: Relative error, er(KI) = |K inf
I −KI |/K inf

I ∗ 100, for stress intensity factors and energy release
rate

p N er(KI)% er(KII)% er(G)%
1 160 25.57479 9.650293 38.96117
2 480 15.55442 3.7666 20.6016
3 956 3.941453 1.717564 5.751966
4 1592 1.356504 1.959785 3.344684
5 2388 2.728836 3.023286 5.834758
6 3344 2.496455 1.968868 4.516096
7 4460 2.586531 1.551038 4.182635

It can be observed in Figure 3(b) that there is a larger variation on the computed stress intensity
factors for extraction domains with radius ρ2 of about 0.025 than for other values. This variation is
caused by the discontinuity of the tractions applied at the crack faces. However, the overall stability
of the CIM is not affected (Cf. Table 2).

Table 2: Average and standard deviation for stress intensity factors in the numerical verification of
the path independence.

KI KII

Average 0.135310 0.134007
Standard deviation 0.000650 0.000492

5 Summary and Conclusions

A generalization of the contour integral method for cracks with tractions applied to their faces is
presented. The formulation can handle single- as well as mixed-mode cracks. Based on the numerical
experiments presented here and in [10,11] the following conclusions can be drawn. The contour integral
method is very robust. The computed SIFs have shown to be quite insensitive to the dimensions of
the extraction domains. This is in contrast with methods based on the J-integral which require
that the extraction domains to be sufficiently close to the crack tips. This limitation poses conflicting
requirements on the size of the extraction domains that can be used with these methods since numerical
solutions are in general of lesser quality near a crack tip. The CIM, on the other hand, allows the use
of large extraction domains.

The results presented in Section 4 indicate that it is possible to compute quite accurate stress
intensity factors using the CIM for loaded cracks. The results also show that a coarse mesh enriched
with singular functions at the crack tip nodes is very effective for the computation of stress intensity
factors.
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