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Abstract

This paper describes extensions of the hp cloud method to problems of fracture me-
chanics as an example of developing customized cloud functions. The cloud methods
are built on partitions of unity that are subordinate to covers of the solution domain.
For this reason, clouds can also be constructed on finite element meshes. This aspect
of these methods is also discussed. Applications to representative boundary-value

problems are presented.

1 Introduction

The notion of an hp cloud was introduced by the authors in 1995 [4] as a variant
of the so-called meshless methods that began gaining interest around that time.
These methods do not require the standard mesh connectivities of conventional finite
elements and involve the construction of so-called clouds, which are overlapping open
sets covering the domain of the solution of a boundary-value problem. A key feature

of these sets of clouds is that they provide the domains of a partition of unity (PU),
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which is a set of functions with support contained in a cloud but whose values sum

to the unity at each point @ in the solution domain 2.

An interesting and useful property of conventional finite element methods is that the
usual FEM global basis functions N, associated with nodes x, € Q) also form a PU
since 3, No(®) = 1. Thus FEM’s can be used as a basis for clouds. While such an
approach bypasses the advantages of some meshless methods, as one then has a FEM
mesh, other useful properties are obtained, such as the ability to produce seamless
hp FEM approximations with nonuniform h and p and the ease with which essential
boundary conditions can be implemented on FEM meshes. An important feature
of clouds and, especially of hybrid FEM-clouds, is the ability to develop customized
clouds for specific applications. We exploit this feature in the present paper to

develop clouds for problems of stress singularities and linear fracture mechanics.

The present paper is a summary and compilation of results developed by the authors
in several recent papers. Our theory of clouds, presented in [2,4], is summarized
in Section 2, following this introduction. The use of FEM’s to produce a PU,
presented in [6], is briefly summarized in Section 2 as well. A detailed treatment,
including studies of performance and adaptive hp cloud methods, is discussed in the
thesis of C. A. Duarte [5] and in a forthcoming paper [3]. The use of customized
clouds for singular problems was introduced in [7]; here we extend those results
to plane elasticity problems with inclined cracks. The results of several numerical

experiments are summarized in Section 3.

2 Hp Cloud Approximations, a Summary

In the hp cloud method introduced in [2,4] the domain © of the solution of a
boundary-value problem is covered with a finite open covering Ty := {w, }_, con-

sisting of N open sets w, (the clouds)

=

Qc | @ (1)
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The center of the clouds, @, are denoted by nodes. The shape of a cloud w, can be
quite arbitrary. In two dimensions, for example, it can be a rectangle, an ellipse or

a circle. Figure 1 shows examples of valid open coverings and associated clouds.

The next step in building hp cloud approximations is to construct a partition of

unity subordinated to the open covering 7n. The partition of unity functions ¢,



(a) Open covering build using (b) Open covering build using

circles. rectangles.

Figure 1: Examples of open coverings that can be used in the hp cloud method.

are global basis functions that possesses the following properties

1) ¢, € Ci(wy), s >0, I1<a<N
2) Y ea(e)=1, VaeeQ
There is no unique way to build functions ¢, satisfying the above requirements.
Each approach has its own merits and embedded costs. The choice of a particular
partition of unity should be based on
o the class of problems to be solved, e.g. linear or non-linear problems,
o the complexity of the geometry of the domain,
e the regularity required from the approximation, e.g. C° C*, or higher,
e the importance of the meshless character of the approximation, etc.
Consider, for example, the conventional finite element meshe of triangles and quadri-
laterals shown in Fig. 2 on which continuous global Lagrangian basis functions

(shape functions) N, are constructed at each nodal point ®,, o = 1,2,..., N.

These functions are such that

N
> No(z) =1, at any & € Q
a=1



and thus form a partition of unity. By setting ¢, = N,, Oden at al. [6] have built
cloud-based hp finite element approximations using bi-linear finite elements as a
partition of unity (see also Section 2.1). In this case, a cloud w, is the union of the

finite elements sharing a node.
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Figure 2: Global finite element shape function N, built on a mesh of triangles and

quadrilaterals.

Another example of a partition of unity are the so called Shepard functions [8]. This

partition of unity can be built as follows

Let W, : R" — R denote a weighting function with compact support w, that belongs
to the space C§(w,), s > 0 and suppose that

Wy(e) >0 Ve el
In the case of the clouds defined by
wo = {y € B"| [|®0 — yllm» < ho} (2)

weighting functions W, can be implemented with any degree of regularity using
“ridge” functions. More specifically, the weighting functions W, can be implemented

through the composition

Wa(@) = g(ra)



where ¢ is, e.g., a B-spline with compact support [—1, 1] and r, is the functional

=l

To I
Details on the construction of the B-splines can be found in, e.g., [1]. A similar

technique can be used to build weighting functions on clouds that are convex sets.

The partition of unity functions ¢, can then be defined by

W, (@)

= W B ey Wy(=z) # 0} (3)

PalT)

which are known as Shepard functions [8]. The main advantages of this particular

partition of unity are

e it is meshless—there is no need to partition the domain to build this kind of

partition of unity,
e it can easily be implemented in any dimension,
e it can be constructed with any degree of regularity

o it allows easy implementation of A adaptivity, as demonstrated in [3].

2.1 The Family of Cloud Functions F}

The basic idea used to construct the hp clouds functions is very simple although
not so intuitive. The hp cloud functions are constructed by multiplying a partition
of unity by functions that have good approximating properties, e.g. polynomials,
harmonic functions, etc. It should be emphasized that any partition of unity can be

used to build the Ap cloud functions.
Let /jp = {L},ez, denote a set of functions EZ defined on the unit circle
w:={£ e R"| |§||lrr <1}

satisfying

Pp(@) C span(L,) (4)
In the above, T denotes an index set and P, the space of polynomials of degree less

than or equal to p. The functions L; are denoted higher order basis functions.



The family of hp cloud functions F4 is defined by

Fh = L_J NP NP ={ pa(@)Lin(x): i €T} (5)

where N is the number of nodes in the domain and

Lio(z) = L; o F;'(a) (6)

xr —x,

Fo':w, =&, F '(z):= ; (7)

O O

According to the above definition, F& is constructed by multiplying each partition
of unity function ¢, by the elements from the set /jp (higher order basis functions).
One element from the space of hp cloud functions can be written as

N

W) = D> dai (gal@) Lia(x))

a=11€7

The following theorems are proved in [4].

Theorem 2.1 Let L, := {L;},.; and L; be the same functions L; but defined on €.
Then L, C span{Fx}.

Corollary 2.1 Let P,(9) be the space of polynomials of degree less than or equal
to p defined on Q. Then P,(Q) C span {Fx}.

Therefore, the elements from the set £, can be recovered through linear combinations
of the hp clouds functions. This is one of the most fundamental properties of the

hp cloud functions.

Figure 3(a) shows the Shepard partition of unity function ¢, associated with a
node &, at the origin of the domain @ = (—1,1) x (=1,1). A uniform 5 x 5 node
arrangement and quartic splines are used to build it. Figure 3(b) shows the function

ypo from the families FRZ..

As mentioned above, finite elements can be used as a partition of unity to build
cloud functions. Figure 4(a) shows a bilinear global finite element shape function
N, associated with a node from the mesh shown in Fig. 12. Figure 4(b) shows the

cloud function y%N,.
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(a) 2-D partition of unity function . (b) 2-D hp cloud function ye, from the

families Firi— 5.

Figure 3: 2-D hp cloud functions built using a meshless partition of unity.

(a) Bi-linear shape function (partition of (b) Higher order hierarchical shape func-
unity function). tion built from the product of the bilinear
shape function shown in (a) and the mono-

mial 42.

Figure 4: 2-D hp cloud functions built using a finite element partition of unity.



2.1.1 The Use of Customized Functions

There are several situations in which the inclusion in the set /jp of specially cus-
tomized functions to model, e.g., boundary layers, shocks, singularities, etc., can
be very advantageous. This is the case in the stress analysis of cracks where the
quantities of interest are the stress intensity factors. Oden and Duarte [7] have
demonstrated that the amplitude of any number of stress intensity factors can be
obtained from the coefficients of customized hp cloud functions without any addi-

tional work. We summarize bellow the main results of Oden and Duarte [7].

Assuming traction-free crack surfaces and no body forces, the displacement vector

w = {ug, un}T in the neighborhood of a crack can be written [9,10]
M (1) (2)
’U,(T'70) = { ug(r70) } Z { uf] (r70) } —I— A;Q) { u%)(r,e) }
) u77] (r7 0) u77j (T, 0)

ug(r, 8)
+{ ui(n@) } ®)

where (r,0) are the polar coordinates relative to an origin at the crack tip (cf.

Fig. 5), ué]), uglj), ug), uf;) are Cartesian components of w in the {— and n—

directions, ug(r,0) and w,(r,0) are functions smoother than any term in the sum.

The coefficients A; ), AL

J

Uy
) are called generalized stress intensity factors.

(x.y)

X

Figure 5: Coordinate systems associated with the crack tip.

The singular hp cloud functions associated with a cloud wg, 3 € Z., are defined by

e i={ o |ud, wld w1 =1 (9)



v @ 1) (2)

wjo Ugpjy Uyjs Uy
are the same as in (8) but transformed to the physical coordinates (z,y). Here, Z,

The cloud wg is said to be an enriched cloud. The functions u

denotes the index set of the clouds that include in their local spaces the near crack

expansion.

The enriched hp cloud functions is then defined by

FRereck ::{ LQW] U [U 034] } (10)

ﬁez-c

Where NP is defined in (5). Note that all elements from f%craCk have compact
support. The main advantage of using the enriched clouds as defined above is that
the amplitude of any number of stress intensity factors can be obtained from the
coefficients of these functions [7]. This technique is demonstrated numerically in the

next section.

3 Numerical Experiments

In this section two boundary-value problems are solved using hp cloud approxi-
mations and the Galerkin method. Details on the implementation of domain and
boundary integration can be found in [3,5]. In the first numerical experiment, the
hp cloud functions are built using the meshless partition of unity defined in (3).
This experiment demonstrates how the use of customized functions, made possible
by the hp cloud method, can lead to exponential convergence of the solution even in
the presence of singularities and without using strongly graded meshes as required

in traditional Ap finite elements methods.

In the second experiment the partition of unity is composed of global finite element
shape functions. This experiment demonstrates how non-uniform hp distributions

can be constructed quite naturally within the Ap cloud framework.



3.1 An Inclined Crack Problem

The cracked panel shown in Fig. 6 is analyzed using the enriched hp cloud functions
defined in (10). The hp cloud results are compared with those presented by Szabé
and Babuska [9] for the p version of the finite element method. In this problem,

both the symmetric and anti-symmetric part of the expansion (8) are non-zero.
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Figure 6: Problem definition.

The plane stress condition, a Poisson’s ratio of 0.3 and unit thickness are assumed.
In addition we adopt £ =1, w=1 and o =1 (cf. Fig. 6).

The hp cloud discretization is depicted in Fig. 7(a). There are only N = 9 clouds.
Note that no special nodal arrangement is used near the singularity at the crack tip.
The cloud at the crack tip, denoted by wy;,, is the only enriched cloud. All other

clouds have only polynomials in their local spaces. The hp cloud space is given by

N
fﬁ:sckz{[ U NE]u] ucM]} (11)

a=1, aFtip

where M =3 +5(p —1).



A

N

|

TS

®
W
10
—=| |= w
100
(a) hp cloud discretiza- (b) Finite element discretization.

tion.

Figure 7: hp cloud and finite element discretizations.

Figure 7(b) shows the finite element mesh used by Szabé and Babuska [9]. Three

layers of finite elements are used around the crack tip.
The stress intensity factors K and Kj; are normalized as follows

Ky ~
K=
o\ 2TwW o\ 2TwW

[([ T

Ky; .=

Figures 8 and 9 show the hp cloud results. The values obtained using the p version of
the finite element method with the cutoff function method (CFM) and the contour
integral method (CIM) [9] are also shown in Figs. 8 and 9. The three techniques
converge to the same values but the hp cloud method requires fewer degrees of
freedom than the finite element method with the CFM or the CIM. The results
are also shown in Tables 1 and 2 for the Ap cloud method and the finite element
method, respectively. Figures 10(a) and (b) show the computed stress components
011 and o1, respectively. The plots are in the (0, r) plane. Figure 10(c) depicts the

component u; of the displacement vector in the (x,y) plane.
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Figure 8: Convergence of K.

Table 1: Values of K, K7 and strain energy for the inclined crack computed using

hp clouds.

Step N K; K Un,

1 64 0.453 551 548 01 -0.273 638 260 31 1.566 046 631 087
2 122 0.558 479 531 07 -0.297 078 107 32 1.662 449 370 686
3 196 0.596 284 457 14 -0.290 000 508 19 1.697 944 565 848
4 286 0.600 795 484 57 -0.290 340 435 49 1.703 163 179 320
5 392 0.601 886 119 14 -0.290 770 762 20 1.703 796 511 631
6 514 0.601 821 961 72 -0.290 837 611 07 1.703 975 037 245
7 652 0.601 853 671 45 -0.290 943 515 98 1.704 016 285 211
8 806 0.601 718 130 52 -0.291 110 545 79 1.704 022 915 131
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Figure 9: Convergence of K.

Table 2: Values of A and Ky for the inclined crack computed using p fem with
CFM and CIM [9].

p N K;(CIM) Ky (CFM) K (CIF)  Kp(CFM)
1 43 0.541 27 0.422 59 -0.374 80 -0.290 05
2125 0.497 08 0.555 88 -0.255 78 -0.282 92
3 221 0.589 09 0.561 61 -0.289 51 -0.270 74
4 355 0.578 64 0.592 32 -0.283 19 -0.290 22
5
6
7
8

527 0.605 58 0.598 25 -0.293 98 -0.290 12
737 0.596 72 0.600 43 -0.288 97 -0.290 97
985 0.603 13 0.601 19 -0.291 96 -0.290 91
1271 0.600 32 0.601 32 -0.290 42 -0.290 95
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3.2 hp Adaptivity Using an Hybrid FE/Cloud Approxima-

tion

We shall now consider the problem of an L-shaped plane elastic body loaded by the

tractions associated with the following stress field

Oun(r,0) = M2 = QA+ 1)) cos(A —1)8 — (A — 1) cos(A — 3)4]
Oyy(r,0) = )\T/\_l[(Q + QA+ 1))cos(A—1)0+ (A —1)cos(A—3)8] (12)
Ouy(r,0) = X (A — 1) sin(A —3)0 + Q(A 4 1) sin(A — 1)6]

where (r,6) is the polar coordinate system shown in Fig. 11, A = 0.544 483737,
Q = 0.543075579.

The stress field (12) corresponds to the first term of the symmetric part of the

expansion of the elasticity solution in the neighborhood of the corner A shown in

Fig. 11 [9].

>
=

v

Figure 11: L-shaped elastic body.

Plane strain conditions, unity thickness and Poisson’s ratio of 0.3 are assumed. The

strain energy of the exact solution is given by [9]
a2
£u) = 415454423

where F is the modulus of elasticity and a is the dimension shown in Fig. 11. The

values £ = ¢ = 1 are assumed in the calculations.

Two sequences of discretizations, §; and Sy, are used to solve this problem. In the

former, the uniform mesh shown in Fig. 12 is used and the polynomial order of the



approximations ranges from 1 to 8. A strongly graded mesh, as shown in Fig. 13,
and non-uniform p distributions are used in the second sequence of discretizations.
Figures 14 and 15 show the p distribution used in the fourth step of this sequence.
The polynomial order of the clouds decrease linearly towards the singularity while

the size of the finite elements decrease geometrically. Geometric factors ¢ = 0.15

and ¢ = 0.10 are used (cf. Fig. 13).

Figure 12: Uniform mesh for the L-shaped body.

N

Oxa

— |- qz*a

Figure 13: Geometric mesh for the L-shaped body. Geometric factors of ¢ = 0.15
and ¢ = 0.10 are adopted in the computations.

The relative error, measured in the energy norm, versus the number of degrees of
freedom is shown in Fig. 16 for the sequences of discretizations §; and Sy (for

g = 0.15 and ¢ = 0.10). As expected, the uniform mesh gives an algebraic rate of
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Figure 14: Polynomial order associated with the clouds at the fourth step of the

sequence of discretizations S;.
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Figure 15: Zoom at clouds near the re-entrant corner of Fig. 14.



convergence while the strongly graded meshes leads to an exponential rate of con-
vergence. This kind of behavior is typical of Ap- finite element methods. However,
the construction of non-uniform h- and p- discretizations in a cloud based frame-
work is considerably more straightforward than in conventional hAp- finite element
methods. The sequence Sy with a geometric factor ¢ = 0.10 gives better results than

the sequence Sy with ¢ = 0.15.
L-Shaped Domain: Cloud-FEM Results
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Figure 16: Convergence in the energy norm for uniform and non-uniform cloud-based

hp- distributions.

4 Conclusions

The hp cloud method can be combined with the classical finite element method to
produce an effective technique for solving boundary-value problems; alternatively,
it can be used with any technique that produces a partition of unity, without tra-

ditional meshing considerations. One of the most attractive features of such ap-



proaches is that special customized clouds can be developed which enhance conver-
gence rates and facilitate applications to special problems such as fracture mechan-
ics. When implemented on a FEM generated PU, a nonuniform hp finite element

method is produced which exhibits exponential convergence rates.
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