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which is a set of functions with support contained in a cloud but whose values sumto the unity at each point x in the solution domain 
.An interesting and useful property of conventional �nite elementmethods is that theusual FEM global basis functions N� associated with nodes x� 2 
 also form a PUsince P�N�(x) = 1. Thus FEM's can be used as a basis for clouds. While such anapproach bypasses the advantages of some meshless methods, as one then has a FEMmesh, other useful properties are obtained, such as the ability to produce seamlesshp FEM approximations with nonuniform h and p and the ease with which essentialboundary conditions can be implemented on FEM meshes. An important featureof clouds and, especially of hybrid FEM-clouds, is the ability to develop customizedclouds for speci�c applications. We exploit this feature in the present paper todevelop clouds for problems of stress singularities and linear fracture mechanics.The present paper is a summary and compilation of results developed by the authorsin several recent papers. Our theory of clouds, presented in [2, 4], is summarizedin Section 2, following this introduction. The use of FEM's to produce a PU,presented in [6], is brie
y summarized in Section 2 as well. A detailed treatment,including studies of performance and adaptive hp cloud methods, is discussed in thethesis of C. A. Duarte [5] and in a forthcoming paper [3]. The use of customizedclouds for singular problems was introduced in [7]; here we extend those resultsto plane elasticity problems with inclined cracks. The results of several numericalexperiments are summarized in Section 3.2 Hp Cloud Approximations, a SummaryIn the hp cloud method introduced in [2, 4] the domain 
 of the solution of aboundary-value problem is covered with a �nite open covering TN := f!�gN�=1 con-sisting of N open sets !� (the clouds)�
 � N[�=1 �!� (1)The center of the clouds, x�, are denoted by nodes. The shape of a cloud !� can bequite arbitrary. In two dimensions, for example, it can be a rectangle, an ellipse ora circle. Figure 1 shows examples of valid open coverings and associated clouds.The next step in building hp cloud approximations is to construct a partition ofunity subordinated to the open covering TN . The partition of unity functions '�



(a) Open covering build usingcircles. (b) Open covering build usingrectangles.Figure 1: Examples of open coverings that can be used in the hp cloud method.are global basis functions that possesses the following properties1) '� 2 Cs0(!�); s � 0; 1 � � � N2) PN�=1 '�(x) = 1; 8 x 2 
There is no unique way to build functions '� satisfying the above requirements.Each approach has its own merits and embedded costs. The choice of a particularpartition of unity should be based on� the class of problems to be solved, e.g. linear or non-linear problems,� the complexity of the geometry of the domain,� the regularity required from the approximation, e.g. C0, C1, or higher,� the importance of the meshless character of the approximation, etc.Consider, for example, the conventional �nite elementmeshe of triangles and quadri-laterals shown in Fig. 2 on which continuous global Lagrangian basis functions(shape functions) N� are constructed at each nodal point x�; � = 1; 2; : : : ; N .These functions are such thatNX�=1N�(x) = 1; at any x 2 �




and thus form a partition of unity. By setting '� � N�, Oden at al. [6] have builtcloud-based hp �nite element approximations using bi-linear �nite elements as apartition of unity (see also Section 2.1). In this case, a cloud !� is the union of the�nite elements sharing a node.
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Figure 2: Global �nite element shape function N� built on a mesh of triangles andquadrilaterals.Another example of a partition of unity are the so called Shepard functions [8]. Thispartition of unity can be built as followsLetW� : IRn ! IR denote a weighting function with compact support !� that belongsto the space Cs0(!�); s � 0 and suppose thatW�(x) � 0 8 x 2 
In the case of the clouds de�ned by!� := fy 2 IRnj kx� � ykIRn < h�g (2)weighting functions W� can be implemented with any degree of regularity using\ridge" functions. More speci�cally, the weighting functionsW� can be implementedthrough the composition W�(x) := g(r�)



where g is, e.g., a B-spline with compact support [�1; 1] and r� is the functionalr� := kx� x�kIRnh�Details on the construction of the B-splines can be found in, e.g., [1]. A similartechnique can be used to build weighting functions on clouds that are convex sets.The partition of unity functions '� can then be de�ned by'�(x) = W�(x)P�W�(x) � 2 f
 :W
(x) 6= 0g (3)which are known as Shepard functions [8]. The main advantages of this particularpartition of unity are� it is meshless|there is no need to partition the domain to build this kind ofpartition of unity,� it can easily be implemented in any dimension,� it can be constructed with any degree of regularity� it allows easy implementation of h adaptivity, as demonstrated in [3].2.1 The Family of Cloud Functions FpNThe basic idea used to construct the hp clouds functions is very simple althoughnot so intuitive. The hp cloud functions are constructed by multiplying a partitionof unity by functions that have good approximating properties, e.g. polynomials,harmonic functions, etc. It should be emphasized that any partition of unity can beused to build the hp cloud functions.Let bLp := nbLioi2I , denote a set of functions bLi de�ned on the unit circleb! := f� 2 IRnj k�kIRn < 1gsatisfying Pp(b!) � span( bLp) (4)In the above, I denotes an index set and Pp the space of polynomials of degree lessthan or equal to p. The functions bLi are denoted higher order basis functions.



The family of hp cloud functions FpN is de�ned byFpN := N[�=1N p�; N p� = f '�(x)Li�(x) : i 2 I g (5)where N is the number of nodes in the domain andLi�(x) = bLi � F�1� (x) (6)F�1� : !� ! b!; F�1� (x) := x� x�h� (7)According to the above de�nition, FpN is constructed by multiplying each partitionof unity function '� by the elements from the set bLp (higher order basis functions).One element from the space of hp cloud functions can be written asuhp(x) = NX�=1Xi2I a�i ('�(x)Li�(x))The following theorems are proved in [4].Theorem 2.1 Let Lp := fLigi2I and Li be the same functions bLi but de�ned on 
.Then Lp � spanfFpNg.Corollary 2.1 Let Pp(
) be the space of polynomials of degree less than or equalto p de�ned on 
. Then Pp(
) � span fFpNg.Therefore, the elements from the set Lp can be recovered through linear combinationsof the hp clouds functions. This is one of the most fundamental properties of thehp cloud functions.Figure 3(a) shows the Shepard partition of unity function '� associated with anode x� at the origin of the domain 
 = (�1; 1) � (�1; 1). A uniform 5 � 5 nodearrangement and quartic splines are used to build it. Figure 3(b) shows the functiony'� from the families Fp�1N=25.As mentioned above, �nite elements can be used as a partition of unity to buildcloud functions. Figure 4(a) shows a bilinear global �nite element shape functionN� associated with a node from the mesh shown in Fig. 12. Figure 4(b) shows thecloud function y2N�.
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(b) Higher order hierarchical shape func-tion built from the product of the bilinearshape function shown in (a) and the mono-mial y2.Figure 4: 2-D hp cloud functions built using a �nite element partition of unity.



2.1.1 The Use of Customized FunctionsThere are several situations in which the inclusion in the set bLp of specially cus-tomized functions to model, e.g., boundary layers, shocks, singularities, etc., canbe very advantageous. This is the case in the stress analysis of cracks where thequantities of interest are the stress intensity factors. Oden and Duarte [7] havedemonstrated that the amplitude of any number of stress intensity factors can beobtained from the coe�cients of customized hp cloud functions without any addi-tional work. We summarize bellow the main results of Oden and Duarte [7].Assuming traction-free crack surfaces and no body forces, the displacement vectoru = fu�; u�gT in the neighborhood of a crack can be written [9,10]u(r; �) = 8<: u�(r; �)u�(r; �) 9=; = MXj=1 24A(1)j 8<: u(1)�j (r; �)u(1)�j (r; �) 9=;+A(2)j 8<: u(2)�j (r; �)u(2)�j (r; �) 9=;35++8<: u�(r; �)u�(r; �) 9=; (8)where (r; �) are the polar coordinates relative to an origin at the crack tip (cf.Fig. 5), u(1)�j ; u(1)�j ; u(2)�j ; u(2)�j are Cartesian components of u in the �� and ��directions, u�(r; �) and u�(r; �) are functions smoother than any term in the sum.The coe�cients A(1)j ; A(2)j are called generalized stress intensity factors.
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Figure 5: Coordinate systems associated with the crack tip.The singular hp cloud functions associated with a cloud !�, � 2 Ic, are de�ned byCM� := n '� hu(1)xj ; u(2)xj ; u(1)yj ; u(2)yj i j j = 1; : : : ;M o (9)



The cloud !� is said to be an enriched cloud. The functions u(1)xj ; u(2)xj ; u(1)yj ; u(2)yjare the same as in (8) but transformed to the physical coordinates (x; y). Here, Icdenotes the index set of the clouds that include in their local spaces the near crackexpansion.The enriched hp cloud functions is then de�ned byFp;crackN := 8<: " N[�=1N p�# [ 24 [�2Ic CM� 35 9=; (10)Where N p� is de�ned in (5). Note that all elements from Fp;crackN have compactsupport. The main advantage of using the enriched clouds as de�ned above is thatthe amplitude of any number of stress intensity factors can be obtained from thecoe�cients of these functions [7]. This technique is demonstrated numerically in thenext section.3 Numerical ExperimentsIn this section two boundary-value problems are solved using hp cloud approxi-mations and the Galerkin method. Details on the implementation of domain andboundary integration can be found in [3, 5]. In the �rst numerical experiment, thehp cloud functions are built using the meshless partition of unity de�ned in (3).This experiment demonstrates how the use of customized functions, made possibleby the hp cloud method, can lead to exponential convergence of the solution even inthe presence of singularities and without using strongly graded meshes as requiredin traditional hp �nite elements methods.In the second experiment the partition of unity is composed of global �nite elementshape functions. This experiment demonstrates how non-uniform hp distributionscan be constructed quite naturally within the hp cloud framework.



3.1 An Inclined Crack ProblemThe cracked panel shown in Fig. 6 is analyzed using the enriched hp cloud functionsde�ned in (10). The hp cloud results are compared with those presented by Szab�oand Babu�ska [9] for the p version of the �nite element method. In this problem,both the symmetric and anti-symmetric part of the expansion (8) are non-zero.
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σFigure 6: Problem de�nition.The plane stress condition, a Poisson's ratio of 0.3 and unit thickness are assumed.In addition we adopt E = 1; w = 1 and � = 1 (cf. Fig. 6).The hp cloud discretization is depicted in Fig. 7(a). There are only N = 9 clouds.Note that no special nodal arrangement is used near the singularity at the crack tip.The cloud at the crack tip, denoted by !tip, is the only enriched cloud. All otherclouds have only polynomials in their local spaces. The hp cloud space is given byFp;crackN=9 = 8<:h N[�=1; �6=tipN p�i [ hN 1�=tip [ CM�=tipi9=; (11)where M = 3 + 5(p � 1).



(a) hp cloud discretiza-tion. 100

w
10

w(b) Finite element discretization.Figure 7: hp cloud and �nite element discretizations.Figure 7(b) shows the �nite element mesh used by Szab�o and Babu�ska [9]. Threelayers of �nite elements are used around the crack tip.The stress intensity factors KI and KII are normalized as follows~KI := KI�p2�w ~KII := KII�p2�wFigures 8 and 9 show the hp cloud results. The values obtained using the p version ofthe �nite element method with the cuto� function method (CFM) and the contourintegral method (CIM) [9] are also shown in Figs. 8 and 9. The three techniquesconverge to the same values but the hp cloud method requires fewer degrees offreedom than the �nite element method with the CFM or the CIM. The resultsare also shown in Tables 1 and 2 for the hp cloud method and the �nite elementmethod, respectively. Figures 10(a) and (b) show the computed stress components�11 and �12, respectively. The plots are in the (�; r) plane. Figure 10(c) depicts thecomponent u1 of the displacement vector in the (x; y) plane.
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(a) �11 in the (�; r) plane. -100
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(b) �12 in the (�; r) plane.
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(c) u1.Figure 10: �11 and �12 in the (�; r) plane and u1 in the (x; y) plane.



3.2 hp Adaptivity Using an Hybrid FE/Cloud Approxima-tionWe shall now consider the problem of an L-shaped plane elastic body loaded by thetractions associated with the following stress �eld�xx(r; �) = �r��1[(2�Q(�+ 1)) cos(� � 1)� � (� � 1) cos(� � 3)�]�yy(r; �) = �r��1[(2 +Q(�+ 1)) cos(�� 1)� + (� � 1) cos(�� 3)�] (12)�xy(r; �) = �r��1[(�� 1) sin(�� 3)� +Q(�+ 1) sin(� � 1)�]where (r; �) is the polar coordinate system shown in Fig. 11, � = 0:544 483 737,Q = 0:543 075 579.The stress �eld (12) corresponds to the �rst term of the symmetric part of theexpansion of the elasticity solution in the neighborhood of the corner A shown inFig. 11 [9].
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Figure 11: L-shaped elastic body.Plane strain conditions, unity thickness and Poisson's ratio of 0.3 are assumed. Thestrain energy of the exact solution is given by [9]E(u) = 4:154 544 23a2�Ewhere E is the modulus of elasticity and a is the dimension shown in Fig. 11. Thevalues E = a = 1 are assumed in the calculations.Two sequences of discretizations, S1 and S2, are used to solve this problem. In theformer, the uniform mesh shown in Fig. 12 is used and the polynomial order of the



approximations ranges from 1 to 8. A strongly graded mesh, as shown in Fig. 13,and non-uniform p distributions are used in the second sequence of discretizations.Figures 14 and 15 show the p distribution used in the fourth step of this sequence.The polynomial order of the clouds decrease linearly towards the singularity whilethe size of the �nite elements decrease geometrically. Geometric factors q = 0:15and q = 0:10 are used (cf. Fig. 13).
Figure 12: Uniform mesh for the L-shaped body.

*
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aFigure 13: Geometric mesh for the L-shaped body. Geometric factors of q = 0:15and q = 0:10 are adopted in the computations.The relative error, measured in the energy norm, versus the number of degrees offreedom is shown in Fig. 16 for the sequences of discretizations S1 and S2 (forq = 0:15 and q = 0:10). As expected, the uniform mesh gives an algebraic rate of
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convergence while the strongly graded meshes leads to an exponential rate of con-vergence. This kind of behavior is typical of hp- �nite element methods. However,the construction of non-uniform h- and p- discretizations in a cloud based frame-work is considerably more straightforward than in conventional hp- �nite elementmethods. The sequence S2 with a geometric factor q = 0:10 gives better results thanthe sequence S2 with q = 0:15.
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Figure 16: Convergence in the energy norm for uniform and non-uniform cloud-basedhp- distributions.4 ConclusionsThe hp cloud method can be combined with the classical �nite element method toproduce an e�ective technique for solving boundary-value problems; alternatively,it can be used with any technique that produces a partition of unity, without tra-ditional meshing considerations. One of the most attractive features of such ap-
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