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Abstract

This paper presents an analysis of interacting cracks asgeneralized finite element method (GFEM)
enriched with so-called global-local functions. In thigpagach, solutions of local boundary value problems
computed in a global-local analysis are used to enrich thieadlapproximation space through the partition
of unity framework used in the GFEM. This approach is relatethe global-local procedure in the FEM,
which is broadly used in industry to analyze fracture measaproblems in complex three-dimensional
geometries. In this paper, we compare the effectiveneskeoflobal-local FEM with the GFEM with
global-local enrichment functions. Numerical experinsesiémonstrate that the latter is much more robust
than the former. In particular, the GFEM is less sensitivéh quality of boundary conditions applied
to the local problems than the global-local FEM. Stressnisity factors computed with the conventional
global-local approach showed errors of up to one order ofnitage larger than in the case of the GFEM.
The numerical experiments also demonstrate that the GFEMaceount for interactions among cracks

with different scale sizes, even when not all cracks are iheode the global domain.

*Dedicated to Professor Fazil Erdogan for his seminal doutions to the analysis of fracture mechanics problems.
TCorresponding author.; e-mailaduarte@uiuc. edu



I. INTRODUCTION

Three-dimensional interacting cracks appear in many jgedatngineering problems. Exam-
ples include corrosion-assisted cracks, multi-site danaanglysis of lap joints and thermal fatigue
cracks in cooling systems of nuclear power plants [1-4]sThass of problems is difficult to an-
alyze due to the singularities at crack fronts and the comgleess distribution caused by the
interaction of many cracks. The situation gets even moréeriging when cracks with different
scale sizes are involved, like in the case of macrocracksanting with many microcracks. Small
microcracks cannot be modeled by a global mesh designegtoreanacrocracks. To handle this
problem, the finite element method (FEM) requires extrernallcefinements around the front of
macrocracks and in regions where microcracks are locaadirig to a high computational cost,
especially in the three-dimensional case.

The global-local or sub-modeling procedure in the FEM [5is7an alternative to analyze
interacting cracks. However, this approach is known to Imsisiee to the quality of boundary
conditions used in the local domains (sub-models) [7]. Aatlocal solutions require the use of
sufficiently large local domains and, in some cases, mogl@innteracting features, like cracks,
in the global problem. This leads to a large number of degrésgsedom in both global and local
domains, and offsets some of the advantages of the procedure

In this paper, we demonstrate that interacting cracks cafflugently analyzed using the so-
called generalized finite element method (GFEM) with gldbahl enrichment functions [8, 9].
In this procedure, local solutions computed in a globakl@nalysis are used to enrich the global
solution space through the partition of unity frameworkdigethe GFEM. The local solution
enrichments are hierarchical and used only at a few nodé®indarse global mesh. As a result,
the enriched global problem can be solved at a low computalticost [9]. We also show that
interactions among several cracks with different scalessan be accurately captured using the
GFEM with global-local enrichment functions. The qualifitiee numerical solutions is measured
using analytical solutions derived by Civelek and Erdoddd] for the problem of an infinite strip
containing multiple cracks.

The outline of this paper is as follows. The global-local FE\briefly reviewed in Section

II. The GFEM with global-local enrichment functions is surmzed in Section Ill. Numerical
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experiments comparing the global-local FEM and the GFEM gibbal-local enrichments are

presented in Section IV. Section V draws the main conclissfoym this investigation.

II. THE GLOBAL-LOCAL APPROACH IN THE FINITE ELEMENT METHOD

The global-local approach in the finite element method has@ history whose origin can be
traced to the 1960's. It has also been catedming techniquer sub-modeling5, 6]. This tech-
nique has been extensively used in industry although iredyanentioned in academic textbooks
[5]. More recently, this approach has begun to be incorpdratto parallel processing algorithms
[11].

As an example to illustrate the approach, let us considemuatstal part with a planar crack
surface shown in Figure 1. The boundary conditions and geanuescription of the crack sur-
face are represented in Figure 1(a). The global-local FEdMquture involves two steps [5, 6].
First, the solution of the problem is computed on a coarsehal] quasi-uniform mesh like that
shown in Figure 1(a). No mesh refinement around local festditee crack surfaces, is usually
performed. Next, small sub-domains containing local festiare extracted from the global do-
main and analyzed using the global solution as boundaryitionsl [5, 6]. Local domains are
typically analyzed using very refined meshes like the oneveha Figure 1(b). The use of the
crude global solution as boundary conditions for local pgots is a key point in the procedure.
Either displacement (Dirichlet) or traction (Neumann) bdary conditions can be used [5].

The computational cost of factorizing a matrix grows fagen linearly with respect to prob-
lem size. Therefore, by solving the global problem on a eanesh, and local problems on
fine meshes, instead of refining the global mesh, the glauallFEM can significantly reduce
computational costs when applied to large practical ergging problems.

In the procedure described above, the crack was discrahzbe (coarse) global mesh. This
may be difficult when the geometry of the domain is complexemwthe crack is small, or when
the analysis of several crack locations and configuratismequired. Therefore, in engineering
applications of the global-local FEM, local features likaaks are often not discretized in the
global mesh and the global problem is solved as if there weacks in the domain. The cracks

are modeleanly in the local domains [5, 7]. This significantly reduces mesheagation efforts
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(a)Global analysis with a coarse mesh to provide boundamglitions for the

extracted local domain.

(b)Refined local problem and its solution.

FIG. 1: Global-local analysis for a structural componerthvei planar crack surface.

and enables the use of a single global solution for the aisabfsany configuration of cracks in
the domain. However, as demonstrated later in Section IVtAig,approach may lead to large
errors in the solution of the local problems.

An important issue for the global-local FEM is the size ofdbdomains. The basic assump-
tion of this approach is that the global solution is suffithg@accurate at the boundary of a local
domain, or that the local domain is large enough such thatidecboundary condition does not

affect the quality of the local solution. It is not always g&s comply with this assumption since
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local problems are modeled in the neighborhood of localfestsuch as cracks and cutouts where
the solution exhibits strong gradients or singularitiesadidition, the well known pollution effect
may cause the propagationditcretizationerrors over large distance in a domain [12]. For crack
problems, it is usually recommended that the size of a subadlobe at least 2.5 to 3 times larger
than the length of the crack [7]. This may require, for examfe inclusion of more than one
crack in a local domain leading to large local problems ardiff@ulties in generating appropriate

meshes in the local domains.

1. THE GENERALIZED FINITE ELEMENT METHOD WITH GLOBAL-LOCAL ENRICH-
MENT FUNCTIONS

This section describes the basic concepts of the genatdiigte element method (GFEM) and
the construction of enrichment functions using a procedumdar to that employed in the global-
local FEM. The main features of these so-called globalllenachment functions are discussed.

We also compare the global-local FEM with the GFEM enrichétl global-local functions.

A. TheGeneralized Finite Element Method

The construction of generalized finite element approxiometiis briefly reviewed in this sec-
tion. Further details can be found in, for example, [13-17].
A shape functionsgyi, in the GFEM is built from the product of a linear finite elerhehape

function, ¢4, and an enrichment functiohg;,
@i (X) = P (X)Lgi (X) (no summation om) (1)

wherea is a node in the finite element mesh. Figure 2 illustrates tresttuction of GFEM
shape functions. The linear finite element shape functfgnsa = 1,...,N, in a finite element
mesh withN nodes constitute a partition of unity, i.&N_; ¢4 (X) = 1 for all X in a domainQ

covered by the finite element mesh. This is a key property uspdrtition of unity methods like
the GFEM. Linear combination of the GFEM shape functiggs a = 1,...,N, can represent

exactlyany enrichment functiobg;.
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FIG. 2: Construction of a generalized FEM shape functiongisi polynomial (a) and a non-polynomial
enrichment (b). Hergp, are the functions at the top, the enrichment functibgs,are the functions in the

middle, and the generalized FE shape functiggs,are the resulting bottom functions.

Several enrichment functions can be hierarchically addeahnlyy nodea in a finite element
mesh. Thus, im(a) is the number of enrichment functions at nadehe GFEM approximation,

Unp, Of a functionu can be written as

N m(a)

N m(a)
Unp(X) = 021 i; g Qi (X) = aZl i; AqiPa (X)Lai(X)

The main strength of the generalized FEM is its ability to nsa-polynomial enrichment
functions as illustrated in Figure 2(b). Expansions of tlasticity solution in the neighborhood
of a crack (Westergaard functions) can be taken as enrichfuections at nodes near a crack
front [14, 18-22]. Discontinuities in a displacement fielthde approximated independently of
the underlying finite element mesh if Heaviside functiors @sed as enrichment functions [21—
25]. Custom-built enrichment functions that are solutiohtocal boundary value problems can
be used as well [8, 9, 26]. These so-called global-localcenment functions are described in

detalil in Section Il B.
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B. A Global-Local Approach to Build Enrichment Functions

In this section, we review a global-local approach to buitdiéhment functions for the gen-
eralized FEM. Additional details can be found in [8, 9]. Weus on three-dimensional linear

elasticity problems. The formulation is, however, apfdieato other classes of problems as well.

1. Formulation of Global Problem

Consider the domaifig = Qg U dQg C R® illustrated in Figure 3(a). The boundary is decom-
posed a® Qg = dQg UIQZ with 0QgNIQE = 0.

The strong form of the equilibrium and constitutive equasics given by
O0-0=0 o=C:¢ in Qg, (2)
whereC is Hooke's tensor. The following boundary conditions aresgribed o Qg
u=uondQy o-n=tondQg, (3)

wheren is the outward unit normal vector B8QZ, andt andu are prescribed tractions and
displacements, respectively.

Let uoG denote a generalized FEM approximation of the solutioof problem (2), (3). The
approximatioru, is the solution of the following problem:

Findud € X2P(Qs) € H1(Qg) such that v € X2P(Qg)

o(ud) : g(v)dx / u°~v°ds:/ t-vlds u-v2ds 4
/QG(G) (Ve) ‘f’rlngGG . G+'7(m(u3 G (4)

whereX(Qg) is a discretization of the Hilbert spat&h(Qg) built with generalized FEM shape
functions, andn is a penalty parameter. Problem (4) leads to a system ofrliegaations for
the unknown degrees of freedomug. The mesh used to solve problem (4) is typically a coarse
guasi-uniform mesh. This problem is analogous to the fiest of the global-local FEM presented

in Figure 1(a) and denoted hereaftei@tial global problem
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macrocrack and several microcracks. global domain in the neighborhood of the
macrocrack front.

FIG. 3: Notations for the GFEM with global-local enrichmémtctions.
2. Local Problems

Let Qjoc denote a subdomain éig as shown in Figure 3(b). This local domain may contain
cracks, holes, inclusions, fibers, or other local featufeésterest.

The following local problem is solved of,, after the global solutiom?3 is computed as
described above:

Find Ujoc € X (Qioc) € H(Qioc) SUch thatt Viee € X[2(Qioc)

loc

/ a(ulot‘,) : e(vloc)dx+ n l-'Ioc“’locds:
loc 0Q0c\(0Q10cNIQE)

/ U - Vigcds+n U-Viocds+ t-Vicds (5)
0Q|0C\(0Q|0Cﬂng) dQ|0Cﬂan 0Q|0Cﬂng

hp
whereXI oc

A key aspect of problem (5) is the use of the generalized FEMtisa of the global problem,

(Qioc) is a discretization oH(Qoc) using GFEM shape functions.

u%, as boundary condition o#Qsc\ (0Qi0oc N dQs). Exact boundary conditions are prescribed
on portions ofd Qo that intersect eithed Qg or dQZ. This problem is analogous to the second

step of the global-local FEM presented in Figure 1(b) andbtethhereafter dscal problem
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3. Global-Local Enrichment Functions

The error in the local solutiom,. depends not only on the discretization used in the lo-
cal domainQoc, but, more importantly, also on the quality of boundary dbads used on
0Qioc\ (0Q1ocNIQG), i.e. u%. In the GFEM proposed in [8, 9], this issue is addressed bygoi
one step further in a global-local analydise local solutiorny is used as an enrichment function
for the global problemThe local solution is called global-local enrichment functioand is used

to define the following vector-valued global shape function

@y = Palioc (6)

whereg, denotes a partition of unity function defined in the coaledal mesh used to solve the
global problem presented in Section 111 B 1. This functioms®d at nodex, of the global mesh
whose supporiwy, is contained in the local domaf®o.. In our implementation, we enrich each
component of the displacement vector with the correspandomponent of the local solution
Uoc. Thus, a global-local enrichment adds three degrees ofldreeto a node when solving a
three-dimensional elasticity problem. The global probtafined in Section Il B 1 is then solved
again using these global functions. The solution of thisobied global problem is denoted hE
This problem is denoted hereaftereawiched global problemin [9], we demonstrated how this
problem can be efficiently solved using the solution of theahglobal problem.

The GFEM with global-local enrichment functions can acddion possible interactions of
local (near crack, for example) and global (structural)dwédr. This procedure also addresses the
loss of accuracy in the local solution caused by the crudetany conditions used in the local
domain. Roughly speaking, this can be explained by the fadtthe global partition of unity
¢a, and thereforap,, are zero at the boundary of local dom&lp,, where the accuracy @iy
is more severely affected by the boundary conditions ap@i®d Q.. The enrichment of the
global mesh with the local solution is illustrated in Figdreising the same example introduced

in Section Il. HereaftetGFEM9! denotes the GFEM with global-local enrichment functions.
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FIG. 4: Enrichment of the coarse global mesh with a localtsmiu

IV. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of@®&EMI in the analysis of interacting cracks.
We compare the quality of stress intensity factors extrhfrtam the solution of the enriched global
problem,ug, with those extracted from the local solutiasyc.

The local solutionuoc is computed using the generalized finite element methodritesc
in Section IIIA. This enables us to solve the local problersgxg meshes that do not fit the
crack surfaces, as required in the FEM. Therefore, strgplgaking,ujoc is computed using a
global-local GFEM and not a global-local FEM. However, thesethods suffer from the same
limitations, and it is reasonable to assume that the coiaeisgirawn here are also valid for the
global-local FEM. Hereafter, the procedure used to compytas denoted byGL-FEM.

The numerical examples presented below include an anaii/sigeracting cracks, an inclined
crack and cracks with different scale sizes. The main fodukeonumerical experiments is on
how the quality of boundary conditions for the local probteaffects that of the stress intensity
factors extracted fron6FEM9! and GL-FEM solutions. The numerical experiments show that
the GFEMY” is much less sensitive to the quality of local boundary ctoa and provides more

accurate stress intensity factors than@eFEM.
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FIG. 5: Description of a problem with two interacting cradksn infinite strip.
A. Analysisof Two Interacting Macrocracks

An example with two interacting cracks in an infinite stripcensidered in this section. The
problem is illustrated in Figure 5. The general plane etgstbblem of an infinite strip containing
multiple cracks perpendicular to its boundary was anagslzy Civelek and Erdogan [10]. They
showed that for the configuration shown in Figure 5, the adgon between the cracks produces
a nonzero mode-two stress intensity fackqr, This leads to the propagation of the cracks away
from each other. This effect becomes more significant asish@tte between the cracks decreases
[10]. In this section, we investigate how well ti@FEMS! and theGL-FEM can captute the
interaction between the two cracksBy&H goes to zero (Cf. Figure 5). The stress intensity factors
are extracted froru(E3 anduqc, respectively, as discussed above.

Three-dimensional tetrahedron elements are used in oupu@tons. The Poisson’s ratio is
set to zero in order to minimize three-dimensional effecthe computed solution. This enables

us to use Civelek and Erdogan’s solution presented in [1@] @$erence. The other parameters
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assumed in our computations are as follows: Young's modts200,000; in-plane dimensions
H =10.0, 2 = 4.0,V = 2000; domain thickness= 1.0; vertical tractiorty = 100.0. Since the
vertical dimension is twenty times larger than the horiabnimension, we can assume that the
solution on this finite domain is very close to the case of dinite strip.

The SIFs are extracted using the cut-off function method-287 and normalized as in [10]

using
Ki an

kl (1) :ty\/ﬁ

wherek; (1) denotes the normalized mode | (1) SK, ;) denotes the original mode I (II) Sif,

(7)

is the traction applied gt= +V /2, and 2 is the crack length.

1. Analysis with Cracks Discretized in the Global Domain

The discretizations shown in Figure 6 are used in the arsfygsented in this section. The
global mesh is quite coarse, as shown in Figure 6(a), andriig®oe layer of elements in the out-
of-plane direction. Heaviside enrichment functions aredu® represent the cracks. This enables
the cracks to cut elements in the mesh, as described in Seldtha

Four local problems are created, one for each crack fronfiuesdrated in Figure 6(a). The
local meshes are strongly refined in the neighborhood of hekdronts. Westergaard functions
are used in the elements intersecting the crack front. Icdise of theGL-FEM, stress intensity
factors are extracted from solutions computed in thesd thmraains.

The local solutions are used to enrich nodes in the globahnaessillustred in Figure 6(c). Only
four nodes per crack front are enriched with these functftwas nodes az = 0 and two az =t).
As a result, the enriched global problem has almost the samer of degrees of freedom as
the initial global problem (Cf. Table I). In the case of tBEEMY, stress intensity factors are
extracted from the solution computed in this enriched dlpbablem.

The polynomial order of the shape functions used in theah#nd enriched global problems
is p=1, whereas cubic polynomial shape functiops=( 3) are used in the local problems. It
should be emphasized that the interacting cracksdiscretizedn the global domain. This is in
contrast to the analysis presented in Section IV A2 wherectheks are not discretized in the

global domain.
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(c)Enrichment of global discretization with
local solutions. Global nodes enriched with

local solutions are represented with squares.

FIG. 6: Discretization of a problem with two interacting cka using tetrahedral elements. Front view of

the strip shown in Figure 5 for the caB@gH = 2. Note that the cracks are discretized in the global domain

and a three-dimensional discretization is used.
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TABLE I: Mode | and Il stress intensity factors for the protmishown in Figure 5, and cracks are discretized
in the global domain. Global problems are solved with ling@ape functions. Abbreviations nDOFs, IG,
L and EG in the table represent the number of degrees of fregihitial global, local and enriched global

problems, respectively.

B/H|nDOFgNnDOFgNDOFsNormalized Mode | SIfNormalized Mode 11 SIF

(IG) (L) | (EG) |cL-FEM GFEM' Ref. |GL-FEM GFEM' Ref.

0.2 | 3438 | 18018| 3486 |0.7360 0.9254 0.974B80.0273 -0.0777 -0.0656
0.3 | 3438 | 19278| 3486 [0.7709 0.9758 1.043]+0.0182 -0.0474 -0.0330
0.4 | 3438 | 17328| 3486 |0.7893 1.0072 1.083p0.0104 -0.0410 -0.0155
1.0 | 3438 |19278| 3486 |0.7998 1.0445 1.109

O

Table | lists the computed (normalized) mode | and Il Slksandk;) extracted fromGL-
FEM andGFEMY! solutions. The reference values from Civelek and Erdog@hdte also listed.
Figure 7 plots the data from the table. The results show tloatenh SIFs extracted froi8 FEMI!
solutions are much more accurate than those f@&FEM solutions. For the cadg/H = 0.2,
the relative error ok, extracted from th6&FEMI™! solution is 508 %, whereas the error is 4%
in the case of th&L-FEM. The relative error in the computégd by GL-FEM is therefore almost
five times larger than the one computed with GEEMY'. A similar trend is observed for other
values ofB/H. Mode Il SIFs are also listed in Table | for reference. Howggince for this
problemk;; is much smaller thak;, it cannot be computed as accuratelykasising either the
GL-FEM or theGFEM?!, Thus, we do not usk, as a basis for comparison of performance of
the methods. This comparison is done instead in Section IV B.

As a subsequent analysis, we investigate the effect of taktgof boundary conditions used
in local problems on the quality of the SIFs computed with @le FEM and GFEMI'., Two
approaches are used to improve the quality of the boundargittons. The global problem is
solved with (i) cubic shape functions, (ii) cubic shape tims and Westergaard function enrich-
ments at nodes of the global mesh close to the crack fronts (fodes per crack front). The

Westergaard enrichments are subsequently replaced bgdaksolutions in the enriched global
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FIG. 7: Analysis with interacting cracks discretized in tiebal domain. Global problems are solved with

linear shape functions. Ref. represents the referencedlies obtained from [10].

problem as illustrated in Figure 6(c). All other parametars the same as in the= 1 case.
The results for these two cases are presented in Figures & aratble 11 lists the results for case
(). Itis observed, as expected, that the stress intenadofs in theGL-FEM greatly improve
as more accurate boundary conditions are used in the loohlgmns. However, they are still sig-
nificantly less accurate than those computed withGREMI'. The relative error ok, extracted
from GFEM9! solutions is consistently below®% whereas it is about 10 % in the case of the
GL-FEM.

The robustness of th@FEMI' demonstrated in this example is an important advantage over
the GL-FEM since in practice it is generally not possible to quantify tjuality of the boundary

conditions.

2. Analysis with Cracks Not Discretized in the Global Domain

As discussed in Section Il, quite often in practical finitereént simulations, local features like
cracks are not discretized in the global problem. In thisisecwe perform the same analysis as
in Section IV A1 but the initial global problem is solved watlit any cracks in the domain. The

problem shown in Figure 5 is solved using this approach alitiy the discretizations shown in

JAM-07-1228 15 Duarte



TABLE II: Mode | and Il stress intensity factors for the prebt shown in Figure 5, and cracks are dis-

cretized in the global domain. Global problems are solvet wilbic shape functions.

B/H |nDOFYNDOFSNDOFS Mode | SIF Mode Il SIF

(1G) (L) | (EG) |GL-FEM GFEM' Ref. | GL-FEM GFEM' Ref.

0.2 | 34380| 18018| 34428/0.8908 0.9771 0.9749.0578 -0.0693 -0.0656
0.3 ]34380| 19278| 34428/0.9446 1.0436 1.04370.0338 -0.0375 -0.0330
0.4 | 34380| 17328| 34428/0.9767 1.0803 1.0839.0186 -0.0169 -0.0155

1.0 | 34380| 19278| 34428/1.0005 1.1135 1.1096

1.2

I ./o/'f ________________________ €
o C
&
0.8
w
n O -O k:GL-FEM
k] - ' ,
.GE) ® k:GFEM
3 @@ K:Ref
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FIG. 8: Analysis with interacting cracks discretized in iebal domain. Global problems are solved with

cubic shape functions.

Figure 10. Only two local problems are created in this case,emach local problem includes the
entire crack as illustrated in Figure 10(b). The cracks @&scdbed only in the local problems
using Heaviside and Westergaard enrichment functions.rd&im@gement level at the crack fronts
is the same as in Section IV A 1. The local solutions are useshtich nodes in the global mesh
as illustrated in 10(c). Twenty nodes per crack are enrichéais case. It should be emphasized

that the interacting crackare not discretizedn the global domain in contrast with the example
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FIG. 9: Analysis with interacting cracks discretized in tiebal domain. Global problems are solved with

cubic shape functions and Westergaard function enrichsnent

analyzed in Section IVA 1.

The polynomial order of shape functions used in the initied anriched global problems is set
to p =1, whereas cubic polynomial shape functiops<3) are used in the local problems. Table
[l lists the results for this case. Figure 11 plots the dedaifthe table. The difference in quality of
SIFs extracted frolBFEM?! andGL-FEM is even more significant than in the previous section.
For example, the relative error in mode | SIF BfH = 0.2 computed by th6FEMY is 4.05 %,
whereas in the case of tli&_-FEM it is 52.64 %. We can observe that the errorkkincomputed
with the GL-FEM is about twice as large as in the case reported in Table I. ntrast, the error
in the case of th&FEM?! is about the same as in Table |, in spite of the fact that theksravere
not modeled in the initial global problem.

As in the analysis presented in Section IV A1, we investighageeffect of using cubic shape
functions in the global problem. All other parameters arptkexchanged. The results for this
choice of shape functions are presented in Figure 12 andile T’. Westergaard enrichments
are not used in the global domain since in this domain theksrace not discretized. It can be
observed from Figure 12 and Table IV that the mode | SIFs cdetpwith theGL-FEM do not
improve in this caseThis shows that if the cracks are not discretized in the @lpboblem, the

quality of boundary conditions used in the local problemy met improve even if higher order
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(a)The shaded areas represent the local (b)Graded meshes used in the
domains extracted from the coarse global discretization of local problems.
mesh.

(c)Enrichment of global discretization with
local solutions. Global nodes enriched with

local solutions are represented with squares.

FIG. 10: Discretization of a problem with two interactingicks. Front view for the cad®/H = 2. The

cracks arenotdiscretized in the global domain.

elements or finer meshes are used in the global problem. The ir®IFs in theGFEMI! have
an error of less than 1 % while in the case of tBe-FEM the error is about five times larger
than those reported in Table Il. This, again, shows thatGREM?" is more robust and can

provide more accurate solutions than tAe-FEM, even in such an extreme situation where no
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TABLE Ill: Mode | and Il stress intensity factors for the pieln shown in Figure 5. Cracks are not

discretized in the global domain, and linear shape funstame used in the global domain.

B/H|nDOFgnDOFsnDOFsNormalized Mode | SIfNormalized Mode Il SIF

(IG) (L) | (EG) |GL-FEM GFEM' Ref. |GL-FEM GFEM Ref.

0.2 | 3366 | 36708| 3486 |0.4617 0.9354 0.974B0.0270 -0.0906 -0.0656
0.3 | 3366 | 39228| 3486 |0.4625 0.9834 1.043|F0.0162 -0.0537 -0.0330
0.4 | 3366 | 35328| 3486 |0.4630 0.9987 1.083B0.0043 -0.0103 -0.0155
1.0| 3366 | 39228| 3486 |0.4604 1.0425 1.109

[92]

1.2

0.8
L
n & -0 k:GL-FEM
§ @ ® k:GFEM'
g G-—-—-o-———6————-—————- @@ K:Ref L——d
s 0.4 : H &> —© Kk, :GL-FEM
z -
¢k :GFEM
@ k“ : Ref.
0
02 ‘ ‘ ‘ ‘ ‘
0 0 0.2 0.4 0.6 0.8 1.

B/H

FIG. 11: Analysis with interacting cracks not discretizedhe global domain. Global problems are solved

with linear shape functions.

local features are represented in the global domain.

B. Analysisof an Inclined Crack

As a second example, we analyze the mixed-mode fracturdgmnoghown in Figure 13. In
contrast with the problem analyzed in Section IV A, here miogied 11 stress intensity factors are

of the same order magnitude. Thus, they can be extractedtigtsame level of accuracy. We
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TABLE IV: Mode | and Il stress intensity factors for the prebt shown in Figure 5. Cracks are not

discretized in the global domain and cubic shape functioesised in the global domain.

B/H |nDOFYNDOFSNDOFS Mode | SIF Mode Il SIF

(1G) (L) | (EG) |GL-FEM GFEM' Ref. | GL-FEM GFEM' Ref.

0.2 ] 33660| 36708| 33780/0.4617 0.9807 0.9749.0270 -0.0720 -0.0656
0.3 | 33660| 39228| 33780|0.4625 1.0517 1.04370.0162 -0.0459 -0.0330
0.4 | 33660 35328| 33780/0.4630 1.0902 1.0839.0043 -0.0186 -0.0155

1.0 | 33660| 39228| 33780/0.4604 1.1125 1.1096

1.2

0.8

G -© Kk:GL-FEM
©® k:GFEM"
04 &—0 k,:GLFEM
@k :GFEM"

Normalized SIF

B/H

FIG. 12: Analysis with interacting cracks not discretizedhe global domain. Global problems are solved

with cubic shape functions.

compare SIFs extracted fro®L-FEM and GFEMS' solutions with reference values computed
by Szabo and Baldka [27] using the version of the finite element method wigh= 8.

Three-dimensional tetrahedron elements are used in oypu@tions as in Section IVA. The
Poisson’s ratio is set to zero to compare our results withigference values computed assuming
plane stress condition. The following parameters are al®pted in our simulation: Young’'s
modulusk = 1.0; in-plane dimensionw = 1.0; domain thicknest= 1.0; vertical tractiorty =
1.0.
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FIG. 13: Rectangular panel with a throught-the-thicknasined crack.

The SIFs are extracted using the cut-off function method-287 and normalized using
Koo Ki an
L) =
tyv/2nw

wherek; () denotes the normalized mode I (II) SIF.

(8)

The domain is discretized as shown in Figure 14. The globahrisquite coarse, and only one
layer of elements is used in the out-of-plane direction. inbkned crack is discretized only in the
local domain, as in Section IV A2, and is modeled using Hedeisand Westergaard functions.
The local mesh is refined around the crack front to obtain ratelsolutions, as in the previous
section. In the case @FEMY”, the local solutions are used to enrich eighteen nodes igltizl
mesh as illustrated in Figure 14(b). Quadratic shape fanstare used in the global domain, and
cubic shape functions in the local domain.

Table V lists normalized mode | and Il stress intensity fextextracted fronGL-FEM and
GFEM®! solutions. The reference values from Szabo and Biebi27] are also listed. The
relative error ofk; extracted from théSFEMI' solution is 265 %, while it is 6429 % in the
case ofGL-FEM. Thus, k; computed with theGL-FEM has an error almost twenty-four times
larger than the one computed WBFEMZ!. This same level of accuracy is achieved®yEMI!

in the case ok;. The relative errors in mode Il SIF are23 % and 563 % in theGFEMY!
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FIG. 14: Discretization of the problem with an inclined dca@he cracks areot discretized in the global

domain.

andGL-FEM, respectively. This result demonstrates ®6&EMI" can deliver much higher level
of accuracy in the extraction of both mode | and Il SIFs tikdlrFEM even if the crack is not

discretized in the global domain.

C. A Multiple Site Damage Problem

A multiple site damage (MSD) example is analyzed in thisieactMSD problems focus on the
combined effect of multiple growing cracks where each imtlial crack can be harmless, but the

combined effect of several cracks can be disastrous [3@hisrclass of problems, cracks cannot
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TABLE V: Normalized mode | and |l stress intensity factors e problem shown in Figure 13. Cracks

are not discretized in the global domain.

NDOFSNDOFYNDOFS Mode | SIF Mode Il SIF

(I1G) (L) | (EG) |GL-FEM GFEM' Ref. |GL-FEM GFEM' Ref.

1080 | 21240| 1134 |0.2147 0.5854 0.6013.1280 -0.3003 -0.2910

be treated separately, and the interaction among them ragstrisidered during the analysis. One
example of MSD is the case of small fatigue cracks develophogind regions with high stress
concentrations and manufacturing or material defects. nilceocracks may grow and coalesce
into a larger macrocrack which can lead to the failure of ttnecture [31]. The global-local
FEM requires sufficiently large local domains in order to imize the effect of the approximate
boundary conditions. In the case of MSD problems this wiaimably lead to the inclusion
of perhaps several microcracks in the local problems, tiifgesome of the advantages of the
method. In this section, we analyze the MSD problem shownigargé 15 using both th&L-
FEM and theGFEM®!, This problem was originally proposed in [32]. We investigthe effect
of the local domain size on the quality of the energy release extracted fronGL-FEM and
GFEMY! solutions.

In the example shown in Figure 15 there are two small MSD ackthe left and right sides of
the main crack. The modeling of the MSD cracks in the globahaio would require extremely
fine meshes leading to a large global problem. The followiagameters are assumed in the
simulations: Poisson’s rate = 0.33; Young’s modulug& = 10,500 ksi; in-plane dimensiort=
75.0in,c=45.0in,a; =20.0in,a =11.5in,az = 2.0in; size of MSD crackas = 1.0 in; domain
thicknesd = 1.0 in; vertical tractiorty = 20.0. We take advantage of symmetry in geometry and
boundary conditions and model only the right half (CDEFG)ha&f domain.

The energy release rat&) is computed at the center of the front of the main crack, i.e.
atz=1t/2. Plane strain conditions are assumed at this location laaenergy release rate is

computed using the relation

1-v? , 1-v2 , 1+v
%_?K,qt = Kij + E

K (9)
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FIG. 15: Description of a multisite damage problem.

wherev is Poisson’s ratio, an& is Young’s modulus. The stress intensity fact&s K;; and
K are extracted using the contour integral method [27-2933]3, The reference value for the
¢ is taken as 5609. This value was computed using a very refined mesh amdonder shape
functions p = 4) with all cracks modeled in the global problem. This refeediscretization has
a total of 365,538 degrees of freedom. We checked the coemeegof the computed reference
value for¥ by solving the problem using a smaller model, with 311,743 ees of freedom. The
difference in the energy release rates between these twelawds less than01 %.

The discretizations shown in Figure 16 are used in the aisglyssented below. Local domains
of different sizes are used as illustrated in Figure 16(aply@e main crack is discretized in
the global problem. The neighborhood of the main crack feoxd the entire MSD cracks are
modeled in the local domains (Cf. Figures 16(a) and 16(bj}.riodeling the MSD cracks in the
global domain considerably reduces the computationalanodilso facilitates the creation of the
macroscale discretization. In the case of @EMY, the local solutions are used to enrich the

global nodes illustrated in Figure 16(c). The same set ofdden is enriched, regardless of the
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(a)Discretization of cracks in the initial global (b)Graded mesh used in the
problem. Solid, dashed and long dash-double dotted discretization of the local problem
lines represent the boundaries of local domains with represented by a dashed line in Figure
three different sizes used in this analysis. 16(a)

(c)Enrichment of global discretization with the local
solution in Figure 16(b). Global nodes enriched with

the local solution are represented by squares.

FIG. 16: Discretization of the MSD problem (front viewnly the main crack is discretized in the global

domainwhile both the main and MSD cracks are discretized in thel lidomains.

size of local domain.

The local meshes are strongly refined in the neighborhookeotitack fronts. Singular West-
ergaard functions are used in local elements intersectorgck front. Cubic shape functions are
used in the initial and enriched global problems and in ticallproblems as well.

Table VI lists the energy release raté)(extracted fromGL-FEM andGFEMZ solutions for

varying sizes of local domains. In the table, the three diffié sizes of local domains illustrated
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TABLE VI: Energy release rate4) extracted fromGL-FEM andGFEMY solutions for varying sizes of

local domains. Rel. err. stands for relative error of exgdé.

Size of NDOFYNDOFSNDOFS GL-FEM GFEMe!

Local Domain (IG) L | (EG)| ¢ Rel.erm (%) ¢ Relerr. (%)

Small 17280| 40662| 17316(1.9630  23.35 |2.4706 3.53
Middle 17280| 40662| 17316|2.1566  15.79 |2.4828 3.05
Large 17280| 40662| 17316|2.2783  11.04 |2.4942 2.60

Ref. 365538 2.5609 2.5609

in Figure 16(a) are denoted by “small”, “middle” and “largé’he results show that, for all sizes
of local problems used, the energy release rate computelded§REMY' is more accurate than
in the case of th&L-FEM. The relative error ity computed with th&sL-FEM is about six times
greater than the one KYFEM9"! when the “small” local domain is used, and four times grefater
the “large” local domain. This demonstrates, again, tha@EEMI" is more robust and accurate
than theGL-FEM.

The deformed shape of the global domain before and afteclengnt with the local solution
is displayed in Figure 17. The opening of the small MSD crazks be clearly captured in the
global domain after the enrichment with the local solutias,shown in Figure 17(b), although

they are represented only in the local problem.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have compared the effectiveness of theaglobal approach used in the
FEM with the GFEM with global-local enrichment functionsepented in [8, 9]. Our focus is on
problems involving interacting macrocracks as well asraxtBons among cracks with different
scale sizes. The numerical experiments presented in thisr sow that th&&FEMZ! is much
more robust than th&L-FEM. Specifically, the following observations regarding thbustness

of the methods can be made:
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(a)Deformed shape of the global domain before (b)Deformed shape of the global domain after

enrichment with a local solution. enrichment with a local solution.

FIG. 17: Deformed shape of the global domain in the MSD probleefore and after enrichment with a

local solution. The elements of the local problem nestetdégiobal mesh are visualized in Figure 17(b).

e The numerical examples presented in Section IV A show treGFEMI is less sensitive
to the quality of boundary conditions applied to the localgems than th&L-FEM. Ac-
curate SIFs could be extracted fraBFEMI" solutions even when cracks were not modeled
in the global problem. The SIFs extracted fréh-FEM solutions showed an error of up

to one order of magnitude larger than in the case of3REMI,

When cracks were modeled in the initial global problemsgtinaity of SIFs extracted from
GL-FEM solutions improved significantly with the accuracy of thaiah global problem.
However, increasing the polynomial order used in the ihgiabal problem didnot im-
prove the performance of teL-FEM much when cracks were not modeled in the global

problem.

Energy release rates extracted fr@FEMI! solutions of an MSD problem consistently
exhibited higher accuracy than in the case of @leFEM for all sizes of local domains

considered in the numerical experiments.

The GFEMY! can account for interactions among cracks with the sameffaretit scale

sizes, even when not all cracks are modeled in the initiabajlgroblem. This makes

JAM-07-1228 27 Duarte



the GFEM®! an appealing method to analyze problems with phenomenasgamultiple

spatial scales.

Our work in [9] also shows that tt@FEMI! is computationally very efficient. The cost of the
method when analyzing stationary cracks, like in this paigerery close to th&L-FEM, since
the cost of solving the enriched global problem is small wt@mpared with the cost for the initial
global problem [9]. The cost analysis presented in [9] wasedon a single processor machine
for the case of a single local problem defined per crack in threain. Our on-going research
shows, however, that the method is also highly scalable andbe parallelized without difficulty.
The robustness and computational efficiency of @EMI! makes it suited to the analysis of

practical fracture mechanics engineering problems.
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