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Abstract

This paper presents an analysis of interacting cracks usinga generalized finite element method (GFEM)

enriched with so-called global-local functions. In this approach, solutions of local boundary value problems

computed in a global-local analysis are used to enrich the global approximation space through the partition

of unity framework used in the GFEM. This approach is relatedto the global-local procedure in the FEM,

which is broadly used in industry to analyze fracture mechanics problems in complex three-dimensional

geometries. In this paper, we compare the effectiveness of the global-local FEM with the GFEM with

global-local enrichment functions. Numerical experiments demonstrate that the latter is much more robust

than the former. In particular, the GFEM is less sensitive tothe quality of boundary conditions applied

to the local problems than the global-local FEM. Stress intensity factors computed with the conventional

global-local approach showed errors of up to one order of magnitude larger than in the case of the GFEM.

The numerical experiments also demonstrate that the GFEM can account for interactions among cracks

with different scale sizes, even when not all cracks are modeled in the global domain.

∗Dedicated to Professor Fazil Erdogan for his seminal contributions to the analysis of fracture mechanics problems.
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I. INTRODUCTION

Three-dimensional interacting cracks appear in many practical engineering problems. Exam-

ples include corrosion-assisted cracks, multi-site damage analysis of lap joints and thermal fatigue

cracks in cooling systems of nuclear power plants [1–4]. This class of problems is difficult to an-

alyze due to the singularities at crack fronts and the complex stress distribution caused by the

interaction of many cracks. The situation gets even more challenging when cracks with different

scale sizes are involved, like in the case of macrocracks interacting with many microcracks. Small

microcracks cannot be modeled by a global mesh designed to capture macrocracks. To handle this

problem, the finite element method (FEM) requires extreme local refinements around the front of

macrocracks and in regions where microcracks are located, leading to a high computational cost,

especially in the three-dimensional case.

The global-local or sub-modeling procedure in the FEM [5–7]is an alternative to analyze

interacting cracks. However, this approach is known to be sensitive to the quality of boundary

conditions used in the local domains (sub-models) [7]. Accurate local solutions require the use of

sufficiently large local domains and, in some cases, modeling of interacting features, like cracks,

in the global problem. This leads to a large number of degreesof freedom in both global and local

domains, and offsets some of the advantages of the procedure.

In this paper, we demonstrate that interacting cracks can beefficiently analyzed using the so-

called generalized finite element method (GFEM) with global-local enrichment functions [8, 9].

In this procedure, local solutions computed in a global-local analysis are used to enrich the global

solution space through the partition of unity framework used in the GFEM. The local solution

enrichments are hierarchical and used only at a few nodes in the coarse global mesh. As a result,

the enriched global problem can be solved at a low computational cost [9]. We also show that

interactions among several cracks with different scale sizes can be accurately captured using the

GFEM with global-local enrichment functions. The quality of the numerical solutions is measured

using analytical solutions derived by Civelek and Erdogan [10] for the problem of an infinite strip

containing multiple cracks.

The outline of this paper is as follows. The global-local FEMis briefly reviewed in Section

II. The GFEM with global-local enrichment functions is summarized in Section III. Numerical

JAM-07-1228 2 Duarte



experiments comparing the global-local FEM and the GFEM with global-local enrichments are

presented in Section IV. Section V draws the main conclusions from this investigation.

II. THE GLOBAL-LOCAL APPROACH IN THE FINITE ELEMENT METHOD

The global-local approach in the finite element method has a long history whose origin can be

traced to the 1960’s. It has also been calledzooming techniqueor sub-modeling[5, 6]. This tech-

nique has been extensively used in industry although it is rarely mentioned in academic textbooks

[5]. More recently, this approach has begun to be incorporated into parallel processing algorithms

[11].

As an example to illustrate the approach, let us consider a structural part with a planar crack

surface shown in Figure 1. The boundary conditions and geometric description of the crack sur-

face are represented in Figure 1(a). The global-local FEM procedure involves two steps [5, 6].

First, the solution of the problem is computed on a coarse, global, quasi-uniform mesh like that

shown in Figure 1(a). No mesh refinement around local features, like crack surfaces, is usually

performed. Next, small sub-domains containing local features are extracted from the global do-

main and analyzed using the global solution as boundary conditions [5, 6]. Local domains are

typically analyzed using very refined meshes like the one shown in Figure 1(b). The use of the

crude global solution as boundary conditions for local problems is a key point in the procedure.

Either displacement (Dirichlet) or traction (Neumann) boundary conditions can be used [5].

The computational cost of factorizing a matrix grows fasterthan linearly with respect to prob-

lem size. Therefore, by solving the global problem on a coarse mesh, and local problems on

fine meshes, instead of refining the global mesh, the global-local FEM can significantly reduce

computational costs when applied to large practical engineering problems.

In the procedure described above, the crack was discretizedin the (coarse) global mesh. This

may be difficult when the geometry of the domain is complex, when the crack is small, or when

the analysis of several crack locations and configurations is required. Therefore, in engineering

applications of the global-local FEM, local features like cracks are often not discretized in the

global mesh and the global problem is solved as if there were no cracks in the domain. The cracks

are modeledonly in the local domains [5, 7]. This significantly reduces mesh generation efforts
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(a)Global analysis with a coarse mesh to provide boundary conditions for the

extracted local domain.

(b)Refined local problem and its solution.

FIG. 1: Global-local analysis for a structural component with a planar crack surface.

and enables the use of a single global solution for the analysis of any configuration of cracks in

the domain. However, as demonstrated later in Section IV A 2,this approach may lead to large

errors in the solution of the local problems.

An important issue for the global-local FEM is the size of local domains. The basic assump-

tion of this approach is that the global solution is sufficiently accurate at the boundary of a local

domain, or that the local domain is large enough such that a crude boundary condition does not

affect the quality of the local solution. It is not always easy to comply with this assumption since
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local problems are modeled in the neighborhood of local features such as cracks and cutouts where

the solution exhibits strong gradients or singularities. In addition, the well known pollution effect

may cause the propagation ofdiscretizationerrors over large distance in a domain [12]. For crack

problems, it is usually recommended that the size of a sub-domain be at least 2.5 to 3 times larger

than the length of the crack [7]. This may require, for example, the inclusion of more than one

crack in a local domain leading to large local problems and todifficulties in generating appropriate

meshes in the local domains.

III. THE GENERALIZED FINITE ELEMENT METHOD WITH GLOBAL-LOCAL ENRICH-

MENT FUNCTIONS

This section describes the basic concepts of the generalized finite element method (GFEM) and

the construction of enrichment functions using a proceduresimilar to that employed in the global-

local FEM. The main features of these so-called global-local enrichment functions are discussed.

We also compare the global-local FEM with the GFEM enriched with global-local functions.

A. The Generalized Finite Element Method

The construction of generalized finite element approximations is briefly reviewed in this sec-

tion. Further details can be found in, for example, [13–17].

A shape functions,φα i , in the GFEM is built from the product of a linear finite element shape

function,ϕα , and an enrichment function,Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα) (1)

whereα is a node in the finite element mesh. Figure 2 illustrates the construction of GFEM

shape functions. The linear finite element shape functionsϕα , α = 1, . . . ,N, in a finite element

mesh withN nodes constitute a partition of unity, i.e.,∑N
α=1 ϕα(xxx) = 1 for all xxx in a domainΩ

covered by the finite element mesh. This is a key property usedin partition of unity methods like

the GFEM. Linear combination of the GFEM shape functionsφα i , α = 1, . . . ,N, can represent

exactlyany enrichment functionLα i .
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(a) (b)

FIG. 2: Construction of a generalized FEM shape function using a polynomial (a) and a non-polynomial

enrichment (b). Here,ϕα are the functions at the top, the enrichment functions,Lα i , are the functions in the

middle, and the generalized FE shape functions,φα i , are the resulting bottom functions.

Several enrichment functions can be hierarchically added to any nodeα in a finite element

mesh. Thus, ifm(α) is the number of enrichment functions at nodeα , the GFEM approximation,

uhp, of a functionu can be written as

uhp(xxx) =
N

∑
α=1

m(α)

∑
i=1

aα iφα i(xxx) =
N

∑
α=1

m(α)

∑
i=1

aα iϕα(xxx)Lα i(xxx)

The main strength of the generalized FEM is its ability to usenon-polynomial enrichment

functions as illustrated in Figure 2(b). Expansions of the elasticity solution in the neighborhood

of a crack (Westergaard functions) can be taken as enrichment functions at nodes near a crack

front [14, 18–22]. Discontinuities in a displacement field can be approximated independently of

the underlying finite element mesh if Heaviside functions are used as enrichment functions [21–

25]. Custom-built enrichment functions that are solutionsof local boundary value problems can

be used as well [8, 9, 26]. These so-called global-local enrichment functions are described in

detail in Section III B.
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B. A Global-Local Approach to Build Enrichment Functions

In this section, we review a global-local approach to build enrichment functions for the gen-

eralized FEM. Additional details can be found in [8, 9]. We focus on three-dimensional linear

elasticity problems. The formulation is, however, applicable to other classes of problems as well.

1. Formulation of Global Problem

Consider the domain̄ΩG = ΩG∪∂ΩG ⊂ IR3 illustrated in Figure 3(a). The boundary is decom-

posed as∂ΩG = ∂Ωu
G∪∂Ωσ

G with ∂Ωu
G∩∂Ωσ

G = /0.

The strong form of the equilibrium and constitutive equations is given by

∇ ·σσσ = 000 σσσ = CCC : εεε in ΩG, (2)

whereCCC is Hooke’s tensor. The following boundary conditions are prescribed on∂ΩG

uuu = ūuu on ∂Ωu
G σσσ ·nnn = t̄tt on ∂Ωσ

G, (3)

wherennn is the outward unit normal vector to∂Ωσ
G, and t̄tt and ūuu are prescribed tractions and

displacements, respectively.

Let uuu0
G denote a generalized FEM approximation of the solutionuuu of problem (2), (3). The

approximationuuu0
G is the solution of the following problem:

Finduuu0
G ∈ XXXhp

G (ΩG) ⊂ H1(ΩG) such that∀ vvv0
G ∈ XXXhp

G (ΩG)

∫
ΩG

σσσ(uuu0
G) : εεε(vvv0

G)dxxx+η
∫

∂ Ωu
G

uuu0
G ·vvv0

Gdsss=
∫

∂ Ωσ
G

t̄tt ·vvv0
Gdsss+η

∫
∂ Ωu

G

ūuu ·vvv0
Gdsss (4)

whereXXXhp
G (ΩG) is a discretization of the Hilbert spaceH1(ΩG) built with generalized FEM shape

functions, andη is a penalty parameter. Problem (4) leads to a system of linear equations for

the unknown degrees of freedom ofuuu0
G. The mesh used to solve problem (4) is typically a coarse

quasi-uniform mesh. This problem is analogous to the first step of the global-local FEM presented

in Figure 1(a) and denoted hereafter asinitial global problem.
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(a)A global domain containing one

macrocrack and several microcracks.

(b)A local domain extracted from the

global domain in the neighborhood of the

macrocrack front.

FIG. 3: Notations for the GFEM with global-local enrichmentfunctions.

2. Local Problems

Let Ωloc denote a subdomain ofΩG as shown in Figure 3(b). This local domain may contain

cracks, holes, inclusions, fibers, or other local features of interest.

The following local problem is solved onΩloc after the global solutionuuu0
G is computed as

described above:

Finduuuloc ∈ XXXhp
loc(Ωloc) ⊂ H1(Ωloc) such that∀ vvvloc ∈ XXXhp

loc(Ωloc)

∫
Ωloc

σσσ(uuuloc) : εεε(vvvloc)dxxx+η
∫

∂ Ωloc\(∂ Ωloc∩∂ Ωσ
G)

uuuloc ·vvvlocdsss=

η
∫

∂ Ωloc\(∂ Ωloc∩∂ ΩG)
uuu0

G ·vvvlocdsss+η
∫

∂ Ωloc∩∂ Ωu
G

ūuu·vvvlocdsss+
∫

∂ Ωloc∩∂ Ωσ
G

t̄tt ·vvvlocdsss (5)

whereXXXhp
loc(Ωloc) is a discretization ofH1(Ωloc) using GFEM shape functions.

A key aspect of problem (5) is the use of the generalized FEM solution of the global problem,

uuu0
G, as boundary condition on∂Ωloc\(∂Ωloc∩ ∂ΩG). Exact boundary conditions are prescribed

on portions of∂Ωloc that intersect either∂Ωu
G or ∂Ωσ

G. This problem is analogous to the second

step of the global-local FEM presented in Figure 1(b) and denoted hereafter aslocal problem.
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3. Global-Local Enrichment Functions

The error in the local solutionuuuloc depends not only on the discretization used in the lo-

cal domainΩloc, but, more importantly, also on the quality of boundary conditions used on

∂Ωloc\(∂Ωloc∩∂ΩG), i.e. uuu0
G. In the GFEM proposed in [8, 9], this issue is addressed by going

one step further in a global-local analysis;the local solution uuuloc is used as an enrichment function

for the global problem.The local solution is called aglobal-local enrichment functionand is used

to define the following vector-valued global shape function

φφφ α = ϕαuuuloc (6)

whereϕα denotes a partition of unity function defined in the coarseglobalmesh used to solve the

global problem presented in Section III B 1. This function isused at nodesxxxα of the global mesh

whose support,ωα , is contained in the local domainΩloc. In our implementation, we enrich each

component of the displacement vector with the corresponding component of the local solution

uuuloc. Thus, a global-local enrichment adds three degrees of freedom to a node when solving a

three-dimensional elasticity problem. The global problemdefined in Section III B 1 is then solved

again using these global functions. The solution of this enriched global problem is denoted byuuuE
G.

This problem is denoted hereafter asenriched global problem. In [9], we demonstrated how this

problem can be efficiently solved using the solution of the initial global problem.

The GFEM with global-local enrichment functions can account for possible interactions of

local (near crack, for example) and global (structural) behavior. This procedure also addresses the

loss of accuracy in the local solution caused by the crude boundary conditions used in the local

domain. Roughly speaking, this can be explained by the fact that the global partition of unity

ϕα , and thereforeφφφ α , are zero at the boundary of local domainΩloc, where the accuracy ofuuuloc

is more severely affected by the boundary conditions applied at ∂Ωloc. The enrichment of the

global mesh with the local solution is illustrated in Figure4 using the same example introduced

in Section II. Hereafter,GFEMg-l denotes the GFEM with global-local enrichment functions.
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FIG. 4: Enrichment of the coarse global mesh with a local solution.

IV. NUMERICAL EXPERIMENTS

In this section, we analyze the performance of theGFEMg-l in the analysis of interacting cracks.

We compare the quality of stress intensity factors extracted from the solution of the enriched global

problem,uuuE
G, with those extracted from the local solution,uuuloc.

The local solutionuuuloc is computed using the generalized finite element method described

in Section III A. This enables us to solve the local problems using meshes that do not fit the

crack surfaces, as required in the FEM. Therefore, strictlyspeaking,uuuloc is computed using a

global-local GFEM and not a global-local FEM. However, these methods suffer from the same

limitations, and it is reasonable to assume that the conclusions drawn here are also valid for the

global-local FEM. Hereafter, the procedure used to computeuuuloc is denoted byGL-FEM.

The numerical examples presented below include an analysisof interacting cracks, an inclined

crack and cracks with different scale sizes. The main focus of the numerical experiments is on

how the quality of boundary conditions for the local problems affects that of the stress intensity

factors extracted fromGFEMg-l andGL-FEM solutions. The numerical experiments show that

theGFEMg-l is much less sensitive to the quality of local boundary conditions and provides more

accurate stress intensity factors than theGL-FEM.

JAM-07-1228 10 Duarte



FIG. 5: Description of a problem with two interacting cracksin an infinite strip.

A. Analysis of Two Interacting Macrocracks

An example with two interacting cracks in an infinite strip isconsidered in this section. The

problem is illustrated in Figure 5. The general plane elastic problem of an infinite strip containing

multiple cracks perpendicular to its boundary was analysized by Civelek and Erdogan [10]. They

showed that for the configuration shown in Figure 5, the interaction between the cracks produces

a nonzero mode-two stress intensity factor,KII . This leads to the propagation of the cracks away

from each other. This effect becomes more significant as the distance between the cracks decreases

[10]. In this section, we investigate how well theGFEMg-l and theGL-FEM can captute the

interaction between the two cracks asB/H goes to zero (Cf. Figure 5). The stress intensity factors

are extracted fromuuuE
G anduuuloc, respectively, as discussed above.

Three-dimensional tetrahedron elements are used in our computations. The Poisson’s ratio is

set to zero in order to minimize three-dimensional effects in the computed solution. This enables

us to use Civelek and Erdogan’s solution presented in [10] asa reference. The other parameters
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assumed in our computations are as follows: Young’s modulusE = 200,000; in-plane dimensions

H = 10.0, 2l = 4.0, V = 200.0; domain thicknesst = 1.0; vertical tractionty = 100.0. Since the

vertical dimension is twenty times larger than the horizontal dimension, we can assume that the

solution on this finite domain is very close to the case of an infinite strip.

The SIFs are extracted using the cut-off function method [27–29] and normalized as in [10]

using

kI (II ) =
KI (II )

ty
√

π l
(7)

wherekI (II ) denotes the normalized mode I (II) SIF,KI (II ) denotes the original mode I (II) SIF,ty

is the traction applied aty = ±V/2, and 2l is the crack length.

1. Analysis with Cracks Discretized in the Global Domain

The discretizations shown in Figure 6 are used in the analysis presented in this section. The

global mesh is quite coarse, as shown in Figure 6(a), and has only one layer of elements in the out-

of-plane direction. Heaviside enrichment functions are used to represent the cracks. This enables

the cracks to cut elements in the mesh, as described in Section III A.

Four local problems are created, one for each crack front as illustrated in Figure 6(a). The

local meshes are strongly refined in the neighborhood of the crack fronts. Westergaard functions

are used in the elements intersecting the crack front. In thecase of theGL-FEM, stress intensity

factors are extracted from solutions computed in these local domains.

The local solutions are used to enrich nodes in the global mesh, as illustred in Figure 6(c). Only

four nodes per crack front are enriched with these functions(two nodes atz= 0 and two atz= t).

As a result, the enriched global problem has almost the same number of degrees of freedom as

the initial global problem (Cf. Table I). In the case of theGFEMg-l, stress intensity factors are

extracted from the solution computed in this enriched global problem.

The polynomial order of the shape functions used in the initial and enriched global problems

is p = 1, whereas cubic polynomial shape functions (p = 3) are used in the local problems. It

should be emphasized that the interacting cracksare discretizedin the global domain. This is in

contrast to the analysis presented in Section IV A 2 where thecracks are not discretized in the

global domain.
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(a)Discretization of cracks in the initial global

problem. The shaded areas represent the local

domains extracted from the coarse global

mesh.

(b)Graded meshes used in the

discretization of local problems.

(c)Enrichment of global discretization with

local solutions. Global nodes enriched with

local solutions are represented with squares.

FIG. 6: Discretization of a problem with two interacting cracks using tetrahedral elements. Front view of

the strip shown in Figure 5 for the caseB/H = 2. Note that the cracks are discretized in the global domain

and a three-dimensional discretization is used.
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TABLE I: Mode I and II stress intensity factors for the problem shown in Figure 5, and cracks are discretized

in the global domain. Global problems are solved with linearshape functions. Abbreviations nDOFs, IG,

L and EG in the table represent the number of degrees of freedom, initial global, local and enriched global

problems, respectively.

B/H nDOFsnDOFsnDOFsNormalized Mode I SIFNormalized Mode II SIF

(IG) (L) (EG) GL-FEM GFEMg-l Ref. GL-FEM GFEMg-l Ref.

0.2 3438 18018 3486 0.7360 0.9254 0.9749-0.0273 -0.0777 -0.0656

0.3 3438 19278 3486 0.7709 0.9758 1.0437-0.0182 -0.0474 -0.0330

0.4 3438 17328 3486 0.7893 1.0072 1.0839-0.0104 -0.0410 -0.0155

1.0 3438 19278 3486 0.7998 1.0445 1.1096

Table I lists the computed (normalized) mode I and II SIFs (kI andkII ) extracted fromGL-

FEM andGFEMg-l solutions. The reference values from Civelek and Erdogan [10] are also listed.

Figure 7 plots the data from the table. The results show that mode I SIFs extracted fromGFEMg-l

solutions are much more accurate than those fromGL-FEM solutions. For the caseB/H = 0.2,

the relative error ofkI extracted from theGFEMg-l solution is 5.08 %, whereas the error is 24.5 %

in the case of theGL-FEM. The relative error in the computedkI by GL-FEM is therefore almost

five times larger than the one computed with theGFEMg-l. A similar trend is observed for other

values ofB/H. Mode II SIFs are also listed in Table I for reference. However, since for this

problemkII is much smaller thankI , it cannot be computed as accurately askI using either the

GL-FEM or theGFEMg-l. Thus, we do not usekII as a basis for comparison of performance of

the methods. This comparison is done instead in Section IV B.

As a subsequent analysis, we investigate the effect of the quality of boundary conditions used

in local problems on the quality of the SIFs computed with theGL-FEM andGFEMg-l. Two

approaches are used to improve the quality of the boundary conditions. The global problem is

solved with (i) cubic shape functions, (ii) cubic shape functions and Westergaard function enrich-

ments at nodes of the global mesh close to the crack fronts (four nodes per crack front). The

Westergaard enrichments are subsequently replaced by the local solutions in the enriched global
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FIG. 7: Analysis with interacting cracks discretized in theglobal domain. Global problems are solved with

linear shape functions. Ref. represents the reference SIF values obtained from [10].

problem as illustrated in Figure 6(c). All other parametersare the same as in thep = 1 case.

The results for these two cases are presented in Figures 8 and9. Table II lists the results for case

(i). It is observed, as expected, that the stress intensity factors in theGL-FEM greatly improve

as more accurate boundary conditions are used in the local problems. However, they are still sig-

nificantly less accurate than those computed with theGFEMg-l. The relative error ofkI extracted

from GFEMg-l solutions is consistently below 0.5 % whereas it is about 10 % in the case of the

GL-FEM.

The robustness of theGFEMg-l demonstrated in this example is an important advantage over

theGL-FEM since in practice it is generally not possible to quantify the quality of the boundary

conditions.

2. Analysis with Cracks Not Discretized in the Global Domain

As discussed in Section II, quite often in practical finite element simulations, local features like

cracks are not discretized in the global problem. In this section, we perform the same analysis as

in Section IV A 1 but the initial global problem is solved without any cracks in the domain. The

problem shown in Figure 5 is solved using this approach alongwith the discretizations shown in
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TABLE II: Mode I and II stress intensity factors for the problem shown in Figure 5, and cracks are dis-

cretized in the global domain. Global problems are solved with cubic shape functions.

B/H nDOFsnDOFsnDOFs Mode I SIF Mode II SIF

(IG) (L) (EG) GL-FEM GFEMg-l Ref. GL-FEM GFEMg-l Ref.

0.2 34380 18018 34428 0.8908 0.9771 0.9749-0.0578 -0.0693 -0.0656

0.3 34380 19278 34428 0.9446 1.0436 1.0437-0.0338 -0.0375 -0.0330

0.4 34380 17328 34428 0.9767 1.0803 1.0839-0.0186 -0.0169 -0.0155

1.0 34380 19278 34428 1.0005 1.1135 1.1096
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k
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FIG. 8: Analysis with interacting cracks discretized in theglobal domain. Global problems are solved with

cubic shape functions.

Figure 10. Only two local problems are created in this case, and each local problem includes the

entire crack as illustrated in Figure 10(b). The cracks are described only in the local problems

using Heaviside and Westergaard enrichment functions. Therefinement level at the crack fronts

is the same as in Section IV A 1. The local solutions are used toenrich nodes in the global mesh

as illustrated in 10(c). Twenty nodes per crack are enrichedin this case. It should be emphasized

that the interacting cracksare not discretizedin the global domain in contrast with the example

JAM-07-1228 16 Duarte



0 0.2 0.4 0.6 0.8 1.0

B/H

-0.2

0

0.4

0.8

1.2

N
or

m
al

iz
ed

 S
IF k

I 
: GL-FEM

k
I 
: GFEM

g-l

k
I 
: Ref.

k
II 

: GL-FEM

k
II 

: GFEM
g-l

k
II 

: Ref.

FIG. 9: Analysis with interacting cracks discretized in theglobal domain. Global problems are solved with

cubic shape functions and Westergaard function enrichments.

analyzed in Section IV A 1.

The polynomial order of shape functions used in the initial and enriched global problems is set

to p = 1, whereas cubic polynomial shape functions (p = 3) are used in the local problems. Table

III lists the results for this case. Figure 11 plots the data from the table. The difference in quality of

SIFs extracted fromGFEMg-l andGL-FEM is even more significant than in the previous section.

For example, the relative error in mode I SIF forB/H = 0.2 computed by theGFEMg-l is 4.05 %,

whereas in the case of theGL-FEM it is 52.64 %. We can observe that the error inkI computed

with theGL-FEM is about twice as large as in the case reported in Table I. In contrast, the error

in the case of theGFEMg-l is about the same as in Table I, in spite of the fact that the cracks were

not modeled in the initial global problem.

As in the analysis presented in Section IV A 1, we investigatethe effect of using cubic shape

functions in the global problem. All other parameters are kept unchanged. The results for this

choice of shape functions are presented in Figure 12 and in Table IV. Westergaard enrichments

are not used in the global domain since in this domain the cracks are not discretized. It can be

observed from Figure 12 and Table IV that the mode I SIFs computed with theGL-FEM do not

improve in this case. This shows that if the cracks are not discretized in the global problem, the

quality of boundary conditions used in the local problems may not improve even if higher order
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(a)The shaded areas represent the local

domains extracted from the coarse global

mesh.

(b)Graded meshes used in the

discretization of local problems.

(c)Enrichment of global discretization with

local solutions. Global nodes enriched with

local solutions are represented with squares.

FIG. 10: Discretization of a problem with two interacting cracks. Front view for the caseB/H = 2. The

cracks arenot discretized in the global domain.

elements or finer meshes are used in the global problem. The mode I SIFs in theGFEMg-l have

an error of less than 1 % while in the case of theGL-FEM the error is about five times larger

than those reported in Table II. This, again, shows that theGFEMg-l is more robust and can

provide more accurate solutions than theGL-FEM, even in such an extreme situation where no
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TABLE III: Mode I and II stress intensity factors for the problem shown in Figure 5. Cracks are not

discretized in the global domain, and linear shape functions are used in the global domain.

B/H nDOFsnDOFsnDOFsNormalized Mode I SIFNormalized Mode II SIF

(IG) (L) (EG) GL-FEM GFEMg-l Ref. GL-FEM GFEMg-l Ref.

0.2 3366 36708 3486 0.4617 0.9354 0.9749-0.0270 -0.0906 -0.0656

0.3 3366 39228 3486 0.4625 0.9834 1.0437-0.0162 -0.0537 -0.0330

0.4 3366 35328 3486 0.4630 0.9987 1.0839-0.0043 -0.0103 -0.0155

1.0 3366 39228 3486 0.4604 1.0425 1.1096
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FIG. 11: Analysis with interacting cracks not discretized in the global domain. Global problems are solved

with linear shape functions.

local features are represented in the global domain.

B. Analysis of an Inclined Crack

As a second example, we analyze the mixed-mode fracture problem shown in Figure 13. In

contrast with the problem analyzed in Section IV A, here modeI and II stress intensity factors are

of the same order magnitude. Thus, they can be extracted withthe same level of accuracy. We
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TABLE IV: Mode I and II stress intensity factors for the problem shown in Figure 5. Cracks are not

discretized in the global domain and cubic shape functions are used in the global domain.

B/H nDOFsnDOFsnDOFs Mode I SIF Mode II SIF

(IG) (L) (EG) GL-FEM GFEMg-l Ref. GL-FEM GFEMg-l Ref.

0.2 33660 36708 33780 0.4617 0.9807 0.9749-0.0270 -0.0720 -0.0656

0.3 33660 39228 33780 0.4625 1.0517 1.0437-0.0162 -0.0459 -0.0330

0.4 33660 35328 33780 0.4630 1.0902 1.0839-0.0043 -0.0186 -0.0155

1.0 33660 39228 33780 0.4604 1.1125 1.1096
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FIG. 12: Analysis with interacting cracks not discretized in the global domain. Global problems are solved

with cubic shape functions.

compare SIFs extracted fromGL-FEM andGFEMg-l solutions with reference values computed

by Szabo and Babuška [27] using thep version of the finite element method withp = 8.

Three-dimensional tetrahedron elements are used in our computations as in Section IV A. The

Poisson’s ratio is set to zero to compare our results with thereference values computed assuming

plane stress condition. The following parameters are also adopted in our simulation: Young’s

modulusE = 1.0; in-plane dimensionsw = 1.0; domain thicknesst = 1.0; vertical tractionty =

1.0.
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FIG. 13: Rectangular panel with a throught-the-thickness inclined crack.

The SIFs are extracted using the cut-off function method [27–29] and normalized using

kI (II ) =
KI (II )

ty
√

2πw
(8)

wherekI (II ) denotes the normalized mode I (II) SIF.

The domain is discretized as shown in Figure 14. The global mesh is quite coarse, and only one

layer of elements is used in the out-of-plane direction. Theinclined crack is discretized only in the

local domain, as in Section IV A 2, and is modeled using Heaviside and Westergaard functions.

The local mesh is refined around the crack front to obtain accurate solutions, as in the previous

section. In the case ofGFEMg-l, the local solutions are used to enrich eighteen nodes in theglobal

mesh as illustrated in Figure 14(b). Quadratic shape functions are used in the global domain, and

cubic shape functions in the local domain.

Table V lists normalized mode I and II stress intensity factors extracted fromGL-FEM and

GFEMg-l solutions. The reference values from Szabo and Babuška [27] are also listed. The

relative error ofkI extracted from theGFEMg-l solution is 2.65 %, while it is 64.29 % in the

case ofGL-FEM. Thus,kI computed with theGL-FEM has an error almost twenty-four times

larger than the one computed withGFEMg-l. This same level of accuracy is achieved byGFEMg-l

in the case ofkII . The relative errors in mode II SIF are 3.21 % and 56.03 % in theGFEMg-l
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(a)The shaded areas

represent the local domain

extracted from the coarse

global mesh.

(b)Enrichment of global

discretization with local

solutions. Global nodes

enriched with local

solutions are represented

with squares.

FIG. 14: Discretization of the problem with an inclined crack. The cracks arenot discretized in the global

domain.

andGL-FEM, respectively. This result demonstrates thatGFEMg-l can deliver much higher level

of accuracy in the extraction of both mode I and II SIFs thanGL-FEM even if the crack is not

discretized in the global domain.

C. A Multiple Site Damage Problem

A multiple site damage (MSD) example is analyzed in this section. MSD problems focus on the

combined effect of multiple growing cracks where each individual crack can be harmless, but the

combined effect of several cracks can be disastrous [30]. Inthis class of problems, cracks cannot
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TABLE V: Normalized mode I and II stress intensity factors for the problem shown in Figure 13. Cracks

are not discretized in the global domain.

nDOFsnDOFsnDOFs Mode I SIF Mode II SIF

(IG) (L) (EG) GL-FEM GFEMg-l Ref. GL-FEM GFEMg-l Ref.

1080 21240 1134 0.2147 0.5854 0.6013-0.1280 -0.3003 -0.2910

be treated separately, and the interaction among them must be considered during the analysis. One

example of MSD is the case of small fatigue cracks developingaround regions with high stress

concentrations and manufacturing or material defects. Themicrocracks may grow and coalesce

into a larger macrocrack which can lead to the failure of the structure [31]. The global-local

FEM requires sufficiently large local domains in order to minimize the effect of the approximate

boundary conditions. In the case of MSD problems this will invariably lead to the inclusion

of perhaps several microcracks in the local problems, offsetting some of the advantages of the

method. In this section, we analyze the MSD problem shown in Figure 15 using both theGL-

FEM and theGFEMg-l. This problem was originally proposed in [32]. We investigate the effect

of the local domain size on the quality of the energy release rate extracted fromGL-FEM and

GFEMg-l solutions.

In the example shown in Figure 15 there are two small MSD cracks on the left and right sides of

the main crack. The modeling of the MSD cracks in the global domain would require extremely

fine meshes leading to a large global problem. The following parameters are assumed in the

simulations: Poisson’s ratioν = 0.33; Young’s modulusE = 10,500 ksi; in-plane dimensionsd =

75.0 in,c= 45.0 in,a1 = 20.0 in,a2 = 11.5 in,a3 = 2.0 in; size of MSD cracksa4 = 1.0 in; domain

thicknesst = 1.0 in; vertical tractionty = 20.0. We take advantage of symmetry in geometry and

boundary conditions and model only the right half (CDEFG) ofthe domain.

The energy release rate (G ) is computed at the center of the front of the main crack, i.e.,

at z = t/2. Plane strain conditions are assumed at this location and the energy release rate is

computed using the relation

G =
1−ν2

E
K2

I +
1−ν2

E
K2

II +
1+ν

E
K2

III (9)
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FIG. 15: Description of a multisite damage problem.

whereν is Poisson’s ratio, andE is Young’s modulus. The stress intensity factorsKI , KII and

KIII are extracted using the contour integral method [27–29, 33,34]. The reference value for the

G is taken as 2.5609. This value was computed using a very refined mesh and high order shape

functions (p = 4) with all cracks modeled in the global problem. This reference discretization has

a total of 365,538 degrees of freedom. We checked the convergence of the computed reference

value forG by solving the problem using a smaller model, with 311,742 degrees of freedom. The

difference in the energy release rates between these two models was less than 0.01 %.

The discretizations shown in Figure 16 are used in the analysis presented below. Local domains

of different sizes are used as illustrated in Figure 16(a). Only the main crack is discretized in

the global problem. The neighborhood of the main crack frontand the entire MSD cracks are

modeled in the local domains (Cf. Figures 16(a) and 16(b)). Not modeling the MSD cracks in the

global domain considerably reduces the computational costand also facilitates the creation of the

macroscale discretization. In the case of theGFEMg-l, the local solutions are used to enrich the

global nodes illustrated in Figure 16(c). The same set of 12 nodes is enriched, regardless of the
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(a)Discretization of cracks in the initial global

problem. Solid, dashed and long dash-double dotted

lines represent the boundaries of local domains with

three different sizes used in this analysis.

(b)Graded mesh used in the

discretization of the local problem

represented by a dashed line in Figure

16(a)

(c)Enrichment of global discretization with the local

solution in Figure 16(b). Global nodes enriched with

the local solution are represented by squares.

FIG. 16: Discretization of the MSD problem (front view).Only the main crack is discretized in the global

domainwhile both the main and MSD cracks are discretized in the local domains.

size of local domain.

The local meshes are strongly refined in the neighborhood of the crack fronts. Singular West-

ergaard functions are used in local elements intersecting acrack front. Cubic shape functions are

used in the initial and enriched global problems and in the local problems as well.

Table VI lists the energy release rate (G ) extracted fromGL-FEM andGFEMg-l solutions for

varying sizes of local domains. In the table, the three different sizes of local domains illustrated
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TABLE VI: Energy release rate (G ) extracted fromGL-FEM andGFEMg-l solutions for varying sizes of

local domains. Rel. err. stands for relative error of extractedG .

Size of nDOFs nDOFsnDOFs GL-FEM GFEMg-l

Local Domain (IG) (L) (EG) G Rel. err. (%) G Rel. err. (%)

Small 17280 40662 17316 1.9630 23.35 2.4706 3.53

Middle 17280 40662 17316 2.1566 15.79 2.4828 3.05

Large 17280 40662 17316 2.2783 11.04 2.4942 2.60

Ref. 365538 2.5609 2.5609

in Figure 16(a) are denoted by “small”, “middle” and “large”. The results show that, for all sizes

of local problems used, the energy release rate computed by theGFEMg-l is more accurate than

in the case of theGL-FEM. The relative error inG computed with theGL-FEM is about six times

greater than the one byGFEMg-l when the “small” local domain is used, and four times greaterfor

the “large” local domain. This demonstrates, again, that theGFEMg-l is more robust and accurate

than theGL-FEM.

The deformed shape of the global domain before and after enrichment with the local solution

is displayed in Figure 17. The opening of the small MSD crackscan be clearly captured in the

global domain after the enrichment with the local solution,as shown in Figure 17(b), although

they are represented only in the local problem.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have compared the effectiveness of the global-local approach used in the

FEM with the GFEM with global-local enrichment functions presented in [8, 9]. Our focus is on

problems involving interacting macrocracks as well as interactions among cracks with different

scale sizes. The numerical experiments presented in this paper show that theGFEMg-l is much

more robust than theGL-FEM. Specifically, the following observations regarding the robustness

of the methods can be made:
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(a)Deformed shape of the global domain before

enrichment with a local solution.

(b)Deformed shape of the global domain after

enrichment with a local solution.

FIG. 17: Deformed shape of the global domain in the MSD problem before and after enrichment with a

local solution. The elements of the local problem nested in the global mesh are visualized in Figure 17(b).

• The numerical examples presented in Section IV A show that the GFEMg-l is less sensitive

to the quality of boundary conditions applied to the local problems than theGL-FEM. Ac-

curate SIFs could be extracted fromGFEMg-l solutions even when cracks were not modeled

in the global problem. The SIFs extracted fromGL-FEM solutions showed an error of up

to one order of magnitude larger than in the case of theGFEMg-l.

• When cracks were modeled in the initial global problems, thequality of SIFs extracted from

GL-FEM solutions improved significantly with the accuracy of the initial global problem.

However, increasing the polynomial order used in the initial global problem didnot im-

prove the performance of theGL-FEM much when cracks were not modeled in the global

problem.

• Energy release rates extracted fromGFEMg-l solutions of an MSD problem consistently

exhibited higher accuracy than in the case of theGL-FEM for all sizes of local domains

considered in the numerical experiments.

• The GFEMg-l can account for interactions among cracks with the same or different scale

sizes, even when not all cracks are modeled in the initial global problem. This makes

JAM-07-1228 27 Duarte



theGFEMg-l an appealing method to analyze problems with phenomena spanning multiple

spatial scales.

Our work in [9] also shows that theGFEMg-l is computationally very efficient. The cost of the

method when analyzing stationary cracks, like in this paper, is very close to theGL-FEM, since

the cost of solving the enriched global problem is small whencompared with the cost for the initial

global problem [9]. The cost analysis presented in [9] was done on a single processor machine

for the case of a single local problem defined per crack in the domain. Our on-going research

shows, however, that the method is also highly scalable and can be parallelized without difficulty.

The robustness and computational efficiency of theGFEMg-l makes it suited to the analysis of

practical fracture mechanics engineering problems.
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global domain. 22

(a) The shaded areas represent the local domain extracted from the coarse global mesh.
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(b) Enrichment of global discretization with local solutions. Global nodes enriched with

local solutions are represented with squares.

15 Description of a multisite damage problem. 24

16 Discretization of the MSD problem (front view).Only the main crack is discretized in the

global domainwhile both the main and MSD cracks are discretized in the local domains.

25

(a) Discretization of cracks in the initial global problem.Solid, dashed and long dash-

double dotted lines represent the boundaries of local domains with three different sizes

used in this analysis.

(b) Graded mesh used in the discretization of the local problem represented by a dashed

line in Figure 16(a)

(c) Enrichment of global discretization with the local solution in Figure 16(b). Global

nodes enriched with the local solution are represented by squares.

17 Deformed shape of the global domain in the MSD problem before and after enrichment with

a local solution. The elements of the local problem nested inthe global mesh are visualized

in Figure 17(b). 27

(a) Deformed shape of the global domain before enrichment with a local solution.

(b) Deformed shape of the global domain after enrichment with a local solution.
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