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Summary

The present paper summarizes the generalized finite element method formulation and demon-
strates some of its advantages over traditional finite element methods to solve complex, three-dimensional
structural mechanics problems.

Introduction

The analysis of complex three-dimensional structural components has become a common task in
recent years at several industries, like, automotive, aerospace, naval, nuclear, etc. However, the analysis
of this class of problems using traditional finite element methods still poses several difficulties. It is a
common practice in the industry to use automatic tetrahedral mesh generators to discretize complex
three-dimensional structural components. This type of mesh generators can handle very complex
geometries with a minimum of human intervention (as compared to, e.g., the manual generation of a
mesh of hexahedral elements). The main drawbacks of this approach are:

(i) The need of an excessive number of elements in order to keep the aspect ratio of the finite elements
within a reasonable bound. This is specially true when the component has transitions zones from bulky
to slender parts. For example, around an oil well, which has a few inches of diameter, in a oil reservoir,
which can have several miles.

(ii) Polynomial approximations, as used in traditional finite element methods, requires the use of a
large number of elements in order to capture stress concentrations and singularities at corners and
edges of the domain.

(iii) One other drawback of automatic tetrahedral mesh generators is that they preclude the use of p
anisotropic approximations, that is, approximations that have different polynomial orders associated
with each direction.

The generalized finite element method (GFEM) was proposed independently by Babuska and
colleagues [1,2,12] (under the names special finite element methods, generalized finite element method
and finite element partition of unity method) and by Duarte and Oden [6-9,15] (under the names hp
clouds and cloud-based hp finite element method). Several of the so-called meshless methods proposed
in the last years can also be seem as special cases of the generalized finite element method. Recent
surveys on meshless methods can be found in [3,5]. The key feature of these methods is the use of
a partition of unity (PU) which is a set of functions whose values sum to the unity at each point x
in the domain 2. The analysis of the performance and computational cost of hp cloud, element free



Galerkin [4], diffuse element [13] and reproducing kernel particle [11] methods can be found in [9]. It
was found in that study that the integration of the stiffness matrix in these methods can be considerably
more expensive than in traditional hp finite element methods, depending on the choice of the partition
of unity. Moving least square PU [10], being among the most expensive.

The present paper summarizes the GFEM formulation and demonstrates through a numerical
example some of the advantages of GFEM over traditional FEM to solve complex, three-dimensional
structural mechanics problems.

Formulation of Generalized Finite Element Methods: A Summary

In this section we review the basic formulation of generalized finite element approximations in
a one-dimensional setting using a linear finite element partition of unity. However, the procedures are
exactly the same in two- and three-dimensions and can be used in combination with any Lagrangian
finite element. In the next section, we use generalized tetrahedral finite elements to discretize a three-
dimensional problem. For a more detailed discussion we refer the interested reader to [2,7,12,15] and
the references therein.

Let u(x) be a function defined on a domain 2 C R. Suppose that we build a covering
N
a=1

of € consisting of N clouds w, with centers at x,,.

Figure 1: Local Approximations Defined on the Clouds w,,.

Let u,, be a local approximation of w that belongs to a local space x,(ws) defined on the cloud
we. Bach space xo(ws), = 1,..., N can be chosen such that there exists a u, € xa(ws) that can
approximate well u/|,, . Figure 1 illustrates the definitions given above. In this case, the clouds w, are
open intervals with centers x,.

The local approximations u,,a = 1,..., N have to be some how combined together to give a
global approximation w, of u. This global approximation have to be built such that the difference
between uj, and u, in a given norm, be bounded by the local errors w — u,. In partition of unity
methods this is accomplished using functions ¢, defined on the clouds w, and having the following

property
Yo € Ci(wa), s> 0, 1<a<N
Y pa(x) =1 Vo € Q



The functions ¢, are called a partition of unity subordinated to the open covering 7y. Examples of
partitions of unity are Lagrangian finite elements, moving least squares and Shepard functions [8,10].

Figure 2: One dimensional finite element partition of unity.

In the case of finite element partitions of unity, the clouds w, are simply the union of the
finite elements sharing a vertex node (see, for example, [12,15]). In this case, the implementation of
the method is essentially the same as in standard finite element codes, the main difference being the
definition of the shape functions as explained below. Figure 2 shows a one dimensional finite element
discretization. The partition of unity function ¢, is the global finite element shape function associated
with node x,. The cloud w, is the union of the elements 7,_; and 7.

Consider now the element 7, with nodes x, and x,.; as depicted in Fig. 2. Suppose that the
following shape functions are used on this element

Sa = {Spom Spa—&-l} X {17 Uq, ua+1} = {QOO” Pa+1; Pala; PalWa+1; Pat+1Ua; (;Oa—i-l,u'oc—&—l}

That is, the element 7, has a total of six shape functions built from the product of the standard
Lagrangian finite element shape functions (a partition of unity), and the local approximations w,, ®a+1
that, by assumption, can approximate well the function w over the finite element 7.

Thanks to the partition of unity property of the finite element shape functions we can easily show
that linear combinations of the shape functions defined above can reproduce the local approximations
Uy, Uq i1, that is,

Palg T Patr1Uq = ua(goa + <pa+1) = U, (no sum on a)

PalUa+1 + Pat+1Uq+1 = uaJrl(SOa + (;Oa+1) = Uq+1

In other words, ©a, Ua+1 € < So > . It can also be proved that [8,12]if [|[u — ua |l pgny,) < €(a,h,p,u)

1/2
then there 3 uy, € X" such that ||u — Uyl gy < C (Zg:(}{) e?(a, h, p, u)) / where the space X"P

is the span of the generalized finite element shape functions as defined above and the constant C' is
independent of w, h, p.

Note that there is a great freedom in the choice of the local spaces x, (and consequently of the
local approximations u,). The most obvious choice for a basis of x, is polynomial functions which
can approximate well smooth functions. In this case, the GFEM is essentially identical to the classical
FEM. The implementation of hp adaptivity is however greatly simplified by the PU framework. Since
each local approximation u,,a = 1,..., N can have a different polynomial order, we can have different
polynomial orders associated with each vertex node of the finite element mesh. The approximations can
also be non-isotropic, regardless of the choice of FE PU (hexahedral, tetrahedral, etc.). The concept
of edge and middle nodes, which are used in conventional p FEMs, is not needed in the framework of
GFEM. The implementation of h adaptivity is also simplified in PU methods since it needs to be done



only on the partition of unity (linear finite elements in this case). Therefore, the implementation of h
adaptivity for high order approximations is the same as for linear approximations (there is no need,
for example, of using high order constraints as done in traditional hp finite element methods).

There are many situations in which the solution of a boundary value problem is not a smooth
functions and the use of polynomials to build the approximation space, as in the FEM, is far from
optimal and leads to a poor approximation of the solution w unless carefully designed meshes are used.
In the GFEM we can use any a-priori knowledge we have about the solution to make a wise choice for
the local spaces x,. For example, in the next section we solve a boundary value problem in which the
solution is singular at some parts of the domain and we use local spaces Y, to build our generalized
finite element shape functions space that can represent these singularities much more effectively than
polynomial functions.

Analysis of a Structural Component Using GFE Methods

In this section, we analyze the structural part shown on Fig. 3 using traditional FE and GFE
methods. The mesh used has 15,527 tetrahedral elements and 3,849 vertex nodal points. The mesh
and problem size are representative of those used in, e.g., automotive and aerospace industry. The
aspect ratio of the elements in the mesh and the approximation of the geometry of the structural part
are quite good. However, this mesh is not adequate to properly model the singularities present in
the model. The material is assumed to be linearly elastic with Young’s modulus £ = 100000.0 and
Poisson’s ratio v = 0.33. The boundary conditions are those represented in Fig. 3. The component
is fixed at both supports and there is a uniformly distributed load p = 1.0 in the negative x-direction
applied at its upper part (Cf. Fig. 3).

Linear and quadratic (Serendipity) finite elements results are shown in Table 1. The value of the
exact strain energy was estimated using the quadratic finite element discretization and the a-posteriori
error estimation capabilities of Phlex Solids [16]. The linear discretization leads to 11,547 degrees
of freedom (dofs) which can be factorized in 36.21 seconds using the sparse linear solver option of
Phlex Solids [16]. However this discretization has a relative error of 36.3% in the energy norm which
is unacceptable for all practical purposes. The quadratic discretization has an error of 11.61 % and
it leads to a substantial increase in the number of dofs (76,797) and in the solution time (2,737.8
seconds). This discretization is not adequate to capture the stress singularities that exist in the model
and p-enrichment will lead only to algebraic convergence rates.

In the GFE analysis of this problem the linear tetrahedral discretization is used as the partition
of unity. Two discretizations are then build using this partition of unity and the technique outlined in
the previous section. In the first GFE discretization the local spaces xo,a = 1,..., N are the span of
the polynomials 1,z — o, Y — Yo, 2 — 2o Where &, = (Lo, Ya, 2a). In other words, the partition of unity is
multiplied by linear monomials, 1,2 — ., ¥ — Ya, 2 — 24, t0 create quadratic GFE shape functions. The
resulting approximation is quadratic because it is built from the product of a polynomial (linear) PU
and linear monomials. This discretization has degrees of freedom only at the vertices of the tetrahedral
elements (four dofs for each component of the solution). That is, there are no degrees of freedom along
the edges or in the interior of the element. This quadratic GFE discretization has 46,188 dofs which
is about 40% less dofs than the finite element counterpart. The total CPU time for the factorization
of the resulting system of equations is 2,062.1 seconds, which is about 25% smaller than in the case of
quadratic finite elements. The relative error in the energy norm for this discretization is 14.94% which
is about 22.3 % larger than in the case of quadratic finite elements. The GFE results are summarized
in Table 1.
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Figure 3: Boundary conditions and mesh for structural part.

Polynomial approximations as used in the FE and GFE discretizations described above can
not approximate well the solution in the neighborhood of, e.g., the edges 1 and 2 shown in Fig. 3.
However, asymptotic expansions of the elasticity solution in the neighborhood of those edges are well
known and the GFE framework allows straightforward inclusion of these asymptotic fields in the GFE
approximation spaces (for details see for example [9,14]). We demonstrate this approach in the solution
of the problem represented in Fig. 3. The same quadratic GFE discretization as described above is used
but the nodes located along the edges 1 and 2 are enriched with functions built from the product of the
linear tetrahedral shape functions and the first terms of the mode I, IT and IIT asymptotic expansions of
the elasticity solution in the neighborhood of an edge. The results for this discretization are shown in
Table 1. It can be observed that the addition of the singular functions along the edges 1 and 2 increases
the number of dofs by only 396 dofs (less than 1% more dofs) and increases the solution time by only
4.5 %. The effect of this enriched functions on the discretization error, however, is quite noticeable.
They lead to a decrease of about 36% in the discretization error.

Table 1: Tetrahedral FE and Generalized FE Results. All reported timings are in seconds

Method FEM p=1 | FEM p=2 || GFEM p=2 | GFEM p=2+ sing. fn.
Integration of LHS, RHS 271.30 2,729.71 366.10 936.32
Number of Equations 11,547 76,797 46,188 46,584
Numerical Factorization 36.21 2,737.83 2,062.13 2,156.57
Num. Float. Pt. Operat. | 9.422E+408 | 7.859E+10 || 5.986E+10 6.260E410
Strain Energy 2.37533 2.69913 2.67491 2.7110881
lellz/llull e 0.363081 |  0.116106 0.14944 0.0954462

Table 1 reports the CPU time for the numerical integration and assembly of stiffness matrix
and load vector, the number of equations, the CPU time for the numerical factorization, the number
of floating point operations for the factorization of the stiffness matrix, the computed strain energy
and the estimated relative error in the energy norm. All the computations were performed on an
Hewlett-Packard workstation model 735/125 running HP-UX 10.20.



Conclusions

In the GFEM the PU is provided by conventional finite element methods. While such an
approach bypasses some of the advantages of the meshless formulation based on, e.g., Shepard PU,
most other useful properties of the cloud/PU methods are retained, such as the ability to produce
seamless hp finite element approximations with nonuniform h and p, the ability to develop customized
approximations for specific applications, the capability to build p-orthotropic approximations on, e.g.,
three-dimensional tetrahedral meshes, etc. On top of that, the use of a finite element PU allows ease
implementation of essential boundary conditions and efficient integration of the stiffness matrix.
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