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SUMMARY

This paper presents a procedure to build enrichment functio ns for partition of unity methods like the
generalized �nite element method and the hp cloud method. The procedure combines classical global-
local �nite element method concepts with the partition of un ity approach. It involves the solution of
local boundary value problems using boundary conditions fr om a global problem de�ned on a coarse
discretization. The local solutions are in turn used to enri ch the global space using the partition of
unity framework. The computations at local problems can be p arallelized without di�culty allowing
the solution of large problems very e�ciently.

The e�ectiveness of the approach in terms of convergence rates and computational cost is
investigated in this paper. We also analyze the e�ect of inex act boundary conditions applied to local
problems and the size of the local domains on the accuracy of the enriched global solution.

Key aspects of the computational implementation, in partic ular, the numerical integration of
generalized FEM approximations built with global-local en richment functions, are presented.

The method is applied to fracture mechanics problems with mu ltiple cracks in the domain. Our
numerical experiments show that even on a serial computer the method is very e�ective and allows the
solution of complex problems. Our analysis also demonstrates that the accuracy of a global problem
de�ned on a coarse mesh can be controlled using a �xed number of global degrees of freedom and the
proposed global-local enrichment functions.

key words: Generalized �nite element method, extended �nite element m ethod, meshfree, global-
local, fracture mechanics, multiple cracks.

1. Introduction

The e�ectiveness of partition of unity methods like hp clouds [25, 26], generalized [7, 19, 20,
32, 40, 49, 50], and extended [10, 34] �nite element methods relies, to a great extent, on the
proper selection of enrichment functions. Customized enrichment functions can be used to
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model local features in a domain like cracks [15, 21, 34, 35, 39, 41, 55], edge singularities [20],
boundary layers [17], inclusions [54], voids [50, 54], microstructures [33, 47], etc., instead of
strongly re�ned meshes with elements faces/edges �tting the local features, as required in the
�nite element method. This has lead to a growing interest on this class of methods by the
engineering community.

The generalized/extended FEM has the ability to analyze crack surfaces arbitrarily located
within the mesh (across �nite elements). Figure 1(b) shows the representation of a three-
dimensional crack surface using the generalized �nite element method presented in [23, 45].
The generalized FEM enjoys, for this class of problems, the same level of exibility and user

(a) (b)

Figure 1. (a) A three-dimensional GFEM discretization for a body with an inclined cracked. A �ner
mesh is required near the crack front to compensate the limit ations of the enrichment functions. (b)
Three-dimensional view of the crack front. Notice that the c rack surface goes through the elements.

friendliness as meshfree methods while being more computationally e�cient.
In simple two-dimensional cases, a crack can be accurately modeled in partition of unity

methods using enrichment functions from the asymptotic expansion of the elasticity solution
in the neighborhood of a crack. The three-dimensional case is, however, not as straightforward.
The intersection of a crack surface with the boundary of the domain, creates complex stress
distributions. Asymptotic forms of the elasticity solutio n near edges in three dimensional
problems are discussed in, for example, [29, 36]. There are terms in the three dimensional
expansions which are very similar to the two-dimensional case. Nevertheless, the theory is
quite complex and not practical for engineering applications.

Currently, two dimensional expansions of the elasticity solution are used as enrichment
functions for three-dimensional cracks in �nite size domains [21, 35, 55]. As a consequence, a
su�ciently �ne mesh must be used around the crack front to ach ieve acceptable accuracy. An
example is shown in Figure1(a). Even though the re�nement does not have to be as strong as
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in the �nite element method, it still creates many of the prob lems faced by the �nite element
method when simulating propagating cracks. In particular (i ) Increased computational cost
by re-solving the problem from scratch after each crack propagation step. Realistic simulations
require hundreds of crack propagation steps, several di�erent initial crack con�gurations,
and many times, a non-linear analysis. Problems like multi-site damage analysis [3] would
also bene�t from a methodology able to avoid re-solutions from scratch after small changes
in input data; ( ii ) Mapping of solutions between meshes when solving non-linear or time-
dependent problems. Mappings between non-nested meshes iscostly and may lead to a loss
of accuracy even if �ne meshes are used. These limitations o�set some of the advantages of
generalized/extended FEMs for several classes of problems.

The authors have recently proposed a procedure to build enrichment functions for partition
of unity methods and, in particular, for the generalized FEM [18, 22]. The approach
presented in [18, 22] was geared towards three-dimensional fracture mechanicsproblems but
the methodology can also be applied to many other classes of problems. In this procedure,
enrichment functions are computed from the solution of local boundary value problems de�ned
in a neighborhood of a crack front in three-dimensions. The approach uses concepts from the
classical global-local �nite element method, where boundary conditions for local problems are
extracted from the solution of a global problem [37]. However, unlike the classical global-local
FEM, the approach presented in [18, 22] is able to account for local-global interactions and
interactions among local features, like multiple cracks. The approach allows the use of coarse
global meshes around crack fronts while delivering accurate solutions and is specially appealing
to evolution type problems like propagating cracks. Numerical experiments demonstrating the
computational e�ciency and accuracy of the method were presented in [18, 22].

In this paper, we present a detailed numerical analysis of the procedure presented in [18, 22].
In particular, we investigate the following issues

(i) The e�ect of using the solution of the global problem, instead of the unknown exact
solution, as boundary conditions for the local problems (Section 4.1.1);

(ii) The e�ect of the size of the local domains on the performance of the proposed GFEM with
global-local enrichment functions. Larger domains are in principle desirable since they
would reduce the e�ect of not using exact boundary conditions for the local problems.
However, large domains are more computationally demanding(Section 4.1.2);

(iii) The e�ectiveness of the proposed technique in terms ofconvergence rates of the global
problem and its relations with the convergence rates of the local problems (Section4.2);

(iv) The computational cost of the procedure as compared with existing methodologies
(Section 4.3).

In addition, we also discuss some key aspects of the computational implementation, in
particular, the numerical integration of generalized FEM approximations built with global-
local enrichment functions (Cf. Section I.3). The main conclusions of this work are presented
in Section 5.

2. The Generalized Finite Element Method

In this section, we briey review the construction of the so-called generalized �nite element
approximations. Further details can be found in, for example, [6, 7, 20, 40, 51].
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The generalized FEM [6, 7, 20, 40, 51] is an instance of the so-called partition of unity
method. This method has its origins in the works of Babu�ska et al. [5, 7, 32] (under the names
\special �nite element methods", \generalized �nite eleme nt method" and \partition of unity
�nite element method") and Duarte and Oden [ 16, 24, 25, 26, 40] (under the names \hp clouds"
and "cloud-basedhp �nite element method"). The extended FEM [ 10, 34] and several of the
so-called meshfree methods proposed in recent years can also be viewed as special cases of the
partition of unity method. The shape functions, � �i , in this class of methods are built from
the product of a partition of unity, ' � , and enrichment functions, L �i

� �i := ' � L �i i 2 I (� ) (no sum on � ) (1)

where ' � ; � = 1 ; : : : ; N , N being the number of functions, constitute a partition of unity, i.e.,
a set of functions de�ned in a domain 
 with the property that

P N
� =1 ' � (x ) = 1 for all x in


. The index set of the enrichment functions at a vertex node x � is denoted by I (� ). The
support of ' � , f x : ' � (x ) 6= 0g, is denoted by! � . In the generalized �nite element method, the
partition of unity is, in general, provided by linear Lagran gian �nite element shape functions.
The support ! � of ' � is then given by the union of the �nite elements sharing a vertex node
x � . The resulting shape functions are called generalized �nite element shape functions. Figure
2 illustrates the construction of GFEM shape functions. The generalized FEM is equivalent to
the standard FEM when polynomial enrichment functions, L �i , are used. The main strength of
the generalized FEM is its ability of using non-polynomial enrichment functions as illustrated
in Figure 2(b). In particular, custom-built enrichment functions that ar e solutions of local
boundary value problems can be used as well. These so-calledglobal-local enrichment functions
are described in detail in Section3.

(a) (b)

Figure 2. Construction of a generalized FEM shape function u sing a polynomial (a) and a non-
polynomial enrichment (b). Here, ' � are the functions at the top, the enrichment functions, L �i , are
the functions in the middle, and the generalized FE shape functions, � �i , are the resulting bottom

functions.
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Local Approximations A partition of unity-based approximation of a scalar �eld u(x )
de�ned on a domain 
 � IR n ; n = 1 ; 2; 3; can be written, using shape functions (1), as

uh (x ) =
NX

� =1

X

i 2I ( � )

a�i � �i (x ) =
NX

� =1

' � (x )uh� (x ) (2)

where a�i ; � = 1 ; : : : ; N; i 2 I (� ), are unknown coe�cients and uh� (x ) :=
P

i 2I ( � ) a�i L �i (x )
denotes a local approximation of the �eld u(x ) de�ned on ! � and belonging to the local space

� � (! � ) = spanf L �i (x )gi 2I ( � ) (3)

where L �i ; i 2 I (� ); are basis or enrichment functions andL � 1 = 1.

A-Priori Error Estimate An a-priori error estimate for partition of unity approxima tions
and, in particular, for the generalized �nite element method, was proved by Babu�ska and
Melenk [7, 32]. The estimate says that if the partition of unity POUN = f ' � gN

� =1 satis�es some
mild requirements and the error of the local approximations, uh� 2 � � (! � ); � = 1 ; : : : ; N , are
bounded by

ku � uh� kE (! � ) < � (�; u ); � = 1 ; : : : ; N; (4)

then the error of a partition of unity approximation, uh , de�ned in ( 2) is bounded by

ku � uh kE (
) < C

 
NX

� =1

� 2(�; u )

! 1=2

(5)

where k:kE denotes the energy norm andC is a constant. Details and proofs can be found
in [16, 26, 32]. If the enrichment functions L �i ; i 2 I (� ) can (locally) approximate well the
function u over ! � ; � = 1 ; : : : ; N , the estimate (5) shows that the global approximation uh

can approximate well the function u over the (global) domain 
. The rate of convergence of
uh is controlled by the rate of convergence of the local approximations uh� ; � = 1 ; : : : ; N .
In Sections 4.2.1 and 4.2.2 we use this result to analyze the e�ectiveness of the global-local
enrichment functions de�ned in Section 3.

3. A Global-Local Approach to Build Enrichment Functions

In this section, we present a global-local approach to buildenrichment functions for the
generalized FEM. The approach is based on the global-local formulation presented in [18, 22].
We focus on three-dimensional linear elasticity problems and illustrate the main ideas using
fracture mechanics examples. The formulation is, however,applicable to other classes of
problems as well. Key aspects of the computational implementation are discussed in Section
I.

3.1. Formulation of Global Problem

Consider a domain �
 G = 
 G [ @
 G in IR 3. The boundary is decomposed as@
 G = @
 u
G [ @
 �

G
with @
 u

G \ @
 �
G = ; .

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]



6 of 33 C.A. DUARTE AND D.-J. KIM

The equilibrium and constitutive equations are given by

r � � = 0 � = C : " in 
 G ; (6)

where C is Hooke's tensor. The following boundary conditions are prescribed on@
 G

u = �u on @
 u
G � � n = �t on @
 �

G ; (7)

where n is the outward unit normal vector to @
 �
G and �t and �u are prescribed tractions and

displacements, respectively.
Let u 0

G denote a generalized FEM approximation of the solutionu of problem (6), (7). The
approximation u 0

G is the solution of the following problem:
Find u 0

G 2 X hp
G (
 G ) � H 1(
 G ) such that, 8 v0

G 2 X hp
G (
 G )

Z


 G

� (u 0
G ) : " (v0

G )dx + �
Z

@
 u
G

u 0
G � v0

G ds =
Z

@
 �
G

�t � v0
G ds + �

Z

@
 u
G

�u � v0
G ds (8)

where, X hp
G (
 G ) is a discretization of H 1(
 G ), the Hilbert space de�ned on 
 G , built with

generalized FEM shape functions and� is a penalty parameter. In the computations presented
in Section 4, we adopt � = 108 � E � J , whereE and J are the Young's modulus of the material
and the Jacobian of a volume element with a face on 
uG , respectively. We use the penalty
method due to its simplicity and generality. Detailed discussion and analysis of methods for
the imposition of Dirichlet boundary conditions in generalized FEMs can be found in, e.g., [4].
Problem (8) leads to a system of linear equations for the unknown degrees of freedom ofu 0

G .
The mesh used to solve problem (8) is typically a coarse quasi-uniform mesh.

3.2. Local Problems

Let 
 loc denote a subdomain of 
G . This local domain may contain cracks, holes, inclusions,
�bers, or other local feature of interest. In this paper, we focus on the case of local domains
containing a single crack surface �c with front � f ront . Details on discretizations used on 
loc

are given in SectionI.
The following local problem is solved on 
 loc after the global solution u 0

G is computed as
described above:

Find u loc 2 X hp
loc (
 loc ) � H 1(
 loc ) such that, 8 v loc 2 X hp

loc (
 loc )
Z


 loc

� (u loc ) : " (v loc )dx + �
Z

@
 loc n(@
 loc \ @
 �
G )

u loc � v loc ds =

�
Z

@
 loc n(@
 loc \ @
 G )
u 0

G � v loc ds + �
Z

@
 loc \ @
 u
G

�u � v loc ds +
Z

@
 loc \ @
 �
G

�t � v loc ds (9)

where, X hp
loc (
 loc ) is a discretization of H 1(
 loc ) using GFEM shape functions.

A key aspect of problem (9) is the use of the generalized FEM solution of the (crude) global
problem, u 0

G , as boundary condition on @
 loc n(@
 loc \ @
 G ). The present paper focuses on
fracture mechanics problems. The solutions are smooth awayfrom crack fronts where it is
possible to assume that the crude solution of a global problem, u 0

G , can approximate the exact
solution reasonably well. Our numerical experiments presented in Section 4.1 con�rm this.
Exact boundary conditions are prescribed on portions of@
 loc that intersect either @
 u

G or
@
 �

G .
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The formulation above considers for simplicity the case of asingle local problem per crack
in the computational domain. It is also conceivable to de�ne several local problems along each
crack front with overlapping local domains. In this case, the boundary of a local problem
intersects the crack front. The crude global solution, u 0

G , can not approximate the exact
solution well at these points. However, each one of these points at the crack front will be inside
of one of the local problems since the local domains overlap.Therefore, the solution of the
other local problem will be able to approximate well the exact solution at this point even with
non-exact boundary conditions because of the ellipticity of the problem under consideration.
This allows us to utilize the crude solution of a global problem for the construction of local
problems using the crude solution as boundary conditions.

3.3. Global-Local Enrichment Functions

The local solution u loc is potentially an excellent enrichment function for the global problem
de�ned in Section 3.1. We call u loc a global-local enrichment function since it is computed
using the same approach used in the so-called global-local FEM [37]. We use these functions
to de�ne the following vector-valued global shape function

� � = ' � u loc (10)

where ' � denotes aglobal partition of unity function. This function is used at nodes x � of
the global mesh whose support,! � , is contained in the local domain 
 loc . The global problem
de�ned in Section 3.1 is then solved again using these global functions. The solution of this
enriched global problem is denoted byu E

G . The procedure is illustrated with the aid of the edge
cracked rectangular bar shown in Figure3(a). It contains a through-the-thickness edge crack,
� c, with front � f ront . Figure 3(b) illustrates a local domain extracted from the global mesh
shown in Figure 3(a). The boundary conditions applied to a local problem are displacements
computed by solving the global problem on a coarse mesh. These boundary conditions are also
illustrated in Figure 3(b).

Related approaches The generalized FEM described above is related to global-local
techniques developed for the classical �nite element method in the 70's [37] and broadly used
in many practical applications of the FEM. A fundamental di�e rence, however, is that the
proposed generalized FEM accounts for possible interactions of local (near crack, for example)
and global (structural) behavior. These interactions can be accounted when solving the global
problem with global-local enrichment functions. This is in contrast with standard global-local
FEM.

The proposed approach for the construction of enrichment functions is also related to the
so-called mesh-based handbook approach of Strouboulis et al. [51, 52, 53] for the solution of
Laplace's equation in two-dimensional domains with many voids. The fundamental di�erence
between the two approaches is the boundary conditions used for the local problems. Strouboulis
et al. [51, 52, 53] consider the problem of a scalar equation with microscale.Because the exact
solution is not smooth and any coarse solution can not approximate it well, it is not possible in
this case to use a crude global solution as boundary conditions for the local problems. Hence
harmonic polynomials are used to de�ned a set of Neumann boundary conditions. The local
domains are enlarged by a bu�er zone to minimize the e�ect of inexact boundary conditions.

Our approach is also related to upscaling techniques for microscale problems [30]. However,
the proposed approach does not lead to non-conforming approximations like in some upscaling
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(a) Edge cracked rectangular bar. Mesh for
global problem.

(b) Local domain extracted from the global mesh
at the crack front. The vectors on the element
faces illustrates the applied displacement boundary
conditions.

(c) Local mesh re�ned around the crack front. This
mesh is nested in the mesh of the global problem.

(d) Isosurfaces of the computed
solution, u loc , of a local problem.

Figure 3. Construction of global-local enrichment functio ns for the GFEM. The solution of the local
problem shown in (d) is used as an enrichment function for the global problem shown in (a).

techniques [30]. In our case, the global shape functions built with local solution enrichment
functions u loc overlap and are conforming.

4. Numerical Experiments

Several numerical experiments are presented in this section with the goal of addressing the
following issues in the proposed GFEM with global-local functions:
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� The e�ect of using the solution of the global problem, instead of the unknown exact
solution, as boundary conditions for the local problems (Section 4.1.1);

� The e�ect of the size of the local domains on the performance of the proposed GFEM.
Larger domains are desirable in principle since they would reduce the e�ect of not
using exact boundary conditions for local problems. However, large domains are more
computationally demanding (Section 4.1.2);

� The e�ectiveness of the proposed technique in terms of convergence rates of the global
problem and their relation to the convergence rates of the local problems (Section4.2);

� The computational cost of the GFEM with and without global-lo cal enrichment functions
(Section 4.3);

� The size of the largest problem that can be solved on a given hardware using the GFEM
with and without global-local enrichment functions (Section 4.3).

Discretizations of global and local problems are denoted by

Gp=( px ;py ;pz ) and L p=( px ;py ;pz )
nref; nlay ;

respectively, where (i) px ; py and pz denote the polynomial degree of the shape functions in
the x-, y-, and z-direction, respectively; (ii) nlay denotes the number of layers of elements
around the crack front in the mesh extracted from the global problem; (iii) nref indicates
the level of the local (uniform or non-uniform) mesh re�nement. Details on the construction
of local discretizations are provided in SectionI.1. In all numerical experiments, a single local
problem per crack front is de�ned. All computations were performed on a Dell Dimension 4600
PC with a 3.2 MHz Pentium processor and 2 GB of memory.

Model Problem Figure 4 illustrates the edge-cracked rectangular bar model used in
Sections4.1 and 4.2. The problem has a single through-the-thickness crack and is discretized
with a uniform mesh of 6 � (8 � 8 � 4) tetrahedral elements. This mesh is created by �rst
generating an 8� 8 � 4 mesh of hexahedral elements and then dividing each elementinto 6
tetrahedral elements. Figure3(a) shows this mesh.

Neumann boundary conditions corresponding to the �rst term of the Mode I expansion of
the elasticity solution in the neighborhood of a crack, u I , are applied on the boundary of
the global domain as illustrated in Figure 4. The following parameters are assumed: Poisson's
ratio � = 0 :0; Young's modulusE = 200 000; In-plane dimensionsa = 0 :5, d = 0 :875; Domain
thickness t = 1 :5. We set the Poisson's ratio of the material to zero so (i) no tractions need
to be applied on the facesz = 0 and z = t of the domain (ii) the exact solution on this 3-D
domain is equal tou I .

4.1. E�ect of Boundary Conditions and Size of Local Problems

Since boundary conditions for local problems are obtained from the solution of an initial
(crude) global problem, u 0

G , they are not exact. This can be addressed by (i ) improving the
accuracy of u 0

G or (ii ) increasing the size of local domains, a procedure commonlyused in
global-local FEM simulations [14]. These approaches are investigated in Sections4.1.1 and
4.1.2, respectively.

Three local domain sizes are used:L p=(4 ;4;1)
nref =9 ; nlay with nlay = f 1; 2; 3g. The re�nement is non-

uniform with the elements along the crack front bisected 9 times using the algorithm described
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Figure 4. Model problem with a single through-the-thicknes s crack.

in Section I.1. Three di�erent boundary conditions are applied to the local problems: Dirichlet
boundary conditions from the exact solution, u I , and from the solutions of global problems
Gp=(1 ;1;1) and Gp=(4 ;4;1) . The local solutions are then used to enrich nodes located onthe crack
front of the global problem Gp=(4 ;4;1) . The local domains and their construction are illustrated
in Figures 5(a) and 5(b). Figure 5(c) illustrates the enriched global problem.

4.1.1. E�ect of inexact boundary conditions for local probl ems Tables I, II , and III
list the relative error in the energy norm for the global solution computed from local problems
with three di�erent boundary conditions. Here, N loc (G) denotes the number of degrees of
freedom in the local(global) problem, UG denotes the strain energy of the global problem,
er

G denotes the relative error in energy norm of the enriched global solution, and er ?
G denotes

the relative error in energy norm of the global problem in the case of exact local boundary
conditions. On the bottom row of each table, the strain energy and relative error in the energy
norm are provided as a reference value when no nodes in the global problem are enriched with
the local solution.

From these results, we can observe that the use of global-local enrichment functions greatly
enhances the solution of the global problem. The relative error in the global problem is reduced
at least 13:79=3:77 = 3:7 times in all cases after enriching the global problem with local
solutions. It can also be seen thatonly �fteen degrees of freedom are added to the global
problem enriched with local solutionssince there are �ve nodes on the global crack front of the
model, and three new degrees of freedom are created at each node, which correspond to x-, y-
and z-components of the local solution.

As expected, the use of local boundary conditions of higher quality improves the quality
of enriched global solutions. This improvement is most signi�cant when only a single layer
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(a) Construction of local dis-
cretizations. The shaded area
represents the di�erent size of
local domains extracted from the
coarse global mesh.

�n�l�a�y� �=� �2� �n�l�a�y� �=� �1� �n�l�a�y� �=� �3� 

(b) Local domains for varying number of layers of elements
extracted from global mesh.

(c) Enrichment of global space with local solutions. Regardle ss of
the local domain size, only the global nodes located on the cra ck
front are enriched with local solutions.

Figure 5. Set-up to analyze the e�ect of inexact local bounda ry conditions and local domain size (front
view).
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(nlay = 1) is included in the local domain. This can be explained by the St Venant principle.
Additional layers in the local domain reduce the e�ect of the perturbed boundary conditions
on the solution near the crack front. However, the di�erencein er

G computed from the di�erent
local boundary conditions is not signi�cant. For example, in case of a single layer in the
local domain (nlay = 1), the global relative error in energy norm er

G obtained from the
poor local boundary conditions (Gp=(1 ;1;1) ) is only 8.1% larger than that of the exact local
boundary conditions, er ?

G . If we use better local boundary conditions obtained fromGp=(4 ;4;1) ,
the di�erence is reduced to about 1.3%. This indicates that we can still obtain a good enriched
global solution, u E

G , even if the quality of initial global solution, u 0
G , is not good.

Table I. E�ect of inexact boundary conditions for local prob lems with nlay = 1 on the error of global
problem.

local BCs N loc NG UG er
G (%) er

G =er ?
G

Gp=(1 ;1;1) 76110 12765 3.5057446E-06 3.7702 1.0812
Gp=(4 ;4;1) 76110 12765 3.5063528E-06 3.5330 1.0132

exact 76110 12765 3.5064659E-06 3.4871 (=er ?
G ) 1

No gl-loc enrich. { 12750 3.4439439E-06 13.7930 {

Table II. E�ect of inexact boundary conditions for local pro blems with nlay = 2 on the error of global
problem.

local BCs N loc NG UG er
G (%) er

G =er ?
G

Gp=(1 ;1;1) 78060 12765 3.5058528E-06 3.7291 1.0607
Gp=(4 ;4;1) 78060 12765 3.5063862E-06 3.5194 1.0010

exact 78060 12765 3.5063952E-06 3.5158 (=er ?
G ) 1

No local sol. { 12750 3.4439439E-06 13.7930 {

Table III. E�ect of inexact boundary conditions for local pr oblems with nlay = 3 on the error of global
problem.

local BCs N loc NG UG er
G (%) er

G =er ?
G

Gp=(1 ;1;1) 80910 12765 3.5058607E-06 3.7260 1.0580
Gp=(4 ;4;1) 80910 12765 3.5063783E-06 3.5226 1.0002

exact 80910 12765 3.5063801E-06 3.5219 (=er ?
G ) 1

No local sol. { 12750 3.4439439E-06 13.7930 {

4.1.2. E�ect of local domain size The e�ect of the size of the local domains on the
quality of u E

G can be quanti�ed using, for example, the data in row 1 of Tables I, II and III .
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The last column of Table IV shows the relative change of global errorer
G as the number of

layers is increased. Going from one to two layers, for example, gives

er
G;nlay =1 � er

G;nlay =2

er
G;nlay =1

� 100 = 1:0894 %

The e�ect of increasing the number of layers, for this class of problems, is therefore minimal.
This is due to the smoothness of the exact solution at relatively short distances away from
crack fronts as discussed in Section3.2. As a result, the use of larger local domains is not
required. Based on this, hereafter,local problems with only one layer are used.

Table IV. E�ect of size of local domains with the initial boun dary conditions obtained from Gp=(1 ;1;1)

on the error of global problem. The last column shows the relative change of global error er
G as the

number of layers is increased from nlay = 1 to nlay = 2 and from nlay = 2 to nlay = 3.

nlay N loc er
G (%) Relative reduction of error (%)

1 76110 3.7702
2 78060 3.7291 1.0894
3 80910 3.7260 0.0816

4.2. E�ectiveness of the Proposed Global-Local Approach

In this section, we investigate how a reduction of the error in the local problems a�ects the
error of a global problem enriched with local solutions. Therelation between global and local
convergence rates provides us a quantitative measure of thee�ectiveness of the proposed
GFEM with global-local enrichment functions.

Let I f ront denote the index set of the clouds! � associated with nodes on the crack front.
If the error on all other clouds in the domain is smaller than the error on the clouds ! � ,
� 2 I f ront , the estimate for


 u � u E

G




E (
 G ) given in (5) can be written as


 u � u E

G




E (
 G ) �

0

@
X

� 2I f ront

� 2(�; u ) +
X

� 62If ront

� 2(�; u )

1

A

1=2

� C

0

@
X

� 2I f ront

� 2(�; u )

1

A

1=2

(11)

whereC is a constant. Thus, if all nodes/clouds in the setI f ront are enriched with global-local
enrichment functions, the rate of convergence of the enriched global problem will be controlled
by the error of local approximations u h� ; � 2 I f ront , belonging to spaces� � (! � ); � 2 I f ront .
We can then expect that the solution of the global problem enriched with local solutions will
converge at least at the same rate as the local solutions.

Let us consider again the edge-cracked model problem illustrated in Figure 4. The global
domain is discretized with a uniform mesh of 6� (8 � 8 � 4) tetrahedral elements as before. In
the numerical experiments presented in Section4.2.1and 4.2.2, the enriched global solutionu E

G
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is computed on the global discretizationGp=(4 ;4;1) . Therefore, the bound provided by (11) and
the above observations hold foru E

G . In Sections 4.2.1 and 4.2.2 we compare the convergence
rates of the enriched global problem when the local problemsare solved with the h- and
p-versions of the generalized FEM, respectively. In all numerical experiments, a single local
problem is de�ned for the entire crack front and a single layer of elements is used to de�ne the
local domain, i.e., nlay = 1.

In the convergence analysis presented hereafter, the convergence rates in global and local
problems are measured with respect to CPU time, not number of DOFs.

4.2.1. Non-uniform h-extensions on the local problem The convergence of the
enriched global problem when non-uniformh-extensions are performed on the local problems
is investigated in this section. Local problemsL p=(4 ;4;1)

nref; nlay =1 with nref = f 0; 3; 7; 11; 15g are
solved using three di�erent Dirichlet boundary conditions on @
 loc n(@
 loc \ @
 G ): The exact
solution and the solutions of the global problemsGp=(1 ;1;1) and Gp=(4 ;4;1) . For convenience,
hereafter these boundary conditions are denoted as `exact', `poor' and `good'. The solutions
of these local problems are used as enrichment functions in the global problem Gp=(4 ;4;1) at
nodes located at the crack front.

The exact strain energy for the local problem is known when exact boundary conditions
are used. However, this is not the case when the boundary conditions are obtained from the
solution of the global problem. Hence, in this case, reference values for the exact strain energy
is computed using the procedure proposed by Szabo and Babu�ska [56]. In this procedure, the
exact strain energy is estimated using a sequence of �nite element solutions and a-priori error
estimates forh- or p-extensions. The accuracy of the estimated values greatly depends on the
accuracy of the approximate solutions. In our computations, the solutions of local problems on
discretizations L p=(4 ;4;1)

nref with nref = 13; 14; 15 are used to estimate the exact strain energy
for local problems with inexact boundary conditions.

Tables V, VI and VII show the convergence of global and local strain energy when `poor',
`good' and `exact' Dirichlet boundary conditions are used on the local problem, respectively. In
the tables,nref is the level of mesh re�nement along the crack front in the local problem, t loc (G)

and Uh
loc (G) represent the CPU time spent on the local (global) problem andthe computed

strain energy for the local (global) problem, respectively. The last column of the tables shows
the ratio between the convergence rate in the global and local problems. The rates are measured
with respect to CPU time. The exact strain energy for the local and global problems are given
in the last row of the tables. The data in the tables are plotted in Figure 6.

The results show that the global convergence rate is always larger than the local convergence
rates as predicted by the estimate (11). This behavior is the same for all three cases of boundary
conditions applied to the local problem. The ratio between convergence rates decreases with
the level of re�nement in the local problem but remains larger than one. This decreasing may
be due to errors in the global domain away from the crack front. The global problem is enriched
only at the crack front. Therefore, as the error around the crack front is reduced, the error
elsewhere becomes relevant and the hypothesis used to arrive at estimate (11) is no longer
valid.

Figure 6 shows that the error of the enriched global solution is only minimally a�ected
by using a perturbed boundary condition for the local problem instead of the exact boundary
condition. Even when local boundary conditions are obtained from a verypoor global solution,
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i.e. Gp=(1 ;1;1) , the convergence behavior is almost the same as in the case ofexact boundary
conditions. This demonstrates that the proposed global-local approach to build enrichment
functions is very robust.

Table V. Convergence of global and local strain energy. Non-uniform h-extensions on local problem
with Dirichlet boundary conditions from global problem Gp=(1 ;1;1) ('poor' boundary condition).

nref t loc tG Uh
loc Uh

G Ratio of conv. rates
0 1.73 65.05 3.820950E-07 3.471882E-06
3 9.00 72.27 3.724081E-07 3.489150E-06 12.51820
7 41.57 103.25 3.685188E-07 3.497065E-06 3.41673
11 197.18 186.59 3.655763E-07 3.503494E-06 1.89650
15 1022.05 401.93 3.643902E-07 3.506366E-06 1.28328
1 3.634960E-07 3.510735E-06

Table VI. Convergence of global and local strain energy. Non-uniform h-extensions on local problem
with Dirichlet boundary conditions from global problem Gp=(4 ;4;1) ('good' boundary condition).

nref t loc tG Uh
loc Uh

G Ratio of conv. rates
0 1.84 62.84 6.931477E-07 3.472407E-06
3 8.90 71.48 6.715684E-07 3.489767E-06 10.17051
7 41.48 102.80 6.627187E-07 3.497709E-06 3.50811
11 196.84 185.95 6.560560E-07 3.504112E-06 2.02149
15 1023.74 406.67 6.533571E-07 3.506970E-06 1.40798
1 6.513262E-07 3.510735E-06

Table VII. Convergence of global and local strain energy. Non-uniform h-extensions on local problem
with exact Dirichlet boundary condition.

nref t loc tG Uh
loc Uh

G Ratio of conv. rates
0 2.12 64.52 7.994423E-07 3.472613E-06
3 9.84 73.58 7.730479E-07 3.489859E-06 9.65177
7 44.75 104.21 7.623132E-07 3.497808E-06 3.63863
11 205.14 187.58 7.541891E-07 3.504222E-06 2.01493
15 1036.79 402.39 7.508966E-07 3.507084E-06 1.44377
1 7.484435E-07 3.510735E-06

4.2.2. P-extensions on the local problem This section discusses the convergence of the
global problem when uniformp-extensions are performed on the local problems. Local problems
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Figure 6. Convergence behavior of global and local problemsfor non-uniform h-extensions on the local
problem.

L p=( px ;py ;1)
nref =15 ; nlay =1 , 1 � px ; py � 4 are solved using the `exact', `poor' and `good' Dirichlet

boundary conditions described in the previous section. Theexact and reference values for the
strain energy are the same as in the previous section. The solutions of these local problems are
used as enrichment functions in the global problemGp=(4 ;4;1) at nodes located at the crack
front. Note that 15 levels of mesh re�nement are applied to the local problems in order to
isolate the singularity at the crack front. Tables VIII , IX and X and Figure 7 present the
results. Similar to the non-uniform h-extensions case, only a small di�erence is found between
global solutions enriched with local solutions computed with 'exact', 'good' or 'poor' boundary
conditions.

Table VIII. Convergence of global and local strain energy. P -extension on local problem with Dirichlet
boundary conditions from global problem Gp=(1 ;1;1) ('poor' boundary condition).

p-order. t loc tG Uh
loc Uh

G Ratio of conv. rates
1 2.15 293.07 3.912982E-07 3.481001E-06
2 32.09 320.41 3.687048E-07 3.500050E-06 18.52115
3 226.95 359.76 3.653164E-07 3.504406E-06 8.41271
4 1022.05 401.93 3.643902E-07 3.506366E-06 7.07854
1 3.634960E-07 3.510735E-06
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Table IX. Convergence of global and local strain energy. P -extension on local problem with Dirichlet
boundary conditions from global problem Gp=(4 ;4;1) ('good' boundary condition).

p-order. t loc tG Uh
loc Uh

G Ratio of conv. rates
1 2.36 292.65 7.299275E-07 3.481729E-06
2 32.40 320.35 6.613327E-07 3.500799E-06 15.05567
3 228.51 355.63 6.550298E-07 3.505020E-06 10.40229
4 1023.74 406.67 6.533571E-07 3.506970E-06 7.77007
1 6.513262E-07 3.510735E-06

Table X. Convergence of global and local strain energy. P -extension on local problem with exact
Dirichlet boundary condition.

p-order. t loc tG Uh
loc Uh

G Ratio of conv. rates
1 2.44 294.16 8.435237E-07 3.481771E-06
2 33.68 323.18 7.611729E-07 3.500909E-06 14.99954
3 234.94 356.55 7.531670E-07 3.505132E-06 11.20100
4 1036.79 402.39 7.508966E-07 3.507084E-06 8.02238
1 7.484435E-07 3.510735E-06
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Figure 7. Convergence behavior of global and local problemsfor p-extensions on the local problem.
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4.3. Cost Analysis of the GFEM with Global-Local Enrichment Functions

The GFEM with global-local enrichment functions can potentially be more e�cient than the
FEM or the standard GFEM (i.e., the GFEM without global-local enrichment functions). This
may be the case because the computational cost of solving a linear system grows faster than
linearly with respect to problem size. Therefore, it may be more computationally e�cient
to solve several smaller local problems instead of a single,large, global problem. Another
advantage of solving several local problems instead of a single large problem, is the reduced
memory requirements. The amount of memory required to solvea local problem is much smaller
than that required to solve a single large global problem andit can be released after computing
the local solution vector. Therefore, the GFEM with global-local enrichment functions also has
the potential of solving, on a given hardware, larger problems than, e.g., the FEM. Memory
usage is specially critical on 32-bit hardware. On the otherhand, the numerical integration of
global-local enrichment functions is more involved than inthe standard GFEM or in the FEM,
as discussed in SectionI.3. This may o�set the gains of the method during the factorizat ion
procedure of the sti�ness matrix.

Some of the computational issues discussed above are investigated in this section.
Speci�cally, we investigate the computational cost of the GFEM with global-local enrichment
functions when solving stationary cracks on a serial computer. In the analysis, we consider the
e�ect of the number of local problems on the performance of the method. A model problem
with one, three or �ve cracks is analyzed. We compare the computational cost of the GFEM
with global-local enrichment functions with the standard GFEM. In the latter, the accuracy
of the solution of controlled through mesh re�nements of the global mesh (like in the FEM),
while in the former the global mesh is �xedand the accuracy is controlled through global-local
enrichment functions only. In both methods, only polynomial enrichment functions and meshes
�tting the crack surface, as in the FEM, are used. In other words, a situation like that shown in
Figure 1, with a crack modeled with discontinuous and/or singular enrichment functions, is not
considered. The standard GFEM used here is therefore very similar to the FEM. Hereafter, we
denote the GFEM with global-local enrichment functions simply by GFEM g-l . The reported
CPU time for the GFEM g-l includes both local and global computations.

Model Problem A model problem with up to �ve cracks and illustrated in Figur e 8 is used
in the computations below. In the computations, only half of the domain (domain CDFG in
Figure 8) is discretized and symmetry boundary conditions applied along the vertical plane
of symmetry. The domain is discretized with a mesh of 6� (6 � 12 � 1) tetrahedral elements.
This mesh is used for the global computations in theGFEM g-l and as an initial mesh for the
standard GFEM. Examples of discretizations used in both approaches are shown in Figures10
and 11. The exact strain energy for this problem was estimated using the procedure described
in Section 4.2.1.

The following parameters are assumed for this model: Poisson's ratio � = 0 :33; Young's
modulus E = 200 000; In-plane dimensionsd = 36:0, a1 = 18:0, a2 = 12:0, a3 = 6 :0,
b1 = b2 = 6 :0; Domain thicknesst = 6 :0; Neumann boundary conditions

tx = 0 :0; ty = 20:0; tz = 0 :0 on the top side of the body

tx = 0 :0; ty = � 20:0; tz = 0 :0 on the bottom side of the body

A non-zero Poisson's ratio is used in this problem. Therefore, a triaxial stress state develops
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Figure 8. Multiple crack example. Possible crack locations are indicated as (1),(2) and (3).

near the crack fronts. This three-dimensional e�ect is morepronounced near the intersection of
a crack front and the boundary of the domain (at the crack front vertices). Figure 9 shows the
Euclidian norm of the solution near the crack front. Three-dimensional e�ects can be observed.
This behavior is accounted for by further re�ning the meshesaround the crack front vertices.
The levels of re�nement at the crack fronts and their vertices are listed on TablesXI and XII
for the case of the model with �ve cracks. They are indicated as \F" and \V", respectively, in
the tables.

Standard GFEM The discretization error in this case is controlled through non-uniform
mesh re�nements in the neighborhood of the crack fronts. Examples of discretizations used are
shown in Figure 10. Global discretizations with polynomial order p = (5 ; 5; 5) and increasing
levels of mesh re�nement around the crack fronts are used.

GFEM with global-local enrichments The procedure used in theGFEM g-l is illustrated
in Figure 11. The mesh re�nement in the local problems is non-uniform andgraded towards
the crack front. Figure 11(b) illustrates a local discretization.

The initial global solution, u 0
G , is computed on the global discretization Gp=(5 ;5;5) . This

solution provides Dirichlet boundary conditions for the local problems as described in Section
3.2. The local problems are solved on discretizationsL p=(5 ;5;5)

nref; nlay =1 . The local solutions are used
as enrichment functions for the global problemGp=(5 ;5;5) .
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Figure 9. Isosurface of the Euclidian norm of the solution ne ar the crack front. Three-dimensional
e�ects can be observed.

�s�i�n�g�l�e� �c�r�a�c�k� �3� �c�r�a�c�k�s� �5� �c�r�a�c�k�s� 

Figure 10. Analysis of the domain with multiple cracks by the standard GFEM (top view). Non-
uniform h-re�nement is performed on the elements near each crack front.
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�s�i�n�g�l�e� �c�r�a�c�k� �3� �c�r�a�c�k�s� �5� �c�r�a�c�k�s� 

(a) Construction of local discretizations. The shaded area repre sents
the local domain extracted from the coarse global mesh.

(b) Graded mesh used
in the discretization of
a local problem.

�s�i�n�g�l�e� �c�r�a�c�k� �3� �c�r�a�c�k�s� �5� �c�r�a�c�k�s� 

(c) Enrichment of global discretization with local solutions . Yellow squares on
the crack fronts represent the nodes enriched with the local solut ions.

Figure 11. Analysis of the domain with multiple cracks by the GFEM g-l (top view). Mesh re�nements
are applied to local problems only.
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In the numerical experiments presented in this section, themaximum level of h-re�nement
is limited by the maximum amount of memory a 32 bit machine canallocate. As a result, each
example shows a di�erent level of maximumh-re�nement. The GFEM g-l can reach a higher
level of mesh re�nement in the local problems than the standard GFEM can in the global
problem, as discussed before.

The results for the model with �ve cracks solved with GFEM g-l and standard GFEM are
presented in TablesXI and XII , respectively. The tables list the level of re�nement (nref ) at
crack fronts (F) and additional re�nement level performed at each crack vertex (V), the number
of degrees of freedom (N ), the relative error in the energy norm in the enriched global domain
(er

G ) and the CPU time spent on the assembly (tassem ), factorization ( t fact ) and backward and
forward substitution ( tsub ) of the sti�ness matrix in both local and global problems. Th ey also
report t tot , which measures the total CPU time spent in aGFEM g-l or in a standard GFEM
analysis. In the case of aGFEM g-l analysis, t tot includes the CPU time spent in the local
problems. The three essential components which comprise most of the computational cost of
the analysis, aretassem , t fact and tsub . The local tassem , t fact and tsub reported in Table XI ,
are the total CPU time spent in all �ve local problems while N local is for each local problem.

From the results reported in the tables, some unique features of the CPU time spend in a
GFEM g-l analysis can be identi�ed. As the number of degrees of freedom in a local problem
increases (as the local domain ish-re�ned), tassem , t fact and tsub of the local problems increase,
whereas onlytassem increases in the global problem. This is because the number of degrees of
freedom in the global problem does not depend on the size of the local problems. Comparing
the �rst and last rows of Table XI , we can observe that the error of the enriched global
solution was reduced to about one third of the initial error using the same number of degrees
of freedom in the global problem. The assembly time in the global problem, tassem , increases
since mesh re�nement in the local problems requires more integration points in the global
elements enriched with local solutions, as described in Section I.3. Note however, that tassem in
the global problem grows much slower than the totaltassem in the local problems. This attests
that the exact integration procedure described in SectionI.3 can be e�ciently implemented.

Table XI. CPU time spent on the model with �ve cracks shown in F igure 11 using the GFEM g-l .
In the local problem, N is the number of degrees of freedom used in each local problemwhile the
CPU times reported account for all �ve local problems. t tot measures the total CPU time spent in a

GFEM g-l analysis and er
G is the relative error in energy norm of the enriched global solution.

nref Local problems Global problem
(F/V) N t assem t fact tsub N t assem t fact tsub t tot er

G
(0/0) 1680 12.8 16.8 0.2 20580 47.4 49.8 3.2 130.2 0.09169
(1/1) 4620 63.7 97.0 0.9 20580 80.9 49.8 3.2 295.5 0.06255
(2/2) 8925 158.8 220.9 2.3 20580 143.7 50.2 3.2 579.1 0.05230
(3/3) 14490 285.2 566.0 4.0 20580 222.9 49.7 3.2 1130.9 0.04384
(4/4) 20580 458.0 2225.2 7.3 20580 330.3 49.7 3.2 3073.7 0.03882
(5/5) 32235 721.2 3890.8 11.6 20580 497.3 49.7 3.2 5173.7 0.03260
(6/5) 38325 923.5 7020.2 22.0 20580 617.3 49.6 3.2 8635.8 0.03101

The relative error in energy norm versus CPU time is plotted in Figure 12 for computations
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Table XII. CPU time spent on the model with �ve cracks shown in Figure 10 using standard GFEM.

nref
(F/V) N t assem t fact tsub t tot er

(0/0) 21000 50.0 56.8 3.4 110.2 0.10612
(1/1) 35700 105.4 176.3 6.8 288.5 0.07175
(2/2) 57225 200.1 389.4 12.6 602.1 0.05485
(3/2) 66675 256.8 694.8 17.5 969.1 0.05125

on domains with one, three and �ve cracks. The convergence plots are for the standard and
GFEM g-l when non-uniform h-extensions are performed at the global and local discretizations,
respectively. Several observations can be made based on this plot.

First, for any number of cracks in the domain, there is a rangeof discretization error and
CPU time over which the GFEM g-l is more computational e�cient than the standard GFEM.
The magnitude of this range increases with the number of cracks/local problems in the domain.
This indicates that the GFEM g-l can be quite more e�cient than the standard GFEM or the
FEM when analyzing problems with several cracks or other local features in the domain. It
also indicates that the e�ciency of the GFEM g-l compared to the standard GFEM can be
extended by increasing the number of local problems. For example, by creating more than one
local problem at each crack front.

Second, theGFEM g-l approach is less a�ected by hardware limitations than the standard
GFEM. The last point in each curve shown in Figure 12, represents the maximum level of non-
uniform h-re�nement which could be solved in a 32 bit machine. As a result, the GFEM g-l

can deliver more accurate solutions on a given hardware thanthe standard GFEM. In the �ve
crack model, the most accurate solution computed with the standard GFEM, has an error
that is about 65% larger than the most accurate solution theGFEM g-l was able to compute.

Third, we observe a reduction in the convergence rate with mesh re�nement in both the
standard and GFEM g-l . This decreasing is due to errors in the global domain away from the
crack fronts. In both methods, the meshes are re�ned only near the crack fronts. Therefore, as
the error around these regions is reduced, the error elsewhere in the domain becomes relevant.
The reduction in the convergence rate is less pronounced in case of the standard GFEM
since the mesh re�nement applied to the elements at the crackfront induces some additional
re�nement required to keep the mesh conforming. This propagation of mesh re�nement does
not happen in the GFEM g-l approach. This can be veri�ed by comparing the mesh re�nements
near the crack fronts in Figures10 and 11(b).

From the above, we can conclude that even on a serial computerand for stationary cracks,
the GFEM g-l can be a very e�ective tool to analyze a problem with many cracks or other local
features.

5. Summary and Concluding Remarks

In this paper, we analyze a two-level approach to build enrichment functions for partition
of unity methods and, in particular, for the generalized FEM. Three-dimensional fracture
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Figure 12. E�ect of number of local problems on the performan ce of the GFEM g-l . The number
enclosed by parentheses in the legend represents the numberof cracks in the global domain.

mechanics problems are used to illustrate the main ideas of the procedure. The approach is,
however, not limited to this particular application.

The main features of the generalized FEM with global-local enrichment functions are
summarized below.

� The procedure accounts for possible interactions of local (near crack for example) and
global (structural) behavior. This is in contrast with stan dard global-local FEM [37]
which is broadly used in many engineering applications of the FEM;

� Local features, like crack fronts, are several orders of magnitude smaller than the size
of the domain of interest (a complex structure, for example). The mesh density required
in the neighborhood of a crack front is several orders of magnitude larger than in parts
of the domain with smooth solutions. As a result, mesh re�nements at the crack front
usually propagate beyond the region of interest in order to create a conforming global
mesh. In the GFEM g-l , this problem does not exist since the re�nement is done onlyin
the local domains. Therefore, no matter how re�ned the localdomains are, no re�nement
is performed in the, usually large, global problem.
The ability to transition between discretizations with arb itrarily distinct mesh densities
is also important when dealing with multiscale problems.
Other approaches used to incorporate a very re�ned mesh intoa coarse one are, for
example, mortar elements and Lagrange Multipliers [11, 28, 42, 57]. Lagrange multiplier
methods [2] lead to a saddle point problem and the Babu�ska-Brezzi condition [ 12, 38]
must be satis�ed for stability;

� The computation at local problems can be parallelized without di�culty allowing the
solution of large problems very e�ciently. This feature of t he methodology is related to
the various domain decomposition techniques available in the literature [9, 11, 13, 46, 48];

� The size of the global problems solved with the proposed approach is almost independent
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of the resolution used to resolve the local features. This happens because the number
of degrees of freedom added to the global problem doesnot depend on the number of
degrees of freedom used in the local problems. It depends only on the number of global
nodes enriched with local solutions; This is in contrast with the s-version of the FEM
[27, 31, 43] in which shape functions from local meshes superposed on a global mesh are
used in the solution of the global problem;

� The computation of the solution of the enriched global problem, u E
G , can be done very

e�ciently once the coarse global problem has been solved (Cf. SectionI.2). This can lead
to substantial savings in computations when solving, for example, crack propagation or
time dependent problems;

� In this paper, local problems are solved with the GFEM. However, it is possible to utilize
other approaches and paste the local solutions using the partition of unity of the global
problem as presented here.

The main conclusions of this analysis presented in this paper are as follows:

� The integration of global-local enrichment functions can be done exactly using the meshes
of the local problems which are nested in the global mesh. Thenumerical experiments
presented in Section4.3 show that this procedure can be e�ciently implemented;

� Boundary conditions for local problems are obtained from the solution of an initial
(crude) global problem, u 0

G . In Section 4.1.1 we demonstrate that the e�ect of these
inexact boundary conditions on the accuracy of the enrichedglobal solution, u E

G , is not
signi�cant.

� The numerical experiments presented in Section4.1.2 show that the quality of the
enriched global solution, u E

G , is also not signi�cantly a�ected by the size of the local
domains. This allows us to use local domains with only one layer of elements around
crack fronts;

� The information transfer between local (�ne) and global (coarse) scales using the
partition of unity framework is very e�ective, as demonstra ted in Section 4.2. We show
that the global problem converges at least as fast as the local problems;

� A detailed cost analysis of the GFEM with global-local enrichment functions is presented
in Section 4.3. The numerical experiments show that even when analyzing stationary
cracks on a serial computer, the GFEM with global-local enrichment functions has the
potential to be more e�cient than the FEM or the standard GFEM.

APPENDIX

I. Computational Implementation

In this appendix, we present some details of the numerical implementation of the proposed
GFEM with global-local enrichment functions.

I.1. Construction of Local Discretizations

Discretizations for local problems de�ned in a neighborhood of a crack front are constructed
as follows. We restrict the de�nitions to the case of a globaldiscretization with crack fronts
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located along element boundaries, like the case shown in Figure 3(a). A situation like that
shown in Figure 1, in which the crack front is arbitrarily located in the mesh, can be dealt
with analogously. We also assume that a single local problemis de�ned for each crack in
the domain. Extensions to multiple, smaller, local problemsper crack are not di�cult. The
e�ectiveness of using more than one local problem per crack front and their parallel solution
is the subject of our future work.

Let I f ront denote the indices of all nodes from the global mesh located along crack front
� f ront . Local meshes are created using elements extracted from theglobal mesh around the
crack front. A local domain corresponding to a mesh with one layer of elements around the
crack front is given by


 nlay =1
loc :=

[

� 2I f ront

! �

where ! � is the union of (copy of) global elements sharing vertex nodex � ; � 2 I f ront . Note
that 
 nlay =1

loc contains the entire crack front. Local domains with additional layers of elements
around the crack front are de�ned analogously. The mesh corresponding to a local domain
with m layers of elements around the crack front is given by the union of (copy of) the mesh
with m � 1 layers and global elements sharing a vertex node in the meshwith m � 1 layers.
Figure 3(b) illustrates a local domain extracted from the global mesh shown in Figure 3(a).

Local Re�nement Around a Crack Front A local discretization with one level of mesh
re�nement ( L p

nref =1 ; nlay ) around a crack front is performed by �rst bisecting, in the i nitial
mesh, all elements with nodes on the crack front and then bisecting additional elements in order
to recover a conforming discretization. The marked-edge algorithm [1, 8] is used to select the
re�nement edges of the elements. This procedure is repeatedn � 1 times for a re�nement level
nref = n. The initial mesh extracted from the global mesh corresponds to nref = 0. Figure
3(c) shows an example of the application of this algorithm to the local mesh shown in Figure
3(b). This local mesh re�nement algorithm preserves the nestingof local elements into the
global mesh. This greatly facilitates the computational implementation and provides many
opportunities for optimization of the code.

I.2. Solution of Enriched Global Problem

In the last step of the proposed GFEM, the global problem is enriched with the solution of a
local problem using Equation (10). The solution of the local problem shown in Figure 3(d),
u loc , is used as an enrichment function for the global (coarse) problem shown in Figure3(a).
A large number of degrees of freedom may be used in the computation of u loc . However,
only three degrees of freedom are added to each global node inthe coarse mesh enriched with
u loc , when solving the elasticity equations in three dimensions. In addition, the degrees of
freedom associated with global-local enrichments are hierarchically added to the initial global
problem, i.e., all initial global shape functions remain unmodi�ed in the global problem. Several
approaches can take advantage of these properties of the enriched global problem and, as
demonstrated below, the computation cost of the enriched global global solution u E

G is small.
At least two approaches can be used to e�ciently compute u E

G :

(i) Iterative solvers designed for a sequence of linear systems[44];
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(ii) Re-use of the factorization of the global matrix associatedwith the initial (coarse) global
problem.

In this section, we illustrate the last approach for the case of a linear quasi-static
problem solved with a direct solver. The procedure involvesstandard matrix partitioning and
condensation of degrees of freedom [58]. Extensions to non-linear problems are also possible,
since in this case the problem can be solved as a sequence of linear problems.

Let
K 0

G u 0
G = F 0

G

and
K E

G u E
G = F E

G

denote the systems of equations associated with the initial(crude) and enriched global
discretizations, respectively1. Vectors u E

G and F E
G can be partitioned, using the hierarquical

property of the enrichment functions, as follows

u E
G = [ ~u 0

G u g-l
G ]T

F E
G = [ F 0

G F g-l
G ]T

where ~u 0
G are degrees of freedom associated with the initial (coarse)global discretization and

u g-l
G are degrees of freedom associated with global-local hierarchical enrichments. The enriched

global matrix can then be written as
�

K 0
G K 0;g-l

G

K g-l ;0
G K g-l

G

� �
~u 0

G

u g-l
G

�
=

�
F 0

G

F g-l
G

�
(12)

where K 0;g-l
G =

�
K g-l ;0

G

� T
.

From the �rst equation above we have

~u 0
G = ( K 0

G ) � 1
h
F 0

G � K 0;g-l
G u g-l

G

i
(13)

Substituting the above in the second equation of (12)

K g-l ;0
G (K 0

G ) � 1
h
F 0

G � K 0;g-l
G u g-l

G

i
+ K g-l

G u g-l
G = F g-l

G

h
K g-l

G � K g-l ;0
G (K 0

G ) � 1K 0;g-l
G

i
u g-l

G = F g-l
G � K g-l ;0

G (K 0
G ) � 1F 0

G

cK g-l
G u g-l

G = bF g-l
G (14)

where
cK g-l

G =
h
K g-l

G � K g-l ;0
G (K 0

G ) � 1K 0;g-l
G

i

and
bF g-l

G = F g-l
G � K g-l ;0

G (K 0
G ) � 1F 0

G

1We underline, e.g., the vector of degrees of freedom u 0
G to distinguish it from the three-dimensional

displacement vector u 0
G = N u 0

G , where N is a matrix of GFEM shape functions.
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The computation of cK g-l
G and bF g-l

G involves forward and backward substitutions using the
factorization of K 0

G , the sti�ness matrix of the initial (coarse) global discret ization. The system
of equations (14) is very small since it involves only the enriched global-local degrees of freedom.
The computation of ~u 0

G using (13) also involves forward and backward substitutions using
the factorization of K 0

G . Therefore, the computation of the solution of the enriched global
problem, u E

G , can be done very e�ciently once the coarse global problem has been solved.2

I.3. Numerical Integration of Global-Local GFEM Shape Func tions

In this section, we discuss how the proposed global-local enrichment functions can be integrated
accurately and e�ciently. The basic idea is to integrate on t he global mesh using the local
meshes. This is possible since these meshes are nested in theglobal mesh, as discussed above.
Figure 13 illustrates the numerical integration scheme. Figure 13(a) shows a re�ned local
problem where local solutions are available. These local solutions are used to enrich the
nodes on the crack front which are represented by the square in Figure 13(b). The numerical
integration of the global element enriched with the local solution is performed at the integration
points of the small elements which are nested in the global element and originated from the
local problem as shown in Figure13(b). We call these small elementslocal problem descendants.

This procedure requires mappings from master coordinates in a local problem descendant to
master coordinates in the global mesh. These coordinates are used in the computation of the
global partition of unity ' � in Equation ( 10). The mapping is implemented by �rst computing
the global physical coordinates,x , at an integration point in a local problem descendant,
followed by the mapping of x to the master coordinates of an element from the global mesh.
No search of global elements containingx is required thanks to the nesting of meshes as
described above. The mapping to master coordinates can be computed in closed form for
tetrahedral and triangular elements. The numerical experiments presented in Section4.3 show
that the overhead of these operations is small.

The integration order used on each local problem descendantnested in a global element is
taken as the maximum of (i) the integration order of the global element disregarding its global-
local enrichment functions and (ii) the integration order of the local problem descendant plus
one. The integration order from the local problem descendant is increased by one because the
local solution is multiplied by a global partition of unity w hich is a linear polynomial. The
above integration strategy provides exact integration of these GFEM shape functions.

Acknowledgments: The partial support of this work by the National Center for
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auspices of the NCSA/UIUC Faculty Fellows Program, and by theNational Science Foundation
under grant DMS-0611094 is gratefully acknowledged. The authors also wish to thank Prof.
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2The approach described above is not used in our current implement ation. The CPU time for the solution of
the enriched global problem reported in Section 4 includes the factorization of entire global matrix de�ned in
(12).
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(a) Hp-re�ned local prob-
lem.

�L�o�c�a�l� �p�r�o�b�l�e�m� 
�d�e�s�c�e�n�d�a�n�t

�I�n�t�e�g�r�a�t�i�o�n� 
�p�o�i�n�t

(b) Illustration of numerical integration scheme in the global elements
enriched with local solutions.

Figure 13. Numerical integration procedure in the proposed GFEM g-l .

REFERENCES

[1] D. N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes using
bisection. SIAM Journal of Scienti�c Computing , 22(2):431{448, 2000.

[2] I. Babu�ska. The �nite element method with lagrange mult ipliers. Numer. Math., 20:179{
192, 1973.

[3] I. Babu�ska and B. Andersson. The splitting method as a tool for multiple damage analysis.
SIAM journal on scienti�c computing , 26:1114{1145, 2005.

[4] I. Babu�ska, U. Banerjee, and J. E. Osborn. Survey of meshless and generalized �nite
element methods: A uni�ed approach. Acta Numerica, 12:1{125, May 2003.

[5] I. Babu�ska, G. Caloz, and J. E. Osborn. Special �nite element methods for a class of
second order elliptic problems with rough coe�cients. SIAM J. Numerical Analysis ,
31(4):745{981, 1994.

[6] I. Babu�ska and J. M. Melenk. The partition of unity �nite element method. Technical
Report BN-1185, Inst. for Phys. Sc. and Tech., University of Maryland, June 1995.

[7] I. Babu�ska and J. M. Melenk. The partition of unity �nite element method. International
Journal for Numerical Methods in Engineering, 40:727{758, 1997.

[8] E. Bansch. Local mesh re�nement in 2 and 3 dimensions.Impact of Computing in Science
and Engineering, 3:181{191, 1991.

[9] R. Becker and P. Hansbo. A �nite element method for domaindecomposition with non-
matching grids. Technical Report RR-3613, INRIA, 1999.

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]



30 of 33 C.A. DUARTE AND D.-J. KIM

[10] T. Belytschko and T. Black. Elastic crack growth in �nite elements with minimal
remeshing. International Journal for Numerical Methods in Engineerin g, 45:601{620,
1999.

[11] C. Bernadi, Y. Maday, and A. Patera. A new non-conforming approach to domain
decomposition: The mortar element method. In H. Brezis and J. L. Lions, editors,
Nonlinear partial di�erential equations and their applica tions, pages 13{51. Pitman, 1994.

[12] G. F. Carey and J. T. Oden. Texas Finite Element Series Volume II{A Second Course.
Prentice-Hall, New Jersey, 1983.

[13] E. G. D. Carmo and A. V. C. Duarte. A discontinuous �nite el ement-base domain
decomposition method. Computer Methods in Applied Mechanics and Engineering,
190:825{843, 2000.

[14] A.Th. Diamantoudis and G.N. Labeas. Stress intensity factors of semi-elliptical surface
cracks in pressure vessels by global-local �nite element methodology. Engineering Fracture
Mechanics, 72:1299{1312, 2005.

[15] J. Dolbow, N. Moes, and T. Belytschko. Discontinuous enrichment in �nite elements with
a partition of unity method. Finite Elements in Analysis and Design, 36:235{260, 2000.

[16] C.A. Duarte. The hp Cloud Method. PhD dissertation, The University of Texas at Austin,
December 1996. Austin, TX, USA.

[17] C.A. Duarte and I. Babu�ska. Mesh-independent directional p-enrichment using the
generalized �nite element method. International Journal for Numerical Methods in
Engineering, 55(12):1477{1492, 2002.

[18] C.A. Duarte and I. Babu�ska. A global-local approach for the construction of enrichment
functions for the generalized fem and its application to propagating three-dimensional
cracks. In V.M.A. Leit~ao, C.J.S. Alves, and C.A. Duarte, editors, ECCOMAS Thematic
Conference on Meshless Methods, Lisbon, Portugal, 11{14 July 2005. 8 pages.

[19] C.A. Duarte, I. Babu�ska, and J.T. Oden. Generalized �n ite element methods for three
dimensional structural mechanics problems. In S.N. Atluri and P.E. O'Donoghue, editors,
Modeling and Simulation Based Engineering, volume I, pages 53{58. Tech Science Press,
October 1998. Proceedings of the International Conference on Computational Engineering
Science, Atlanta, GA, October 5-9, 1998.

[20] C.A. Duarte, I. Babu�ska, and J.T. Oden. Generalized �n ite element methods for three
dimensional structural mechanics problems.Computers and Structures, 77:215{232, 2000.

[21] C.A. Duarte, O.N. Hamzeh, T.J. Liszka, and W.W. Tworzydlo. A generalized �nite
element method for the simulation of three-dimensional dynamic crack propagation.
Computer Methods in Applied Mechanics and Engineering, 190:2227{2262, 2001.

[22] C.A. Duarte, D.-J. Kim, and I. Babu�ska. Chapter: A glob al-local approach for the
construction of enrichment functions for the generalized fem and its application to three-
dimensional cracks. In V.M.A. Leit~ao, C.J.S. Alves, and C.A. Duarte, editors, Advances

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]



GLOBAL-LOCAL ENRICHMENT FUNCTIONS 31 of 33

in Meshfree Techniques, volume 5 of Computational Methods in Applied Sciences, The
Netherlands, 2007. Springer. ISBN 978-1-4020-6094-6.

[23] C.A. Duarte, L.G. Reno, and A. Simone. A high-order generalized FEM for through-the-
thickness branched cracks.International Journal for Numerical Methods in Engineerin g,
2007. In Press (http://dx.doi.org/10.1002/nme.2012).

[24] C.A.M. Duarte and J.T. Oden. Hp clouds{a meshless method to solve boundary-value
problems. Technical Report 95-05, TICAM, The University of Texas at Austin, May 1995.

[25] C.A.M. Duarte and J.T. Oden. An hp adaptive method using clouds.Computer Methods
in Applied Mechanics and Engineering, 139:237{262, 1996.

[26] C.A.M. Duarte and J.T. Oden. Hp clouds|an hp meshless method.Numerical Methods
for Partial Di�erential Equations , 12:673{705, 1996.

[27] J. Fish. The s-version of the �nite element method. Computers and Structures, 43:539{
547, 1992.

[28] B. Flemisch, M. A. Puso, and B. I. Wohlmuth. A new dual mort ar method for curved
interfaces: 2d elasticity. International Journal for Numerical Methods in Engineerin g,
63:813{832, 2005.

[29] P. Grisvard. Singularities in Boundary Value Problems. Research notes in Appl. Math.
Spring-Verlag, New York, 1992.

[30] T. Y. Hou and X.-H. Wu. A multiscale �nite element method for elliptic problems in
composite materials and porous media.Journal of Computational Physics, 134:169{189,
1997.

[31] S.-H. Lee, J.-H. Song, Y.-C. Yoon, G. Zi, and T. Belytschko. Combined extended and
superimposed �nite element method for cracks. International Journal for Numerical
Methods in Engineering, 59:1119{1136, 2004.

[32] J. M. Melenk and I. Babu�ska. The partition of unity �nit e element method: Basic theory
and applications. Computer Methods in Applied Mechanics and Engineering, 139:289{314,
1996.

[33] N. Moes, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to
handle complex microstructure geometries.Computer Methods in Applied Mechanics and
Engineering, 192:3163{3177, 2003.

[34] N. Moes, J. Dolbow, and T. Belytschko. A �nite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineerin g, 46:131{150,
1999.

[35] N. Mo•es, A. Gravouil, and T. Belytschko. Non-planar 3D crack growth by the extended
�nite element and level sets { Part I: Mechanical model. International Journal for
Numerical Methods in Engineering, 53:2549{2568, 2002.

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]



32 of 33 C.A. DUARTE AND D.-J. KIM

[36] S. A. Nazarov and B. A. Plamenevsky. Elliptic Problems in Domains with Piecewise
Smooth Boundaries, volume 13 of De Gruyter Expositions in Mathematics. Walter de
Gruyter, Berlin, 1994.

[37] A. K. Noor. Global-local methodologies and their applications to nonlinear analysis.
Finite Elements in Analysis and Design, 2:333{346, 1986.

[38] J. T. Oden and G. F. Carey. Texas Finite Element Series Volume IV{Mathematical
Aspects. Prentice-Hall, New Jersey, 1983.

[39] J.T. Oden and C.A. Duarte. Chapter: Clouds, Cracks and FEM's. In B.D. Reddy, editor,
Recent Developments in Computational and Applied Mechanics, pages 302{321, Barcelona,
Spain, 1997. International Center for Numerical Methods inEngineering, CIMNE.

[40] J.T. Oden, C.A. Duarte, and O.C. Zienkiewicz. A new cloud-based hp �nite element
method. Computer Methods in Applied Mechanics and Engineering, 153:117{126, 1998.

[41] J.T. Oden and C.A.M. Duarte. Chapter: Solution of singular problems usinghp clouds. In
J.R. Whiteman, editor, The Mathematics of Finite Elements and Applications{ Highlights
1996, pages 35{54, New York, NY, 1997. John Wiley & Sons.

[42] C. Park, K, C. A. Felippa, and G. Rebel. A simple algorithm for localized construction
of non-matching structural interfaces. International Journal for Numerical Methods in
Engineering, 53:2117{2142, 2002.

[43] J. W. Park, J. W. Hwang, and Y. H. Kim. E�cient �nite elemen t analysis using mesh
superposition technique. Finite Elements in Analysis and Design, 39:619{638, 2003.

[44] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S.Maiti. Recycling krylov
subspaces for sequences of linear systems. Technical Report UIUCDCS-R-2004-2421,
UILU-ENG-2004-1722, University of Illinois at Urbana-Champaign, Urbana, IL, March
2004.

[45] J.P. Pereira, X. Jiao, and C.A. Duarte. A robust geometry engine for modeling 3D crack
problems with the generalized �nite element method. In Seventh World Congress on
Computational Mechanics, Los Angeles, CA, USA, 16-22 July 2006. Invited abstract.

[46] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Di�erential
Equations. Oxford University Press, 1999. ISBN: 0198501781.

[47] A. Simone, C.A. Duarte, and E. van der Giessen. A generalized �nite element method for
polycrystals with discontinuous grain boundaries. International Journal for Numerical
Methods in Engineering, 67(8):1122{1145, 2006.

[48] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Di�erential Equations . Cambridge University Press, 2004. ISBN:
0521602866.

[49] T. Strouboulis, I. Babu�ska, and K. Copps. The design and analysis of the generalized
�nite element mehtod. Computer Methods in Applied Mechanics and Engineering, 81(1{
3):43{69, 2000.

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]



GLOBAL-LOCAL ENRICHMENT FUNCTIONS 33 of 33

[50] T. Strouboulis, K. Copps, and I. Babu�ska. The generalized �nite element method: An
example of its implementation and illustration of its performance. International Journal
for Numerical Methods in Engineering, 47(8):1401{1417, 2000.

[51] T. Strouboulis, K. Copps, and I. Babu�ska. The generalized �nite element method.
Computer Methods in Applied Mechanics and Engineering, 190:4081{4193, 2001.

[52] T. Strouboulis, L. Zhang, and I. Babu�ska. Generalized �nite element method using
mesh-based handbooks: Application to problems in domains with many voids. Computer
Methods in Applied Mechanics and Engineering, 192:3109{3161, 2003.

[53] T. Strouboulis, L. Zhang, and I. Babu�ska. p-version of the generalized FEM using mesh-
based handbooks with applications to multiscale problems. International Journal for
Numerical Methods in Engineering, 60:1639{1672, 2004.

[54] N. Sukumar, D. Chopp, N. Moes, and T. Belytschko. Modeling holes and inclusions by
level sets in the extended �nite element method.Computer Methods in Applied Mechanics
and Engineering, 190:6183{6200, 2001.

[55] N. Sukumar, N. Moes, B. Moran, and T. Belytschko. Extended �nite element method
for three-dimensional crack modelling. International Journal for Numerical Methods in
Engineering, 48(11):1549{1570, 2000.

[56] B. Szabo and I. Babu�ska. Finite Element Analysis. John Wiley and Sons, New York,
1991.

[57] B. I. Wohlmuth. A comparison of dual lagrange multiplier spaces for mortar �nite element
discretizations. Mathematical Modeling and Numerical Analysis, 36(6):995{1012, 2002.

[58] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, 4th Edition , volume I.
McGraw-Hill, 1981.

[global-local_GFEM_duarte_kim_R1 { August 18, 2007]


