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Abstract

A techniqgue to couple finite element discretizations with any partition of unity based
approximation is presented. Emphasis is given to the combination of finite element
and meshfree shape functions like those from the Ap cloud method. H and p type
approximations of any polynomial degree can be built. The procedure is essentially
the same in any dimension and can be used with any Lagrangian finite element dis-
cretization. Another contribution of this paper is a procedure to built generalized finite
element shape functions with any degree of regularity using the so-called R-functions.
The technique can also be used in any dimension and for any type of element. Numer-
ical experiments demonstrating the coupling technique and the use of the proposed
generalized finite element shape functions are presented.

Keywords: Meshfree methods; Generalized finite element method; Partition of unity method;
Hp-cloud method; Adaptivity; P-method; P-enrichment;

1 Introduction

One of the major difficulties encountered in the finite element analysis of tires, elastomeric bear-
ings, seals, gaskets, vibration isolators and a variety of other of products made of rubbery mate-
rials, is the excessive element distortion. Distortion of elements is inherent to Lagrangian formu-
lations used to analyze this class of problems. Rubber components often have geometric features
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that give rise to very steep or even singular gradients. Elements in the neighborhood of these
features inevitably become highly distorted, often to the point of material eversion (negative de-
terminant of deformation gradient). This event effectively terminates the solution process and
renders the model useless for further simulation. For finite element models with coarse elements,
it is often possible to achieve the desired degree of loading before element failure occurs. These
model, however, will not provide accurate solutions. When fine meshes are used this “element
collapse” can occur under very small applied loads. Too much is demanded of an element adja-
cent to, for example, a singular point. The analysis must then trade load level for accuracy, since
accurate solutions for the necessary load levels can not be obtained.

Meshfree methods such as the hp-cloud method [15, 16], the method of finite spheres
[9], reproducing kernel particle methods [26-28], the element-free Galerkin method [3-6, 22,
37], the finite point method [34-36], the generalized finite difference method [24, 25, 45, 46],
the diffuse element method [32], the modified local Petrov-Galerkin method [1], smooth particle
hydrodynamics [19, 43, 44], among others, offer an attractive alternative for the solution of many
classes of problems that are difficult or even not feasible to solve using the finite element method.
In particular, meshfree methods have shown to be very effective for the solution of problems
involving large deformations like those described above [7, 8]. Excellent overviews of meshfree
methods and their applications can be found in, for example, [3,27].

In meshfree methods, the approximation of field variables is constructed in terms of nodes
without the aid of a mesh. The actual implementation of some meshfree methods, however, re-
quires the partition of the domain through the use of a “background grid” for domain integration.
Nevertheless, due to the flexibility in constructing conforming shape functions to meet specific
needs for different applications, it has been reported [7, 8,12, 13, 15, 16, 30] that meshfree meth-
ods are particularly suitable for the simulation of crack propagation, hp-adaptivity, and modeling
of large deformation problems. The use of smooth shape functions appears to be particularly
effective in dealing with large deformation problems.

One of the main drawbacks of meshfree methods has been the fact that the computational
cost is too high in some applications due to the fact that one has to use a great number of integration
points in order to integrate the meshfree functions and their products over a computational domain.
One approach to ameliorate the computational cost is to use these methods only in parts of the
domain where they are strictly needed and use a finite element discretization elsewhere. Besides
reducing the overall computational cost, this approach has several other appealing features. It
facilitates, for example, the implementation of Dirichlet boundary conditions [22] and the coupling
with classical structural finite elements, like rods, shell, rigid bars, etc.

Several techniques to couple meshfree and finite element methods have been proposed.
Belytschko et al. [6] proposed a coupling technique in which some finite element nodes are re-
placed by meshfree nodes and a ramp function is used to build the transition between the finite
element and meshfree discretizations. Linear consistency is attained with this approach. A gener-
alization of this idea was proposed by Hegen [20] based on the use of Lagrange multipliers.

Huerta and Fernandez-Mendez [21] proposed a technique to couple finite element and



meshfree discretizations based on consistency or reproducibility conditions of the resulting shape
functions and moving least squares techniques. The support size of the meshfree functions and
their distribution must obey some rules in order to be admissible [21]. A related technique was
proposed by Liu et al. [29] with the goal of improving a finite element discretization with meshfree
shape functions.

Many of the meshfree shape functions like moving least squares and Shepard functions,
constitute a partition of unity. In other words, these functions add to the unity at any point in the
domain. Lagrangian finite element shape functions also possess this property. In this paper, we
present a technique to couple meshfree and finite element discretizations that explores the partition
of unity property of these functions. The procedure, while simple, is quite flexible and generic.
The only requirement on the finite element and meshfree shape functions is that the union of their
supports completely covers the computational domain. A and p type approximations can be built
in the finite element and meshfree parts of the domain. Exponential convergence of the resulting
coupled approximation is demonstrated though a numerical example.

Another approach to reduce the cost of numerical integration of meshfree shape functions
is to use a finite element mesh to build them and enforce that the support of all functions coincide
with the support of corresponding global Lagrangian shape functions defined on the same mesh. In
this case, the method is no longer strictly meshfree but some of the attractive features of meshfree
approximations, like high regularity of the approximation, can still be retained. Edwards [18]
has proposed such approach and have shown that it can be used in any dimension and for any
kind of finite element (triangular, quadrilateral, tetrahedral, hexahedral, etc) while rendering C'*°
finite element shape functions. Edwards’ approach however, has a serious practical limitation—
It requires that the support of the functions be convex. It is not possible, in general, to build
finite element meshes such that the support of the corresponding finite element shape functions be
convex. In this paper, we generalize Edwards’ approach to handle non-convex supports with the
aid of the so-called R-functions [38, 39].

In the following sections the formulation of the proposed coupling technique and the gen-
eralization of Edwards’ approach [18] to build finite element shape functions with arbitrary regu-
larity on non-convex supports is introduced. Illustrative numerical experiments are also presented.

2 Partition of Unity Shape Functions

In this section, the construction of partition of unity shape functions is briefly reviewed. Examples
of this kind of shape functions are hp-cloud [15,16] and generalized finite element shape functions
[11,12,41,42].

Let the functions ¢,, a = 1,..., N, denote a partition of unity (PoU) subordinate to the
open covering Ty = {w,}Y_, of a domain Q@ C R", n = 1,2,3. Here, w, is the support of the
partition of unity function ¢, and N the number of functions. We call w,, a cloud and associate
with each one of them a node, denoted by x,,.



From the above we have that
Yo € Cj(wa), s >0, 1<a<N

> palm) =1 Va e

Let xo(wa) = span{ L;q }icz(o) denote local spaces defined on w,, o = 1,..., N, where
I(a),oc = 1,..., N, are index sets and {L;, }ic7(o) @ basis for the space x,(w.). Functions L;,
are also denoted by enrichment or local approximation functions.

The partition of unity shape functions associated with a node x,, are then defined by

O = vaLia, 1 € I() (no sum on «) (1)

Different choices for the partition of unity functions are possible. Each one of then will
lead to a different class of shape functions. Some of the possible choices are discussed below.

2.1 Shepard Partition of Unity

Shepard’s formula [23,40] is a very simple approach to build partition of unity functions and it is
often used in meshfree methods [9, 15, 16]. Let W, : R" — IR denote a weighting function with
compact support w,, and that belongs to the space C§(w,), s > 0. Suppose that such weighting

function is built at every cloud w,, a = 1,..., N. Then, the partition of unity functions ¢,,
associated with the clouds w,, o = 1, ..., N, are defined by
Wa(x)
Vo) = =——————— B(x) € {v| W,(x) #0 a=1,...,N (2)
(z) S Wi @) () € {7 [ W, () # 0}

which are known as Shepard functions [23, 40].

The choice of the weighting functions W,, is quite arbitrary. If, for example, the clouds
are spheres with radius &, and centered at x,,, i.e.,

wo = {z €R": |0 — | jpu < o}
the weighting functions can be built through the following composition
Wa(®) := g(ra) 3)
where g : R — R is, e.g., a B-spline with compact support [—1, 1] and r,, is the functional

|z — maHan
ha

To 1=



Here, h,, is the radius of the support w,, of the radial weighting function W,,.

In this case, the Shepard partition of unity is said to be meshfree since they do not require
a finite element mesh for their definition. Note also that the regularity of the partition of unity
depends only on the regularity of the weighting functions. Therefore, Shepard partition of unity
functions with arbitrary regularity can easily be built.

2.2 Finite Element Partition of Unity

Lagrangian finite element shape functions constitute a partition of unity. In this case, the cloud
wq 1S simply the union of the finite elements sharing a vertex node x,, in the mesh. Each node is
associated with its own cloud comprised by the elements surrounding that node. Figure 1 show
examples of such clouds. The cloud of node 1 includes elements c,d,i,h and g and is a convex
cloud, cloud 2 comprises elements a, b, e, d and ¢ and is a non-convex cloud.

g?

Figure 1: Examples of finite element clouds.

The partition of unity function ¢, is equal to the usual global finite element shape function.
Finite element shape functions are inexpensive to compute and to numerically integrate since they
are (mapped) polynomial functions while Shepard functions are, in general, rational polynomials.
However, they are, for most practical matters, limited to C° regularity in two or higher dimensional
spaces.

2.3 A C* Finite Element Based PoU for Convex Clouds

A technique to build C'* partition of unity shape functions over convex finite element clouds was
proposed by Edwards [18]. The resulting shape functions can be seem as C'*° finite element shape
functions and used in any standard finite element implementation. One important practical limi-
tation of the technique, however, is that it is limited to convex finite element clouds. As discussed
in the previous section, a finite element cloud (the elements sharing a finite element vertex node)



can be non-convex. In this section, we review Edwards’ approach to built C'*° finite element based
PoU for convex clouds. In Section 2.4, we present an extension of Edwards’ approach that can
handle the case of non-convex finite element clouds while rendering partition of unity functions
with arbitrary smoothness.

2.3.1 C* Finite Element Based Weighting Function for Convex Clouds

In this section, a technique to build C'> weighting functions over convex finite element clouds
is discussed [18]. These weighting functions are said to be finite element based since they have
the same support (cloud) as the classical global finite element shape functions. Therefore, the
intersection of the support of these weighting functions coincide with the finite elements of the
mesh. As a consequence, the numerical integration of these functions and their products can be
efficiently done using the finite element mesh.

A C* finite element based weighting function with a convex support can be built from
the product of the so-called cloud boundary functions. Lets consider first the case of a cloud
associated with a node not at the boundary of the domain. This cloud is denoted by interior
cloud. One example is shown in Figure 2. The boundary of a cloud in two dimensions is the
polygonal built from the edges of the elements in the cloud that are not connected to its node. This
is indicated as side j, j = 1,...,7, in the example of Figure 2.

side 4

side 3
side 2

Figure 2: Setup for the construction of cloud boundary functions.

Associated with each side j at the boundary of a cloud, there is a parametric coordinate & ;
measured in the direction perpendicular to the edge and set to zero at the edge (Cf. Figure 2). A
function that vanishes smoothly as the edge is approached and that is greater than zero for points
in the cloud is called a cloud boundary function. It can be defined, for example, as

Eajlz(€))] = E0i(&)) ::{ e 0< 4)

0 , otherwise

where -y is a positive constant.



A cloud boundary function and all of its derivatives are zero on the corresponding edge
and on the “negative” side of the edge. Figure 3 illustrates a cloud boundary function.

777777777777777777

Figure 3: Example of a two-dimensional cloud boundary function.

The cloud boundary function defined above can be used to built a C'> weighting function
that is zero at the boundary of the cloud and greater than zero inside the cloud as follows

Mo,

Wa(x) == 1:[ Eaj(T) (5)

where M, is the number of cloud boundary functions for the cloud a.

Further consideration of the weighting functions defined above shows that it is applicable
only to convex clouds. If the extension of any edge intersects the cloud, i.e., if the cloud is non-
convex, the weighting function will also vanish in the interior of the cloud which is not desirable.
This issue is dealt with in Section 2.4.

For clouds with nodes located at the boundary of the domain, the procedure is basically
the same as above. The cloud is still the union of the elements sharing the node. However, the
node will not be completely surrounded by elements. Consider, for example, cloud « in Figure 4.
The weighting function for cloud « is given by

W) = 1:[1 Eaj()

Therefore, we use cloud boundary functions only for the edges inside of the domain.

Having the finite element based weighting functions, we can now use Shepard’s formula
(2) to build a partition of unity subordinate to the finite element clouds. The resulting partition
of unity functions have the same regularity as the weighing functions. In addition, the numerical
integration of these functions and their products can be efficiently done using the underlying finite
element mesh since their support coincide with the finite elements. This partition of unity can
then be used to build shape functions of any polynomial degree using the technique described in
Section 2. The resulting shape functions are also C'* functions if the enrichment functions, L;,,
have this property. The high regularity of these shape functions can be advantageous to solve, for
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Figure 4: Example of a two-dimensional cloud associated with a node at the boundary of the
domain.

example, plate and shell problems that require C'! continuity of the shape functions. Least square
finite element methods can also benefit from the high regularity of these functions.

2.4 C”* Finite Element Based PoU for Non-Convex Clouds

Consider the finite element cloud « depicted in Figure 5 and comprising four elements. The re-
entrant corner at the intersection of sides 5 and 6 makes the cloud non-convex and the procedure
outlined in the previous section can not be used because the cloud boundary functions &, 5(x) and
E..6(x) vanish at points inside the cloud. Consequently, the weighting function W, () for cloud
a will also be zero in the interior of the cloud if they are built using (5). We seek a modification
to the approach of Section 2.3.1 that can handle non-convex finite element clouds.

side 2

side 1

[ € g5 Vanishes along this lin

Figure 5: Non-convex finite element cloud.

The proposed procedure is similar to the original one—a cloud boundary function &, ;(x)
is constructed for each side of a finite element cloud and the weighting function W, (x) is again
defined as the product of these functions.

Consider again the example of Figure 5. Cloud boundary functions &, ;(x), j = 1,...,4,
are built using (4). Next, we combine functions &, 5(x) and &, ¢(x) associated with a re-entrant



corner into a single cloud boundary function using the notion of R-functions [38, 39]. An R-
function is a real-valued function whose sign is completely determined by the signs of its argu-
ments. As an example, the R-function f(x,y,z) = xyz can be negative only if the number of
its negative arguments is odd. Such functions “encode” Boolean logic functions and are called
R-functions.

Consider now the R-function (f; V& f») with two arguments, f; and f, defined by

(Vi s = (f+fat R+ B) (54 52)° ©)

where £ is a positive integer. This function is analytic everywhere except at the origin (f; = fo =
0), where it is at least k times differentiable, i.e., it belongs to C*(Q2) [39].

It f{ > 0and f, > 0 define two regions in R then

[ (fl \/g fg) annd,
o (fiVEf2)>0if fy >00r f, > 0.

Note that R-functions can be defined in any dimension and the arguments, f; and f,, can also
define regions with curved boundaries.

Suppose now that sides m and n are identified as non-convex sides for a finite element
cloud « (e.g., sides 5 and 6 for the cloud of Figure 5). A new cloud boundary function combining
Eam and &, ,, is then defined as

gg,cmn(m) = gam(m) \/lg ga,n(w> (7)
where the parameter % is chosen according to the degree of smoothness desired. This cloud
boundary function and all other boundary functions for the cloud « are then used to build the
node weighting function W, (x) using (5). The procedure to build cloud boundary functions like,
&re .(x), must be used for all re-entrant corners of a finite element cloud.

a,mn

Shepard’s formula (2) is again used build a partition of unity using the weighting functions
defined above and generalized finite element shape functions are built using (1). The resulting
shape functions are at least k-times continuously differentiable. In fact, they are C'>° functions
except at the re-entrant corners of the clouds where they are C'*, with k arbitrarily large.

3 Construction of a Meshfree-Finite Element Partition of Unity

A technique to combine finite element approximations with any other partition of unity based
approximation is presented in this section. Emphasis is given to the combination of finite element
and meshfree shape functions. The basic idea is to treat finite element shape functions of any kind
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as a weighting function and use Shepard’s formula (2) to build a partition of unity. We call the
resulting PoU a meshfree-finite element partition of unity. Details of the formulation are presented
next.

3.1 Finite Element and Meshfree Weighting Functions

Let Q2 be an open domain in R", n = 1,2, 3, covered by a finite element mesh consisting of
any type of linear Lagrangian element. Let x denote a finite element vertex node in the mesh.
Associated with each node x,, there is a linear finite element shape function N, (x) : R" — R
with support w, = {x € Q : N,(x) # 0}. We also refer to the function N, as a finite element
weighting function.

Suppose that some of the finite element nodes and associated shape functions are removed
from the discretization. Let Z,. denote the index set of all remaining finite element nodes and A/ .
the dimension of this set, i.e., M. = card{Z;.}. In addition, suppose that },,; meshfree nodes
Yg, 3 = 1,..., My, are arbitrarily added to (2. Let Z,,; denote the index set of all meshfree
nodes. Associated with each meshfree node y 4 there is a so-called meshfree weighting function
We(x) : R" — R with support wg = {& € Q : Ws(x) # 0}. These weighting functions are
said to be meshfree if they do not require a mesh for their definition. An example is the radial
weighting functions given in Section 2.1.

Hypothesis 1 The supports {wg}gez,
ing functions are such that

. and {wa }aez,,, Of the meshfree and finite element weight-

Tonp.ge = {{ws}pez,,; U {wataez,. |
constitutes an open covering for €. i.e.,

Q C Tmf,fe

Remark 1 The deletion of finite element nodes and addition of meshfree nodes is completely
arbitrary. It is valid, for example, not to delete any finite element node. Also, the number and/or
location of added meshfree nodes do not have to coincide with the number and/or location of
deleted finite element nodes. Figure 6 shows one example of a meshfree and finite element nodal
distribution in a two-dimensional domain. Typically, meshfree weighting functions are used when
a finite element discretization is not appropriate or robust.
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Figure 6: Meshfree and finite element nodes in a domain €.
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3.2 A Meshfree-Finite Element Partition of Unity

For each finite element node =, o € 7., and each meshfree node y,, o € Z,,;, we define a
partition of unity function ¢, using Shepard’s formula (2)

Na () .
(z) = 2pets @ VoY er () Wo () ifa €Iy ©
Pa : Wa () ifo e T,

Zﬁel’fe(w) N[i(w)‘*'z.yesz(m) W“/(m)

where
Ife(a:) = {ﬁ - Ife : Nﬁ(m) 7& O}

Zng(x) ={B € Ly : Wa(x) # 0}

LetZ, ;e = Zse UL, denote the index set of all nodes in the domain 2. Then, it is straightfor-
ward to show that the set

{(pa}ael-mf,fe
constitutes a partition of unity subordinate to the open covering 7,,.y, f, i.e.,

Y pal®)=1 VaxeQ

CVGImf’fe

The denominator in (8) is equal to the sum of weighting functions (meshfree and finite
element) that are non zero at «. It scales the numerator such that the resulting functions, ¢,
constitutes a partition of unity. Consider now elements 7 or 7, indicated in Figure 6. Suppose
that all meshfree weighting functions are zero inside those elements. Then, there is no need to use
(8) to build the partition of unity since the finite element shape functions of the elements already
constitutes a partition of unity. Therefore, elements like 7, or =, are standard Lagrangian finite
elements. Equation (8) is also not needed if the meshfree weighting functions already constitutes
a partition of unity and no finite element shape functions are used in this part of the domain.
Examples of meshfree functions that form a partition of unity are the moving least square functions
[23] which are used in several meshfree methods.

The procedure above makes the transition between a finite element PoU and any other
type of PoU quite natural and transparent. It can be used in any dimension and for any type of
Lagrangian finite element shape functions.

Figure 7 shows an example of meshfree and finite element weighting functions in a one-
dimensional domain. The finite element weights are just the standard linear hat functions and the
meshfree weights were built from cubic B-splines using the composition defined in (3). Figure 8
shows the resulting partition of unity functions built using the weighting functions of Figure 7 and
Equation (8).
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Figure 7: Meshfree and finite element weighting functions in a one-dimensional domain.
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1D Meshfree-FE Partition of Unity
12 ) ) ) )

'FENode ®
I\/Ieshfree Node o

PoU

Figure 8: Meshfree-finite element partition of unity built using the weighting functions of Figure
7 and Equation (8).
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4 Hp-Cloud-Generalized Finite Element Shape Functions

The meshfree-finite element partition of unity defined in the previous section can be used to build
partition of unity shape functions as described in Section 2. The construction of the shape func-
tions follows the same procedure used in partition of unity methods like the hp cloud [14-17, 33]
or generalized finite methods [2,10,12,13,31]. The only difference is in the definition of the par-
tition of unity. Here, we use the meshfree-finite element partition of unity defined in the previous
section.

Let xo(wa) = Span{Liq }icz(a) denote local spaces defined on w,, a € I,y s, Where
I(o), o € Ly se, are index sets and L;, denotes local approximation or enrichment functions
defined over the cloud w,,.

The hp-cloud-generalized finite element shape functions associated with a vertex node x,,
are defined by
05 = paLia, 1 € Z(a) (no sum on «) 9)

where ¢, is the partition of unity function defined in (8).

The approximation properties of the functions defined in (9) follows directly from the
theory of partition of unity methods presented in [16,17, 30, 31].

The resulting shape functions built using (9) are like those in the hp-cloud method over
parts of the domain covered with meshfree weighting functions and like generalized finite element
shape functions in regions covered only by finite element shape functions. The transition between
the meshfree and finite element approximations is handled quite naturally using the partition of
unity defined in (8). The procedure is essentially the same in any dimension, only the construction
of the weighting functions change.

5 Numerical Experiments

5.1 P convergence using a meshfree-finite element PoU

As a first experiment, we compute L? projections of the function « = sin(47x) on spaces spanned
by meshfree-finite element shape functions defined by (9). The meshfree-finite element partition
of unity is shown on Figure 8 and the enrichment functions, L;., are monomials of degree less or
equal to p for all nodes «,, a = 1,...,11. The polynomial degree is uniformly increased from
p = 0to p = 6. Figure 9 shows the error measured in the L? norm of the computed projections
versus the number of degrees of freedom, N. It can be observed that the rate of convergence
increases with p. This behavior is typical of spectral methods and indicates that the Ap-cloud-GFE
shape functions defined in Section 4 are able to deliver exponential convergence.
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P-Convergence on a Meshfree-FE PoU
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Figure 9: P-convergence of hp-cloud-generalized finite element approximation of function
sin(4mx). The partition of unity shown in Figure 8 was used to build the shape functions.
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5.2 Two-Dimensional Bracket

The bracket model illustrated in Figure 10 is analyzed in this section. It is fixed at the left end and
pressure is applied as indicated. The material properties are also indicated in Figure 10.

Built-in Bracket
E=1.0v=025

-
|-
bl
I —
»
Pl
|-

2
[+ p=10.0
|-
bl
-
-
bl
<
I —
»
-
-

Figure 10: Bracket model with distributed pressure.

This problem was solved using the classical finite element method with the mesh shown
on Figure 11. The mesh has 72 nine node Lagrangian quadratic elements. The computed von
Mises stress distribution is also shown in Figure 11.

The problem of Figure 10 was also solved using the hp-cloud-GFE shape functions de-
fined in Section 4. The meshfree weighting functions are the C'> or C* finite element weighting
functions described in Sections 2.3 and 2.4, respectively. It can be observed in Figure 12 that
some of the clouds are non-convex. Therefore, the technique presented in Section 2.4 is required
to built the weighting functions. The finite element weighting functions are provided by standard
bilinear finite element shape functions. Since the domain has curved boundaries, the meshfree and
the linear finite element weighting functions are mapped to the physical domain using quadratic
shape functions. In particular, the nine node Lagrangian quadratic shape functions are used.

Figure 12 illustrates the location of linear and C*° or C* finite element weighting func-
tions. All the nodes of elements 37,41, 45,49, 53,57, 61, 65, 69 have linear finite element weight-
ing functions. The use of standard finite element weighting functions along the left end of the
bracket facilitates the imposition of the Dirichlet boundary condition prescribed there. Elements
33,34, 38,42, 46, 50, 54, 58, 62, 66, 70 have some linear and some C'* or C* finite element weight-
ing functions. All other elements have only C'> or C* finite element weighting functions.

The meshfree and the finite element weighting functions are then used to build a meshfree-
finite element partition of unity as described in Section 3. Next, Ap-cloud-GFE shape functions
are built by multiplying this partition of unity by monomials of degree less or equal to two. The
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Won Mises
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Figure 11: Mesh and von Mises stress distribution for the FE model.
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Figure 12: All the nodes of elements 37,41, 45,49, 53,57,61, 65,69 have linear finite element
weighting functions.
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hp-cloud-GFE shape functions, ¢, for a vertex node x,, are given by

T—Ta Y= Ya (x—xa) <y—ya> (x—xa>2 (y—ya>2
LPOC >< 17 Y ) ) )
he he he ha, he he
as described in Section 4. The monomials in the expression above correspond to the enrichment

functions L;, that appear in (9), ¢, is the partition of unity function for node =, = (z,, y.) and
he 1s a scaling factors taken as the diameter of the largest finite element sharing node x,.

Figure 13 shows the von Mises stress distribution computed with the Ap-cloud-GFE dis-
cretization. The scale used is the same as for Figure 11. The stress distribution is almost identical
to that provided by the finite element model. No perturbation in the results is observed along the
interface between the regions that use meshfree and finite element weighting functions.

Yon Mises

840129

7843

728471
— 672642
— 616.813
—1 560.985
1 505.156

PU-FE Model

o T Stresses | 393498

337.669
281.84

226.011
170182
114.353
58.5244

|

NN

Figure 13: Distribution of von Mises stress computed with the hp-cloud-GFE discretization.

6 Conclusions

A technique for combining finite element discretizations with any meshfree shape function that
constitute a partition of unity is presented. Examples of meshfree shape functions with this prop-
erty are Shepard and moving least squares functions which are used in several popular meshfree
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methods. This coupling technique allows the use of meshfree approximations only in parts of the
domain where they are strictly needed and finite element discretizations elsewhere. The coupled
discretization enjoys the robustness and flexibility of meshfree methods and, to some extent, the
computational efficiency of the finite element method. In addition, the proposed approach can
be used to facilitate the implementation of Dirichlet boundary conditions and the modeling of
complex structures through the use classical elements like rods, shells, rigid bars, etc.

The approximation properties of the combined shape functions are similar to any other par-
tition of unity method like the Ap cloud or the generalized finite element method. The procedure
is essentially the same in any dimension and can be used with any Lagrangian finite element dis-
cretization. A numerical example demonstrating exponential convergence of the proposed shape
functions is presented.

Another technique to ameliorate the computation cost of meshfree approximations while
retaining some of their attractive features is presented. In this approach, a finite element mesh is
used to build meshfree shape functions with supports corresponding to global Lagrangian finite
element shape functions defined on the same mesh. As a consequence, the numerical integration
of these functions and their products can be efficiently done using the finite element mesh.

The resulting shape functions can also be seem as generalized finite element shape func-
tions with arbitrary degree of regularity. The procedure to build these C'* GFE shape functions is
an extension to the one proposed by Edwards [18] and it uses the so-called R-functions. It allows
the construction of shape functions with non-convex supports in any spatial dimension and with
any degree of regularity.

The proposed C* GFE shape functions can also be combined with classical finite element
shape functions using the proposed coupling technique. A numerical example demonstrating the
performance of the proposed C* GFE shape functions and their coupling with classical finite
elements is presented.
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