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Abstract

This paper presents a study of generalized enrichmentifunsctor three-dimensional curved crack
fronts. Two coordinate systems used in the definition ofdisngcurved crack front enrichment functions
are analyzed. In the first one, a set of Cartesian coordigateras defined along the crack front is used.
In the second case, the geometry of the crack front is appiabteid by a set of curvilinear coordinate
systems. A description of the computation of derivativegmfichment functions and curvilinear base
vectors is presented. The coordinate systems are aut@thatiefined using geometrical information
provided by an explicit representation of the crack surfaceetailed procedure to accurately evaluate
the surface normal, conormal and tangent vectors alonglioagar crack fronts in explicit crack surface
representations is also presented. An accurate and robfiisition of orthonormal vectors along crack
fronts is crucial for the proper definition of enrichment étions. Numerical experiments illustrate the
accuracy and robustness of the proposed approaches.

Keywords: Partition of unity methods; Generalized/Extended finimetnt method; Three-dimensional
fracture mechanics; Crack front enrichments.

1 Introduction

Three-dimensional computational fracture mechanics Isitions are of great importance in industry. Life
prediction of engine components, structural members ofairfuselage, and pipeline joints are examples
of industrial problems in which 3D computational fractureeshanics analysis is broadly applied. The
standard finite element method (FEM) has been used for delamades in the assessment of such industrial
problems. The application of the FEM to this class of prolddates several issues regarding changes
in mesh topology and excessive computational cost. ThdBeutties are usually due to remeshing and
the need for highly refined meshes in the crack surface redgdrch modifications in the mesh are often
required because of crack surface fitting and accuracy osahgion. Partition of unity methods, such as
the generalized finite element method (GFEM) 4, 16, 23, 33], are promising candidates to overcome
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these difficulties. However, in three-dimensional fraetanalysis with partition of unity-based methods,
the accurate representation of curvilinear crack fronssillsa challenging task.

Partition of unity methods have been successfully apptiddacture mechanics problems. The main idea
of modeling fracture mechanics problems with these metleidsrepresent discontinuities and singularities
of the solution through custom-built shape functions. Tisea@htinuity far from crack tip/front can be easily
represented by step functionsd] 20, 35] or high-order step functions] 28], depending on the polynomial
order used in the approximation of the continuous part oftilation. In order to represent the singularity
of the solution in linear elastic fracture mechanics protdeenrichment functions based on the analytical
solution of the elasticity around the crack front are usualbplied P, 4, 5, 20, 22, 24, 28, 35. The
application of partition of unity methods to cohesive fraetmodels and corresponding enrichments can be
found in, for example,17, 18, 31, 32, 40, 41, 47].

In the mid 1990’s, many researchers applied the partitiamitfy concept and the asymptotic expansion
near the crack tip to represent discontinuities and simiigla in two-dimensional crack problems. The
idea of including the near crack tip asymptotic expansiopartition of unity approximation was firstly
introduced by Duarte and Oden in,[22, 24]. They used the partition of unity concept in the-cloud
method to represent the singularity and discontinuity @f sblution in the approximation. Asymptotic
expansions were introduced in the element-free Galerkithaaeby Fleming et al. §]. Two approaches
were utilized to enrich the element-free Galerkin appration with the first terms of the near tip expansion.
The first approach adds the first terms of the near-tip asyimpgpansion of the displacement field to the
trial functions. The second approach expands the lineds hzed in the moving least squares method
[13, 14] by including the term,/r multiplied by trigonometric functions. By using the padit of unity
concept, Belytschko and BlacK][applied the second enrichment approach introduced]inn[ a finite
element framework. The approach introduced by BelytschkbBlack [2] was improved by Més et al.
[19]. They applied Heaviside functions to those nodes with supptersecting the crack surface but not
the crack tip, and the asymptotic expansion for those nodbsswpport intersecting the crack tip.

Duarte et al. {] extended the enrichment approach used7in?, 24] for a three-dimensional finite
element framework. The asymptotic expansion was utilipechddel straight reentrant corners using the
partition of unity concept. Inq], Duarte et al. applied the same enrichment approach toramnpicrack
fronts in three-dimensional dynamic crack propagatiorkusnar et al. 5] and Mags et al. 0] extended
the approach presented ii] for three-dimensional crack modeling of planar and ncampl crack surfaces
with curved crack fronts, respectively.

To our best knowledge, the references available in thealitiee regarding three-dimensional analysis
of crack problems using partition of unity-based methods gery little attention to the description and
construction of enrichment functions for curved fronts. rigfaver, in all existing approaches, the effects of
crack front curvatures in the asymptotic expansion are onsiclered in the enrichment functions.

The aim of this paper is to analyze two approaches for daagrdnd enriching three-dimensional curved
crack fronts. The first approach is based on a piecewiserlohescription of the crack front. The second
one uses a piecewise quadratic description while takimgdohsideration the derivatives of the base vectors
in the computation of the gradient of the asymptotic expgamsiAnother contribution of this paper is a
detailed procedure to evaluate surface normal, conornthltaamgent vectors along a curved crack front.
These vectors are utilized in the definition of base vectdrighy in turn, define the crack front enrichment
functions. An accurate and robust definition of these craghtfvectors is crucial for the proper definition
of crack front enrichment functions.

The outline of this paper is as follows. In the following Sentwe briefly review the construction of
GFEM shape functions and present the enrichment functised with the proposed piecewise linear and
qguadratic crack front geometrical approximations. SecB8gresents a procedure to accurately evaluate



the normal, conormal and tangent vectors along the crack inoan explicit crack surface representation.

The crack front description using linear and quadratic apipnations and the transformation maps for their

respective enrichment functions are discussed in Sedtidhe numerical experiments presented in Section
5 illustrate the robustness and accuracy of the proposed-ttireensional enrichment techniques. Finally,

Section6 outlines the conclusions and highlights the main contrdns of the present study.

2 Generalized FE shape functions

The generalized FEM1] 4, 16, 23, 33] can be regarded as a FEM with shape functions built using the
concept of a partition of unity. In this section, we focus ba tonstruction of GFEM shape functions used
in the neighborhood of a three-dimensional crack frontailebn the GFEM can be found in many papers
available in the literature. Here, we follow the formulatiand notation introduced i §].

In the GFEM, a shape functiap; is built from the product of a linear finite element shape fiorg ¢4,
and an enrichment functiohgi,

G (X) = P (X)Lgi(X) (no summation om ) (1)

wherea is the index of a nod&, in the finite element mesh. The GFEM shape functggnis defined on

wy = {X € Q: dq(X) # 0}, the support of the partition of unity functigh,. In the case of a finite element
partition of unity, the suppord, (often called cloud) is given by the union of the finite eletsesharing

a vertex nodex, [4]. The selection of enrichment functions depends on thel loelavior of the solution

u of the problem of interest over the clougl,. In the case of linear elastic fracture mechanics problems,
the enrichment functions used at clousg that intersect the crack front are taken from the asymptotic
expansion of the elasticity solution near a crack frant] 22, 24, 24].

Let &1, & and &3 denote directions in a curvilinear coordinate system ddfadeng the crack front as
illustrated in Figurel. Directionsé,, & andés are in the forward direction of the crack front, perpendacul
to the crack surface and tangent to the crack front, resgdgtiA curvilinear cylindrical coordinate system
with coordinates, 8 andés is also illustrated in Figuré.
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Figure 1: Curvilinear orthogonal coordinate system defialeag a curved crack front. This coordinate
system is used in the computation of enrichment functiofiselin ).
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The enrichment functions used to approximate displacefirglds in the&;, & and &3 directions are



given by [4, 5, 22, 24, 2€]

La(r6) = VF (k- %)cosg - %cos?
CAr6) = F |(ct H)sing — Jsiny
Lea(r6) = rsing "
Lo(r,0) = VF :(KJrg)Sinng%sin?:
Lep(r0) = VF -(K - g) Cosg + % cos%

L3(r,0) = \ﬁsin?

where the material constakit=3—4v andv is Poisson’s ratio. This assumes plane strain conditiohiw

is in general a good approximation far from crack front entlse above enrichment functions correspond
to the first term of the modesandll, and to the first and second terms of the mbdecomponents of
the asymptotic expansion of elasticity solution aroundraigiht crack front, far from the vertices and for
a traction-free flat crack surfacéd]. It should be noted, as indicated by the superscripts, difsgrent
enrichment functions are used i®) for each component of the displacement vector. This leadstotal

of six additional degrees of freedom at a nadenriched with these functions. In contrast, the enrichment
functions used in, e.g..3[ 20, 34, 35, lead, in 3D, to twelve degrees of freedom per node since fou
enrichment functions are used for each component of théadisment vector. In the approach proposed in
(2), only two enrichments are used to enrich each componehieadisplacement vector. The performance
of these two choices of enrichment functions is analyze@'’h [

The enrichment function®) are defined in a coordinate system located along the crack &s illus-
trated in Figurel. Thus, they must be transformed to the global Cartesiandawate systentX;, Xo, X3)
prior to their use in the definition of GFEM shape functiongih Details are presented in Sectiohd.1
and4.2.2

In our computations, the crack surface is represented byriéfaigles with straight edge&§] as illus-
trated in Figure® and6. Thus, curved crack fronts are approximated by straigbtdegments. The fidelity
of this approximation can be controlled by simply using arfinengulation of the crack surface. This pro-
cess idndependentf the GFEM mesh and does not change the problem sije This paper focus on the
construction of crack front coordinate systems and comeding enrichment functions using geometrical
information provided by this crack surface representatiorshould be noted that the coordinate systems
proposed here can be used to define enrichment functiongVerad classes of problems. In particular, it
can be applied to the case of cohesive cracks, and otherimear-fracture mechanics problems. The only
modification required is to replac@)(by appropriate enrichment functions.

3 Crack front base vectors

This section presents computational procedures to daterorthonormal base vectors at vertices along a
crack front. These crack front vectors are the surface nlovewor, curve tangent vector and conormal
vector computed at each vertex of the front using the gedratttescription of the crack surface. These
vectors define a local Cartesian coordinate system at eack @mont vertex. Moreover, they are utilized



in the construction of curved hexahedra along the crack.frohese elements, in turn, define curvilinear
coordinate systems, as described in Secti@nil

3.1 Evaluation of the crack front normals, tangent and conomal vectors

The crack front normal, tangent and conormal vectors are usé¢he definition of the branch function

enrichments?) as well as in the extraction of stress intensity factor&$hl A good estimation of these

crack front vectors is worthwhile to obtain an accurate agjpnation of the solution around the crack front
and, consequently, an accurate SIF extraction.

In the level sets method applied to partition of unit-basedhmds for crack problem&(), 34, 35], the
crack front vectors of the implicit representation of thaak surface are computed based on the gradients of
the front and surface level sets. However, according to D{flothis approach may lead to an inaccurate
representation of the crack front because the orthoggrddlihe surface and front level set gradients does
not always hold.

In this paper, the crack surface is represented by an efiliide-dimensional triangulation. Figu?e
illustrates an arbitrary crack surface and the normal, dahgnd conormal vectors along the crack front.
More details about this crack surface representation cafouned in [28]. The evaluation of the crack
front vectors for this explicit representation of the crackface, by design, guarantees the accuracy and
orthogonality of the crack front vectors. The following seqce of procedures describes how to evaluate
the crack front normals for an explicit crack surface repngéstion.

Figure 2: Non-planar crack surface and normals, tangemnts€anmormals along the crack front represented
by black, yellow and red arrows, respectively..

Evaluation of the normal vectors using medial quadric The computation of normal vectors at vertices of
facets representing@® surface is not a trivial task. The vertex normals along tlaekfront are ill-defined

and an algorithm based on a naive approach, e.g. the averamgenoals of the facets sharing a vertex,
may lead to inaccurate estimates of normals for coarse rmashaear geometric singularities. Figure



3 illustrates a comparison among vertex normals computeld wiighted-averaging, first eigenvector of
covariance matrix and the approach used in this paper.
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Figure 3: Comparison of estimated normals along ridgegudiiiferent techniques, all weighted by area.

The computation of the normal vectors adopted here is bagatieoeigenvalue analysis of tlodéfset
quadric[10]. This procedure is used in the Face Offsetting Method (FQM) to reconstruct the vertices
of an evolving surface as well as for normal computationlifj.[ In this paper, we adapt the method to the
case of normal evaluation along the boundary of a surfaes;ridick front in this case.

In order to find an estimate of the normal vector at a givenexevf along the crack front, a unity
movementd; is applied to the facets connected to that vertex in the timeof their normals. Next, the
intersection of the planes represented by the facets attbwipositions is computed in a least-square sense.
The intersection is the point that minimizes the sum of theasgd distances to the planes. Tfifset quadric
is then formulated as follows.

Given a plang; with unit normaln; and an arbitrary poiry € ¥, the signed distance of the plane to the
origin is given byd = —y- n; which can be regarded as the movement of the plane with retpis initial
position towards its normal direction. The orientation lod planey; is defined by the cyclic order of the
facet connectivities. This information is provided by thiangulation that describes the crack surface. The
distance of an arbitrary poimtc 2 to the plangy can be written as (cf. Figud(a))

h(X,y) = (X—=y)-M=x-Ni+§

The weighted sum of distances is given by

h(x,y) = _Zfimhz(xjvl)

= @X-n+g) (x-m+a)
X-Ax+2b-x+c
wherens is the number of facets connected to the vertgxy are the areas of these facets and
ng

_ _ o nf _ ng
Azi;oqni@ni bzi;méni c:i;mdz.

when this approach is used in the evaluation of the normalgaten vertex, we assume that all planes are
moving by a unity, i.ed = 1. The pointx that minimizes the weighted sum of the squared distancéeto t



planesy is given by the solution of the 8 3 linear system
Ax=b. (3)

The matrixA in Equation B) is, in general, symmetric and positive semi-definite. Deldeg on the rel-
ative position of the facetdA can be nearly rank deficient, therefore it cannot always besdaising a
standard linear solver. However, by performing an eigarezahalysis oA one can effectively compute the
intersection of the planes and estimate the normal at thex.

Let A; > A2 > Az andeg be the eigenvalues and the corresponding orthonormal\aigtars ofA, i.e.
Ae = Aig andA = z?zl)\ié ® €. Given the eigenvalues and eigenvectorApive define thgrimary space
as the eigenvectoml that have their corresponding eigenvaldes- €A1, wheree is a small number which
can be computed relatively to the geometric representafidhe surface. In practice, we chooséo be
0.003. The complementary space corresponding toeA1 is callednull space

Using theprimary spaceof the eigenvalues oA, the estimate of the unit normal vector at the vertex
vj can be defined as follows

g where dj= —ﬂé

n;
{ijAi>eA} A

“ai]

no summation orj indices.

(a) Distance to plang (b) Average tangent vector (c) Projection tensor

Figure 4: Steps for the evaluation of the normal, tangentcamdrmal vectors along the crack front.

Evaluation of the tangents Given the normal at the vertex, the evaluation of the tangents at the vertices
along the crack front can be described in a two-step proeedur

First, we compute an estimate of the tangent vector by theafuhe vectors given by the two oriented
segments formed by the vertexand its neighbors along the crack framt; andv;, 1

F o——
t= Vj,]_Vj —|—VjVj+1.

Vectorsvj_1vj andv;vj;; are illustrated in Figurd(b). The orientation of these vectors is based on the
sequence of the vertices along the front which, in turn, ddp@n the orientation of the facet normals.

The vector computed in the first step is, in general, not petigelar to the vertex normal;. Therefore,
in the second step, we compute the vectorial componenhttiwdt is perpendicular ta; by applying the
projection tensoPj which is given by

P =1—-nj®n;.

The projection tensor procedure is illustrated in Figéfe). Thus, the unit tangent vector at the vertgx
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can be written as follows

wheret; = Pjt; and no summation implied ipindices.

Evaluation of the conormals Once the normal and tangent are computed for a given veytéxe conor-
mal is simply the cross product between them.

bj =nj xt;

no summation implied inj indices.

4 Crack front approximation and enrichment functions

This section presents two approaches to build approximatio the crack front curvilinear coordinate sys-
tem defined in Sectio@. The computation of corresponding enrichment functiorns @ueir derivatives
with respect to global coordinate directions is also presnin the first approach, the curved crack front
coordinate system is approximated by a set of Cartesiamowie systems while in the second case a set of
curvilinear (quadratic) approximations is usedtshould be noted that the shape and location of the crack
front is dictated not only by the triangulation used to reg@at the crack surface but also by the coordinate
systems used in the computation of the enrichment funcfg)nsThesegeometricalapproximations are
denoted hereafter disear andquadraticapproximations of the crack front geometry. They shouldbeot
confused with the polynomial order of GFEM shape functiohsboth approaches proposed here, each
nodex, enriched with functions) defines its own coordinate system. Since the enrichmeustifuns used

at distinct cloudsw, do not have to be the same, this does not pose any problemgf@RFEM. The two
procedures are presented in Sectidrisand4.2, respectively.

A key ingredient of both procedures is the computation ofyunéctors along the crack front that are
normal to the crack surface, tangent to the crack front @ndeid in the conormal (forward) direction of the
crack front, as presented in Secti®ni.

4.1 Linear approximation of crack front geometry

In this approach, the crack front curvilinear coordinatstegn is approximated by a set of Cartesian coor-
dinate systems. Each cloug enriched with functions2) defines a rectangular coordinate system approx-
imately tangent to the crack front as described below. Tthescrack front shape is approximated by a set
of linear segments.

The procedure to define the Cartesian coordinate sy&fen,, {3) used to compute enrichment func-
tions (2) at a cloudw, associated with a finite element nadgecan be described as follows

¢ Find the closest crack front vertexto nodex,. This procedure can be efficiently implemented using
geometric predicates.

e Compute at front vertex; unity vectorsé,,&,&; oriented in the conormal direction to the crack
front, normal direction to the crack surface and tangergadion to the crack front, respectively. The
computation of these vectors is described in SecBdn They are taken as the base vectors of the
coordinate system.

1A crack front vertex may be referenced using its indgxpr its coordinatesy;.
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e Letvj_; andvj,; denote the index of the two crack front vertex nodes condettterertex nodey;
(cf. Figure4(b)). The originO of the coordinate system is taken as the average of the os#ictors
of these three crack front vertex nodes.

Figure5 illustrates a crack front Cartesian coordinate systémé,, &3) built as described above. A
straight cylindrical coordinate systefn 6, &3) can be defined using1, &2, &3), as described below. This
system is used in the computation of the singular enrichen@nt Thus, these functions represent a locally
straight crack front in the cloudy . Since clouds along crack fronts are very small due to mesteraent,
this approximation of a curved crack front is acceptable mirical experiments presented in Sect®n
confirm this hypothesis.

Linear Approximation

Figure 5: Base vectors and origin of a Cartesian coordingtes used for the computation of enrichment
functions for nodex,. Each node with singular enrichment defines its own Camesiardinate system. As
a result, the crack front shape is approximated by a set @flisegments.

4.1.1 Transformation of enrichment functions to global coodinates

Enrichment functioni;g"i (r,0),1=1,2 j=1,2 3, computed in the cylindrical coordinate system are trans-
formed to the global Cartesian systéKa, X, X3) as follows.

Define - .
(3 (61,80,83) =L 0T, 1 (61, 62,83)  i=1,2j=1,23 (4)

where ‘©” denotes composition of two functions. The transformation

Ta_l : (6175% 53) I (r7 Ga 53)

is given by
. &£+ ES
0 o= arctanié) ()
53 E El
3



The Jacobian of this transformation is given by

cog0) sin(0) 0
[(J-l).}: Il _ | Laine) Leoge) o (6)
& /i 0&; r r
0 0 1
wherer;, i =1,2,3, denote cylindrical coordinates8 andés, respectively.
Next define ; ,
Lot (X1, %2, %) = Lgh o Ty M (Xa, %o, Xa)  1=1,2, j=1,2,3 (7)

where the transformation
Tyt (X, %o, Xa) +— (&1, &2, &3)

is given by
31 X1—0q
& =R X%-0 (8)
&3 X3— 03

Above, (01,07, 03) are the coordinates of the origh of the crack coordinate system aﬁg1 e¥x03
is a rotation matrix with rows given by the base vectgrs = 1,2, 3.

The Jacobian of this transformation is given by
_ 0¢ _
1 i 1
(’Jb )ij - X - (Rb )ij

The displacement vectof§%:, %2 £%) and (L%, %, %)) have components in the crack front coor-

. . ) al>=al —al a2 —a2> a2 ) ]
dinate directiong1, &2, &3 and thus must be transformed to the global Cartesian sySter;, X3) using
3 ¢
L;(:ll Lglz I:all I:a12
'-%21 Lg(z2 =Ry¢ 2 % (9)
Lo Loz '—231 '—232

whereR, = (Rgl)T. FunctionsLﬁ"i, i=1,2 j=12,3, can now be used irl) to define GFEM shape

functions. The computation of their derivatives with regpe global coordinate directions is presented in
AppendixA. These functions are the same as those in Equation (12)pf They are also presented in
Section 4 of {l].

4.2 Quadratic approximation of crack front geometry

This section presents another approximation for the daealr crack front coordinate system described in
Section2. Here, each cloudy, uses a quadratic approximation of the crack front geomé@tnyee crack
front vertices are used to fit a quadratic curve to the craghtfas illustrated in Figuré. This quadratic
curve corresponds to the coordinate |§eof the curvilinear coordinate systef#, &2, 3) shown in Figure

1. As before, this system is used for the construction of dargenrichment functions used at nodes near
the crack front. The key idea in defining this system is to ud®-mode hexahedral element along the
crack front. The coordinate lines of the curved hexahedrenuged in the definition of the coordinate
lines of the crack front coordinate system. A hexahedratdioate lineés in physical coordinates defines
a quadratic approximation of the crack front shape. Fiduitustrates the idea. In this approach, both
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the crack front and the crack surface can be curved. The @synaption we make regarding the shape
of the crack surface is thawithin a cloudwy, the surface is flat in the crack front conormal directéan
Transformation of coordinates between this system and lthieagcoordinate syster(iX;, Xp, X3) is then
defined using the shape functions and nodal coordinateg dfakahedral element. The construction of the
curved hexahedron can be fully automated without difficultghould be noted the 12-node hexahedra are

used only to define curvilinear coordinate systefitsey do not add any degrees of freedom to the problem.
Details are presented below.

In this sectionéy, & andés may denote either a coordinate in the master coordinatersyst a brick
or the corresponding coordinate line in physical sp@GeXz, X3). The meaning is clear from the context.

Xl,V

Figure 6: Non-planar crack surface and coordinate systemuiwed front enrichment.

4.2.1 Construction of hexahedra along a curved crack front

For each cloudy, enriched with singular functions, a 12-node hexahedrahefd is defined along the crack
front using the following procedure.

1. Letx, denote the finite element node associated with clogidFind the closest crack front vertex

to nodex,. This procedure can be efficiently implemented using genmetedicates. This step is
illustrated in Figurer(a)

2. The dimensions of the hexahedral element are set sucht twattains the cloudy,, the support of
the enrichment functions used at node Let h, denote the radius of the smallest sphere with origin
at X, that containsu,. Since the origin of the hexahedral is, in general, not etpug}, we request

11



that the hexahedral contains a sphere of radius given by
I'sphere=|| ViXa || +ha

where|| VX, || is the distance from the closest crack front versgx,to the finite element nod, .
This step is illustrated in Figurg(b).

3. Define the dimensiory, of the edges of the hexahedral cross-sectiofsat —1.0, 3 = 0.0, and
é3 = 1.0. The hexahedral cross-section is squared gisdtaken asp = 2rsphere

4. Starting from vertexj, select the two closest verticeg,iigh: andv;, iert, along the crack front direc-
tions &3 =1 andé3 = —1, respectively, such that they are located outside of thergpwith radius
I'sphere@Nd originv;. This step is illustrated in Figurg(c).

5. Compute at front verticeg iet, V; andvj, rign the triadb, n, t oriented in the conormal direction of the
crack front, normal to the crack surface and tangent to thekciront, respectively. The computation
of these vectors is described in Sect®t. Crack front vertices coordinat®ief, Vi andv;, right and
the triads are then used to define the coordinates of the eterodes. For example, the squared face
é3 = 1 with edge lengthy, containsyj, ight and is normal to the tangent vector computed; aint.
The face edges are either in the directioor b. This step is illustrated in Figurg(d) which shows a
12-node hexahedron built using the procedure describedtabo

A curvilinear cylindrical coordinate systefm, 8,&3) along the crack front can be defined using brick
coordinategés, &2, &3), as described below. This system is used in the computatitrecsingular enrich-
ment functions Z). These computations involve transformations of vectois their derivatives between
coordinate systems<y, Xz, X3), (&1, &2,&3) and(r, 8, &3). Details on this are provided below.

4.2.2 Transformation map between global (Cartesian) cooridiates and curvilinear coordinates at
the crack front

In this section, we present the coordinate transformatietaeen the global Cartesian systea, Xz, X3)
and the curvilinear crack front coordinate systdifis &2, &3) and(r, 6, &3). These transformations are used

to define enrichment functiorh_éji (r,0),i=1,2, j=1,2,3, inthe global coordinate system. Transformation
of derivatives of these functions is presented in Apperdix

Ty - Transformation between coordinate system§X;, Xo, X3) and (1, &2,é3) Once the hexahedron that
defines the curvilinear coordinaté&,, &», é3) along the crack front has been built, unitary base vectars fo
this system and the transformation between this systemhenglobal Cartesian systef¥;, Xz, X3) can be
computed as described below.

The transformation from master coordinatés, &2, &3) to global coordinateéXs, Xz, X3) is defined by

T1:(&1,82,83) — (X, X2, X3)

Xi(€1,82,83) = ZX” (€1,€2,&3)

12



! .
Crack front Vj Inscribed
geometry sphere
Ih = 2rsphere
(a) Stepl: Selection of the closest crack front vertgxto (b) Step and3: Define inscribed sphere and dimension of
enriched nodey . element edges at facés= —1.0, {3 =1.0.

(c) Step4: Find neighboring verticeg right andvj, jeft to v; (d) Step5: Define nodal coordinates for curved hexahedron.
along the crack front.

Figure 7: Steps for the construction of a hexahedron elethantdefines a curvilinear coordinate system
used for the computation of singular enrichment functionsl@ud w,. The pictures presented here are
based on actual data from a GFEM mesh and crack surfaceutaiomn. The cloudv, shown in the figures
is the union of the set of tetrahedral elements that shanedatdex, .
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Figure 8: Transformation map.

where the shape functiom (€1, &2, 3) are given by

Ni(81,&2.&3) = 1/8(1—&1)(1—&)(&5— &)
N2(€1,€2,83) = 1/8(1+&1)(1— &) (&5 — &)
N3(€1,€2,83) = 1/8(1+&1)(1+&)(E5— &)
Ny(&1,62,83) = 1/8(1—&1)(1+ &) (&5 — &)
Ns(&1,&2.&3) = 1/8(1—&1)(1—&)(&5+&3)
Ne(&1,82,83) = 1/8(1+&1)(1—&)(E5+ &)
N7(81,82,83) = 1/8(1+&1)(1+&)(85+&3)
No(81,82,83) = 1/8(1—&1)(1+&)(85+&a)
No(€1,62,83) = 1/4(1—&)(1-&)(1-&3)
Nio(81,&2,83) = 1/4(1+&)(1—&)(1-&5)
Ni1(81,80,83) = 1/4(1+&)(1+&)(1-&5)
Ni2(&1,82,83) = 1/4(1—&)(1+&)(1- &)

andX;; are the nodal coordinates for the curved hexahedron defm8edtion4.2.1 This transformation
and its inverse are illustrated in FiguBe Note that the master coordinatgs, &», &3) definecoordinate
linesalong the curvilinear crack front as discussed earlier.s€rmordinates lines are illustrated in Figure
6.
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The Jacobian for this transformation is given by

|8 B &
) = | = | 222 22 PR 10
|:( 1)|] 551] g)E(l g)E(Z 3)6(3 ( )

3 3 3

L 0&1 0& 0dé&3

The columns o08; define vectors tangent to the coordinate lines in physiaaidinates and are given by

. 0X X%

gj= 98 d—EJﬁ (11)

wheree is a base vector of the global coordinate system. Unitarg astors along the crack front are then
given by

& = % (no summation orj) (12)
i
where thescale factorﬁj is given by
hj=1/Gj;  (nosummation orj) (13)
andG is the metric tensor defined as A
Gij =00 (14)
The base vector8;, j = 1,2,3 are the red, black and yellow arrows illustrated in FigéireSince the

coordinate lineg; andé, are not curvilinear, the base vect@s j = 1,2,3, and the other quantities defined
above are a function df; only. This simplifies the calculations as shown in Appendlix

The inverse mapping
Th (X, %o, Xa) V— (&1, &2, &3)
is needed for the computational implementation of the émmient functions as discussed in SectibB.2
It can be numerically determined using an iterative schamh as Newton-Raphson.

After performing the inverse mapping, the closest pointt@ndurved front tX is given byX (0,0, &3).
Thus, the distance & to the crack front is given by

r(X) =[| X =X(0,0,&3) || (15)

This is used below to define the curvilinear cylindrical atinate system needed for the computation of
singular enrichment functiong)

Curvilinear cylindrical coordinate system along crack front Having coordinate§és, &2, 3) computed
using mapping'l‘l, a curvilinear cylindrical coordinate system along theckrimont can be defined through
the following transformation

T, (81,82,&8) — (1,0,83)
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with the relation between coordinates in both systems diyen

r=| X(&1,¢2,&3) — X(0,0,&3) ||

6= arctanié) (16)
&
The Jacobian for this transformation is given by
cog0) sin(0) 0
3t= —%sin(e) %cos(e) 0 (17)
0 0 1

which is equal ta); ! defined in ).

Definition of enrichment functions in global coordinates Transformationd; * andT,* can be used to
define enrichment functiong“;"i(r, 0),i=1,2 j=1,23,inglobal coordinates.
Define
L(81,82, &) = Lo T, M1, &2,8)  1=12,j=1,23 (18)

Next define N A
Liji (X17X27X3) = L(E:Iji OTl_l(X17X27X3) i= 17 27 J = lv 2a3 (19)

In the computational implementation of the singular enmeht functions, an integration point in the
supportw, of these functions is first mapped to global coordina€eand then mapped to cylindrical coor-
dinates using the composition of * andT, ?, i.e.,

-1 -1 ,1-1
T =T,70T]

where
T (X, Xo, Xg) — (1, 0,&3)

Mapped coordinate@, 0, &3) are then used ir2) to compute the singular functions.

The displacement vectot&$:, £, £%)) and (L%, £%2,[%,) have components in the crack front coordi-
nate directions, &2, 3 and thus must be transformed to the global Cartesian syster,, X3) using the
same procedure as in Sectidri.1l This can be done usin@)with R, replaced byR;, a rotation matrix

with columns given by the base vect&si = 1,2,3, defined in 12).

5 Numerical experiments

In the numerical examples presented in this paper, crack énarichment functions are used at nodes whose
support intersects the crack front. More details about #lection of nodal GFEM enrichments in 3D
fracture mechanics problems can be found in, €4, [

We use the Cut-off Function Method (CFM) to extract stregsrisity factors from GFEM solutions.
The CFM is a superconvergent extraction technique basedettiisBeciprocity law. It is able to deliver
convergence rates for SIFs that are on par with the conveegeaite of strain energy. More details about this
extraction method can be found in, e.g6[27, 36, 37].
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5.1 Half penny-shaped crack in a prism

In this example, we consider a half penny-shaped crack irsens illustrated in Figur@. The ratio of the
characteristic dimensioi, of the prism and the radiwsof the crack id /a=5.0. The prism is subjected
to top and bottom tensile tractions of magnitude- 1. Figure9 illustrates the boundary conditions and the
dimension of the domain of analysis. The Young’s Modulus Boison'’s ratio are taken &= 1.0 and

v = 0.25, respectively.

The reference solution for stress intensity factor (SIRhis problem is provided by3F]. There, one
quarter of the domain was discretized with hex-20 finite elet® and appropriate symmetry boundary con-
ditions applied. The localized mesh refinement around taekcfront consisted of a set of seven rings of
elements. Hexagonal 20-node elements with quarter-poisks1and collapsed faces were used along the
crack front. The ratio element size to characteristic ctankth(Le/a) was 383x 103 [39]. This is around
ten times smaller than the finest mesh we use (cf. Thble

The SIF solutiongK;) obtained in this section are normalized by the equation

— K
K= —
o. /B
Q
whereQ = 2.464 for a circular crack. More details about this normal@aprocess can be found iG]
and references therein.

The aim of this example is to show a comparison for SIF satulietween linear and quadratic crack
front geometry approximations for different mesh refinetaet the crack front. Since this example has a
surface breaking crack, the boundary layer efféét feduces the SIF values when the crack front is close
to the boundary of the domain. Because the boundary layectdf not the main focus of this paper, we
compute the SIF in the range“1€8 6 < 170° .

We use three GFEM meshes with different levels of refinemiemnigathe crack front and polynomial or-
der of approximatiornp = 3. More details about high-order GFEM approximations ferdlass of problems
considered here can be found i#8]. The description of each mesh according to its level of egfiant is
listed in Tablel. Figure9 illustrates the refinement along the crack front for theeéhreeshes used in this
analysis. Mesh 1 is the coarsest mesh that allows the catistniof the 12-node hexahedron under the
assumptions listed in Secti@n2.1

Table 1: Description of GFEM meshes used in the simulatione fatiosLe/a listed below refer to the
elements that intersect the crack front.

Le/a
Mesh  dofs min max
1 15132 0.1250 0.3125
2 33102 0.0625 0.1180
3 82590 0.0294 0.0525

The use of coarse meshes around the crack front brings teae$siumerical integration of the singular
enrichments. Inj5], we show that the Keast integration ruleZ] with 45 points is able to numerically
integrate with sufficient accuracy these functions on meslith element size typically used in the GFEM.
Mesh 3 fits in this category but meshes 1 and 2 do not. In thimple we use a tensor product rule with
343 points in order to control integration errors. The sante is used on all three meshes.
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Mesh1|

Mesh 2 ' 2L

Mesh 3

Figure 9: Half penny-shaped crack in a prism subjected t@tmpbottom uniform tractions: Initial coarse
mesh with boundary conditions and crack surface represemi&Zoom in shows the three meshes around
the crack front (left). Green glyphs represent Westergaartthment with either straight (Sectidnl) or
curved (Sectiod.2) crack front geometry approximation. Yellow glyphs remmishigh-order step functions

[29].
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Figures10(a) 10(b), and10(c)illustrate the performance of linear and quadratic cracktfigeometry
approximations on GFEM meshes 1, 2, and 3, respectivelye Pdists the minimum, maximum, average,
and standard deviation of the relative difference betweeEBI& and FEM solutions along half of the crack
front. One can observe that solutions computed with eittaicfront approximations show very oscillatory
behavior and high error values for Mesh 1. The oscillatiorggaadually smoothed out as the level of crack
front refinement increases. In the case of Mesh 3, the GFEMisok are virtually identical and in good
agreement with the reference solution. Figlo¢d)shows the SIF solution for the entire crack front. We can
see that both crack front enrichments show symmetry withaeisto the middle of the crack front. These
results illustrate the robustness of both crack front dpsons. Moreover, the results for Mesh 3 show good
agreement with the reference solution. The average errdihédinear crack front geometry approximation
is around—0.024% with standard deviation of abouf0%.

117 . : . 1.16,
1.16 \ ; L
r o—o M. C. Wallters, et al. (200%) )
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(a) Normalized SIF along half of crack front for Mesh 1. (b) Normalized SIF along half of crack front for Mesh 2.
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(c) Normalized SIF along half of crack front for Mesh 3. (d) Normalized SIF along entire crack front for Mesh 3.

Figure 10: Normalized stress intensity factors (SIF) altdreggcrack front for various meshes.

5.1.1 Convergence Analysis

This section presents convergence analyses of linear aadtapic crack front approximations. Two cases
are considered. In the first one, GFEM meshes 1, 2 and 3 (clie Takre used while the crack surface rep-
resentation is kept fixed. In the second case, GFEM Mesh 2 wgh three crack surface triangulations.
In this case, the analysis starts with the coarsest crack ffescription that allows the construction of the
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Table 2: Relative errofK; — K |/K;, of SIF for GFEM meshes 1, 2 and 3. The reference values for the
stress intensity factokK;, are provided by the FEM solution of Walters et &9

Crack front geom. Error %
Mesh approximation abs(min) abs(max) average std. deviati
1 Linear 0.0547 7.8435  -0.3553 3.7107
Quadratic 0.1638 9.1141  0.1153 3.3504
2 Linear 0.0427 1.2096 -0.0224 0.4639
Quadratic 0.0006 0.6584  -0.0197 0.3138
3 Linear 0.0101 0.4187  -0.0242 0.2083
Quadratic 0.0040 0.3694  0.0396 0.2027

hexahedral for quadratic crack front approximation (cfctidm 4.2.1). The crack front segment length for
this mesh is denoted . The length of the crack front segments in the subsequeok strface meshes
ared/2 andd/3 and they are constant along the crack front. These craékcgumeshes are referred to as
crack meshed;, d, andds, respectively.

In order to quantify the error of the stress intensity fasolution along the crack front, we use a nor-
malizedL?-norm of the difference between the GFEM and the referendé §&ution defined by

Nex . .
(B
_ el \NIH

Kl

er(Ki) : (20)

whereNgy; is the number of extraction points along the crack frdzfrﬁtand Kij are the reference and GFEM
stress intensity factor values for moidet the crack front poinj, respectively. Hereafter, the quantéy(K;)

is referred to as a normalizexiror even though the reference FEM solution is not the exactisolaff the
problem.

Figure 1l illustrates the convergence of the relative ediK,) of the stress intensity factdf; along
the crack front using GFEM meshes 1, 2 and 3 and a fixed crack.nfesr reference, the convergence
rate in strain energy for a finite element solution using amif mesh refinement i ~ 0.32 [36]. One
can observe that linear and quadratic approximations slmlas convergence behavior when applying
localized refinement of the GFEM mesh along the crack frohe quadratic approximation shows slightly
faster convergence rate in the pre-asymptotic range. Kelests, both approximations converge to very
close normalizedl>-norm values when a more refined GFEM mesh is used.

Table 3 lists the results of the second convergence study descabede. It shows the relative error
€ (K) of the stress intensity factdf, along the crack front corresponding to GFEM mesh 3 and crack
surface meshed;, d, andds. In order to provide consistent values (K| ), the stress intensity factor
along the crack front is computed at the same locations ioratlk surface meshes, regardless of the level
of refinement of the crack front geometry. Linear and quaclcaick front approximations present virtually
equal convergence behavior with respect to the refinemetiieotrack front geometry. Crack Mesh
shows larger error values than crack mestieandds. The computed relative erref (K ) levels off with
refinement of the crack front representation, as expectedhé&r reduction of the error requires a finner or
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Figure 11: Relative errca@ (K)) of the stress intensity facté§ along the crack front for linear and quadratic
crack front approximationgiin. andByuad.denote the convergence rate for linear and quadratic ajppaex
tions, respectively. GFEM meshes 1, 2 and 3 and a fixed crask are used in the computations.

higher order GFEM mesh.

Table 3. Convergence analysis of GFEM solution with resfuettte refinement of the crack front description
for linear and quadratic crack front approximations.

e (Ky)

Mesh Frontsegment linear  quadratic
dx d=0.0283 0.003754 0.003832
d, d/2=0.0143 0.001794 0.001740
d3 d/3=0.0095 0.001621 0.001638

5.2 Inner and outer circumferential cracks in a finite cylinder

In this section, we consider two examples of cracks in a foyiteder. The cylinder has dimensiobgR= 4,
where 2 is the height of the cylinder arid is the radius of its cross section. We set a large ratio betwee
height and radius of the cylinder in order to minimize thetérdomain effect in the extraction of stress
intensity factors. The model is subjected to unit tensikdlo = 1 on top and bottom face€ = 1 and

v = 0.3 are the material parameters assigned to the cylinder. T$teekample is a penny-shaped crack,
hereafter referred to asner crack in the middle of the cylinder. For this exampRa = 5, wherea is the
radius of the crack. The second example is a circumferesuidce breaking crack, from now on referred
to asouter crack in the middle of the cylinder. In this casedefines the material ligament. The ratio of the
radius of the cylinde(R) to the crack lengtlic) is R/c = 1.25. The ratios cylinder radius to crack si®a
andR/c, are set such that the inner and outer crack front geometréethe same. Figur® illustrates the
domain of analysis and the crack surfaces used in the siimat

The main objective of these examples is to compare the nobssbf the crack front enrichment functions
in cases where the curved crack front is convex (inner crack) concave (outer crack). As reference
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Figure 12: Finite cylinder subjected to top and bottom umiféensile tractions and crack surface represen-
tation for outer and inner cracks.

solutions, we use the reference SIF solution for an infinitender with a penny-shaped crack provided by
[39]

coin
K, =1.0080/ma
and the solution for a circumferential external crack infanite cylinder provided by{1]

oo Oout

K, =6.1150+/T.
. i oout
According to the references, the accuracyKor is of 0.5% and forK, it is unknown. In both cases, we
show SIF results normalized by the reference solutiongusie following formula

K

K

K =

whereK is the stress intensity factor extracted from kfpeGFEM solution.

Inthe inner and outer crack examples, we apply stronglyegadeshes along the crack front and uniform
polynomial enrichment over the entire analysis domain. fEseilting polynomial approximation order in
both cases ip = 3. The same level of refinement is applied in both inner andratrack examples. The
ratios of element size to characteristic crack lengthia andLe/c, are around @53 and 0014 for the inner
and outer cracks respectively. This discretization is\ajant to the discretization applied on Mesh 3 of the
example presented in Sectidril. A Keast quadrature rulelP] with 45 points is used at each integration
sub-element of the computational elements enriched wilgpusar functions.

Figure 13(a) shows the computed stress intensity factor along the inrmakdront. Tabled lists the
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absolute minimum, absolute maximum, average and stan@&idtibn of the relative error along the crack
front. The results show that enrichments computed witheeithack front geometry approximation produce
virtually identical solutions. They also show good agreehweth the reference solution for semi-infinite
domain. The average error for linear and quadratic crack fypometry approximations is around.22%.
Moreover, the results show robustness of both crack frostrifgtions since the standard deviation of the
error along the crack front is aroundl@%.

In Figure13(b), we present the stress intensity factor for the simulatioa finite cylinder with outer
crack. Tablet lists the absolute minimum, absolute maximum, average tamdiard deviation of the relative
error along the crack front. Again, the results for lineadl gnadratic crack front geometry approximations
are almost identical and show good agreement with the mefersolution for semi-infinite domain. Also,
the results show that both approximations are very robaseghe SIFs show small oscillations along the
crack front. The average error along the crack front is, is tlase, around.09% with standard deviation
of 0.33%.

Table 4: Error analysis of SIF for inner and outer cracks imgsficylinder.

Crack front geom. Error %
Crack type  Approximation  abs(min) abs(max) average stdatien
Inner Linear 0.009 0.605 -0.227 0.171
Quadratic 0.002 0.632 -0.213 0.178
Outer Linear 0.003 0.824 0.186 0.337
Quadratic 0.005 0.845 0.188 0.329
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Figure 13: Normalized stress intensity factors (SIF) altivegcrack front for a finite cylinder with inner and
outer cracks.

5.3 Inclined elliptical crack

The aim of this example is to verify the linear and quadratack front approximations in a problem with
non-constant crack front curvature and mixed mode fradighavior. The problem consists of an inclined
elliptical crack of dimensiona = 0.1 andb = 0.05 embedded in a cube of edge sitg &8s illustrated in
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Figurel4. In order to reduce the finite domain effect on the solutioa seta/L = 10. The material param-
eters used in this analysis de= 1.0 x 10° andv = 0.30. The slope of the crack with respect to fhaxis

is y = /4. The domain is subjected to a uniform tensile tractioa 1 in they-axis. Figurel4 illustrates

the model and the initial coarse mesh used in this exampléheldiscretization of the solution, we apply
localized mesh refinement on GFEM elements that interseatridick front and polynomial enrichment of
orderp = 3 over the entire domain. The range of the ratio of elemeetaliang the crack front,e, to char-
acteristic crack lengthg, is 0.018< L¢/a < 0.041. The crack surface is represented using a quasi uniform
triangulation.

The stress intensity factors for modesl, andlll of an inclined elliptical crack embedded in an infinite
domain are used as reference. These SIFs are giveithy [

1
: — 2 7
K" gsir? yy/mib st 4 (2) co2e
E(k) a
; / 2 /
K'”f- _ ___osinycosy bk |:—COSOL)COSB+ESinOJSin9]

[sir126+ (b co§ 9]

. 2 /
Kinf- = gsinycosyv (1 v)k [1coswsin6—£sinwcose]

[sin29+ <g>2c0§6]

whereB, C, K(k) andE(k) are defined as

Bl

(k2 —V)E(K) + vk’ZK(k) C = (k¥ — vK?)E(k) — vK?K (K),
: E(k) = g\/l—kzsin2¢d¢ ,
9=}, W !

andk? = 1— k2, K = b/aand@ is a parametric angle representing a pd@imin the crack front (cf. Figure
14). For the example solved in this sectign= 17/4 andw = 11/2.

Figurel5(a)and15(b)illustrate the comparison of linear and quadratic cracktfapproximations with
respect to the infinite domain solution, respectively. Oagr note that both approximations show good
agreement with the infinite domain solution. Tablksts the normalized?-norm of the difference between
the numerical solution and the reference solution (cf. Equng20)). Like in the previous examples, we
can observe that both approximations provide virtuallysame results. The relative errors of the stress
intensity factors along the crack front for linear and qagidrapproximations show very small differences.

Table 5: Normalized.2-norm of the error of the SIFs along the crack front for linead quadratic approx-
imations.

Crack front geom.
approximation  &K;) €(Ky) €(Ki)
Linear 0.0234 0.00406 0.04133
Quadratic 0.0223 0.00486 0.04246
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Figure 14: Cube subjected to top and bottom uniform tensiletibns and crack surface representation for

inclined elliptical crack.
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6 Concluding remarks

Linear and quadratic approximations to represent cuedircrack fronts are presented. These represen-
tations are geared towards the construction of enrichmarttions for the generalized finite element. In
both cases, special care is taken when setting the crack doamdinate system based on the geometric
description of the crack front. The evaluation of crack frearmals, tangents and conormals vectors using
medial-quadric-based techniques ensures the robusthéssrepresentation of the crack front geometry.

The results presented in Sectibrshow that a coarse mesh with either linear or quadratic dirack
geometry approximations leads to poor crack front desonpfAs a result, the SIF solution along the crack
front shows poor accuracy and very oscillatory behavioweleer, by applying a suitable refinement level
along the crack front the results show that both approa@aektb the same crack front representation in the
limit case, i.e., when the crack front refinement is enougbaature the singular solution along the crack
front.

The numerical experiments indicate that both crack froomingetry approximations lead to very robust
results in meshes typically used for this class of problerhe first approach uses Cartesian coordinate
systems along the crack front and is straightforward to @m@nt. The implementation of the second
approach is more involved since it is based on curvilineardioate systems. Thuyr the class of problems
considered herghe first approach is recommended.

The proposed approaches to build enrichment functionsgatoimved crack fronts are not limited to
the case of linear elastic fracture mechanics, the focubisfgaper. Application of these approaches to
the case of cohesive cracks, and other non-linear fract@ehamics problems is straightforward. The
same procedure used to define the curvilinear coordinaterayalong the crack front can be used. The
conclusions regarding which approach is better for othessgs of problem may, of course, be different
from the case considered here.
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Sao Carlos - University of & Paulo, Brazil, for fruitful discussions during the caud this research.
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A Gradient of Enrichment Functions in Global Coordinates

This section presents the computation of the gradient dElement functions with respect to the global
coordinates;, Xo, X3. These quantities, in turn, are used in the computation fateses of GFEM shape
functions defined inX).

A.1 Case 1: Linear Approximation of Crack Front Geometry

In this section, we consider the case of the derivatives@gtirichment functions defined in Sectibi.1

Let u(r, 6) denote a displacement vector with componénisuy, uz) whereu; equal toLE‘1 or LZ‘Z, for

j =1,2,3, anda arbitrary. Slmllarly, we define vecto® &1, &2, &3) andu(Xy, X2, X3) using enrichment
functionsI:Zji(El,Ez,Eg) andL (X1,%2,X3), i =1,2, ] =1,2,3, respectively.

ai’
Letr;, i = 1,2, 3, denote cylindrical coordinates 6 and &3, respectively. The gradient @f can be

computed using the derivatives of the functions define@)rm(d is given by

oS, aﬂj 808 = auj drmé_ 28
VET 5599 T or, a8
where, from 6), 5
rm 71
38 = a)m

The relation between the base vectéys m= 1,2, 3, of a Cartesian crack front coordinate system and
the global based vectoes, i = 1,2,3, is given by

ém = (Rt;l)miQ

whereR; ! = J; ! (cf. Sectior.1.1).
Using the above, the gradientoftan be computed as follows

L 0U0m . oa — —
0ve = Zg tnob=2 (RY),e0 (R, e

1y O0m ou
- (Rbl)mid—fr: (Rbl)nja®ej dX a®el —UVX

Thus, the derivatives of the enrichment functions with eespgo global coordinates can be computed
using

(9—)(1' = (Rt;l)mia—gn (Rt;l)nj
In matrix form, we have _ _
[UVX} =Ry [GVE} Ry
A.2 Case 2: Quadratic Approximation of Crack Front Geometry

The case of enrichment functions defined using a quadrapcogpnation of the crack front geometry
follows the same steps as in the section above. Howeverijsrtéise, the coordinate system is curvilinear.
The computation of the gradient of the displacement vecithr iespect to curvilinear coordinates must also
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consider the derivatives of the crack front base vectorsaabk factors. This is presented below in Sections
A.2.1andA.2.2, respectively.

A.2.1 Derivatives of crack front base vectors

In general, the base vectors of a curvilinear system vargmgth and orientation from point to point in
space. In an orthonormal system the length of the vectotwaya unit, but their orientations may change.
Therefore, a curvilinear orthonormal base system can barded as a triad that rigidly rotates from point
to pont in the curvilinear space.

The derivatives of a curvilinear orthonormal basis can higevr as follows [L5]

(21)

0& | hj 0§

08 _ S O aja_ﬁj &
hj an hkafk

All sectionsész = C, whereC is a constant, of the 12-node hexahedron element used ireftrgtidn of
curvilinear coordinate systems (cf. Sect®R.1) have the following properties

e They are squared, i.e., there is no distortion on&hé&, plane;
e all section have the same dimensions;

e they are planar, i.e. there is no warping on &e, plane.

Based on these assumptions, the base veefoljs= 1,2, 3, are dependent ofy only and all scaling factors
are constant, excepg.

Depending on the nodal coordinates of the element, howseetions; = C may be non-orthogonal to
the coordinate lin€z. This happens if the element has a large curvature id4ltkrection. The procedure
presented in SectioA.2.1, however, keeps this distortion to a minimum. Furthermengen when the
element is distorted, this is much less pronounced nearghtraid of the element. The enriched cloud
(wy) is located, by construction, almost at the center of the hedeon. Therefore, it is reasonable to
assume that the base vectéys j = 1,2, 3, form an orthonormal basis over the enriched clouwd).

Based on the above, the derivatives of the base veéfors= 1,2, 3, reduce to

>

0€; 1 odhs
= =7 22
0% T P oEls (22)
08 1 dhg,
7= 78 23
08 T & (23)
08 10hs, 10hs,
FEA W P W T A )
and all other components are zero.
A.2.2 Derivatives of the scale factors
The derivatives the scale factors definedliB)(can be written as follows.
ohj 104; . 1 92X 0X
_f:A__f.gj:A_ = (25)
9& R 0% hj 0&0E; 9¢;



with no summation orj.

Based on the discussion in the previous section, only thewWolg terms are non-zero

dhg

1 02X 0%

08 1y 080808 (20)
ohs 1 %X 0%
06 050808 @7

A.2.3 Gradient of the displacement field

Let & be a displacement vector with components given by enriclnmumtionslig}n(fl,Eg,ég), n=1or
n=2andi = 1,2 3, as in SectiorA.1. The gradient ofl with respect to curvilinear coordinatés, &, &3
can be computed using (]

— — —
0V = Ojéj®iéi—(01é1+02é2+03é3)®<ié1i+ié2i+ié3i>
déi hi . aEl h1 062 hz 063 h3 (28)
= i%é-®é+iﬁ®a
b o9&~ by 08

In indicial notation, we have

(a¢) _ 100 0oh . G oh
VEla T\ 08 f

hj 08 R 0&
.00k - au_k or or /-1
Using 3E = ar, aa,whereafi = (35%),;» we have
L 1 ouy dr, dj oh G; ohy
( vE)ki hi an 0€i hj afj . hkdfk ( )

derivatives of displacements  {erivatives of vectors

whereu, k = 1,2,3, are the components of vectodefined in Sectioi.1. The indices of the scale factors
do not take part in the summation convention.

Using the results from Sectios2.1 andA.2.2,
displacement vectdr in matrix form

we can write the components of the gradient of the

(100 104 104 ] [4 g "G 10hs ]
o Uo U2 uz Us 1 3
U0vs|l=| —== —== == |+|l0 0 el 30
[v‘t} h19& hy & hgdés hgh, 0&2 )
100G 1003 1003 Gy 1 dhs G 1 dhg
— 5 5 0 0 mmsrtmm—r
| Mo& hpd& hgdés | | hih30&  hyhg 9& |

We can now compute the gradient of the enrichment functiatts iespect to global coordinates using
the same steps as in Sectiari.

The relation between the base vectérs m= 1,2, 3, of a curvilinear crack front coordinate system and
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the global based vectoes, i = 1,2,3 is given by
en=(R;") @

whereRI1 is a rotation matrix with rows given by the base vec@tsi = 1, 2,3, defined in Sectiod.2.2
ie.,
( 71).. = ,\1%
L] h d¢i
This transformation tensor is dependent&nthe position along the crack front. Again, no summation is
implied over the indice of the scale factors.

Using the above
— 1 A 1
(uvx)ij = (R, (uv5>mn(R1 Jny
where(ﬁ%E) are the components of the gradient of the displacementvadiothe curvilinear system
mn
as defined inZ9) and (ugx)._ are the gradient components in global coordinates.
i
In matrix form, we have
— A T
[UVX} =R [UVE} Rl'
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