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Abstract

This paper presents a study of generalized enrichment functions for three-dimensional curved crack
fronts. Two coordinate systems used in the definition of singular curved crack front enrichment functions
are analyzed. In the first one, a set of Cartesian coordinate systems defined along the crack front is used.
In the second case, the geometry of the crack front is approximated by a set of curvilinear coordinate
systems. A description of the computation of derivatives ofenrichment functions and curvilinear base
vectors is presented. The coordinate systems are automatically defined using geometrical information
provided by an explicit representation of the crack surface. A detailed procedure to accurately evaluate
the surface normal, conormal and tangent vectors along curvilinear crack fronts in explicit crack surface
representations is also presented. An accurate and robust definition of orthonormal vectors along crack
fronts is crucial for the proper definition of enrichment functions. Numerical experiments illustrate the
accuracy and robustness of the proposed approaches.

Keywords: Partition of unity methods; Generalized/Extended finite element method; Three-dimensional
fracture mechanics; Crack front enrichments.

1 Introduction

Three-dimensional computational fracture mechanics simulations are of great importance in industry. Life
prediction of engine components, structural members of aircraft fuselage, and pipeline joints are examples
of industrial problems in which 3D computational fracture mechanics analysis is broadly applied. The
standard finite element method (FEM) has been used for several decades in the assessment of such industrial
problems. The application of the FEM to this class of problems faces several issues regarding changes
in mesh topology and excessive computational cost. These difficulties are usually due to remeshing and
the need for highly refined meshes in the crack surface region. Such modifications in the mesh are often
required because of crack surface fitting and accuracy of thesolution. Partition of unity methods, such as
the generalized finite element method (GFEM) [1, 4, 16, 23, 33], are promising candidates to overcome
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these difficulties. However, in three-dimensional fracture analysis with partition of unity-based methods,
the accurate representation of curvilinear crack fronts isstill a challenging task.

Partition of unity methods have been successfully applied to fracture mechanics problems. The main idea
of modeling fracture mechanics problems with these methodsis to represent discontinuities and singularities
of the solution through custom-built shape functions. The discontinuity far from crack tip/front can be easily
represented by step functions [19, 20, 35] or high-order step functions [6, 28], depending on the polynomial
order used in the approximation of the continuous part of thesolution. In order to represent the singularity
of the solution in linear elastic fracture mechanics problems, enrichment functions based on the analytical
solution of the elasticity around the crack front are usually applied [2, 4, 5, 20, 22, 24, 28, 35]. The
application of partition of unity methods to cohesive fracture models and corresponding enrichments can be
found in, for example, [17, 18, 31, 32, 40, 41, 42].

In the mid 1990’s, many researchers applied the partition ofunity concept and the asymptotic expansion
near the crack tip to represent discontinuities and singularities in two-dimensional crack problems. The
idea of including the near crack tip asymptotic expansion inpartition of unity approximation was firstly
introduced by Duarte and Oden in [7, 22, 24]. They used the partition of unity concept in thehp-cloud
method to represent the singularity and discontinuity of the solution in the approximation. Asymptotic
expansions were introduced in the element-free Galerkin method by Fleming et al. [9]. Two approaches
were utilized to enrich the element-free Galerkin approximation with the first terms of the near tip expansion.
The first approach adds the first terms of the near-tip asymptotic expansion of the displacement field to the
trial functions. The second approach expands the linear basis used in the moving least squares method
[13, 14] by including the term

√
r multiplied by trigonometric functions. By using the partition of unity

concept, Belytschko and Black [2] applied the second enrichment approach introduced in [9] in a finite
element framework. The approach introduced by Belytschko and Black [2] was improved by Möes et al.
[19]. They applied Heaviside functions to those nodes with support intersecting the crack surface but not
the crack tip, and the asymptotic expansion for those nodes with support intersecting the crack tip.

Duarte et al. [4] extended the enrichment approach used in [7, 22, 24] for a three-dimensional finite
element framework. The asymptotic expansion was utilized to model straight reentrant corners using the
partition of unity concept. In [5], Duarte et al. applied the same enrichment approach to arbitrary crack
fronts in three-dimensional dynamic crack propagation. Sukumar et al. [35] and Möes et al. [20] extended
the approach presented in [19] for three-dimensional crack modeling of planar and non-planar crack surfaces
with curved crack fronts, respectively.

To our best knowledge, the references available in the literature regarding three-dimensional analysis
of crack problems using partition of unity-based methods, give very little attention to the description and
construction of enrichment functions for curved fronts. Moreover, in all existing approaches, the effects of
crack front curvatures in the asymptotic expansion are not considered in the enrichment functions.

The aim of this paper is to analyze two approaches for describing and enriching three-dimensional curved
crack fronts. The first approach is based on a piecewise linear description of the crack front. The second
one uses a piecewise quadratic description while taking into consideration the derivatives of the base vectors
in the computation of the gradient of the asymptotic expansion. Another contribution of this paper is a
detailed procedure to evaluate surface normal, conormal and tangent vectors along a curved crack front.
These vectors are utilized in the definition of base vectors which, in turn, define the crack front enrichment
functions. An accurate and robust definition of these crack front vectors is crucial for the proper definition
of crack front enrichment functions.

The outline of this paper is as follows. In the following Section we briefly review the construction of
GFEM shape functions and present the enrichment functions used with the proposed piecewise linear and
quadratic crack front geometrical approximations. Section 3 presents a procedure to accurately evaluate
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the normal, conormal and tangent vectors along the crack front in an explicit crack surface representation.
The crack front description using linear and quadratic approximations and the transformation maps for their
respective enrichment functions are discussed in Section4. The numerical experiments presented in Section
5 illustrate the robustness and accuracy of the proposed three-dimensional enrichment techniques. Finally,
Section6 outlines the conclusions and highlights the main contributions of the present study.

2 Generalized FE shape functions

The generalized FEM [1, 4, 16, 23, 33] can be regarded as a FEM with shape functions built using the
concept of a partition of unity. In this section, we focus on the construction of GFEM shape functions used
in the neighborhood of a three-dimensional crack front. Details on the GFEM can be found in many papers
available in the literature. Here, we follow the formulation and notation introduced in [28].

In the GFEM, a shape functionφα i is built from the product of a linear finite element shape function, ϕα ,
and an enrichment function,Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα) (1)

whereα is the index of a nodexxxα in the finite element mesh. The GFEM shape functionφα i is defined on
ωα = {xxx∈Ω : ϕα(xxx) 6= 0}, the support of the partition of unity functionϕα . In the case of a finite element
partition of unity, the supportωα (often called cloud) is given by the union of the finite elements sharing
a vertex nodexxxα [4]. The selection of enrichment functions depends on the local behavior of the solution
uuu of the problem of interest over the cloudωα . In the case of linear elastic fracture mechanics problems,
the enrichment functions used at cloudsωα that intersect the crack front are taken from the asymptotic
expansion of the elasticity solution near a crack front [4, 5, 22, 24, 28].

Let ξ1, ξ2 andξ3 denote directions in a curvilinear coordinate system defined along the crack front as
illustrated in Figure1. Directionsξ1, ξ2 andξ3 are in the forward direction of the crack front, perpendicular
to the crack surface and tangent to the crack front, respectively. A curvilinear cylindrical coordinate system
with coordinatesr, θ andξ3 is also illustrated in Figure1.

θ

ξ2

r

X2

X3

X1

Crack front

ξ3

ξ1

(

OX1 OX2 OX3

)

Figure 1: Curvilinear orthogonal coordinate system definedalong a curved crack front. This coordinate
system is used in the computation of enrichment functions defined in (2).

The enrichment functions used to approximate displacementfields in theξ1, ξ2 andξ3 directions are
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given by [4, 5, 22, 24, 28]

L̄ξ1
α1(r,θ ) =

√
r

[
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L̄ξ3
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where the material constantκ = 3−4ν andν is Poisson’s ratio. This assumes plane strain conditions, which
is in general a good approximation far from crack front ends.The above enrichment functions correspond
to the first term of the modesI and II , and to the first and second terms of the modeIII components of
the asymptotic expansion of elasticity solution around a straight crack front, far from the vertices and for
a traction-free flat crack surface [36]. It should be noted, as indicated by the superscripts, thatdifferent
enrichment functions are used in (2) for each component of the displacement vector. This leads to a total
of six additional degrees of freedom at a nodeα enriched with these functions. In contrast, the enrichment
functions used in, e.g., [3, 20, 34, 35], lead, in 3D, to twelve degrees of freedom per node since four
enrichment functions are used for each component of the displacement vector. In the approach proposed in
(2), only two enrichments are used to enrich each component of the displacement vector. The performance
of these two choices of enrichment functions is analyzed in [25].

The enrichment functions (2) are defined in a coordinate system located along the crack front as illus-
trated in Figure1. Thus, they must be transformed to the global Cartesian coordinate system(X1,X2,X3)
prior to their use in the definition of GFEM shape functions in(1). Details are presented in Sections4.1.1
and4.2.2.

In our computations, the crack surface is represented by flattriangles with straight edges [28] as illus-
trated in Figures5 and6. Thus, curved crack fronts are approximated by straight line segments. The fidelity
of this approximation can be controlled by simply using a finer triangulation of the crack surface. This pro-
cess isindependentof the GFEM mesh and does not change the problem size [28]. This paper focus on the
construction of crack front coordinate systems and corresponding enrichment functions using geometrical
information provided by this crack surface representation. It should be noted that the coordinate systems
proposed here can be used to define enrichment functions for several classes of problems. In particular, it
can be applied to the case of cohesive cracks, and other non-linear fracture mechanics problems. The only
modification required is to replace (2) by appropriate enrichment functions.

3 Crack front base vectors

This section presents computational procedures to determine orthonormal base vectors at vertices along a
crack front. These crack front vectors are the surface normal vector, curve tangent vector and conormal
vector computed at each vertex of the front using the geometrical description of the crack surface. These
vectors define a local Cartesian coordinate system at each crack front vertex. Moreover, they are utilized
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in the construction of curved hexahedra along the crack front. These elements, in turn, define curvilinear
coordinate systems, as described in Section4.2.1.

3.1 Evaluation of the crack front normals, tangent and conormal vectors

The crack front normal, tangent and conormal vectors are used in the definition of the branch function
enrichments (2) as well as in the extraction of stress intensity factors (SIFs). A good estimation of these
crack front vectors is worthwhile to obtain an accurate approximation of the solution around the crack front
and, consequently, an accurate SIF extraction.

In the level sets method applied to partition of unit-based methods for crack problems [20, 34, 35], the
crack front vectors of the implicit representation of the crack surface are computed based on the gradients of
the front and surface level sets. However, according to Duflot [8], this approach may lead to an inaccurate
representation of the crack front because the orthogonality of the surface and front level set gradients does
not always hold.

In this paper, the crack surface is represented by an explicit three-dimensional triangulation. Figure2
illustrates an arbitrary crack surface and the normal, tangent and conormal vectors along the crack front.
More details about this crack surface representation can befound in [28]. The evaluation of the crack
front vectors for this explicit representation of the cracksurface, by design, guarantees the accuracy and
orthogonality of the crack front vectors. The following sequence of procedures describes how to evaluate
the crack front normals for an explicit crack surface representation.

Figure 2: Non-planar crack surface and normals, tangents and conormals along the crack front represented
by black, yellow and red arrows, respectively..

Evaluation of the normal vectors using medial quadric The computation of normal vectors at vertices of
facets representing aC0 surface is not a trivial task. The vertex normals along the crack front are ill-defined
and an algorithm based on a naive approach, e.g. the average of normals of the facets sharing a vertex,
may lead to inaccurate estimates of normals for coarse meshes or near geometric singularities. Figure
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3 illustrates a comparison among vertex normals computed with weighted-averaging, first eigenvector of
covariance matrix and the approach used in this paper.

(a) Weighted-averaging (b) First eigenvector of covariance matrix (c) Medial quadric

Figure 3: Comparison of estimated normals along ridges using different techniques, all weighted by area.

The computation of the normal vectors adopted here is based on the eigenvalue analysis of theoffset
quadric [10]. This procedure is used in the Face Offsetting Method (FOM)[10] to reconstruct the vertices
of an evolving surface as well as for normal computation in [11]. In this paper, we adapt the method to the
case of normal evaluation along the boundary of a surface, the crack front in this case.

In order to find an estimate of the normal vector at a given vertex v j along the crack front, a unity
movementδδδ i is applied to the facets connected to that vertex in the direction of their normals. Next, the
intersection of the planes represented by the facets at their new positions is computed in a least-square sense.
The intersection is the point that minimizes the sum of the squared distances to the planes. Theoffset quadric
is then formulated as follows.

Given a planeγi with unit normaln̄nni and an arbitrary pointyyy∈ γi , the signed distance of the plane to the
origin is given byδi =−yyy· n̄nni which can be regarded as the movement of the plane with respect to its initial
position towards its normal direction. The orientation of the planeγi is defined by the cyclic order of the
facet connectivities. This information is provided by the triangulation that describes the crack surface. The
distance of an arbitrary pointxxx∈ℜ3 to the planeγi can be written as (cf. Figure4(a))

h(xxx,γi) = (xxx−yyy) · n̄nni = xxx· n̄nni +δi

The weighted sum of distances is given by

h̄(xxx,γi) =
nf

∑
i=1

ωih
2(xxx,γi)

= ωi (xxx· n̄nni +δi) · (xxx· n̄nni +δi)

= xxx·AAAxxx+2b̄bb·xxx+c

wherenf is the number of facets connected to the vertexv j , ωi are the areas of these facets and

AAA =
nf

∑
i=1

ωi n̄nni⊗ n̄nni b̄bb =
nf

∑
i=1

ωiδi n̄nni c =
nf

∑
i=1

ωiδ 2
i .

when this approach is used in the evaluation of the normals ata given vertex, we assume that all planes are
moving by a unity, i.e.δi = 1. The pointxxx that minimizes the weighted sum of the squared distances to the
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planesγi is given by the solution of the 3×3 linear system

AAAxxx = b̄bb. (3)

The matrixAAA in Equation (3) is, in general, symmetric and positive semi-definite. Depending on the rel-
ative position of the facets,AAA can be nearly rank deficient, therefore it cannot always be solved using a
standard linear solver. However, by performing an eigenvalue analysis ofAAA one can effectively compute the
intersection of the planes and estimate the normal at the vertexv j .

Let λ1 ≥ λ2 ≥ λ3 and ēeei be the eigenvalues and the corresponding orthonormal eigenvectors ofAAA, i.e.
AAAēeei = λi ēeei andAAA= ∑3

i=1 λi ēeei⊗ ēeei . Given the eigenvalues and eigenvectors ofAAA, we define theprimary space
as the eigenvectors̄eeei that have their corresponding eigenvaluesλi > ελ1, whereε is a small number which
can be computed relatively to the geometric representationof the surface. In practice, we chooseε to be
0.003. The complementary space corresponding toλi < ελ1 is callednull space.

Using theprimary spaceof the eigenvalues ofAAA, the estimate of the unit normal vectornnn j at the vertex
v j can be defined as follows

nnn j =
ddd j

‖ ddd j ‖
where ddd j = ∑

{i|λi>ελ1}
− ēeei · b̄bb

λi
ēeei

no summation onj indices.

x1
x2

x3

x
y γi

y−x
n̄i

(a) Distance to planeγi

v j+1−−−→v jv j+1

−−−
→

v j−1v
j

t̄

v j

v j−1

(b) Average tangent vector

t̄ j

t̃ j = P j t̄ j

n j

(c) Projection tensor

Figure 4: Steps for the evaluation of the normal, tangent andconormal vectors along the crack front.

Evaluation of the tangents Given the normal at the vertexv j , the evaluation of the tangents at the vertices
along the crack front can be described in a two-step procedure.

First, we compute an estimate of the tangent vector by the sumof the vectors given by the two oriented
segments formed by the vertexv j and its neighbors along the crack frontv j−1 andv j+1

t̄tt =−−−→v j−1v j +
−−−→v jv j+1.

Vectors−−−→v j−1v j and−−−→v jv j+1 are illustrated in Figure4(b). The orientation of these vectors is based on the
sequence of the vertices along the front which, in turn, depends on the orientation of the facet normals.

The vector computed in the first step is, in general, not perpendicular to the vertex normalnnn j . Therefore,
in the second step, we compute the vectorial component oft̄tt that is perpendicular tonnn j by applying the
projection tensorPPP j which is given by

PPP j = III −nnn j ⊗nnn j .

The projection tensor procedure is illustrated in Figure4(c). Thus, the unit tangent vector at the vertexv j
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can be written as follows

ttt j =
t̃tt j

‖ t̃tt j ‖
wheret̃tt j = PPP j t̄tt j and no summation implied inj indices.

Evaluation of the conormals Once the normal and tangent are computed for a given vertexv j , the conor-
mal is simply the cross product between them.

bbb j = nnn j × ttt j

no summation implied inj indices.

4 Crack front approximation and enrichment functions

This section presents two approaches to build approximations to the crack front curvilinear coordinate sys-
tem defined in Section2. The computation of corresponding enrichment functions and their derivatives
with respect to global coordinate directions is also presented. In the first approach, the curved crack front
coordinate system is approximated by a set of Cartesian coordinate systems while in the second case a set of
curvilinear (quadratic) approximations is used.It should be noted that the shape and location of the crack
front is dictated not only by the triangulation used to represent the crack surface but also by the coordinate
systems used in the computation of the enrichment functions(2). Thesegeometricalapproximations are
denoted hereafter aslinear andquadraticapproximations of the crack front geometry. They should notbe
confused with the polynomial order of GFEM shape functions.In both approaches proposed here, each
nodexxxα enriched with functions (2) defines its own coordinate system. Since the enrichment functions used
at distinct cloudsωα do not have to be the same, this does not pose any problem for the GFEM. The two
procedures are presented in Sections4.1and4.2, respectively.

A key ingredient of both procedures is the computation of unity vectors along the crack front that are
normal to the crack surface, tangent to the crack front or oriented in the conormal (forward) direction of the
crack front, as presented in Section3.1.

4.1 Linear approximation of crack front geometry

In this approach, the crack front curvilinear coordinate system is approximated by a set of Cartesian coor-
dinate systems. Each cloudωα enriched with functions (2) defines a rectangular coordinate system approx-
imately tangent to the crack front as described below. Thus,the crack front shape is approximated by a set
of linear segments.

The procedure to define the Cartesian coordinate system(ξ1,ξ2,ξ3) used to compute enrichment func-
tions (2) at a cloudωα associated with a finite element nodexxxα can be described as follows1

• Find the closest crack front vertexv j to nodexxxα . This procedure can be efficiently implemented using
geometric predicates.

• Compute at front vertexv j unity vectorsêee1, êee2, êee3 oriented in the conormal direction to the crack
front, normal direction to the crack surface and tangent direction to the crack front, respectively. The
computation of these vectors is described in Section3.1. They are taken as the base vectors of the
coordinate system.

1A crack front vertex may be referenced using its index,v j , or its coordinates,vvv j .
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• Let v j−1 andv j+1 denote the index of the two crack front vertex nodes connected to vertex nodev j

(cf. Figure4(b)). The originOOO of the coordinate system is taken as the average of the position vectors
of these three crack front vertex nodes.

Figure5 illustrates a crack front Cartesian coordinate system(ξ1,ξ2,ξ3) built as described above. A
straight cylindrical coordinate system(r,θ ,ξ3) can be defined using(ξ1,ξ2,ξ3), as described below. This
system is used in the computation of the singular enrichments (2). Thus, these functions represent a locally
straight crack front in the cloudωα . Since clouds along crack fronts are very small due to mesh refinement,
this approximation of a curved crack front is acceptable. Numerical experiments presented in Section5
confirm this hypothesis.

Linear Approximation

xxxαêee1

êee3

v j+1

Crack Front Geometry

êee2

v j

v j−1

Crack Surface Geometry

OOO

Figure 5: Base vectors and origin of a Cartesian coordinate system used for the computation of enrichment
functions for nodexxxα . Each node with singular enrichment defines its own Cartesian coordinate system. As
a result, the crack front shape is approximated by a set of linear segments.

4.1.1 Transformation of enrichment functions to global coordinates

Enrichment functions̄L
ξ j
α i(r,θ ), i = 1,2, j = 1,2,3, computed in the cylindrical coordinate system are trans-

formed to the global Cartesian system(X1,X2,X3) as follows.

Define
L̂

ξ j
α i(ξ1,ξ2,ξ3) = L̄

ξ j
α i ◦T−1

a (ξ1,ξ2,ξ3) i = 1,2, j = 1,2,3 (4)

where “◦” denotes composition of two functions. The transformation

T−1
a : (ξ1,ξ2,ξ3) 7−→ (r,θ ,ξ3)

is given by






r
θ
ξ3






=







√

ξ 2
1 +ξ 2

2

arctan(
ξ2

ξ1
)

ξ3







(5)
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The Jacobian of this transformation is given by

[(
JJJ−1

a

)

i j

]

=

[
∂ r i

∂ ξ j

]

=






cos(θ ) sin(θ ) 0

−1
r

sin(θ )
1
r

cos(θ ) 0

0 0 1




 (6)

wherer i , i = 1,2,3, denote cylindrical coordinatesr, θ andξ3, respectively.

Next define
L̃

ξ j
α i(X1,X2,X3) = L̂

ξ j
α i ◦T−1

b (X1,X2,X3) i = 1,2, j = 1,2,3 (7)

where the transformation
T−1

b : (X1,X2,X3) 7−→ (ξ1,ξ2,ξ3)

is given by






ξ1

ξ2

ξ3






= RRR−1

b







X1−O1

X2−O2

X3−O3






(8)

Above,(O1,O2,O3) are the coordinates of the originOOO of the crack coordinate system andRRR−1
b ∈ℜ3×ℜ3

is a rotation matrix with rows given by the base vectorsêeei , i = 1,2,3.

The Jacobian of this transformation is given by

(
JJJ−1

b

)

i j =
∂ ξi

∂Xj
=
(
RRR−1

b

)

i j

The displacement vectors(L̃ξ1
α1, L̃

ξ2
α1, L̃

ξ3
α1) and(L̃ξ1

α2, L̃
ξ2
α2, L̃

ξ3
α2) have components in the crack front coor-

dinate directionsξ1,ξ2,ξ3 and thus must be transformed to the global Cartesian system(X1,X2,X3) using







LX1
α1 LX1

α2
LX2

α1 LX2
α2

LX3
α1 LX2

α2






= RRRb







L̃ξ1
α1 L̃ξ1

α2

L̃ξ2
α1 L̃ξ2

α2

L̃ξ3
α1 L̃ξ3

α2







(9)

whereRRRb = (RRR−1
b )T . FunctionsL

Xj
α i , i = 1,2, j = 1,2,3, can now be used in (1) to define GFEM shape

functions. The computation of their derivatives with respect to global coordinate directions is presented in
AppendixA. These functions are the same as those in Equation (11) of [28]. They are also presented in
Section 4 of [4].

4.2 Quadratic approximation of crack front geometry

This section presents another approximation for the curvilinear crack front coordinate system described in
Section2. Here, each cloudωα uses a quadratic approximation of the crack front geometry.Three crack
front vertices are used to fit a quadratic curve to the crack front as illustrated in Figure6. This quadratic
curve corresponds to the coordinate lineξ3 of the curvilinear coordinate system(ξ1,ξ2,ξ3) shown in Figure
1. As before, this system is used for the construction of singular enrichment functions used at nodes near
the crack front. The key idea in defining this system is to use a12-node hexahedral element along the
crack front. The coordinate lines of the curved hexahedron are used in the definition of the coordinate
lines of the crack front coordinate system. A hexahedral coordinate lineξ3 in physical coordinates defines
a quadratic approximation of the crack front shape. Figure6 illustrates the idea. In this approach, both
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the crack front and the crack surface can be curved. The only assumption we make regarding the shape
of the crack surface is that,within a cloudωα , the surface is flat in the crack front conormal directionξ1.
Transformation of coordinates between this system and the global coordinate system(X1,X2,X3) is then
defined using the shape functions and nodal coordinates of the hexahedral element. The construction of the
curved hexahedron can be fully automated without difficulty. It should be noted the 12-node hexahedra are
used only to define curvilinear coordinate systems. They do not add any degrees of freedom to the problem.
Details are presented below.

In this section,ξ1, ξ2 andξ3 may denote either a coordinate in the master coordinate system of a brick
or the corresponding coordinate line in physical space(X1,X2,X3). The meaning is clear from the context.

X (ξ1,
ξ2,

ξ3)

X3, eee3

X2, eee2

ξ1

ξ3

ξ2
êee2

êee1

X1, eee1

X (0,
0,

ξ3)

êee3
r

Figure 6: Non-planar crack surface and coordinate system for curved front enrichment.

4.2.1 Construction of hexahedra along a curved crack front

For each cloudωα enriched with singular functions, a 12-node hexahedral element is defined along the crack
front using the following procedure.

1. Letxxxα denote the finite element node associated with cloudωα . Find the closest crack front vertexv j

to nodexxxα . This procedure can be efficiently implemented using geometric predicates. This step is
illustrated in Figure7(a).

2. The dimensions of the hexahedral element are set such thatit contains the cloudωα , the support of
the enrichment functions used at nodexxxα . Let hα denote the radius of the smallest sphere with origin
at xxxα that containsωα . Since the origin of the hexahedral is, in general, not equalto xxxα , we request

11



that the hexahedral contains a sphere of radius given by

rsphere=‖ −−→vvv jxxxα ‖+hα

where‖ −−→vvv jxxxα ‖ is the distance from the closest crack front vertex,vvv j , to the finite element nodexxxα .
This step is illustrated in Figure7(b).

3. Define the dimension,lh, of the edges of the hexahedral cross-section atξ3 = −1.0, ξ3 = 0.0, and
ξ3 = 1.0. The hexahedral cross-section is squared andlh is taken aslh = 2rsphere.

4. Starting from vertexv j , select the two closest vertices,vj, right andvj, left, along the crack front direc-
tions ξ3 = 1 andξ3 = −1, respectively, such that they are located outside of the sphere with radius
rsphereand originvvv j . This step is illustrated in Figure7(c).

5. Compute at front verticesvj, left, v j andvj, right the triadbbb, nnn, ttt oriented in the conormal direction of the
crack front, normal to the crack surface and tangent to the crack front, respectively. The computation
of these vectors is described in Section3.1. Crack front vertices coordinatesvvvj, left, vvv j andvvvj, right and
the triads are then used to define the coordinates of the element nodes. For example, the squared face
ξ3 = 1 with edge lengthlh containsvvvj, right and is normal to the tangent vector computed atvvvj, right.
The face edges are either in the directionnnn or bbb. This step is illustrated in Figure7(d)which shows a
12-node hexahedron built using the procedure described above.

A curvilinear cylindrical coordinate system(r,θ ,ξ3) along the crack front can be defined using brick
coordinates(ξ1,ξ2,ξ3), as described below. This system is used in the computation of the singular enrich-
ment functions (2). These computations involve transformations of vectors and their derivatives between
coordinate systems(X1,X2,X3), (ξ1,ξ2,ξ3) and(r,θ ,ξ3). Details on this are provided below.

4.2.2 Transformation map between global (Cartesian) coordinates and curvilinear coordinates at
the crack front

In this section, we present the coordinate transformationsbetween the global Cartesian system(X1,X2,X3)
and the curvilinear crack front coordinate systems(ξ1,ξ2,ξ3) and(r,θ ,ξ3). These transformations are used

to define enrichment functions̄L
ξ j
α i(r,θ ), i = 1,2, j = 1,2,3, in the global coordinate system. Transformation

of derivatives of these functions is presented in AppendixA.

T1 - Transformation between coordinate systems(X1,X2,X3) and (ξ1,ξ2,ξ3) Once the hexahedron that
defines the curvilinear coordinates(ξ1,ξ2,ξ3) along the crack front has been built, unitary base vectors for
this system and the transformation between this system and the global Cartesian system(X1,X2,X3) can be
computed as described below.

The transformation from master coordinates(ξ1,ξ2,ξ3) to global coordinates(X1,X2,X3) is defined by

T1 : (ξ1,ξ2,ξ3) 7−→ (X1,X2,X3)

Xi(ξ1,ξ2,ξ3) =
12

∑
j=1

Xi j Nj(ξ1,ξ2,ξ3)

12



xxxα

Crack surface
geometry

v jCrack front
geometry

(a) Step1: Selection of the closest crack front vertexv j to
enriched nodexxxα .

ωα

lh = 2rsphere

Inscribed
sphere

(b) Steps2 and3: Define inscribed sphere and dimension of
element edges at facesξ3 =−1.0, ξ3 = 1.0.

v j,right

v j,le f t

(c) Step4: Find neighboring verticesvj, right andvj, left to v j
along the crack front.

(d) Step5: Define nodal coordinates for curved hexahedron.

Figure 7: Steps for the construction of a hexahedron elementthat defines a curvilinear coordinate system
used for the computation of singular enrichment functions at cloud ωα . The pictures presented here are
based on actual data from a GFEM mesh and crack surface triangulation. The cloudωα shown in the figures
is the union of the set of tetrahedral elements that share thenodexxxα .
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Figure 8: Transformation mapT1.

where the shape functionsNj(ξ1,ξ2,ξ3) are given by

N1(ξ1,ξ2,ξ3) = 1/8(1−ξ1)(1−ξ2)(ξ 2
3 −ξ3)

N2(ξ1,ξ2,ξ3) = 1/8(1+ξ1)(1−ξ2)(ξ 2
3 −ξ3)

N3(ξ1,ξ2,ξ3) = 1/8(1+ξ1)(1+ξ2)(ξ 2
3 −ξ3)

N4(ξ1,ξ2,ξ3) = 1/8(1−ξ1)(1+ξ2)(ξ 2
3 −ξ3)

N5(ξ1,ξ2,ξ3) = 1/8(1−ξ1)(1−ξ2)(ξ 2
3 +ξ3)

N6(ξ1,ξ2,ξ3) = 1/8(1+ξ1)(1−ξ2)(ξ 2
3 +ξ3)

N7(ξ1,ξ2,ξ3) = 1/8(1+ξ1)(1+ξ2)(ξ 2
3 +ξ3)

N8(ξ1,ξ2,ξ3) = 1/8(1−ξ1)(1+ξ2)(ξ 2
3 +ξ3)

N9(ξ1,ξ2,ξ3) = 1/4(1−ξ1)(1−ξ2)(1−ξ 2
3 )

N10(ξ1,ξ2,ξ3) = 1/4(1+ξ1)(1−ξ2)(1−ξ 2
3 )

N11(ξ1,ξ2,ξ3) = 1/4(1+ξ1)(1+ξ2)(1−ξ 2
3 )

N12(ξ1,ξ2,ξ3) = 1/4(1−ξ1)(1+ξ2)(1−ξ 2
3 )

andXi j are the nodal coordinates for the curved hexahedron defined in Section4.2.1. This transformation
and its inverse are illustrated in Figure8. Note that the master coordinates(ξ1,ξ2,ξ3) definecoordinate
linesalong the curvilinear crack front as discussed earlier. These coordinates lines are illustrated in Figure
6.
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The Jacobian for this transformation is given by

[

(JJJ1)i j =
∂Xi

∂ ξ j

]

=










∂X1

∂ ξ1

∂X1

∂ ξ2

∂X1

∂ ξ3
∂X2

∂ ξ1

∂X2

∂ ξ2

∂X2

∂ ξ3
∂X3

∂ ξ1

∂X3

∂ ξ2

∂X3

∂ ξ3










(10)

The columns ofJJJ1 define vectors tangent to the coordinate lines in physical coordinates and are given by

ĝgg j =
∂XXX
∂ ξ j

=
∂Xi

∂ ξ j
eeei (11)

whereeeei is a base vector of the global coordinate system. Unitary base vectors along the crack front are then
given by

êeej =
ĝgg j

ĥ j
(no summation onj) (12)

where thescale factorĥ j is given by

ĥ j =

√

ĜGG j j (no summation onj) (13)

andĜGG is the metric tensor defined as
ĜGGi j = ĝggi · ĝgg j (14)

The base vectorŝeeej , j = 1,2,3 are the red, black and yellow arrows illustrated in Figure6. Since the
coordinate linesξ1 andξ2 are not curvilinear, the base vectorsêeej , j = 1,2,3, and the other quantities defined
above are a function ofξ3 only. This simplifies the calculations as shown in AppendixA.

The inverse mapping
T−1

1 : (X1,X2,X3) 7−→ (ξ1,ξ2,ξ3)

is needed for the computational implementation of the enrichment functions as discussed in Section4.2.2.
It can be numerically determined using an iterative scheme such as Newton-Raphson.

After performing the inverse mapping, the closest point on the curved front toXXX is given byXXX(0,0,ξ3).
Thus, the distance ofXXX to the crack front is given by

r(XXX) =‖ XXX−XXX(0,0,ξ3) ‖ (15)

This is used below to define the curvilinear cylindrical coordinate system needed for the computation of
singular enrichment functions (2).

Curvilinear cylindrical coordinate system along crack front Having coordinates(ξ1,ξ2,ξ3) computed
using mappingT−1

1 , a curvilinear cylindrical coordinate system along the crack front can be defined through
the following transformation

T−1
2 : (ξ1,ξ2,ξ3) 7−→ (r,θ ,ξ3)
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with the relation between coordinates in both systems givenby






r =‖ XXX(ξ1,ξ2,ξ3)−XXX(0,0,ξ3) ‖
θ = arctan(

ξ2

ξ1
)

(16)

The Jacobian for this transformation is given by

JJJ−1
2 =






cos(θ ) sin(θ ) 0

−1
r

sin(θ )
1
r

cos(θ ) 0

0 0 1




 (17)

which is equal toJJJ−1
a defined in (6).

Definition of enrichment functions in global coordinates TransformationsT−1
1 andT−1

2 can be used to

define enrichment functions̄L
ξ j
α i(r,θ ), i = 1,2, j = 1,2,3, in global coordinates.

Define
L̂

ξ j
α i(ξ1,ξ2,ξ3) = L̄

ξ j
α i ◦T−1

2 (ξ1,ξ2,ξ3) i = 1,2, j = 1,2,3 (18)

Next define
L̃

ξ j
α i(X1,X2,X3) = L̂

ξ j
α i ◦T−1

1 (X1,X2,X3) i = 1,2, j = 1,2,3 (19)

In the computational implementation of the singular enrichment functions, an integration point in the
supportωα of these functions is first mapped to global coordinatesXXX and then mapped to cylindrical coor-
dinates using the composition ofT−1

1 andT−1
2 , i.e.,

T−1 = T−1
2 ◦T−1

1

where
T−1 : (X1,X2,X3) 7−→ (r,θ ,ξ3)

Mapped coordinates(r,θ ,ξ3) are then used in (2) to compute the singular functions.

The displacement vectors(L̃ξ1
α1, L̃

ξ2
α1, L̃

ξ3
α1) and(L̃ξ1

α2, L̃
ξ2
α2, L̃

ξ3
α2) have components in the crack front coordi-

nate directionsξ1,ξ2,ξ3 and thus must be transformed to the global Cartesian system(X1,X2,X3) using the
same procedure as in Section4.1.1. This can be done using (9) with RRRb replaced byRRR1, a rotation matrix
with columns given by the base vectorsêeei , i = 1,2,3, defined in (12).

5 Numerical experiments

In the numerical examples presented in this paper, crack front enrichment functions are used at nodes whose
support intersects the crack front. More details about the selection of nodal GFEM enrichments in 3D
fracture mechanics problems can be found in, e.g, [28].

We use the Cut-off Function Method (CFM) to extract stress intensity factors from GFEM solutions.
The CFM is a superconvergent extraction technique based on Betti’s reciprocity law. It is able to deliver
convergence rates for SIFs that are on par with the convergence rate of strain energy. More details about this
extraction method can be found in, e.g, [26, 27, 36, 37].
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5.1 Half penny-shaped crack in a prism

In this example, we consider a half penny-shaped crack in a prism as illustrated in Figure9. The ratio of the
characteristic dimension,L, of the prism and the radiusa of the crack isL/a = 5.0. The prism is subjected
to top and bottom tensile tractions of magnitudeσ = 1. Figure9 illustrates the boundary conditions and the
dimension of the domain of analysis. The Young’s Modulus andPoisson’s ratio are taken asE = 1.0 and
ν = 0.25, respectively.

The reference solution for stress intensity factor (SIF) inthis problem is provided by [39]. There, one
quarter of the domain was discretized with hex-20 finite elements and appropriate symmetry boundary con-
ditions applied. The localized mesh refinement around the crack front consisted of a set of seven rings of
elements. Hexagonal 20-node elements with quarter-point nodes and collapsed faces were used along the
crack front. The ratio element size to characteristic cracklength(Le/a) was 3.83×10−3 [39]. This is around
ten times smaller than the finest mesh we use (cf. Table1).

The SIF solutions(KI ) obtained in this section are normalized by the equation

K̄I =
KI

σ
√

πa
Q

whereQ = 2.464 for a circular crack. More details about this normalization process can be found in [39]
and references therein.

The aim of this example is to show a comparison for SIF solution between linear and quadratic crack
front geometry approximations for different mesh refinements at the crack front. Since this example has a
surface breaking crack, the boundary layer effect [29] reduces the SIF values when the crack front is close
to the boundary of the domain. Because the boundary layer effect is not the main focus of this paper, we
compute the SIF in the range 10◦ ≤ θ ≤ 170◦ .

We use three GFEM meshes with different levels of refinement along the crack front and polynomial or-
der of approximationp= 3. More details about high-order GFEM approximations for the class of problems
considered here can be found in [28]. The description of each mesh according to its level of refinement is
listed in Table1. Figure9 illustrates the refinement along the crack front for the three meshes used in this
analysis. Mesh 1 is the coarsest mesh that allows the construction of the 12-node hexahedron under the
assumptions listed in Section4.2.1.

Table 1: Description of GFEM meshes used in the simulation. The ratiosLe/a listed below refer to the
elements that intersect the crack front.

Le/a
Mesh dofs min max

1 15132 0.1250 0.3125
2 33102 0.0625 0.1180
3 82590 0.0294 0.0525

The use of coarse meshes around the crack front brings the issue of numerical integration of the singular
enrichments. In [25], we show that the Keast integration rule [12] with 45 points is able to numerically
integrate with sufficient accuracy these functions on meshes with element size typically used in the GFEM.
Mesh 3 fits in this category but meshes 1 and 2 do not. In this example, we use a tensor product rule with
343 points in order to control integration errors. The same rule is used on all three meshes.
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Mesh 1

Mesh 2

Mesh 3
2L

L

σ

2L

a

Figure 9: Half penny-shaped crack in a prism subjected to topand bottom uniform tractions: Initial coarse
mesh with boundary conditions and crack surface representation. Zoom in shows the three meshes around
the crack front (left). Green glyphs represent Westergaardenrichment with either straight (Section4.1) or
curved (Section4.2) crack front geometry approximation. Yellow glyphs represent high-order step functions
[28].
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Figures10(a), 10(b), and10(c) illustrate the performance of linear and quadratic crack front geometry
approximations on GFEM meshes 1, 2, and 3, respectively. Table 2 lists the minimum, maximum, average,
and standard deviation of the relative difference between GFEM and FEM solutions along half of the crack
front. One can observe that solutions computed with either crack front approximations show very oscillatory
behavior and high error values for Mesh 1. The oscillations are gradually smoothed out as the level of crack
front refinement increases. In the case of Mesh 3, the GFEM solutions are virtually identical and in good
agreement with the reference solution. Figure10(d)shows the SIF solution for the entire crack front. We can
see that both crack front enrichments show symmetry with respect to the middle of the crack front. These
results illustrate the robustness of both crack front descriptions. Moreover, the results for Mesh 3 show good
agreement with the reference solution. The average error for the linear crack front geometry approximation
is around−0.024% with standard deviation of about 0.21%.
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(a) Normalized SIF along half of crack front for Mesh 1.
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(b) Normalized SIF along half of crack front for Mesh 2.
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(c) Normalized SIF along half of crack front for Mesh 3.
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(d) Normalized SIF along entire crack front for Mesh 3.

Figure 10: Normalized stress intensity factors (SIF) alongthe crack front for various meshes.

5.1.1 Convergence Analysis

This section presents convergence analyses of linear and quadratic crack front approximations. Two cases
are considered. In the first one, GFEM meshes 1, 2 and 3 (cf. Table 1) are used while the crack surface rep-
resentation is kept fixed. In the second case, GFEM Mesh 3 is used with three crack surface triangulations.
In this case, the analysis starts with the coarsest crack front description that allows the construction of the
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Table 2: Relative error,|KI − K̂I |/K̂I , of SIF for GFEM meshes 1, 2 and 3. The reference values for the
stress intensity factor,̂KI , are provided by the FEM solution of Walters et al. [39].

Crack front geom. Error %
Mesh approximation abs(min) abs(max) average std. deviation

1 Linear 0.0547 7.8435 -0.3553 3.7107
Quadratic 0.1638 9.1141 0.1153 3.3504

2 Linear 0.0427 1.2096 -0.0224 0.4639
Quadratic 0.0006 0.6584 -0.0197 0.3138

3 Linear 0.0101 0.4187 -0.0242 0.2083
Quadratic 0.0040 0.3694 0.0396 0.2027

hexahedral for quadratic crack front approximation (cf. Section 4.2.1). The crack front segment length for
this mesh is denoted byd. The length of the crack front segments in the subsequent crack surface meshes
ared/2 andd/3 and they are constant along the crack front. These crack surface meshes are referred to as
crack meshesd1, d2 andd3, respectively.

In order to quantify the error of the stress intensity factorsolution along the crack front, we use a nor-
malizedL2-norm of the difference between the GFEM and the reference FEM solution defined by

er(Ki) :=
‖ei‖L2

‖K̂i‖L2

=

√
√
√
√

Next

∑
j=1

(

K j
i − K̂ j

i

)2

√
√
√
√

Next

∑
j=1

(

K̂ j
i

)2

(20)

whereNext is the number of extraction points along the crack front,K̂ j
i andK j

i are the reference and GFEM
stress intensity factor values for modei at the crack front pointj , respectively. Hereafter, the quantityer(Ki)
is referred to as a normalizederror even though the reference FEM solution is not the exact solution of the
problem.

Figure11 illustrates the convergence of the relative errorer(KI ) of the stress intensity factorKI along
the crack front using GFEM meshes 1, 2 and 3 and a fixed crack mesh. For reference, the convergence
rate in strain energy for a finite element solution using uniform mesh refinement isβ ≃ 0.32 [36]. One
can observe that linear and quadratic approximations show similar convergence behavior when applying
localized refinement of the GFEM mesh along the crack front. The quadratic approximation shows slightly
faster convergence rate in the pre-asymptotic range. Nonetheless, both approximations converge to very
close normalizedL2-norm values when a more refined GFEM mesh is used.

Table3 lists the results of the second convergence study describedabove. It shows the relative error
er(KI ) of the stress intensity factorKI along the crack front corresponding to GFEM mesh 3 and crack
surface meshesd1, d2 andd3. In order to provide consistent values forer(KI ), the stress intensity factor
along the crack front is computed at the same locations in allcrack surface meshes, regardless of the level
of refinement of the crack front geometry. Linear and quadratic crack front approximations present virtually
equal convergence behavior with respect to the refinement ofthe crack front geometry. Crack Meshd1

shows larger error values than crack meshesd2 andd3. The computed relative errorer(KI ) levels off with
refinement of the crack front representation, as expected. Further reduction of the error requires a finner or
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Figure 11: Relative errorer(KI ) of the stress intensity factorKI along the crack front for linear and quadratic
crack front approximations.βlin. andβquad.denote the convergence rate for linear and quadratic approxima-
tions, respectively. GFEM meshes 1, 2 and 3 and a fixed crack mesh are used in the computations.

higher order GFEM mesh.

Table 3: Convergence analysis of GFEM solution with respectto the refinement of the crack front description
for linear and quadratic crack front approximations.

er(KI )
Mesh Front segment linear quadratic

d1 d = 0.0283 0.003754 0.003832
d2 d/2 = 0.0143 0.001794 0.001740
d3 d/3 = 0.0095 0.001621 0.001638

5.2 Inner and outer circumferential cracks in a finite cylinder

In this section, we consider two examples of cracks in a finitecylinder. The cylinder has dimensionsL/R= 4,
where 2L is the height of the cylinder andR is the radius of its cross section. We set a large ratio between
height and radius of the cylinder in order to minimize the finite domain effect in the extraction of stress
intensity factors. The model is subjected to unit tensile load σ = 1 on top and bottom faces.E = 1 and
ν = 0.3 are the material parameters assigned to the cylinder. The first example is a penny-shaped crack,
hereafter referred to asinner crack, in the middle of the cylinder. For this exampleR/a = 5, wherea is the
radius of the crack. The second example is a circumferentialsurface breaking crack, from now on referred
to asouter crack, in the middle of the cylinder. In this case,a defines the material ligament. The ratio of the
radius of the cylinder(R) to the crack length(c) is R/c = 1.25. The ratios cylinder radius to crack size,R/a
andR/c, are set such that the inner and outer crack front geometriesare the same. Figure12 illustrates the
domain of analysis and the crack surfaces used in the simulations.

The main objective of these examples is to compare the robustness of the crack front enrichment functions
in cases where the curved crack front is convex (inner crack)and concave (outer crack). As reference

21



a c

R

L

2L

a

Crack surface
location

Boundary of
the domain

Crack
front

σ

Outer
crack

Inner
crack

Figure 12: Finite cylinder subjected to top and bottom uniform tensile tractions and crack surface represen-
tation for outer and inner cracks.

solutions, we use the reference SIF solution for an infinite cylinder with a penny-shaped crack provided by
[38]

∞
K

in

I = 1.008σ
√

πa

and the solution for a circumferential external crack in a infinite cylinder provided by [21]

∞
K

out

I = 6.115σ
√

πc.

According to the references, the accuracy for
∞
K

in

I is of 0.5% and for
∞
K

out

I it is unknown. In both cases, we
show SIF results normalized by the reference solutions using the following formula

K̄ =
K
∞
K

whereK is the stress intensity factor extracted from thehp-GFEM solution.

In the inner and outer crack examples, we apply strongly graded meshes along the crack front and uniform
polynomial enrichment over the entire analysis domain. Theresulting polynomial approximation order in
both cases isp = 3. The same level of refinement is applied in both inner and outer crack examples. The
ratios of element size to characteristic crack length,Le/a andLe/c, are around 0.053 and 0.014 for the inner
and outer cracks respectively. This discretization is equivalent to the discretization applied on Mesh 3 of the
example presented in Section5.1. A Keast quadrature rule [12] with 45 points is used at each integration
sub-element of the computational elements enriched with singular functions.

Figure13(a)shows the computed stress intensity factor along the inner crack front. Table4 lists the
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absolute minimum, absolute maximum, average and standard deviation of the relative error along the crack
front. The results show that enrichments computed with either crack front geometry approximation produce
virtually identical solutions. They also show good agreement with the reference solution for semi-infinite
domain. The average error for linear and quadratic crack front geometry approximations is around−0.22%.
Moreover, the results show robustness of both crack front descriptions since the standard deviation of the
error along the crack front is around 0.17%.

In Figure13(b), we present the stress intensity factor for the simulation of a finite cylinder with outer
crack. Table4 lists the absolute minimum, absolute maximum, average and standard deviation of the relative
error along the crack front. Again, the results for linear and quadratic crack front geometry approximations
are almost identical and show good agreement with the reference solution for semi-infinite domain. Also,
the results show that both approximations are very robust since the SIFs show small oscillations along the
crack front. The average error along the crack front is, in this case, around 0.19% with standard deviation
of 0.33%.

Table 4: Error analysis of SIF for inner and outer cracks in a finite cylinder.

Crack front geom. Error %
Crack type Approximation abs(min) abs(max) average std. deviation

Inner Linear 0.009 0.605 -0.227 0.171
Quadratic 0.002 0.632 -0.213 0.178

Outer Linear 0.003 0.824 0.186 0.337
Quadratic 0.005 0.845 0.188 0.329
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(a) Normalized SIF along crack front for a finite cylinder with
inner crack
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outer crack

Figure 13: Normalized stress intensity factors (SIF) alongthe crack front for a finite cylinder with inner and
outer cracks.

5.3 Inclined elliptical crack

The aim of this example is to verify the linear and quadratic crack front approximations in a problem with
non-constant crack front curvature and mixed mode fracturebehavior. The problem consists of an inclined
elliptical crack of dimensionsa = 0.1 andb = 0.05 embedded in a cube of edge size 2L, as illustrated in
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Figure14. In order to reduce the finite domain effect on the solution, we seta/L = 10. The material param-
eters used in this analysis areE = 1.0×103 andν = 0.30. The slope of the crack with respect to they-axis
is γ = π/4. The domain is subjected to a uniform tensile tractionσ = 1 in they-axis. Figure14 illustrates
the model and the initial coarse mesh used in this example. Inthe discretization of the solution, we apply
localized mesh refinement on GFEM elements that intersect the crack front and polynomial enrichment of
orderp = 3 over the entire domain. The range of the ratio of element size along the crack front,Le, to char-
acteristic crack length,a, is 0.018≤ Le/a≤ 0.041. The crack surface is represented using a quasi uniform
triangulation.

The stress intensity factors for modesI , II , andIII of an inclined elliptical crack embedded in an infinite
domain are used as reference. These SIFs are given by [38]

K inf.
I =

σ sin2γ
√

πb
E(k)

[

sin2θ +

(
b
a

)2

cos2θ

] 1
4

K inf.
II = − σ sinγ cosγ

√
πbk2

[

sin2 θ +

(
b
a

)2

cos2 θ

] 1
4

[
k′

B
cosω cosθ +

1
C

sinω sinθ
]

K inf.
III =

σ sinγ cosγ
√

πb(1−ν)k2

[

sin2 θ +

(
b
a

)2

cos2 θ

] 1
4

[
1
B

cosω sinθ − k′

C
sinω cosθ

]

whereB, C, K(k) andE(k) are defined as

B = (k2−ν)E(k)+νk′2K(k), C = (k2−νk′2)E(k)−νk′2K(k),

K(k) =
∫ π

2

0

dϕ
√

1−k2sin2 ϕ
, E(k) =

∫ π
2

0

√

1−k2sin2 ϕdϕ ,

andk2 = 1−k′2, k′ = b/a andθ is a parametric angle representing a pointA on the crack front (cf. Figure
14). For the example solved in this section,γ = π/4 andω = π/2.

Figure15(a)and15(b)illustrate the comparison of linear and quadratic crack front approximations with
respect to the infinite domain solution, respectively. One can note that both approximations show good
agreement with the infinite domain solution. Table5 lists the normalizedL2-norm of the difference between
the numerical solution and the reference solution (cf. Equation (20)). Like in the previous examples, we
can observe that both approximations provide virtually thesame results. The relative errors of the stress
intensity factors along the crack front for linear and quadratic approximations show very small differences.

Table 5: NormalizedL2-norm of the error of the SIFs along the crack front for linearand quadratic approx-
imations.

Crack front geom.
approximation er(KI ) er(KII ) er(KIII )

Linear 0.0234 0.00406 0.04133
Quadratic 0.0223 0.00486 0.04246
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Figure 15: Stress intensity factors for modesI , II andIII using linear and quadratic crack front approxima-
tions.
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6 Concluding remarks

Linear and quadratic approximations to represent curvilinear crack fronts are presented. These represen-
tations are geared towards the construction of enrichment functions for the generalized finite element. In
both cases, special care is taken when setting the crack front coordinate system based on the geometric
description of the crack front. The evaluation of crack front normals, tangents and conormals vectors using
medial-quadric-based techniques ensures the robustness of the representation of the crack front geometry.

The results presented in Section5 show that a coarse mesh with either linear or quadratic crackfront
geometry approximations leads to poor crack front description. As a result, the SIF solution along the crack
front shows poor accuracy and very oscillatory behavior. However, by applying a suitable refinement level
along the crack front the results show that both approaches lead to the same crack front representation in the
limit case, i.e., when the crack front refinement is enough tocapture the singular solution along the crack
front.

The numerical experiments indicate that both crack front geometry approximations lead to very robust
results in meshes typically used for this class of problem. The first approach uses Cartesian coordinate
systems along the crack front and is straightforward to implement. The implementation of the second
approach is more involved since it is based on curvilinear coordinate systems. Thus,for the class of problems
considered here, the first approach is recommended.

The proposed approaches to build enrichment functions along curved crack fronts are not limited to
the case of linear elastic fracture mechanics, the focus of this paper. Application of these approaches to
the case of cohesive cracks, and other non-linear fracture mechanics problems is straightforward. The
same procedure used to define the curvilinear coordinate system along the crack front can be used. The
conclusions regarding which approach is better for other classes of problem may, of course, be different
from the case considered here.

Acknowledgments: The authors wish to thank Prof. Sergio Proença from the School of Engineering at
São Carlos - University of S̃ao Paulo, Brazil, for fruitful discussions during the course of this research.
The support of the first two authors by the University of Illinois at Urbana-Champaign is also gratefully
acknowledged.
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A Gradient of Enrichment Functions in Global Coordinates

This section presents the computation of the gradient of enrichment functions with respect to the global
coordinatesX1, X2, X3. These quantities, in turn, are used in the computation of derivatives of GFEM shape
functions defined in (1).

A.1 Case 1: Linear Approximation of Crack Front Geometry

In this section, we consider the case of the derivatives of the enrichment functions defined in Section4.1.1.

Let ūuu(r,θ ) denote a displacement vector with components(ū1, ū2, ū3) whereū j equal toL̄
ξ j

α1 or L̄
ξ j

α2, for
j = 1,2,3, andα arbitrary. Similarly, we define vectorŝuuu(ξ1,ξ2,ξ3) anduuu(X1,X2,X3) using enrichment

functionsL̂
ξ j
α i(ξ1,ξ2,ξ3) andL

Xj
α i ,(X1,X2,X3), i = 1,2, j = 1,2,3, respectively.

Let r i , i = 1,2,3, denote cylindrical coordinatesr, θ and ξ3, respectively. The gradient of̂uuu can be
computed using the derivatives of the functions defined in (2) and is given by

ûuu
←−▽ξ =

∂ û j

∂ ξl
êeej ⊗ êeel =

∂ ū j

∂ rm

∂ rm

∂ ξl
êeej ⊗ êeel

where, from (6),
∂ rm

∂ ξl
=
(
JJJ−1

a

)

ml

The relation between the base vectorsêeem, m= 1,2,3, of a Cartesian crack front coordinate system and
the global based vectorseeei , i = 1,2,3, is given by

êeem =
(
RRR−1

b

)

mieeei

whereRRR−1
b = JJJ−1

b (cf. Section4.1.1).

Using the above, the gradient ofuuu can be computed as follows

ûuu
←−▽ξ =

∂ ûm

∂ ξn
êeem⊗ êeen =

∂ ûm

∂ ξn

(
RRR−1

b

)

mieeei⊗
(
RRR−1

b

)

n j eeej

=
(
RRR−1

b

)

mi

∂ ûm

∂ ξn

(
RRR−1

b

)

n j eeei⊗eeej =
∂ui

∂Xj
eeei⊗eeej = uuu

←−▽X

Thus, the derivatives of the enrichment functions with respect to global coordinates can be computed
using

∂ui

∂Xj
=
(
RRR−1

b

)

mi

∂ ûm

∂ ξn

(
RRR−1

b

)

n j

In matrix form, we have [

uuu
←−▽X

]

= RRRb

[

ûuu
←−▽ξ

]

RRRT
b .

A.2 Case 2: Quadratic Approximation of Crack Front Geometry

The case of enrichment functions defined using a quadratic approximation of the crack front geometry
follows the same steps as in the section above. However, in this case, the coordinate system is curvilinear.
The computation of the gradient of the displacement vector with respect to curvilinear coordinates must also

27



consider the derivatives of the crack front base vectors andscale factors. This is presented below in Sections
A.2.1 andA.2.2, respectively.

A.2.1 Derivatives of crack front base vectors

In general, the base vectors of a curvilinear system vary in length and orientation from point to point in
space. In an orthonormal system the length of the vectors is always unit, but their orientations may change.
Therefore, a curvilinear orthonormal base system can be regarded as a triad that rigidly rotates from point
to pont in the curvilinear space.

The derivatives of a curvilinear orthonormal basis can be written as follows [15]

∂ êeej

∂ ξi
=

[

δik

ĥ j

∂ ĥi

∂ ξ j
− δi j

ĥk

∂ ĥ j

∂ ξk

]

êeek (21)

All sectionsξ3 = C, whereC is a constant, of the 12-node hexahedron element used in the definition of
curvilinear coordinate systems (cf. Section4.2.1) have the following properties

• They are squared, i.e., there is no distortion on theξ1 ξ2 plane;

• all section have the same dimensions;

• they are planar, i.e. there is no warping on theξ1 ξ2 plane.

Based on these assumptions, the base vectorsêeej , j = 1,2,3, are dependent onξ3 only and all scaling factors
are constant, exceptĥ3.

Depending on the nodal coordinates of the element, however,sectionsξ3 = C may be non-orthogonal to
the coordinate lineξ3. This happens if the element has a large curvature in theξ3 direction. The procedure
presented in Section4.2.1, however, keeps this distortion to a minimum. Furthermore,even when the
element is distorted, this is much less pronounced near the centroid of the element. The enriched cloud
(ωα) is located, by construction, almost at the center of the hexahedron. Therefore, it is reasonable to
assume that the base vectorsêeej , j = 1,2,3, form an orthonormal basis over the enriched cloud(ωα).

Based on the above, the derivatives of the base vectorsêeej , j = 1,2,3, reduce to

∂ êee1

∂ ξ3
=

1

ĥ1

∂ ĥ3

∂ ξ1
êee3 (22)

∂ êee2

∂ ξ3
=

1

ĥ2

∂ ĥ3

∂ ξ2
êee3 (23)

∂ êee3

∂ ξ3
= − 1

ĥ1

∂ ĥ3

∂ ξ1
êee1−

1

ĥ2

∂ ĥ3

∂ ξ2
êee2 (24)

and all other components are zero.

A.2.2 Derivatives of the scale factors

The derivatives the scale factors defined in (13) can be written as follows.

∂ ĥ j

∂ ξi
=

1

ĥ j

∂ ĝgg j

∂ ξi
· ĝgg j =

1

ĥ j

∂ 2Xk

∂ ξi∂ ξ j

∂Xk

∂ ξ j
(25)
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with no summation onj .

Based on the discussion in the previous section, only the following terms are non-zero

∂ ĥ3

∂ ξ1
=

1

ĥ3

∂ 2Xk

∂ ξ1∂ ξ3

∂Xk

∂ ξ3
(26)

∂ ĥ3

∂ ξ2
=

1

ĥ3

∂ 2Xk

∂ ξ2∂ ξ3

∂Xk

∂ ξ3
. (27)

A.2.3 Gradient of the displacement field

Let ûuu be a displacement vector with components given by enrichment functionsL̂ξi
αn(ξ1,ξ2,ξ3), n = 1 or

n = 2 andi = 1,2,3, as in SectionA.1. The gradient of̂uuu with respect to curvilinear coordinatesξ1,ξ2,ξ3

can be computed using [30]

ûuu
←−▽ξ = û j êeej ⊗

←−
∂

∂ ξi
êeei

1

ĥi
= (û1êee1 + û2êee2 + û3êee3)⊗

( ←−
∂

∂ ξ1
êee1

1

ĥ1
+

←−
∂

∂ ξ2
êee2

1

ĥ2
+

←−
∂

∂ ξ3
êee3

1

ĥ3

)

=
1

ĥi

∂ û j

∂ ξi
êeej ⊗ êeei +

û j

ĥi

∂ êeej

∂ ξi
⊗ êeei

(28)

In indicial notation, we have

(

ûuu
←−▽ξ

)

ki
=

1

ĥi

(

∂ ûk

∂ ξi
+

û j

ĥ j

∂ ĥi

∂ ξ j
δik−

ûi

ĥk

∂ ĥi

∂ ξk

)

Using
∂ ûk

∂ ξi
=

∂ ūk

∂ r l

∂ r l

∂ ξi
, where

∂ r l

∂ ξi
=
(
JJJ−1

2

)

li , we have

(

ûuu
←−▽ξ

)

ki
=

1

ĥi








∂ ūk

∂ r l

∂ r l

∂ ξi
︸ ︷︷ ︸

derivatives of displacements

+
û j

ĥ j

∂ ĥi

∂ ξ j
δik−

ûi

ĥk

∂ ĥi

∂ ξk
︸ ︷︷ ︸

derivatives of vectors








(29)

whereūk,k = 1,2,3, are the components of vectorūuu defined in SectionA.1. The indices of the scale factors
do not take part in the summation convention.

Using the results from SectionsA.2.1 andA.2.2, we can write the components of the gradient of the
displacement vector̂uuu in matrix form

[

ûuu
←−▽ξ

]

=











1

ĥ1

∂ û1

∂ ξ1

1

ĥ2

∂ û1

∂ ξ2

1

ĥ3

∂ û1

∂ ξ3
1

ĥ1

∂ û2

∂ ξ1

1

ĥ2

∂ û2

∂ ξ2

1

ĥ3

∂ û2

∂ ξ3
1

ĥ1

∂ û3

∂ ξ1

1

ĥ2

∂ û3

∂ ξ2

1

ĥ3

∂ û3

∂ ξ3











+











0 0 − û3

ĥ3

1

ĥ1

∂ ĥ3

∂ ξ1

0 0 − û3

ĥ3

1

ĥ2

∂ ĥ3

∂ ξ2

0 0
û1

ĥ1

1

ĥ3

∂ ĥ3

∂ ξ1
+

û2

ĥ2

1

ĥ3

∂ ĥ3

∂ ξ2











(30)

We can now compute the gradient of the enrichment functions with respect to global coordinates using
the same steps as in SectionA.1.

The relation between the base vectorsêeem, m= 1,2,3, of a curvilinear crack front coordinate system and
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the global based vectorseeei , i = 1,2,3 is given by

êeem =
(
RRR−1

1

)

mieeei

whereRRR−1
1 is a rotation matrix with rows given by the base vectorsêeei , i = 1,2,3, defined in Section4.2.2,

i.e.,
(
RRR−1

1

)

i j =
1

ĥi

∂Xj

∂ ξi

This transformation tensor is dependent onξ3, the position along the crack front. Again, no summation is
implied over the indicei of the scale factors.

Using the above
(

uuu
←−▽X

)

i j
=
(
RRR−1

1

)

mi

(

ûuu
←−▽ξ

)

mn

(
RRR−1

1

)

n j

where
(

ûuu
←−▽ξ

)

mn
are the components of the gradient of the displacement vector ûuu in the curvilinear system

as defined in (29) and
(

uuu
←−▽X

)

i j
are the gradient components in global coordinates.

In matrix form, we have [

uuu
←−▽X

]

= RRR1

[

ûuu
←−▽ξ

]

RRRT
1 .
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[37] B. A. Szabo and I. Babǔska. Computation of the amplitude of stress singular terms for cracks and
reentrant corners. In T.A. Cruse, editor,Fracture Mechanics: Nineteenth Symposium, ASTM STP 969,
pages 101–124, Southwest Research Institute, San Antonio,TX, 1988.16

[38] H. Tada, P. Paris, and G. Irwin.The Stress Analysis of Cracks Handbook. ASME Press, New York, 3rd
edition, 2000.22, 24

[39] M. C. Walters, G. H. Paulino, and R. H. Dodds Jr. Stress-intensity factors for surface cracks in func-
tionally graded materials under mode-I thermomechanical loading.International Journal of Solids and
Structures, 41:1081–1118, 2004.17, 20

[40] G.N. Wells, R. de Borst, and L.J. Sluys. A consistent geometrically non-linear approach for delamina-
tion. International Journal for Numerical Methods in Engineering, 54:1333–1355, 2002.2

32



[41] G.N. Wells and L.J. Sluys. A new method for modeling cohesive cracks using finite elements.Inter-
national Journal for Numerical Methods in Engineering, 50:2667–2682, 2001.2

[42] G. Zi and T. Belytschko. New crack-tip elements for XFEMand applications to cohesive cracks.
International Journal for Numerical Methods in Engineering, 57:2221–2240, 2003.2

33


	Introduction
	Generalized FE shape functions
	Crack front base vectors
	Evaluation of the crack front normals, tangent and conormal vectors

	Crack front approximation and enrichment functions
	Linear approximation of crack front geometry
	Transformation of enrichment functions to global coordinates

	Quadratic approximation of crack front geometry
	Construction of hexahedra along a curved crack front
	Transformation map between global (Cartesian) coordinates and curvilinear coordinates at the crack front


	Numerical experiments
	 Half penny-shaped crack in a prism
	Convergence Analysis

	Inner and outer circumferential cracks in a finite cylinder
	Inclined elliptical crack

	Concluding remarks
	Gradient of Enrichment Functions in Global Coordinates
	Case 1: Linear Approximation of Crack Front Geometry
	Case 2: Quadratic Approximation of Crack Front Geometry
	Derivatives of crack front base vectors
	Derivatives of the scale factors
	Gradient of the displacement field



