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Abstract

A coupling between thép-versionof the generalized finite element methdg{GFEM) and the
face offsetting method (FOM) for crack growth simulatioapresented. In the proposed GFEM, adap-
tive surface meshes composed of triangles are utilizedgtiogtky represent complex three-dimensional
(3-D) crack surfaces. By applying tigp-GFEM at each crack growth step, high-order approximations
on locally refined meshes are automatically created in cexnpiD domains while preserving the as-
pect ratio of elements, regardless of crack geometry. The FKCapplied to track the evolution of the
crack front in the explicit crack surface representatiome FOM provides geometrically feasible crack
front descriptions based dip-GFEM solutions. The coupling dfp-GFEM and FOM allows the simu-
lation of arbitrary crack growth with concave crack fromdépendent of the volume mesh. Numerical
simulations illustrate the robustness and accuracy of thegsed methodology.

Keywords: Generalized finite element method; Extended finite elemethad; High-order approxi-
mations; Face offsetting method; Crack growth.

1 Introduction

In industry, designers often utilize computational sintiolas of fracture mechanics problems in life pre-
diction of engineering structures. Life prediction of emgicomponents, structural members of aircraft
fuselage, riser pipes in offshore platforms and pipelinetgoare examples of industrial problems in which
three-dimensional (3-D) computational fracture mechaaitlysis is broadly applied. In these cases, crack
growth assessment is a major requirement, and engineergigiohs must be based on accurate evaluation
of fracture mechanics quantities such as energy releaseanat stress intensity factorsg 60]. These
guantities are, in turn, dependent on the accuracy of thenB+Derical analysis performed.

The finite element method (FEM) has been broadly used for rdanmgades to perform crack growth
analysis of industrial complexity problemsl, 40, 61, 79, 80]. The application of the FEM to this class of
problems faces several issues regarding crack surfacetirstion and excessive computational cas][

In the FEM, it is a demanding task to fully automate the geii@maf meshes in complex 3-D geometries
satisfying discontinuities and aspect ratio requirements



Partition-of-unity methods] such as the Generalized FEM (GFEM){ and the eXtended FEM
(XFEM) [71] are promising techniques to overcome the shortcomingseo$tandard FEM in crack growth
simulations. In these methods, discontinuities in thetsmiucan be represented via suitable enrichment
functions coupled with geometrical descriptions of craocKaces, which aréndependent of the volume
mesh The elements have no requirement to fit the crack surfacés féature of the partition of unity
methods greatly facilitates mesh refinement, which can béyeapplied in localized regions of the dis-
cretization. A survey of 3-D crack growth modeling with pon-of-unity methods is presented iaf].

When applied to three-dimensional fracture mechanicslenog, partition of unity methods usually
rely on a computational geometry technique to representithek surface and the enrichment functions
that are utilized to approximate the discontinuous andudargcomponents of the solution. In this paper,
the methods used in the geometrical description of the @adkces are classified into two groups: implicit
and explicit.

Implicit methods use a three-dimensional volume mesh teessmt a crack surface. In these methods
the fidelity of the crack surface description depends ondgfisement of the volume mesh. One example of
this type of crack surface representation is the level s¢hooe]63]. Belytschko and co-workers coupled
the XFEM with level set method for static crack and crack ghosimulations 6, 39, 71]. Sukumar
et al. [0, 70] have also introduced fast marching techniques to tracketindution of three-dimensional
crack surfaces in XFEM simulations. More recently, Duanle{@”] introduced the element local level
set method for 3-D dynamic crack growth analysis with the XFE detailed review of crack surface
representation with level set methods in XFEM simulaticas loe found in 18]

Other examples of implicit crack surface representatiertifa@ methods based on a collection of planar
cuts or crack planes in tetrahedral elements to represemicit surface. According tcader et al. 28],
depending on the crack path tracking strategy, these mettatlbe subdivided into four categories: fixed,
local, non-local and global. The fixed crack tracking stygitis based on standard interface elements, e.g.,
cohesive elements, and requires the crack path to be kndiereband. In this case, the crack propagates
when the interface element, in the predetermined crack patteeds a critical failure stress. The local
crack tracking scheme can be regarded as a three-dimehsideasion of the crack tracking strategy for
two-dimensional analysis. In this case, the crack growttriieen by the normal direction of the maximum
principal stress and represented by planar cuts in thehedral elements. Each element has its own in-
dependent crack plane, which may lead to discontinuitiglenoverall crack surface representation due
to variations of crack plane normals between adjacent alesnén order to prevent these discontinuities,
Areias and Belytschko?] proposed to adjust the planar cut provided by the maximuimcjal stress
according to the intersection points generated by the plams of adjacent elements. In the non-local
tracking strategy proposed by Gasser and Holzapgfel44], the crack surface in the neighborhood of the
crack front is smoothed out in a least-square sense by gopostssing corrector step. The element crack
planes on the neighborhood of the crack front are adjusteddier to provide a smooth crack front for each
crack growth step and, consequently, a smooth crack sur@acesentation. The global tracking technique
introduced by Oliver et al.45, 46] applies an auxiliary problem to trace the crack surfacé péhis track-
ing technigue provides a continuously smooth crack surfgcsolving an auxiliary heat conduction-like
problem within the post-processing phase of the analysithis strategy, the crack surface is represented
by an isosurface of the solution for the heat conductioa-pkoblem which, in turn, is represented by a
collection of planes defined at the element level.

In the studies presented i,[12, 2€], the overall solution of the problems solved with methdust t
use implicit crack surface representation is not mesh diggenas expected. However, the accuracy of
the crack surface representation is still mesh dependece $he crack surface is represented by the same



mesh used for the solution of the problem. A remedy for thidbfam is to incorporate an auxiliary mesh of
same spatial dimension as the mesh used in the analysispriaceepresent the crackd]. This requires
additional bookkeeping and computational cost in orderdodfer information between meshes.

Explicit methods for crack surface representation in 3-B aiswo-dimensional triangular/quadrilateral
mesh embedded in a three-dimensional space to represesrattiesurface. By design, this type of rep-
resentation provides a continuous crack surface with n@edmputational cost related to the solution
of auxiliary problems. In this case, the crack surface carelemn arbitrary shape and no volume mesh
refinement is required to improve the accuracy of the cradiase representation. Moreover, special geo-
metrical features of the surface, such as sharp turns, vénekery common in mixed-mode simulations,
can be easily represented without additional difficulti&@fie accuracy of crack representation is impor-
tant for problems in which the physics depend on the shapkeotitack surface, e.g. hydraulic fracture,
propagation with cohesive models, crack closure, and sh.fdhis methodology was successfully applied
in conjunction with the GFEM in14, 15, 31, 32, 50, 51] as well as the element-free Galerkin method
[33]. More recently, the explicit method was extended to regmémiterfaces in fluid-structure interaction
problems using the XFEM3[/].

The hp-versionof the GFEM fp-GFEM) [50] is a robust method that provides accurate solutions in
3-D crack growth simulations. In the-GFEM, adaptive surface meshes composed of trianglesifiredt
to represent complex 3-D crack surfaces. At each crack gretep, this method allows automatic creation
of high-order approximations on locally refined volume nessim complex 3-D domains. It also preserves
the aspect ratio of volume elements regardless of crack gegnThere is no requirement on the size of the
volume mesh elements to improve the accuracy of the cratkeurepresentation. The size of the elements
in the explicit crack surface mesh can be modified withouhgiray the size of the problem described by
the volume mesh. Furthermore, special features of the @aface geometry can be easily represented
and preserved through the crack growth simulation.

The face offsetting method (FOMY{] is a numerical technique which was originally developed to
track the evolution of 3-D surfaces of, e.g., burning solidgellants. In this paper, the FOM is adapted to
track the evolution of complex 3-D crack fronts. In additiomesh smoothing and mesh adaptation are also
introduced for maintaining the quality and fidelity of thexck surface. Based on tigg-GFEM solution,

a new crack front position is predicted by the FOM. The FOMvtes geometrically feasible crack front
descriptions by updating the vertex positions and checfangelf-intersections of the crack front edges.
The hp-GFEM coupled with the FOM allows the simulation of compleaak growth independent of the
volume mesh. This work presents numerical simulationsdeatonstrate the robustness of the proposed
methodology.

The remaining parts of this paper are organized as followesti@n 2 presents a brief overview of the
hp-GFEM and the FOM for three-dimensional fracture mechapicblems. The target problem descrip-
tion and the crack growth model are described in Sect®asd4, respectively. Numerical examples to
verify and validate the proposed approach are presenteekitio®5. Finally, Sectiorb discusses the main
contributions and concluding remarks of this paper.

2 The hp-GFEM and FOM for crack growth problems

This section presents a brief overview of thp-version of the generalized finite element methbg-(
GFEM) and the face offsetting method (FOM) for three-diniemal crack growth problems. A detailed
discussion on the accuracy, robustness and computatificadecy of thehp-GFEM for three-dimensional



static fracture mechanics problem is presentediin $1]. A more general and detailed description of the
FOM can be found ing9].

2.1 Generalized Finite Element Method
2.1.1 GFEM - a brief overview

The generalized FEM5] 13, 38, 42, 67] can be regarded as a FEM in which the shape functions are
constructed by applying the partition of unity conceptl6, 17]. It combines the systematic way of build-
ing discretizations from the standard FEM and the approtiandunction flexibility enjoyed by meshfree
methods §, 6, 27, 35, 36]. In the GFEM considered here, a shape functpgnis built from the product of
a finite element Lagrangian shape functigg, and an enrichment functiohg;,

@i (X) = P (X)Lgi (X) (no summation om ) (1)

wherea is the index of a node in the finite element mesh. Fidugillustrates the construction of GFEM
shape functions.

The linear finite element shape functiogsg, a = 1,....N, in a finite element mesh withl nodes
constitute a partition of unity, i.eg’g‘zl ¢a(X) =1 for all x in a domainQ discretized by the finite element
mesh. This is a key property used in partition of unity methddnear combinations of the GFEM shape
functionsgyi(X), o = 1,...,N can represergxactlyany enrichment functiohg;.

Several enrichment functions can be hierarchically addeshy nodex in a finite element mesh. Thus,
if D, is the number of enrichment functions at nategthe GFEM approximatiory?, of a functionu can

be written as
N D|_ N DL

uP(x) = zlzum(l)m lelualfpa )Lai(X)
= Zd’a Zluoul—m Zd’a ng

whereu,i, a=1,...,N, i=1...,D., are nodal degrees of freedom anﬂ?(x) is a local approximation
of u defined onwy = {X € Q: ¢4 (X) # 0}, the support of the partition of unity functigpy,. In the case
of a finite element partition of unity, the suppeg (often called cloud) is given by the union of the finite
elements sharing a vertex nogig[13]. The equation above shows that the global approximatif(x) is
built by pasting together local approximaticm{%’, a=1,...,N, using a partition of unity. This is a concept
common to all partition of unity methods.

(2)

2.1.2 hp-GFEM for fracture mechanics problems

The local approximationagp, a=1,...,N, belong to local spaceg,(wy) = sparv[Lio,}P:L1 defined on
the supportsu,, o = 1,...,N. The selection of the enrichment or basis functions for @iqdar local
spacexq (wq) depends on the local behavior of the functioover the cloudw,. In the case of fracture
mechanics problems, the elasticity solutiomay be written as

u=0+d+a (3)
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Figure 1: Construction process for GFEM shape functions and cradktfcoordinate system.

wherell is a continuous functiorij is a discontinuous function but non-singular dni$ a discontinuous
and singular function. Thia priori knowledge about the solutianis used below to select basis functions
for a local spaceq(wy ).

The selection of enrichment functions is based on the posdf the cloudw, with respect to the crack
surface. The local approximation can be subdivided intedftistinct sets:

Local high-order approximation for continuous functions Let .7, denote a set with the indices of
cloudswy, that do not intersect either the crack surface or the crack fin this case, a local approximation,
00P(x), of u overw, can be written as

ﬁgp(x) = _%lgail:ai(x) (4)

whereD, is the dimension of a set of polynomial enrichment functiohslegree less than or equal to
p—1. Our implementation follows1[3, 47] and the sel{ﬁai}&l for a cloud associated with nodg =
X1y, X2, , X3, ) IS given by

~obe [ (K= Xg,) (Ke—Xg) (Xa—Xa,) (X1—X1,)? (Xo—Xg,)?
{Lal}-zl_ 17 9 ’ ) 2> 5 > geee
' hg hy ha hg hg

(5)

with hy being a scaling factorl[3, 47]. These enrichment functions are identical to those defingd3].
The corresponding generalized FE shape functignsat a nodet,, are polynomials of degreggiven by

Gui(X) = 0 (X)Lai(x)  i=1,...,D_ (nosummation om) (6)



Local high-order approximation for discontinuous functions Let .7 denote a set with the indices of
cloudswy that intersect the crack surface but not the crack fronthig ¢ase, the solution over w, has
continuous and discontinuous non-singular parts. A Iopprm(imation,ugp(x), of uoverwy, o € Y,
can be written as

ng(x) = ( )+<%ﬂ~hp( X) = _Zlgail:ai(x)"‘ gai%r—ai(x) (7)

where.7Z (x) denotes a discontinuous function defined by

1 ifxew;
0 otherwise

jfu%:{ (8)

wy is the part of the cloudy, located above the discontinuity (cf. Figurga)). G Ahp( X) andﬂgp(x) are local
approximations ofl andl, respectively, anil,; is a polynomial enrichment function of degree less than or
equal top— 1 as previously defined.

The analysis of through-the-thickness cracks presentgthirshows that the continuous and discon-
tinuous components of the solutiarshould be approximated using the same polynomial orders, e
takeD, = D¢ in all computations presented in Secti&n

Based on the above, the generalized FE shape functions iedkegs than or equal fpused at a node
Xq, O € S5, are given by

~ ~ D
O = {Qui, Qi) 9)
where@yi = 7 @i and @y is defined in 6). The enrichment functions?’Lqi(x), i = 1,...,Dy, are called
high-order step functions.p, 50].

Crack front enrichment functions  Let % ont denote a set with the indices of clouds that intersect
the crack front. In this case, terms from the asymptotic egfmn of the elasticity solution near crack
fronts are good choices for enrichment functions. Two disi@mal expansions of the elasticity solution are
commonly used as enrichment functions for three-dimemsicnacks in finite size domains$§, 14, 39, 71].

As a consequence, a sufficiently fine mesh must be used arbaratack front in order to represent the
three-dimensional solution effect and achieve acceptatdteracy. A local approximatiomgp(x), of u
ovVer Wy, a € Font, is defined as

o 2| Ul
&3 | o5 5o 1)
=S LEe)
whereéy, & andé&z are directions in a curvilinear coordinate system defined@the crack front, and,
6 and&3 are curvilinear cylindrical coordinates, as illustratedrigurel(b). U “21,, “‘52 and % are degrees

of freedom in theé;—, &é— and és— directions, respectively. Here, the degrees of freedonsaa&ar
guantities, in contrast with those used in the previousllapproximations.

The enrichment functions used to approximate displacefiedds in theé, & and&s directions are



given by [L3, 14, 41, 43, 50]

[Gh(r) = vF [(K - %) cosg - %cos%]
[ar6) = F [(K+ Ysing - %sir%]
L&(r0) = \/Fsing ”
[o(r6) = F [(KJrg)Sinng%sin?]
[(r6) = F [(K - g) cosg + % cos?]

(&8 = ﬁsin?

where the material constaxt= 3—4v andv is Poisson’s ratio. This assumes plane strain conditiohiiw

is in general a good approximation far from crack front enidse above enrichment functions correspond
to the first term of the moddsandll, and to the first and second terms of the mbldecomponents of
the asymptotic expansion of elasticity solution aroundagit crack front, far from the vertices and for a
traction-free flat crack surfac€]. More details about the geometrical approximation of tfeek front as
well as the definition of the crack front coordinate system loa found in p1].

Generalized FEM shape functions built with the enrichmentfions (1) must be integrated with care.
In the numerical examples presented in this work, this isexeldl by using strongly graded meshes at the
crack front and an appropriate number of integration poiAtdetailed study of numerical integration and
computational performance of these functions is preseantgt].

Partition of unity shape functions are linear dependentnylfier example, both the partition of unity
and the enrichment functions span polynomials p6, 75]. This is the case of the GFEM shape functions
defined in 6). Algorithms to deal with these linear dependences areritestin [L3] and an approach to
avoid them is proposed ir'f]. In this paper, the linear dependencies of the global systeequations are
handled using the algorithm presentedif][

Localized h-refinement  Analytical enrichment functions, such dklj, are not able to deliver accurate
solutions on coarse three-dimensional meshes when thk frad has a complex geometry. Localized
mesh refinement must be applied in order to overcome thigdimon [19, 50, 51]. Although these analyt-
ical enrichment functions require localized mesh refinertée size of the elements along the crack front
in typical hp-GFEM meshes is usually one order of magnitude larger tharsitte of the crack front ele-
ments in standard FEM meshésl]. A detailed convergence analysis on tigGFEM applied to fracture
mechanics problems and on enrichment functions for curvackdronts with localizedh-refinement can
be found in p0] and [51], respectively.

Localized refinement and unrefinement can be easily applieztack growth simulations with the
GFEM. In the GFEM models for fracture mechanics, the elesmx@anthe volume mesh need not fit the
crack surface and the crack surface representation isémdiemt of the volume mesh. Numerical examples
in Section5 illustrate this feature of the method.



Crack surface representation In the hp-GFEM adopted in this paper, the crack surface is repredente
by flat triangles with straight edges(]] as illustrated in Figure$ and19. Thus, curved crack fronts
are approximated by straight line segments. The fidelithisfdpproximation can be controlled by simply
using a finer triangulation of the crack surface. This predgsdependensf the GFEM mesh and does not
change the problem siz&(]]. The explicit crack surface representation provides getoigal information

for the construction of crack front coordinate systems amdlcfront enrichment functions, such ddgy.
The computational geometry aspects of this constructieipegsented in detail irb[l].

This work extends the formulation of the face offsetting noet (FOM), introduced in49], to track the
evolution of the crack front in crack growth simulations.€Timext section presents a brief introduction of
the method and the main FOM techniques applied to crack éwaritition.

2.2 The face offsetting method for crack growth
2.2.1 FOM - a brief overview

The face offsetting method (FOMY{] is a numerical technique used to track the evolution of iekpl
surfaces. It is an alternative to the level set methiid fhat has been broadly used in the extended finite
element method contex?§, 54, 68]. Given the current position of a surfa€eand either a velocity field
v(x,t) : T xR — R3 or a normal speefi(x,t) : I x R — R, the FOM determines the new position of a mov-
ing surface at time-+ At by integrating the Lagrangian equatioffs= v(x,t) or & = f(x,t)n(x,t), where
n denotes the unit normal to the surface. The FOM solves thepsations using a geometric construction
based on the Generalized Huygens’ or shell-of-influenagjpie for moving interfaces?[]. It first prop-
agates the faces using a standard time integration teachnfsfueach vertex, let n; denote the normal to
theith face incident ow after time integration, anM = 3; n; niT denote the “normal covariance matrix” at
v. FOM determines the new position wby performing an eigenvalue analysisMfand then solving the
normal and tangential motions simultaneously. Duringaefevolution, the FOM also redistributes the
vertices to maintain or improve the quality of the surfacesmat also checks for self-intersection to avoid
misrepresentation of the evolving surface. Compared tdethed set method, FOM has the advantages of
being able to capture sharp turns in surfaces and to be dizeertéo non-manifold surfaces (such as in
branching cracks). More details about these techniquebedound in P9).

In our crack-growth simulations, the crack surface evoluts represented by a sequence of crack front
steps using explicit crack surface representation predent[>0, 51]. The crack front vertices, edges, and
their incident faces are the only parts of the surface thatrobits evolution throughout the simulation. In
this paper, we adapt the face offsetting method (FOM) tdkttiae evolution of these crack fronts. Two key
features of the original FOM method are utilized and adapi@: 1) the prediction of self-intersection
and adaptation of time step, and 2) the smoothing and ad@aptatthe surface mesh along the tangential
direction. We hereafter describe these two aspects in neiea.d

2.2.2 Crack advance limit

FOM checks the crack front for self-intersection at eaclp stethe crack growth simulation and pro-
vides geometrically feasible crack front and crack surfdescriptions. For the purpose of detecting self-
intersections, consider each vertex on the crack frpmtoving along a straight line from its current position
p; with advance vectadj, which is based on the solution computed by ipeGFEM method presented in
Section2.1.2and the crack growth criterion presented in Sectiofhe line segment can be parameterized



by q; = p; +Bd;,0 < B < 1. As illustrated in Figure, consider a trianglg, p,p; incident on a vertex
on the crack front. We refer to such a triangle agack front face Letq; = p; +d;,1 < j < 3 denote
these three vertices with a partial incremenpdf;, whered; = 0 for the vertices not on the crack front.
The condition to prevent self-intersection of the crackfroan be then regarded as the limit of the crack
incremen{d; that avoids the reversal of the orientation of the cracktffaces and of the crack front curve.
It therefore suffices to determinegBathat prevents such reversals.

We first consider the orientation of the crack front faced.d.e; denoteq; — q; (and similarly forp; _;
andd;_;j). The normal to the trianglg,q,q; with the partial displacemenfd; is then

G 1xX03 3 = (Pog+Bd21)x(ps3_;+Bds 1)
B?(d2-1xd3 1)+ B (d2-1 X P31+ Py g xd3-1)+Pp g X P33 (12)
= B2+ BcyL+Co,

wherecy is the normal to the crack front face wh@n= 0. The orientation of the crack-front face cannot
be flipped if 3 is between 0 and the smaller positive solution to the quiadeguation

¢ (B%c2+Bey+Co) = 0. (13)

P1P2P3 step:1 QP

010243

crack front

Figure 2: lllustration of crack advance limit formulation. The trigles on the right denote triangles with partial
displacement increments.

To check the orientation of the crack front curve, consider tonsecutive crack front edgpgp,; and
p1p,, and letq; = p; +d;,0 < j < 2. Lett denote the average tangent direction at the vertex compsted
192_1/191_0 + |91_0/|92_1. We require tha8 be small enough such that the tangent veatiprg andq,_;
are not flipped with respect to This is achieved by requirin@ to be smaller than the positive solution to
the equatiomp;_y-t+ fd;_o-t =0 and also than the positive solution to the equapgn -t + d,_;-t =0.

After evaluating@ for all crack front faces and edges, ketbe the smaller value between 1 and the
smallestB (or a fraction of the smalleq to tolerate roundoff errors) along the crack front. Hereaft
is denoted as the crack advance limitalt= 1, then there is no local self-intersection in the crackaeef
after propagation. 1&r < 1, we multiply the crack front advance vectar®y a for all the vertices to obtain
a self-intersection-free crack front. We apply this pragedn Stes of the algorithm described in Section
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4.3

2.2.3 Crack front update and optimization of crack surface nesh

In crack growth simulations with explicit crack surfacese track surface mesh must be updated as the
front is propagated. In this work, we use two techniquegrrefl to as propagate and extrude (PAE) and
propagate and smooth (PAS), respectively. These techmaresallustrated in Figur8. The details of these
techniques as well as the criteria to select them are pregastfollows.

Propagate and extrude (PAE) In the first technique, we “extrude” the vertices and edgebefcrack
front to create a new layer of faces. We create faces in twoemdd the first mode, we first clone a vertex
for each vertex on the crack front (cf. Figu8e The coordinates of these cloned vertices are set to the
new crack front position computed in Stémf the algorithm presented in SectidrB8. We add an edge
between the original and cloned vertices and also betwegcert cloned vertices. These vertices and
edges constitute a layer of quadrilaterals. We then diviaé guadrilateral into two triangles by adding an
edge along a diagonal (such as from upper-left corner toativertright corner). This mode preserves the
number of vertices on the crack front.

In the second mode, we allow refining the crack front if an edgenger than some user-specified
threshold. In particular, we first create a layer of quatkilals as above. If an edge on the new crack front
is too long, then we subdivide its corresponding quadriddti@to three triangles by adding a vertex at its
mid-point and connecting it with every vertex of the quaatstal (cf. Figures).

After extrusion, the triangles next to the crack front maypdm®rly shaped if the time step is too
small compared to the edge length. These poorly-shapatyteia can adversely affect the accuracy of
the computed normal directions of the crack front. To resahis issue, after generating a layer of faces
we further optimize the quality of the mesh. We use the vianal smoothing technique presented in
[30], which optimizes the triangles against some “ideal” refere triangles by moving the vertices while
preserving special features of the surface geometry (ssicdharp turns in the crack surface). We refer
readers to}0] for more detail about the technique, but hereafter we desthe selection of ideal triangles.

In a typical setting, an ideal triangle is equilateral. Hoer in PAE the extruded edges are nearly or-
thogonal to the front, so right triangles are more desirabte simplicity, if no edge splitting is performed,
we set the ideal triangle to be right triangle with a leg ratidwo, so that each extruded edge is about
half as long as its incident front edges. If edge splittingesformed, we choose the ideal right triangles
to be isosceles. For the triangles in the interior of the kcaaface that have no layered structures, we
use equilateral triangles as the ideal triangles. To djsigh these different types of triangles, we tag the
triangles during extrusion based on their desired shapgprserve these tags during the course of the
simulation.

Propagate and smooth (PAS) PAE adds a layer of faces, so the crack surface would havecassive
number of triangles if it were invoked at every time step. Void the problem, we also allow propagating
the front by only moving the vertices on the crack front. A®KE, the coordinates of crack front vertices
are updated with the new crack front position computed i 8tef the algorithm presented in Section
4.3. After moving vertices on the crack front, we then apply theational smoothing described above to
improve mesh quality. If PAE has been invoked previouslyalge use right triangles as the ideal triangles
during this variational smoothing to preserve the orthadjonof the extruded edges.
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Selection criteria  In a typical simulation, we apply both PAS and PAE. PAE is aapivhen 1) the crack
advance is non-planar with respect to the immediate prestep, 2) the crack front advance is not reduced
by the crack advance limit procedure, or 3) a crack surfam frefinement is needed, i.e. one of the crack
front edge lengths reaches a predefined length value lintlitei@ise, we apply PAS.

Interaction with boundary  In most of the problems, the crack front is the boundary cofwhe crack
surface and is closed by definition. However, a crack may lieeaboundary of the solid, for which the
crack front is only a subset of the boundary curve, namelysthmset that “cuts” the solid. Our technique
provides some preliminary supports for the interactiomefdrack front with solid boundaries. In particular,
we allow the user to flag the vertices where the crack froetrsgcts with the solid boundary. In PAE, these
vertices are extruded along the material boundary. Thedoarertices of the crack surface that are not
on the crack front are not propagated or extruded, but thegmoothed tangentially along the boundary
curve.

new layer
of faces

crack front
atstep

step+1

step1

/PAE with front
PAS refinement
step PAE without front
refinement
new layer

of faces

crack front
atstep

Figure 3: Crack front update.

3 Problem description

The methodology presented in Sect@ian be applied to several types of crack growth problems, e.g
dynamic crack propagation, fatigue failure assessmeatkarowth with cohesive fracture models, and so
on. For simplicity and without loss of generality, the clagproblems selected to verify the methodology

presented here is the fatigue crack growth in three-dino@asisolids. The problem consists of a three-

dimensional body subjected to cyclic loading with an erg&mbedded or surface breaking crack. Figure
4 schematically illustrates our target problem.
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Figure 4: Fatigue problem.

Fatigue crack growth analysis is a problem of probabiliséiture which is of great importance in engi-
neering. Most of the equations utilized to describe fatig@ek growth behavior are based on observations
of the physical phenomenon and extensive material tesfihgse equations are crucial for the design of
engineering structures in which the assessment of fatgjled is a major requirement. Some example of
these structures include aircrafts, rockets, enginesspre vessels, and bridges.

Depending on the type of load, material behavior and enwiemtal influences, there are several classes
of fatigue behavior §0]. This work focuses on the simulation of stable crack growtider high-cycle
fatigue. In the high-cycle fatigue mechanism, the loadsgamerally low compared with the limit stress
of the material, i.e. small-scale yielding occurs. As a egu®nce, the stress state around the crack front
can be fully characterized by linear elastic fracture maatsa Other assumptions in the high-cycle fatigue
problems analyzed in this work include: cyclic loading wittnstant amplitudef,ax > 0 and fmin > 0 (cf.
Figure4) and quasi-static crack growth.

From a macro-scale point of view, high-cycle fatigue candmarded as a quasi-static phenomenon.
Moreover, the crack growth mechanism in high-cycle fatigale be characterized by linear elastic fracture
parameters, e.g. the stress intensity factofh [Therefore, a robust and accurate method to analyze linear
elastic fracture mechanics problems, such ashfth€FEM presented in Sectichand described in more
details in (], is essential for a successful fatigue crack growth sitita

4 Crack growth model

A high-cycle fatigue crack growth simulation is an increr@process in which a sequence of linear elastic
fracture mechanics steps is repeated in order to descrbeviblution of the crack front. Each increment
step is dependent on the crack problem solution and crack fre@diction of previously computed steps.
Therefore, an accurate solver together with a robust @riefor the crack front advance prediction are
required for a successful crack growth simulation.

During the simulation, the crack growth criterion has to bkedo provide the amount and direction of
crack advance, and the lifetime of the structure. In thriegedsional elastic fracture analysis, the stress

12



state at the crack tip is fully characterized by the streengity factors for modes I, andlll , i.e. K, Ky,
andK;;;. They can be used to describe the fatigue crack growth behamid assess fatigue failure. This
section presents the fatigue crack growth model utilizethenpresent work to drive the evolution of the
crack front along the simulation.

4.1 Crack growth direction - Schollmann’s criterion

In three-dimensional mixed-mode crack problems, the cdadlection is represented by a kinking angle
and a twisting angle as illustrated in Figuse There are only a few criteria to estimate the direction of
the crack growth in 3-D. The criteria developed by SiH][ Pook [52], Scholimann [52] and Richard §¢]
are listed as the most important ones. According to a deltatiedy about three dimensional crack growth
criteria presented by Richard et al. ], the criteria proposed by Sih and Pook are not able to iraraitp
the effect of modell in the first deflection angléd, (see Figure), and, therefore, are not suitable for the
prediction of three-dimensional mixed-mode crack growikrdation.

Figure 5: Crack deflection angle§y and () for three-dimensional mixed-mode crack problemd [

In this work, Scldllmann’s criterion §7] is adopted. A detailed formulation of Salhmann’s criterion
can be found in§2]. This criterion assumes that crack growth occurs in theation of a maximum prin-
cipal streseai, also calledspecialprincipal stressid]. ai is a principal stress where the radial components
of the stress tensor are neglected. Such principal stressdemined on a virtual cylindrical surface around
the crack front and along a region of interest where the cgaoWth direction is computed. The maximum
principal stressai, is given by the following equation

/ 0-9—1—0-2
Gl: 2

whereoyg andtg, are the components of the stress tensor obtained by thegmgitgon of all three fracture
modes described by the near-front solution in cylindricadrdinates, 6, andz (cf. Figurel(b)), given by

oo = giam 0oa) ool 7)|avaw ) e (3]
To, = \/ﬁcos(i

wherekK|, K, andKj,, are the stress intensity factors for modied andlll, respectively. Sabllmann’s
criterion also assumes that there is no contribution to ithidikg angle fromoy, i.e. g, = 0. The coordinates

1
+5 V(0 — 0%+ 473, (14)
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r and@ are polar coordinates on the crack front as illustrated guk1(b). According to the assumption
of the crack growth direction, the crack deflection anlgis determined by

—= =0and —= <0. (16)

There is no closed-form solution for the above formulatiblonetheless, the prediction of the deflection
angle,6y, can be determined by either an optimization algorithmiagpo Equation 14) or a root finder
algorithm applied to Equatiori@).

Once the first deflection angt is determined, the second deflection anggds defined by the orien-
tation of the principal stressi and can be obtained by

. 1_ ZTQZ(Q()) :|
Yo = 5 arctan{—ae ORIk a7

One can observe that Equatiald) includes the stress intensity factor for mddle, which indicates
that Sclidllmann’s criterion is suitable for simulating three-dins&gonal cracks under general mixed-mode
loading. WherK;; = 0, this criterion is equivalent to the criterion of maximuamgential stress proposed
by Erdogan and Sih?[J]. Furthermore, Sabllmann’s criterion is well-suited for computational ingphen-
tation of crack growth prediction and has been successiuipyemented in standard FEM research codes
such as§1].

4.2 Crack front advance and fatigue life prediction - ParisErdogan equation

Fatigue crack growth rate is a complex non-linear equatisewveral variables. Laboratory experiments
and observation of structures under service loads haversti@at/the rate of crack increment with respect to
the number of load cycleda/dN, is a function of the crack length, the state of stress, ratesrameters,
thermal, and environmental effectsy. There are several empirical fatigue crack growth equitim
which all the effects mentioned above can be considered. Wik focuses on the fatigue of macro-cracks
with cyclic loads of constant amplitude only. The growth ations utilized to describe this type of problem
are rather phenomenological than analytical. In the pitestedy, Paris-Erdogan equaticfi/]

da
— =C(AK)™ 18

i = C(2K) (18)

is used to predict the crack growth rate. In Equatit8),(C andm are regarded as material constants,
AK = (1—- R)Knaxis the stress intensity factor range in fatigue loading, s the ratio of minimum to
maximum loads applied in a cycle algaxis the stress intensity factor for the maximum load. In Emumat
(18), AK takes into account modeonly.

In complex three-dimensional loading situations, Equatit8) should consider the mixed-mode ef-
fects. For this purposéK can be replaced by the cyclic comparative stress interesitpf,AK,,, given by
[59]

AK,
2
wherea; = Ki¢/Kjic andaz = K¢ /Kjjic are the ratios of the fracture toughness of mbttemodell and of

model to modelll, respectively. Withor; = 1.155 anda, = 1.0, the fracture surface provided by Equation

1
AK, = + E\/AK|2+4(01AK” )2 +4(a28Kyy )2 (19)
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(19) shows good agreement with the fracture surface providetthypolman’s criterions, 62]. Assuming
AK = AK,, Equation {8) provides a well-suited correlation between the crackaijnaate and the range
of the cyclic comparative SIF for the three-dimensionaledibmode crack problem presented in Sec8on

In the incremental algorithm for fatigue crack growth, theximum allowed crack front increment,
Aamay is set at the beginning of each crack step. Since in thneemkional mixed-mode crack simulation
the stress intensity factors may vary along the crack fradttae fatigue growth is governed b4§), the
increments along the crack front must be applied accordifidgie maximum crack increment SizZ8max
is applied to the crack front vertex that has maximum cyahimparative stress intensity factak,, ... The
crack growth increments for the remainder of the crack femetcomputed by using the crack growth rate
and the number of cycles of the current step. Thus, for a givack front vertex, we have

m  Aan AK, \M
Am:cmm)gmmﬂwzmm< , (20)

whereAK,, is the cyclic comparative stress intensity factor for theese].

Assuming that the crack growth increment is small with respethe crack length and other dimensions
of the analysis domain, the fatigue life estimate can alsadmputed in an incremental fashion. The
incremental form of Equatiorilg) for fatigue life prediction is given by

Aamax

Ni=Nip+ T
I L C (AKVmax)m

(21)
whereN; andN;_; are the number of cycles in the current and previous stepgectively.

4.3 Crack growth algorithm

This section describes the crack growth algorithm usedamtimerical examples presented in Secton
The algorithm consists of an incremental process in whicbaeh step, a small crack advance is prescribed
and a linear elastic fracture mechanics problem is solveatdier to describe the evolution of the crack
front. In the simulation, we assume that an initial cracleadty exists in the domain of analysis and the
parameter€, m, andR for the fatigue life equationl@®) as well as the maximum applied load are given.
Aamaxis set at the beginning of the simulation and can be definedwascéion of the increment stap

The crack growth algorithm is as follows. For each crackenoentAa;, i =0...n, do:

1. Solve alinear elastic fracture problem usinghipesFEM and the current representation of the crack
surface. The solution is obtained for the maximum load &pjpio the analysis domain. This step is
similar to solving a static problem like the examples diseasin 0. In this steph-refinement is
applied around the crack front for the current position efd¢hack front. In the next crack increment,
the mesh is unrefined until its initial configuration and a rrervefinement is applied around the new
position of the crack front. Hence, the mesh is always adiatéhe current crack front position. In
a similar fashion, the non-uniforiprenrichment presented ih({] can also be applied as the crack
front evolves.

2. Compute the stress intensity factors (SIF) for modds andlll for each vertex along the crack
front for the maximum cyclic load, i.eK,.., Kii,.e Killne - The SIF can be extracted from the-
GFEM solution using, e.g., the contour integral method (Ld¥ithe cut-off function method (CFM)
[49 72 773.
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3. Compute the deflection anglés and yj for each vertex along the crack front based on the SIF
values computed at Steg)( The equations used in this step are presented in SeétlonOne
can note that this step could be computed using either thénmiax SIFs or the minimum SIFs
because the equations used in the computation of the defieatigles using the maximum SIFs or
the minimum SIFs differ only by a constant.

4. Compute the cyclic comparative SIF variation using EiquatL9).
5. Compute the crack increment for each vertex along thekérant using EquationZ0).
6. While proposed crack front position is not geometrictdlgsible, i.e. 0< a < 1:

(a) Compute advance vectod, (cf. Figure2), for all crack front vertices. These advance vectors
are computed using the results obtained from St8par{d ). If available, the advance limit
parametergr, computed in Stepp) is applied to scale down the advance vectors. The deflec-
tions and the crack increment for each vertex as well as theree limit parameter provide the
new crack front position.

(b) Use FOM to estimate the crack increment limit to prevefitimtersections

e If the crack increment exceeds the limit, return the estmadvance limit parameter,
and go to Step@Ga) to provide new advance vectors for the crack vertices. i@e@t2.2
describes the procedure to compute the advance limit pagame

e Otherwise, update crack front position using either PAE A% Rndbreak while loop.
Section2.2.3describes the details of the crack front updates PAE and PAS.

7. i=i+1andifi <n, goto Stepl), otherwisestop.

A similar sequence of steps is also performed in the reseavdbs that use the standard FEM for
fatigue crack growth assessment such as FRANC3DADAPCRACKS3D [61] and Zencrack§(]. The
main difference is that, in this work, we explore the flextlgibf the hp-GFEM to efficiently build accurate
approximations at each crack step and evolve the crackcauwfithout the mesh topology issues usually
found in crack growth simulations with standard FENV][ Another important feature of the proposed
approach is that the FOM is applied along the crack front edigt eventual self-intersections and to
ensure geometrically feasible crack front descriptiom&&xrh crack growth step.

5 Numerical examples

This section presents numerical analyses of three-dimeakfatigue crack growth problems using the
algorithm presented in Sectidn3. The numerical examples are solved usinghth&sFEM with the refine-
ment and enrichment recommendations as well as the craf@csuepresentation presentediin,[51]. At
each crack increment in all examples, a static crack proidesolved with polynomial ordep = 3 for both
continuous and discontinuous components of the solutigodB&on Q)), crack front enrichment (Equation
(10)), and localized crack front refinementlaf/a, ~ 102, whereL, is the size of a tetrahedron element
on the crack front and, is the initial characteristic crack length.

16



5.1 Crack front self-intersection verification for FOM - Non-convex crack front

This example consists of a planar surface-breaking crattk mgn-convex crack front in a prism. Figure
6 illustrates the initial coarse tetrahedral mesh and th@alnirack surface description. The geometric
parameters of the problem atga, = 2, a,/b, = 2, anda,/t = 1. E = 2.0 x 10°MPaandv = 0.30 are
Young’s Modulus and Poisson’s ratio, respectively. Thermris subjected to a uniform tension cyclic
load,o(t), on top and bottom surfaces of the domain as illustratedgariei6. The fatigue parameters are
C = 1.463x 10" 1*MPa2tm~2%/cycle m= 2.1, Omax= IMPaandR = 0.
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rqf y T e "/”“ Crack front
Jaly” S8V
ai / 7 /
g /5
| / /
J/
VA s |
— / L 7
/ - //’ t
/:/ i | \R‘
" \ﬁ N e i) N Crack surface

Figure 6: Non-convex crack front example - model description.

In this example, self-intersection of the crack front is imamt. The main goal here is to verify the face
offsetting method (FOM) for crack growth. The FOM provideometrically feasible crack front descrip-
tions by setting the crack advance limit that prevents isgéfrsection of the crack front. This simulation is
performed withn = 19 incremental steps and the maximum increment si2ajgsx = 0.05a,.

This example is subjected only to modéhroughout the simulation. In general, the effects of fatig
tend to smooth out the crack front curvature such that that@an of the stress intensity factd§; is
reduced. Moreover, this simulation is likely to presentdheck front tunneling effect, i.e. a curved crack
front configuration due to the variation of stress intendistribution caused by the domain boundary.

Figure7(a) shows the crack front position for each step of the fatigaéelcigrowth simulation. The
crack front geometry is smoothed out due to the fatigue m®cen this case, the crack front middle
propagates faster than the crack front ends. In additientuthneling effect is also observed after the crack
front becomes straight. Figuréb) plots the normalized mode | stress intensity factors albegtack front
for all steps during the simulation. The normalized stragsrisity factor is defined as

_ K,

(22)



As expected, the results show that the stress intensityriaate smoothed out due to the fatigue process.
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(a) Growth of planar crack with non-convex crack front in @) Normalized modd stress intensity factors for all crack
prism. growth steps.

Figure 7: Crack front configurations and SIF values along the crackffifor non-convex crack front.

(a) Step 0. (b) Step 8. (c) Step 18.
Figure 8: Non-convex crack front - localized mesh refinement arouadtack front for three crack steps (top view).

The main goal of this example is to trigger the FOM self-iaation detection during the simulation.
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In the first step of the simulation, FOM predicted the sekéisection and the crack increment was reduced
to Aajimir = 0.93Aamax This detection scheme prevents the creation of voids icriek front and provides
geometrically feasible crack front representations tghmut the simulation. The crack front geometry
results presented in Figuia) are as expected. These results ensure that the FOM techragpbed to
track the crack front evolution do not affect the physicshaf problem.

Adaptive high-order discretizations are automaticallitifar each crack step during the crack growth
simulation. These high-order discretizations are easiiit bising thehp-GFEM since the volume mesh
need not fit the crack surface. Localized mesh refinement arefinement are applied along the crack
front in order to provide a mesh refinement that follows thsifpon of the crack front throughout the
simulation. Figure8 and9 illustrate the localized refinement applied along the cfemht and a planar cut
through the mesh showing the von Mises stress at the midfioosteps 0, 8 and 18, respectively.

(a) Step 0. (b) Step 8. (c) Step 18.

Figure 9: Non-convex crack front - cut through von Mises stress swiudt mid front (off diagonal view).

5.2 \Validation against experimental results

This example consists of the fatigue simulation of a platet@ioing an inclined crack as illustrated in
Figure10. The geometry of the plate model and the experimental datthéposition of the crack front
throughout the simulation are provided 5. The material used for the plate specimen is the titanium
alloy Ti — 6Al — 4V. The cyclic load applied in the experimentdgax = 17237MPa with ratio of the
minimum to the maximum tensile loaés= 0.1. According to p5], the maximum tensile load is selected
such that the radius of the plastic zone around the crack is@pproximately 5mm i.e less than 10%

of the specimen thickness, therefore, the assumption df soae yielding applies.

Figure 10 shows the dimensions of the model. 5], the dimensions used in the specimens are
h=1024mm w = 381mm t = 3.175mmanda = 6.73mm The slope of the crack with respect to the
y-axisisf = 43 (see Figurel0). To apply the cyclic load, the machine utilized in the expents required
two sets of holes on the top and bottom regions of the plaightheDue to the lack of information about
the dimensions of the plate holes used in the experimentsnaoitier to be able to assume a uniformly
distributed load at the ends of the plate, we adapted a platiehwith a smaller height. As such, the
height of the plate model is set to b¢of the height of the specimen and all other dimensions ae th
same. Since the variation of the crack front increment thhotne thickness of the plate is not a concern
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Figure 10: Inclined crack model and crack growth steps.

in this simulation, we assume that the crack front remairagit throughout the simulation and the SIF
values along the front are constant and equal to the SIF satuthe middle of the front. Ing5], the
material parameters and the parameters for Paris-Erdageatien (L8) are not provided. In the numerical
simulation, we use Young’s modulug, = 115x 10°N/mn?, and Poisson’s ratio# = 0.32 as material
parameters an@ = 1.251x 10~ (N/mn?)~25mn10%2%/cycleandm = 2.59 as Paris-Erdogan equation
parameters for the titanium alldyi — 6Al — 4V. These parameters can be foundih [

Figure 11 illustrates the GFEM mesh discretization for three stepthefinclined crack growth sim-
ulation. The proposed approach facilitates the automatistcuction of strongly graded meshes around
the crack fronts along the simulation. Localizedefinement is applied to the elements that intersect the
crack front. After propagating the crack fronts, the meshrisefined to its initial coarse configuration
(cf. FigurelQ) and a new refinement is applied to the elements that intetfse@ew crack fronts in their
new positions. This procedure reduces the computatiorstlafdhe simulation by avoiding unnecessary
degrees of freedom in the discretization. The same proeezhnnot be applied when the volume mesh is
used to represent the crack surface as in level set methodsede approaches, all elements that intersect
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Figure 11: Inclined crack - localized mesh refinement around the cremht$ for three crack steps (front view).
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the crack surface may have to be refined in order to provideeurate crack surface representation. As an

example, the representation of the crack turn shown in Eigjlufc), requires a fine mesh around the crack
turning point.

In the proposed methodology, no volume mesh refinement isrextjto represent the special features
of the crack surface in the simulation. As illustrated inUfigl0, the proposed crack surface representation
is able to model the sharp turn in crack direction at the b@ganof the simulation and keep this feature of
the crack surface throughout the simulation.

Figure 12 plots the crack fronX andY global coordinates using the experimental data provided by
[55] and the numerical results. The coordinates from the nuwakresults are based on the position of the
middle of the crack front during the simulation. The numari@sults for the prediction of the crack path
show good agreement with the experimental results.

5.3 \Verification of robustness - Wavy crack front

This example considers a planar crack with planar pertimbsalong the crack front, hereafter, referred
to as wavy crack. The analysis domain is a cube with dimengioand subjected to a uniform tension
cyclic load of maximum magnitudenax = 1MPa perpendicular to the plane of the crack surface, z-e.
direction, as illustrated in Figur#3. The geometric parameters of the crack surfaceagfé = 0.25,
Nwave = 6, Aamax = 0.0358p, and e = 0.1, whereag is the radius of the reference penny-shaped crack,
Nwave IS @n integer parameter that defines the number of waves #hengrack front, ana is the crack
front geometry perturbation with respect to a penny-shapack. The fatigue parameters &e- 1.463x

10" 1*MPa21m=9%0%5/cycle m= 2.1, andR = 0. This simulation is performed with = 30 incremental
steps.E = 1.0 x 103MPaandv = 0.30 are Young’s Modulus and Poisson’s ratio, respectivehe ain

objective of this numerical example is to show the evolutibthe crack front geometry during the fatigue
process.

planar wavy crack 5 N

/f
/
//
2 @/

N top view right view J

G

m\f\\j\

Figure 13: Wavy crack model description.
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In this case, the crack surface is planar and perpendicoltret direction of the applied load and,
therefore, the crack is subjected only to modleroughout the simulation. According to(], experimental
observations indicate that the effects of fatigue tend toamout the crack front curvature such that the
variation of the stress intensity factiy is minimized. Gao and Rice’P] presented a first-order accurate
solution for planar quasi-circular tensile cracks. In theseof wavy cracks whose front is described by

a(f8) =ap[1l+ £cos(nNyavd)] (23)
the asymptotic solution for stress intensity factsf§”™ is given by

nWave ag
2 a(h)

K™ (6) =K (a(8)) [1 - cos(Nyaved) (24)
wheref is a parametric coordinate along the crack front, as ilastt in Figurel3, andK” (a) is the stress
intensity factor for a penny-shaped in an infinite domainichiis given by

o a
One can observe th&* varies along the crack front. Lai et al34] presented a static solution of this
problem, i.e. n=0, using the boundary element method. Akcgrowth simulation using the XFEM
coupled with fast marching method was presented by Sukuhzr i@ [69].
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(a) Growth of a wavy crack embedded in a cube. (b) Model stress intensity factors for initial and final crack growth
steps.

Figure 14: Crack front configurations and SIF values along the crackfifor wavy crack.

Figuresl4(a)and14(b)plot the crack front position for all steps during the sintigia and the normal-
ized mode stress intensity factor for the first, "™, and lastK]2, steps of the simulation, respectively.
The normalized stress intensity factor is defined as

Kstep

= ke a@) (20)
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wherestepis either the first or last step of the simulation. The resshimw that the wavy crack eventually
grows to a penny-shaped crack, which corroborates expetah@bservations. The ratio of the maximum to
the minimum radii of the crack front at the beginning and atéhd of the simulation aa a;:fﬁt =12

andalast /alast — 1,004, respectively. As expected, the variation of the SIFsrisothed out as the crack
evolves. The ratio of the maximum to the minimum SIFs at thgirbeng and at the end of the simulation

areKma /KISt — 1.64 andK/ast/Kast — 1,01, respectively.
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Figure 15: Wavy crack - localized mesh refinement around the crack fasrthree crack steps (top view).

Figurel5shows the GFEM mesh discretization for three steps of thg wiaack growth simulation. The
h-adaptive refinement and unrefinement procedure descmigeldtions.2is also applied in this example.
One can observe that the refinement along the crack fromwelthe crack front position throughout the
simulation.

5.4 Crack growth under mixed-mode - Inclined penny-shapedmack

This example consists of an inclined penny-shaped crack dob& with dimension 2 The cube is
subjected to a uniform tension cyclic load of maximum magieton.x = 1MPa along they-direction,
as illustrated in Figurd6. The initial coarse mesh and the initial crack surface coméition are also
illustrated in Figurel6. The geometric parameters of the crack surfacegfe = 0.1 andf = 11/4, where
a, Is the radius of the initial crack an@ is the slope with respect to theplane. The maximum crack
front increment allowed in each stepAsnhax = 0.02a9. In this case, the simulation is performed with
n = 38 incremental steps. The fatigue parametersCarel.5463x 10~ *MPa2tm—2%/cyclg m= 2.1,
andR=0. E = 1.0 x 10°MPaandv = 0.30 are Young’s Modulus and Poisson’s ratio, respectivelye T
main objective of this numerical example is to show the etoifuof the crack surface geometry during the
fatigue process.

According to experimental observation in fatigue cracknghy cracks tend to grow in a direction that
provides modé dominance. In the inclined penny-shaped case, the fatiga@eps imposes a twist to the
crack front in order to make it perpendicular to the applaatl. In addition, the crack front tends to remain
circular throughout the simulation. This example is a miregde problem in which all three modes are

24



4 inclined penny-shaped crack N
X Y

/

i top view right view
- i %

Figure 16: Inclined penny-shaped crack model description.

present. The stress-intensity factors along the crack fnoan infinite domain are given by'{]

K,i”f‘ = %[asinz(ﬁ)}
i = gy losin(B) cos )] cose) yTa @)
K = oy losin)cos )] sin6) 7

wheref is an angular coordinate on the crack plane that represgumsiton on the crack front. The same
problem was solved by Gravouil et al. ifid] with the XFEM coupled with the level set method and by
Sukumar et al. ing9] with the XFEM coupled with the fast marching method.

Figuresl7(a)and17(b)plot the variation of the SIFs along the crack front for thstfaind last steps
of the simulation, respectively. One can observe that ttessintensity factors (SIFs) for modes!, and
[l in step 0 show good agreement with the SIFs for infinite domalich ensures an accurate crack front
prediction for the next step. We can also observe that thev&8llies for modes$l andlll vanish and the
SIF for model becomes dominant towards the end of the simulation.

Figures18 and 19 show the top views of mesh refinement and off left views of theck surface
representation, respectively, at different incremertegps As the crack evolves, we can observe that the
crack front tends to become perpendicular to the axis of gipdied load while keeping a circular shape.
These results also show that there is no needl poiori refine the mesh in the region of potential crack
growth, as proposed in/[. This procedure would lead to substantial increase in lprabsize of this
example due to the nonplanar crack surface path.

Figure20 shows a cut through the solution at different incrementgst Thanks to the volume mesh
independence of the explicit crack surface representatiopted here and the integration subelements for
non-planar cracks presented i), the crack surface can assume an arbitrary shape inside/afime
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Figure 17: SIFs variation along the crack growth simulation for in@hpenny shaped crack.

AN TN <IN AN N N NN NGNS A
// s . ’// “ / N 7 | \\ / “ / \ /// NP NP - \X / \
. N / ST 2 N ’ N DA ’
" £ - / RN 4N Ve N P Yo i S
AN NV N R ¢ s N A NN
Y 7 1 s YARNE e P
/ K] N NN LT K N LT N
N < % AN N e
s N N 4 i / /S N
NN XN / N %ﬁ - i XN / N >< ; < /
/ E N / AN / , AT
d AN RN > 7 : // I i AR PR \
~ N < N /// N Vd N //\>/ N / < | ¢ x%\L> R /
AN / ANVZANVEN \ R 5 I N ANVANIRY,
N N I v / ~ B ~ & P
step 0 step 7 step 14
AN ARy N S /7 /I < IR X SN S| S i NS |
1 b S N \\ s fESESE Lﬁ\w “k VAN
v // & 5, KA - \////\ o e N NP / -~ VARN
SN SN DE (N
SN / R k]~
\</\ ; - >/ AN \/: 4;\\ i $<
L S NN AN
/ N \ \\/ // \47 7
S _ SN I - 2
BN M “ .
. = > NN X
AN iEivaAN IERNNP b 0
< < (i/\ / el - ZIN
T 50 7 4 P / i N 7
N /\i\ k J\ \ < N J ZASEANEANE N/\\J /i\ ¢ i & DEKN ™ L
7S < \ AT A \ K ZONR S : 5 AN N
step 21 step 28 step 37

Figure 18: Inclined penny-shaped crack - localized mesh refinemenirarthe crack front at various crack growth
steps (top view).
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Figure 19: Inclined penny-shaped crack - crack surface representattorarious crack growth steps (off left view).
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Figure 20: Inclined penny-shaped crack - cut through solution mesthatcenter of the domain at various crack
growth steps (off left view).
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mesh with large elements. Moreover, special features otthek surface, such as sharp turns, can be
represented with high fidelity regardless the sizes of tamehts of the volume mesh. This feature may not
be important for the overall solution of the present prohlaowever, an accurate description of the crack
surface is crucial for crack problems in which the physicddapendent on the crack surface description.
Some examples of problems with crack surface dependentgshgie crack growth driven by hydraulic
pressure applied to the crack surface, crack growth witlesiwh models, cracks under compressive loads
and so forth.

Again, thehp-GFEM discretizations are automatically built at each krstep (cf. Figurel8). Mesh
refinement and unrefinement is applied along the crack frowtrder to provide a localized refinement
that automatically follows the crack front throughout timation. In contrast with standard FEM tech-
nigues, this process does not introduce additional cortiput cost to the simulation since there are no
requirements for the volume mesh to be conforming with tlaelkcsurface.

Mode |11 effects on crack path The effects of mixed modality on fatigue crack growth orsitn and,
consequently, on the crack surface shape have been the oigéttsof study of several researchers for
many years. A detailed literature survey of mixed mode tetigrack growth can be found i6q]. The
crack orientation for mixed mode problems with motlesdl| is very well understood. Erdogan-SihA]
criterion, also called maximum tangential stress criteno hoop stress criterion, is widely used for crack
path prediction in two dimensional simulations. Howevarge-dimensional effects on the orientation of
mixed mode fatigue crack growth is not fully understood. €ffects of moddll in mixed mode fatigue
crack growth are discussed and formulated in the works okRPoa, 53], Schbllmann et al. §2], and
Richard et al. $9).

In general, computational simulations for three-dimenalarack growth found in literature do not
consider modell effects in the prediction of the crack path. Although Erdoegih’s [20] criterion con-
siders only modes$ and|l to predict the crack growth orientation, this criterion i®ddly applied in
three-dimensional simulations to provide the growth dioecalong the crack front. The works of Carter
et al. [3], Krysl et al. [33] and Gravouil et al. 76] are among the works that apply Erdogan-Sih’s criterion
for crack growth orientation in three-dimensional simigas.

Figure 21 illustrates the results for the same inclined penny-shapack example presented in this
Section with the crack growth methodology proposed in thiggp but considering; = 0 in Equations
(16) and (L7), which is equivalent to applying Erdogan-Sih&][ criterion for crack growth orientation.
By comparing Figurel9 and Figure21(a) one can observe that the simulation without méldeeffects
does not provide a planar motlerack growth after 38 crack growth steps. Indeed, Fig@i€b)and21(c)
show that modell stress intensity factors are not completely vanished agttueof the simulation. The
modelll stress intensity factor values are reduced by only 58% af ithiéal values at step O.

Gerstle P5] proposed a criterion that extends Erdogan-Sikig Eriterion to three dimensional simu-
lations by considering an equivalent maddstress intensity factor which combines modlesdlll . This
criterion was applied in three dimensional crack growthudations with boundary element method (BEM)
by dell’Erba and Aliabadil1] and with FEM by Okada et al4[]. As observed by dell’Erba and Aliabadi
[11], crack growth simulations with this criterion do not shoigrsficant reduction in the modig| stress
intensity factors after several crack growth steps.
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Figure 21: Inclined penny shaped crack results for crack growth odéinh without Ky, effects.

6 Concluding remarks

This paper presents a robust methodology for modeling ttim@ensional crack growth simulations of
crack surfaces with arbitrary shapes. The proposed melbgyles based on thbp-GFEM for fracture
mechanics §0] to automatically build high-order discretizations coegbiwith the FOM P9 to track the
evolution of the crack front. The verification and validatipresented in Sectioh are focused on the
analysis of fatigue crack growth, however, the-GFEM coupled with FOM can be extended to other
applications, e.g., dynamic crack growth and crack growith eohesive elements.

Fatigue crack growth is modeled as a sequence of lineaiefemtture mechanics (LEFM) solutions.
Based on the LEFM solutions, Sallmann’s criterion and Paris-Erdogan’s equation provtuedirection
and amount of crack advance, respectively. High-orderelizations with adaptive crack front refinement
are automatically generated at each crack step. HpRBFEM presented ing0] is utilized to solve static
crack problems at each crack step of the simulation. Thisga® ensures accurate SIFs along the crack
front and, consequently, accurate crack growth surfadegratdiction.

FOM guarantees the geometrical feasibility of the crackes@rrepresentation. The FOM is a numerical
technique for tracking the evolution of explicit surfacés][ In this work, the FOM is applied to track the
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evolution of the crack front throughout the crack growthliaion. At each crack growth step, the FOM
verifies the crack front advance and, if necessary, proviteadvance limit that prevents self-intersections
of the crack front.

The proposed methodology provides very accurate crackdesgttription. Prediction of crack growth
corroborates experimental data and experimental obsemgads presented in SectibnThis methodology
also allows the crack surface to grow arbitrarily inside ofuivne meshes with non-uniform refinement.
The results presented in Sectibi show that crack growth simulations with explicit crack siee repre-
sentation do not requira priori refinement of the volume mesh in the region of potential cgokvth. A
combination of an explicit crack surface representatioh mon-planar cuts inside of elements, proposed
in [50] for static cracks, results in a powerful tool that allow ttepresentation of arbitrarily continu-
ous cracks with non-smooth surfaces in crack growth sinanlat Non-smooth crack surfaces are very
common in mixed mode crack growth. An accurate represemntafi crack surfaces is essential when sim-
ulating problems in which the physics depend on the craclasergeometry. Some examples of these
types of problems are hydraulically induced crack growthck growth with cohesive models and contact
of crack surfaces due to crack closure.
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