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Abstract

A coupling between thehp-versionof the generalized finite element method (hp-GFEM) and the
face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adap-
tive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional
(3-D) crack surfaces. By applying thehp-GFEM at each crack growth step, high-order approximations
on locally refined meshes are automatically created in complex 3-D domains while preserving the as-
pect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the
crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack
front descriptions based onhp-GFEM solutions. The coupling ofhp-GFEM and FOM allows the simu-
lation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical
simulations illustrate the robustness and accuracy of the proposed methodology.

Keywords: Generalized finite element method; Extended finite element method; High-order approxi-
mations; Face offsetting method; Crack growth.

1 Introduction

In industry, designers often utilize computational simulations of fracture mechanics problems in life pre-
diction of engineering structures. Life prediction of engine components, structural members of aircraft
fuselage, riser pipes in offshore platforms and pipeline joints are examples of industrial problems in which
three-dimensional (3-D) computational fracture mechanics analysis is broadly applied. In these cases, crack
growth assessment is a major requirement, and engineering decisions must be based on accurate evaluation
of fracture mechanics quantities such as energy release rate and stress intensity factors [59, 60]. These
quantities are, in turn, dependent on the accuracy of the 3-Dnumerical analysis performed.

The finite element method (FEM) has been broadly used for manydecades to perform crack growth
analysis of industrial complexity problems [21, 40, 61, 79, 80]. The application of the FEM to this class of
problems faces several issues regarding crack surface discretization and excessive computational cost [78].
In the FEM, it is a demanding task to fully automate the generation of meshes in complex 3-D geometries
satisfying discontinuities and aspect ratio requirements.
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Partition-of-unity methods [5] such as the Generalized FEM (GFEM) [14] and the eXtended FEM
(XFEM) [71] are promising techniques to overcome the shortcomings of the standard FEM in crack growth
simulations. In these methods, discontinuities in the solution can be represented via suitable enrichment
functions coupled with geometrical descriptions of crack surfaces, which areindependent of the volume
mesh. The elements have no requirement to fit the crack surface. This feature of the partition of unity
methods greatly facilitates mesh refinement, which can be easily applied in localized regions of the dis-
cretization. A survey of 3-D crack growth modeling with partition-of-unity methods is presented in [57].

When applied to three-dimensional fracture mechanics problems, partition of unity methods usually
rely on a computational geometry technique to represent thecrack surface and the enrichment functions
that are utilized to approximate the discontinuous and singular components of the solution. In this paper,
the methods used in the geometrical description of the cracksurfaces are classified into two groups: implicit
and explicit.

Implicit methods use a three-dimensional volume mesh to represent a crack surface. In these methods
the fidelity of the crack surface description depends on the refinement of the volume mesh. One example of
this type of crack surface representation is the level set method [63]. Belytschko and co-workers coupled
the XFEM with level set method for static crack and crack growth simulations [26, 39, 71]. Sukumar
et al. [9, 70] have also introduced fast marching techniques to track theevolution of three-dimensional
crack surfaces in XFEM simulations. More recently, Duan et al. [12] introduced the element local level
set method for 3-D dynamic crack growth analysis with the XFEM. A detailed review of crack surface
representation with level set methods in XFEM simulations can be found in [18].

Other examples of implicit crack surface representation are the methods based on a collection of planar
cuts or crack planes in tetrahedral elements to represent a crack surface. According to Jäger et al. [28],
depending on the crack path tracking strategy, these methods can be subdivided into four categories: fixed,
local, non-local and global. The fixed crack tracking strategy is based on standard interface elements, e.g.,
cohesive elements, and requires the crack path to be known beforehand. In this case, the crack propagates
when the interface element, in the predetermined crack path, exceeds a critical failure stress. The local
crack tracking scheme can be regarded as a three-dimensional extension of the crack tracking strategy for
two-dimensional analysis. In this case, the crack growth isdriven by the normal direction of the maximum
principal stress and represented by planar cuts in the tetrahedral elements. Each element has its own in-
dependent crack plane, which may lead to discontinuities inthe overall crack surface representation due
to variations of crack plane normals between adjacent elements. In order to prevent these discontinuities,
Areias and Belytschko [2] proposed to adjust the planar cut provided by the maximum principal stress
according to the intersection points generated by the planar cuts of adjacent elements. In the non-local
tracking strategy proposed by Gasser and Holzapfel [23, 24], the crack surface in the neighborhood of the
crack front is smoothed out in a least-square sense by a post-processing corrector step. The element crack
planes on the neighborhood of the crack front are adjusted inorder to provide a smooth crack front for each
crack growth step and, consequently, a smooth crack surfacerepresentation. The global tracking technique
introduced by Oliver et al. [45, 46] applies an auxiliary problem to trace the crack surface path. This track-
ing technique provides a continuously smooth crack surfaceby solving an auxiliary heat conduction-like
problem within the post-processing phase of the analysis. In this strategy, the crack surface is represented
by an isosurface of the solution for the heat conduction-like problem which, in turn, is represented by a
collection of planes defined at the element level.

In the studies presented in [2, 12, 28], the overall solution of the problems solved with methods that
use implicit crack surface representation is not mesh dependent, as expected. However, the accuracy of
the crack surface representation is still mesh dependent since the crack surface is represented by the same
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mesh used for the solution of the problem. A remedy for this problem is to incorporate an auxiliary mesh of
same spatial dimension as the mesh used in the analysis process to represent the crack [54]. This requires
additional bookkeeping and computational cost in order to transfer information between meshes.

Explicit methods for crack surface representation in 3-D use a two-dimensional triangular/quadrilateral
mesh embedded in a three-dimensional space to represent thecrack surface. By design, this type of rep-
resentation provides a continuous crack surface with no extra computational cost related to the solution
of auxiliary problems. In this case, the crack surface can have an arbitrary shape and no volume mesh
refinement is required to improve the accuracy of the crack surface representation. Moreover, special geo-
metrical features of the surface, such as sharp turns, whichare very common in mixed-mode simulations,
can be easily represented without additional difficulties.The accuracy of crack representation is impor-
tant for problems in which the physics depend on the shape of the crack surface, e.g. hydraulic fracture,
propagation with cohesive models, crack closure, and so forth. This methodology was successfully applied
in conjunction with the GFEM in [14, 15, 31, 32, 50, 51] as well as the element-free Galerkin method
[33]. More recently, the explicit method was extended to represent interfaces in fluid-structure interaction
problems using the XFEM [37].

The hp-versionof the GFEM (hp-GFEM) [50] is a robust method that provides accurate solutions in
3-D crack growth simulations. In thehp-GFEM, adaptive surface meshes composed of triangles are utilized
to represent complex 3-D crack surfaces. At each crack growth step, this method allows automatic creation
of high-order approximations on locally refined volume meshes in complex 3-D domains. It also preserves
the aspect ratio of volume elements regardless of crack geometry. There is no requirement on the size of the
volume mesh elements to improve the accuracy of the crack surface representation. The size of the elements
in the explicit crack surface mesh can be modified without changing the size of the problem described by
the volume mesh. Furthermore, special features of the cracksurface geometry can be easily represented
and preserved through the crack growth simulation.

The face offsetting method (FOM) [29] is a numerical technique which was originally developed to
track the evolution of 3-D surfaces of, e.g., burning solid propellants. In this paper, the FOM is adapted to
track the evolution of complex 3-D crack fronts. In addition, mesh smoothing and mesh adaptation are also
introduced for maintaining the quality and fidelity of the crack surface. Based on thehp-GFEM solution,
a new crack front position is predicted by the FOM. The FOM provides geometrically feasible crack front
descriptions by updating the vertex positions and checkingfor self-intersections of the crack front edges.
Thehp-GFEM coupled with the FOM allows the simulation of complex crack growth independent of the
volume mesh. This work presents numerical simulations thatdemonstrate the robustness of the proposed
methodology.

The remaining parts of this paper are organized as follows. Section2 presents a brief overview of the
hp-GFEM and the FOM for three-dimensional fracture mechanicsproblems. The target problem descrip-
tion and the crack growth model are described in Sections3 and4, respectively. Numerical examples to
verify and validate the proposed approach are presented in Section5. Finally, Section6 discusses the main
contributions and concluding remarks of this paper.

2 The hp-GFEM and FOM for crack growth problems

This section presents a brief overview of thehp-version of the generalized finite element method (hp-
GFEM) and the face offsetting method (FOM) for three-dimensional crack growth problems. A detailed
discussion on the accuracy, robustness and computational efficiency of thehp-GFEM for three-dimensional
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static fracture mechanics problem is presented in [50, 51]. A more general and detailed description of the
FOM can be found in [29].

2.1 Generalized Finite Element Method

2.1.1 GFEM - a brief overview

The generalized FEM [5, 13, 38, 42, 67] can be regarded as a FEM in which the shape functions are
constructed by applying the partition of unity concept [4, 16, 17]. It combines the systematic way of build-
ing discretizations from the standard FEM and the approximation function flexibility enjoyed by meshfree
methods [3, 6, 27, 35, 36]. In the GFEM considered here, a shape functionφα i is built from the product of
a finite element Lagrangian shape function,ϕα , and an enrichment function,Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα) (1)

whereα is the index of a node in the finite element mesh. Figure1(a)illustrates the construction of GFEM
shape functions.

The linear finite element shape functionsϕα , α = 1, . . . ,N, in a finite element mesh withN nodes
constitute a partition of unity, i.e.,∑N

α=1 ϕα(xxx) = 1 for all xxx in a domainΩ discretized by the finite element
mesh. This is a key property used in partition of unity methods. Linear combinations of the GFEM shape
functionsφα i(xxx), α = 1, . . . ,N can representexactlyany enrichment functionLα i .

Several enrichment functions can be hierarchically added to any nodeα in a finite element mesh. Thus,
if DL is the number of enrichment functions at nodeα , the GFEM approximation,uuuhp, of a functionuuu can
be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iϕα(xxx)Lα i(xxx)

=
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

uuuα iLα i(xxx) =
N

∑
α=1

ϕα(xxx)uuuhp
α (xxx)

(2)

whereuuuα i , α = 1, . . . ,N, i = 1, . . . ,DL, are nodal degrees of freedom anduuuhp
α (xxx) is a local approximation

of uuu defined onωα = {xxx ∈ Ω : ϕα(xxx) 6= 0}, the support of the partition of unity functionϕα . In the case
of a finite element partition of unity, the supportωα (often called cloud) is given by the union of the finite
elements sharing a vertex nodexxxα [13]. The equation above shows that the global approximationuuuhp(xxx) is
built by pasting together local approximationsuuuhp

α ,α = 1, . . . ,N, using a partition of unity. This is a concept
common to all partition of unity methods.

2.1.2 hp-GFEM for fracture mechanics problems

The local approximationsuuuhp
α , α = 1, . . . ,N, belong to local spacesχα(ωα) = span{Liα}DL

i=1 defined on
the supportsωα , α = 1, . . . ,N. The selection of the enrichment or basis functions for a particular local
spaceχα(ωα) depends on the local behavior of the functionuuu over the cloudωα . In the case of fracture
mechanics problems, the elasticity solutionuuu may be written as

uuu = ûuu+ ˜̃uuu+ ŭuu (3)
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(b) Crack front coordinate system.

Figure 1: Construction process for GFEM shape functions and crack front coordinate system.

whereûuu is a continuous function,̃̃uuu is a discontinuous function but non-singular andŭuu is a discontinuous
and singular function. Thisa priori knowledge about the solutionuuu is used below to select basis functions
for a local spaceχα(ωα).

The selection of enrichment functions is based on the position of the cloudωα with respect to the crack
surface. The local approximation can be subdivided into three distinct sets:

Local high-order approximation for continuous functions Let Ic denote a set with the indices of
cloudsωα that do not intersect either the crack surface or the crack front. In this case, a local approximation,
ûuuhp

α (xxx), of uuu overωα can be written as

ûuuhp
α (xxx) =

D̂L

∑
i=1

ûuuα i L̂α i(xxx) (4)

whereD̂L is the dimension of a set of polynomial enrichment functionsof degree less than or equal to

p−1. Our implementation follows [13, 42] and the set{L̂α i}D̂L
i=1 for a cloud associated with nodexxxα =

(X1α ,X2α ,X3α ) is given by

{

L̂α i
}D̂L

i=1 =

{

1,
(X1−X1α )

hα
,
(X2−X2α )

hα
,
(X3−X3α )

hα
,
(X1−X1α )2

h2
α

,
(X2−X2α )2

h2
α

, . . .

}

(5)

with hα being a scaling factor [13, 42]. These enrichment functions are identical to those definedin [13].
The corresponding generalized FE shape functions,φ̂α i, at a nodexxxα , are polynomials of degreep given by

φ̂α i(xxx) = ϕα(xxx)L̂α i(xxx) i = 1, . . . , D̂L (no summation onα) (6)
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Local high-order approximation for discontinuous functions Let Ic-f denote a set with the indices of
cloudsωα that intersect the crack surface but not the crack front. In this case, the solutionuuu overωα has
continuous and discontinuous non-singular parts. A local approximation,uuuhp

α (xxx), of uuu overωα , α ∈ Ic-f,
can be written as

uuuhp
α (xxx) = ûuuhp

α (xxx)+H ũuuhp
α (xxx) =

D̂L

∑
i=1

ûuuα i L̂α i(xxx)+
D̃L

∑
i=1

ũuuα iH L̂α i(xxx) (7)

whereH (xxx) denotes a discontinuous function defined by

H (xxx) =

{

1 if xxx∈ ω+
α

0 otherwise
(8)

ω+
α is the part of the cloudωα located above the discontinuity (cf. Figure1(a)). ûuuhp

α (xxx) andũuuhp
α (xxx) are local

approximations of̂uuu andũuu, respectively, and̂Lα i is a polynomial enrichment function of degree less than or
equal top−1 as previously defined.

The analysis of through-the-thickness cracks presented in[15] shows that the continuous and discon-
tinuous components of the solutionuuu should be approximated using the same polynomial order. Thus, we
takeD̃L = D̂L in all computations presented in Section5.

Based on the above, the generalized FE shape functions of degree less than or equal top used at a node
xxxα , α ∈ Ic-f, are given by

ΦΦΦp
α =

{

φ̂α i , φ̃α i
}D̂L

i=1 (9)

whereφ̃α i = H φ̂α i andφ̂α i is defined in (6). The enrichment functionsH L̂α i(xxx), i = 1, . . . , D̂L, are called
high-order step functions [15, 50].

Crack front enrichment functions Let Ifront denote a set with the indices of cloudsωα that intersect
the crack front. In this case, terms from the asymptotic expansion of the elasticity solution near crack
fronts are good choices for enrichment functions. Two dimensional expansions of the elasticity solution are
commonly used as enrichment functions for three-dimensional cracks in finite size domains [13, 14, 39, 71].
As a consequence, a sufficiently fine mesh must be used around the crack front in order to represent the
three-dimensional solution effect and achieve acceptableaccuracy. A local approximation,̆uuuhp

α (xxx), of uuu
overωα , α ∈ Ifront, is defined as

ŭuuhp
α =

2

∑
i=1







ŭξ1
α i L̆ξ1

α i(r,θ )

ŭξ2
α i L̆ξ2

α i(r,θ )

ŭξ3
α i L̆ξ3

α i(r,θ )






(10)

whereξ1, ξ2 andξ3 are directions in a curvilinear coordinate system defined along the crack front, andr,
θ andξ3 are curvilinear cylindrical coordinates, as illustrated in Figure1(b). ŭξ1

α i , ŭξ2
α i and ŭξ3

α i are degrees
of freedom in theξ1−, ξ2− and ξ3− directions, respectively. Here, the degrees of freedom arescalar
quantities, in contrast with those used in the previous local approximations.

The enrichment functions used to approximate displacementfields in theξ1, ξ2 andξ3 directions are
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given by [13, 14, 41, 43, 50]

L̆ξ1
α1(r,θ ) =

√
r

[

(κ − 1
2
)cos

θ
2
− 1

2
cos

3θ
2

]

L̆ξ2
α1(r,θ ) =

√
r

[

(κ +
1
2
)sin

θ
2
− 1

2
sin

3θ
2

]

L̆ξ3
α1(r,θ ) =

√
r sin

θ
2

(11)

L̆ξ1
α2(r,θ ) =

√
r

[

(κ +
3
2
)sin

θ
2

+
1
2

sin
3θ
2

]

L̆ξ2
α2(r,θ ) =

√
r

[

(κ − 3
2
)cos

θ
2

+
1
2

cos
3θ
2

]

L̆ξ3
α2(r,θ ) =

√
r sin

3θ
2

where the material constantκ = 3−4ν andν is Poisson’s ratio. This assumes plane strain conditions, which
is in general a good approximation far from crack front ends.The above enrichment functions correspond
to the first term of the modesI and II , and to the first and second terms of the modeIII components of
the asymptotic expansion of elasticity solution around a straight crack front, far from the vertices and for a
traction-free flat crack surface [72]. More details about the geometrical approximation of the crack front as
well as the definition of the crack front coordinate system can be found in [51].

Generalized FEM shape functions built with the enrichment functions (11) must be integrated with care.
In the numerical examples presented in this work, this is achieved by using strongly graded meshes at the
crack front and an appropriate number of integration points. A detailed study of numerical integration and
computational performance of these functions is presentedin [48].

Partition of unity shape functions are linear dependent when, for example, both the partition of unity
and the enrichment functions span polynomials [13, 66, 75]. This is the case of the GFEM shape functions
defined in (6). Algorithms to deal with these linear dependences are described in [13] and an approach to
avoid them is proposed in [76]. In this paper, the linear dependencies of the global system of equations are
handled using the algorithm presented in [13].

Localized h-refinement Analytical enrichment functions, such as (11), are not able to deliver accurate
solutions on coarse three-dimensional meshes when the crack front has a complex geometry. Localized
mesh refinement must be applied in order to overcome this limitation [19, 50, 51]. Although these analyt-
ical enrichment functions require localized mesh refinement, the size of the elements along the crack front
in typical hp-GFEM meshes is usually one order of magnitude larger than the size of the crack front ele-
ments in standard FEM meshes [51]. A detailed convergence analysis on thehp-GFEM applied to fracture
mechanics problems and on enrichment functions for curved crack fronts with localizedh-refinement can
be found in [50] and [51], respectively.

Localized refinement and unrefinement can be easily applied in crack growth simulations with the
GFEM. In the GFEM models for fracture mechanics, the elements in the volume mesh need not fit the
crack surface and the crack surface representation is independent of the volume mesh. Numerical examples
in Section5 illustrate this feature of the method.
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Crack surface representation In thehp-GFEM adopted in this paper, the crack surface is represented
by flat triangles with straight edges [50] as illustrated in Figures6 and 19. Thus, curved crack fronts
are approximated by straight line segments. The fidelity of this approximation can be controlled by simply
using a finer triangulation of the crack surface. This process isindependentof the GFEM mesh and does not
change the problem size [50]. The explicit crack surface representation provides geometrical information
for the construction of crack front coordinate systems and crack front enrichment functions, such as (11).
The computational geometry aspects of this construction are presented in detail in [51].

This work extends the formulation of the face offsetting method (FOM), introduced in [29], to track the
evolution of the crack front in crack growth simulations. The next section presents a brief introduction of
the method and the main FOM techniques applied to crack frontevolution.

2.2 The face offsetting method for crack growth

2.2.1 FOM - a brief overview

The face offsetting method (FOM) [29] is a numerical technique used to track the evolution of explicit
surfaces. It is an alternative to the level set method [63] that has been broadly used in the extended finite
element method context [26, 54, 68]. Given the current position of a surfaceΓ and either a velocity field
vvv(xxx, t) : Γ×R→R

3 or a normal speedf (xxx, t) : Γ×R→R, the FOM determines the new position of a mov-
ing surface at timet +∆t by integrating the Lagrangian equationsdxxx

dt = vvv(xxx, t) or dxxx
dt = f (xxx, t)nnn(xxx, t), where

nnn denotes the unit normal to the surface. The FOM solves these equations using a geometric construction
based on the Generalized Huygens’ or shell-of-influence principle for moving interfaces [29]. It first prop-
agates the faces using a standard time integration technique. At each vertexv, let nnni denote the normal to
the ith face incident onv after time integration, andMMM = ∑i nnninnnT

i denote the “normal covariance matrix” at
v. FOM determines the new position ofv by performing an eigenvalue analysis ofMMM and then solving the
normal and tangential motions simultaneously. During surface evolution, the FOM also redistributes the
vertices to maintain or improve the quality of the surface mesh. It also checks for self-intersection to avoid
misrepresentation of the evolving surface. Compared to thelevel set method, FOM has the advantages of
being able to capture sharp turns in surfaces and to be generalized to non-manifold surfaces (such as in
branching cracks). More details about these techniques canbe found in [29].

In our crack-growth simulations, the crack surface evolution is represented by a sequence of crack front
steps using explicit crack surface representation presented in [50, 51]. The crack front vertices, edges, and
their incident faces are the only parts of the surface that control its evolution throughout the simulation. In
this paper, we adapt the face offsetting method (FOM) to track the evolution of these crack fronts. Two key
features of the original FOM method are utilized and adaptedhere: 1) the prediction of self-intersection
and adaptation of time step, and 2) the smoothing and adaptation of the surface mesh along the tangential
direction. We hereafter describe these two aspects in more detail.

2.2.2 Crack advance limit

FOM checks the crack front for self-intersection at each step of the crack growth simulation and pro-
vides geometrically feasible crack front and crack surfacedescriptions. For the purpose of detecting self-
intersections, consider each vertex on the crack frontv j moving along a straight line from its current position
ppp j with advance vectorddd j , which is based on the solution computed by thehp-GFEM method presented in
Section2.1.2and the crack growth criterion presented in Section4. The line segment can be parameterized
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by qqq j = ppp j + βddd j ,0≤ β ≤ 1. As illustrated in Figure2, consider a triangleppp1ppp2ppp3 incident on a vertex
on the crack front. We refer to such a triangle as acrack front face. Let qqq j = ppp j + βddd j ,1≤ j ≤ 3 denote
these three vertices with a partial increment ofβddd j , whereddd j = 000 for the vertices not on the crack front.
The condition to prevent self-intersection of the crack front can be then regarded as the limit of the crack
incrementβdddi that avoids the reversal of the orientation of the crack front faces and of the crack front curve.
It therefore suffices to determine aβ that prevents such reversals.

We first consider the orientation of the crack front faces. Let qqqi− j denoteqqqi −qqq j (and similarly forpppi− j
anddddi− j ). The normal to the triangleqqq1qqq2qqq3 with the partial displacementsβddd j is then

qqq2−1×qqq3−1 = (ppp2−1 +βddd2−1)× (ppp3−1 +βddd3−1)
= β 2(ddd2−1×ddd3−1)+β (ddd2−1× ppp3−1 + ppp2−1×ddd3−1)+ ppp2−1× ppp3−1
= β 2ccc2 +βccc1 +ccc0,

(12)

whereccc0 is the normal to the crack front face whenβ = 0. The orientation of the crack-front face cannot
be flipped ifβ is between 0 and the smaller positive solution to the quadratic equation

cccT
0

(

β 2ccc2 +βccc1 +ccc0
)

= 0. (13)

Y

Z

X

qqq1qqq2qqq3

crack front

stepi+1

v j

stepi

v j

βddd j

ppp j qqq j

ppp0

ppp2

ppp1

ppp3

ppp1ppp2ppp3

qqq1

qqq2
qqq3

qqq0

Figure 2: Illustration of crack advance limit formulation. The triangles on the right denote triangles with partial
displacement increments.

To check the orientation of the crack front curve, consider two consecutive crack front edgesppp0ppp1 and
ppp1ppp2, and letqqq j = ppp j +βddd j ,0≤ j ≤ 2. Letttt denote the average tangent direction at the vertex computedas
‖qqq2−1‖qqq1−0 +‖qqq1−0‖qqq2−1. We require thatβ be small enough such that the tangent vectorsqqq1−0 andqqq2−1
are not flipped with respect tottt. This is achieved by requiringβ to be smaller than the positive solution to
the equationppp1−0 ·ttt +βddd1−0 ·ttt = 0 and also than the positive solution to the equationppp2−1 ·ttt +βddd2−1 ·ttt = 0.

After evaluatingβ for all crack front faces and edges, letα be the smaller value between 1 and the
smallestβ (or a fraction of the smallestβ to tolerate roundoff errors) along the crack front. Hereafter, α
is denoted as the crack advance limit. Ifα = 1, then there is no local self-intersection in the crack surface
after propagation. Ifα < 1, we multiply the crack front advance vectorsddd by α for all the vertices to obtain
a self-intersection-free crack front. We apply this procedure in Step6 of the algorithm described in Section
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4.3.

2.2.3 Crack front update and optimization of crack surface mesh

In crack growth simulations with explicit crack surfaces, the crack surface mesh must be updated as the
front is propagated. In this work, we use two techniques, referred to as propagate and extrude (PAE) and
propagate and smooth (PAS), respectively. These techniques are illustrated in Figure3. The details of these
techniques as well as the criteria to select them are presented as follows.

Propagate and extrude (PAE) In the first technique, we “extrude” the vertices and edges ofthe crack
front to create a new layer of faces. We create faces in two modes. In the first mode, we first clone a vertex
for each vertex on the crack front (cf. Figure3). The coordinates of these cloned vertices are set to the
new crack front position computed in Step6 of the algorithm presented in Section4.3. We add an edge
between the original and cloned vertices and also between adjacent cloned vertices. These vertices and
edges constitute a layer of quadrilaterals. We then divide each quadrilateral into two triangles by adding an
edge along a diagonal (such as from upper-left corner to the lower-right corner). This mode preserves the
number of vertices on the crack front.

In the second mode, we allow refining the crack front if an edgeis longer than some user-specified
threshold. In particular, we first create a layer of quadrilaterals as above. If an edge on the new crack front
is too long, then we subdivide its corresponding quadrilateral into three triangles by adding a vertex at its
mid-point and connecting it with every vertex of the quadrilateral (cf. Figure3).

After extrusion, the triangles next to the crack front may bepoorly shaped if the time step is too
small compared to the edge length. These poorly-shaped triangles can adversely affect the accuracy of
the computed normal directions of the crack front. To resolve this issue, after generating a layer of faces
we further optimize the quality of the mesh. We use the variational smoothing technique presented in
[30], which optimizes the triangles against some “ideal” reference triangles by moving the vertices while
preserving special features of the surface geometry (such as sharp turns in the crack surface). We refer
readers to [30] for more detail about the technique, but hereafter we describe the selection of ideal triangles.

In a typical setting, an ideal triangle is equilateral. However, in PAE the extruded edges are nearly or-
thogonal to the front, so right triangles are more desirable. For simplicity, if no edge splitting is performed,
we set the ideal triangle to be right triangle with a leg ratioof two, so that each extruded edge is about
half as long as its incident front edges. If edge splitting isperformed, we choose the ideal right triangles
to be isosceles. For the triangles in the interior of the crack surface that have no layered structures, we
use equilateral triangles as the ideal triangles. To distinguish these different types of triangles, we tag the
triangles during extrusion based on their desired shapes and preserve these tags during the course of the
simulation.

Propagate and smooth (PAS) PAE adds a layer of faces, so the crack surface would have an excessive
number of triangles if it were invoked at every time step. To avoid the problem, we also allow propagating
the front by only moving the vertices on the crack front. As inPAE, the coordinates of crack front vertices
are updated with the new crack front position computed in Step 6 of the algorithm presented in Section
4.3. After moving vertices on the crack front, we then apply the variational smoothing described above to
improve mesh quality. If PAE has been invoked previously, wealso use right triangles as the ideal triangles
during this variational smoothing to preserve the orthogonality of the extruded edges.
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Selection criteria In a typical simulation, we apply both PAS and PAE. PAE is applied when 1) the crack
advance is non-planar with respect to the immediate previous step, 2) the crack front advance is not reduced
by the crack advance limit procedure, or 3) a crack surface front refinement is needed, i.e. one of the crack
front edge lengths reaches a predefined length value limit. Otherwise, we apply PAS.

Interaction with boundary In most of the problems, the crack front is the boundary curveof the crack
surface and is closed by definition. However, a crack may be atthe boundary of the solid, for which the
crack front is only a subset of the boundary curve, namely thesubset that “cuts” the solid. Our technique
provides some preliminary supports for the interaction of the crack front with solid boundaries. In particular,
we allow the user to flag the vertices where the crack front intersects with the solid boundary. In PAE, these
vertices are extruded along the material boundary. The border vertices of the crack surface that are not
on the crack front are not propagated or extruded, but they are smoothed tangentially along the boundary
curve.

PAS

crack front
at stepi

crack front
at stepi

new layer
of faces

new layer
of faces

PAE with front
refinement

PAE without front
refinement

stepi

stepi+1 stepi+1

stepi+1

Figure 3: Crack front update.

3 Problem description

The methodology presented in Section2 can be applied to several types of crack growth problems, e.g.,
dynamic crack propagation, fatigue failure assessment, crack growth with cohesive fracture models, and so
on. For simplicity and without loss of generality, the classof problems selected to verify the methodology
presented here is the fatigue crack growth in three-dimensional solids. The problem consists of a three-
dimensional body subjected to cyclic loading with an existing embedded or surface breaking crack. Figure
4 schematically illustrates our target problem.
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Figure 4: Fatigue problem.

Fatigue crack growth analysis is a problem of probabilisticnature which is of great importance in engi-
neering. Most of the equations utilized to describe fatiguecrack growth behavior are based on observations
of the physical phenomenon and extensive material testing.These equations are crucial for the design of
engineering structures in which the assessment of fatigue failure is a major requirement. Some example of
these structures include aircrafts, rockets, engines, pressure vessels, and bridges.

Depending on the type of load, material behavior and environmental influences, there are several classes
of fatigue behavior [60]. This work focuses on the simulation of stable crack growthunder high-cycle
fatigue. In the high-cycle fatigue mechanism, the loads aregenerally low compared with the limit stress
of the material, i.e. small-scale yielding occurs. As a consequence, the stress state around the crack front
can be fully characterized by linear elastic fracture mechanics. Other assumptions in the high-cycle fatigue
problems analyzed in this work include: cyclic loading withconstant amplitude,̄fmax> 0 and f̄min ≥ 0 (cf.
Figure4) and quasi-static crack growth.

From a macro-scale point of view, high-cycle fatigue can be regarded as a quasi-static phenomenon.
Moreover, the crack growth mechanism in high-cycle fatiguecan be characterized by linear elastic fracture
parameters, e.g. the stress intensity factors [59]. Therefore, a robust and accurate method to analyze linear
elastic fracture mechanics problems, such as thehp-GFEM presented in Section2 and described in more
details in [50], is essential for a successful fatigue crack growth simulation.

4 Crack growth model

A high-cycle fatigue crack growth simulation is an incremental process in which a sequence of linear elastic
fracture mechanics steps is repeated in order to describe the evolution of the crack front. Each increment
step is dependent on the crack problem solution and crack front prediction of previously computed steps.
Therefore, an accurate solver together with a robust criterion for the crack front advance prediction are
required for a successful crack growth simulation.

During the simulation, the crack growth criterion has to be able to provide the amount and direction of
crack advance, and the lifetime of the structure. In three-dimensional elastic fracture analysis, the stress
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state at the crack tip is fully characterized by the stress intensity factors for modesI , II , andIII , i.e. KI , KII ,
andKIII . They can be used to describe the fatigue crack growth behavior and assess fatigue failure. This
section presents the fatigue crack growth model utilized inthe present work to drive the evolution of the
crack front along the simulation.

4.1 Crack growth direction - Schöllmann’s criterion

In three-dimensional mixed-mode crack problems, the crackdeflection is represented by a kinking angle
and a twisting angle as illustrated in Figure5. There are only a few criteria to estimate the direction of
the crack growth in 3-D. The criteria developed by Sih [64], Pook [52], Scḧollmann [62] and Richard [58]
are listed as the most important ones. According to a detailed study about three dimensional crack growth
criteria presented by Richard et al. in [58], the criteria proposed by Sih and Pook are not able to incorporate
the effect of modeIII in the first deflection angle,θ0 (see Figure5), and, therefore, are not suitable for the
prediction of three-dimensional mixed-mode crack growth orientation.

θ0

−ψ0

Figure 5: Crack deflection anglesθ0 andψ0 for three-dimensional mixed-mode crack problems [58].

In this work, Scḧollmann’s criterion [62] is adopted. A detailed formulation of Schöllmann’s criterion
can be found in [62]. This criterion assumes that crack growth occurs in the direction of a maximum prin-
cipal stressσ ′

1, also calledspecialprincipal stress [58]. σ ′
1 is a principal stress where the radial components

of the stress tensor are neglected. Such principal stress isdetermined on a virtual cylindrical surface around
the crack front and along a region of interest where the crackgrowth direction is computed. The maximum
principal stress,σ ′

1, is given by the following equation

σ
′
1 =

σθ +σz

2
+

1
2

√

(σθ −σz)2 +4τ2
θz (14)

whereσθ andτθz are the components of the stress tensor obtained by the superposition of all three fracture
modes described by the near-front solution in cylindrical coordinatesr, θ , andz (cf. Figure1(b)), given by

σθ =
KI

4
√

2πr

[

3cos

(

θ
2

)

+cos

(

3θ
2

)]

− KII

4
√

2πr

[

3sin

(

θ
2

)

+3sin

(

3θ
2

)]

τθz =
KIII√
2πr

cos

(

θ
2

) (15)

whereKI , KII , andKIII are the stress intensity factors for modesI , II andIII , respectively. Scḧollmann’s
criterion also assumes that there is no contribution to the kinking angle fromσz, i.e. σz = 0. The coordinates
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r andθ are polar coordinates on the crack front as illustrated in Figure1(b). According to the assumption
of the crack growth direction, the crack deflection angle,θ0 is determined by

∂ σ ′
1

∂ θ

∣

∣

∣

∣

∣

θ=θ0

= 0 and
∂ 2σ ′

1

∂ θ 2

∣

∣

∣

∣

∣

θ=θ0

< 0. (16)

There is no closed-form solution for the above formulation.Nonetheless, the prediction of the deflection
angle,θ0, can be determined by either an optimization algorithm applied to Equation (14) or a root finder
algorithm applied to Equation (16).

Once the first deflection angleθ0 is determined, the second deflection angleψ0 is defined by the orien-
tation of the principal stressσ ′

1 and can be obtained by

ψ0 =
1
2

arctan

[

2τθz(θ0)

σθ (θ0)−σz(θ0)

]

. (17)

One can observe that Equation (14) includes the stress intensity factor for modeIII , which indicates
that Scḧollmann’s criterion is suitable for simulating three-dimensional cracks under general mixed-mode
loading. WhenKIII = 0, this criterion is equivalent to the criterion of maximum tangential stress proposed
by Erdogan and Sih [20]. Furthermore, Scḧollmann’s criterion is well-suited for computational implemen-
tation of crack growth prediction and has been successfullyimplemented in standard FEM research codes
such as [61].

4.2 Crack front advance and fatigue life prediction - Paris-Erdogan equation

Fatigue crack growth rate is a complex non-linear equation of several variables. Laboratory experiments
and observation of structures under service loads have shown that the rate of crack increment with respect to
the number of load cycles,da/dN, is a function of the crack length, the state of stress, material parameters,
thermal, and environmental effects [65]. There are several empirical fatigue crack growth equations in
which all the effects mentioned above can be considered. This work focuses on the fatigue of macro-cracks
with cyclic loads of constant amplitude only. The growth equations utilized to describe this type of problem
are rather phenomenological than analytical. In the present study, Paris-Erdogan equation [47]

da
dN

= C(∆K)m (18)

is used to predict the crack growth rate. In Equation (18), C andm are regarded as material constants,
∆K = (1−R)Kmax is the stress intensity factor range in fatigue loading, whereR is the ratio of minimum to
maximum loads applied in a cycle andKmax is the stress intensity factor for the maximum load. In Equation
(18), ∆K takes into account modeI only.

In complex three-dimensional loading situations, Equation (18) should consider the mixed-mode ef-
fects. For this purpose,∆K can be replaced by the cyclic comparative stress intensity factor,∆Kν , given by
[58]

∆Kν =
∆KI

2
+

1
2

√

∆K2
I +4(α1∆KII )2 +4(α2∆KIII )2 (19)

whereα1 = KIc/KIIc andα2 = KIc/KIIIc are the ratios of the fracture toughness of modeI to modeII and of
modeI to modeIII , respectively. Withα1 = 1.155 andα2 = 1.0, the fracture surface provided by Equation
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(19) shows good agreement with the fracture surface provided bySchoolman’s criterion [58, 62]. Assuming
∆K = ∆Kν , Equation (18) provides a well-suited correlation between the crack-growth rate and the range
of the cyclic comparative SIF for the three-dimensional mixed-mode crack problem presented in Section3.

In the incremental algorithm for fatigue crack growth, the maximum allowed crack front increment,
∆amax, is set at the beginning of each crack step. Since in three-dimensional mixed-mode crack simulation
the stress intensity factors may vary along the crack front and the fatigue growth is governed by (18), the
increments along the crack front must be applied accordingly. The maximum crack increment size,∆amax,
is applied to the crack front vertex that has maximum cyclic comparative stress intensity factor,∆Kνmax. The
crack growth increments for the remainder of the crack frontare computed by using the crack growth rate
and the number of cycles of the current step. Thus, for a givencrack front vertexj , we have

∆a j = C
(

∆Kν j

)m ∆amax

C(∆Kνmax)
m = ∆amax

( ∆Kν j

∆Kνmax

)m

(20)

where∆Kν j is the cyclic comparative stress intensity factor for the vertex j .

Assuming that the crack growth increment is small with respect to the crack length and other dimensions
of the analysis domain, the fatigue life estimate can also becomputed in an incremental fashion. The
incremental form of Equation (18) for fatigue life prediction is given by

Ni = Ni−1 +
∆amax

C(∆Kνmax)
m (21)

whereNi andNi−1 are the number of cycles in the current and previous steps, respectively.

4.3 Crack growth algorithm

This section describes the crack growth algorithm used in the numerical examples presented in Section5.
The algorithm consists of an incremental process in which, at each step, a small crack advance is prescribed
and a linear elastic fracture mechanics problem is solved inorder to describe the evolution of the crack
front. In the simulation, we assume that an initial crack already exists in the domain of analysis and the
parametersC, m, andR for the fatigue life equation (18) as well as the maximum applied load are given.
∆amax is set at the beginning of the simulation and can be defined as afunction of the increment stepi.

The crack growth algorithm is as follows. For each crack increment∆ai , i = 0. . .n, do:

1. Solve a linear elastic fracture problem using thehp-GFEM and the current representation of the crack
surface. The solution is obtained for the maximum load applied to the analysis domain. This step is
similar to solving a static problem like the examples discussed in [50]. In this step,h-refinement is
applied around the crack front for the current position of the crack front. In the next crack increment,
the mesh is unrefined until its initial configuration and a newh-refinement is applied around the new
position of the crack front. Hence, the mesh is always adapted to the current crack front position. In
a similar fashion, the non-uniformp-enrichment presented in [50] can also be applied as the crack
front evolves.

2. Compute the stress intensity factors (SIF) for modesI , II and III for each vertex along the crack
front for the maximum cyclic load, i.e.KImax, KIImax, KIII max . The SIF can be extracted from thehp-
GFEM solution using, e.g., the contour integral method (CIM) or the cut-off function method (CFM)
[49, 72, 73].
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3. Compute the deflection anglesθ0 andψ0 for each vertex along the crack front based on the SIF
values computed at Step (2). The equations used in this step are presented in Section4.1. One
can note that this step could be computed using either the maximum SIFs or the minimum SIFs
because the equations used in the computation of the deflection angles using the maximum SIFs or
the minimum SIFs differ only by a constant.

4. Compute the cyclic comparative SIF variation using Equation (19).

5. Compute the crack increment for each vertex along the crack front using Equation (20).

6. While proposed crack front position is not geometricallyfeasible, i.e. 0< α < 1:

(a) Compute advance vectors,ddd j (cf. Figure2), for all crack front vertices. These advance vectors
are computed using the results obtained from Steps (3) and (5). If available, the advance limit
parameter,α , computed in Step (6b) is applied to scale down the advance vectors. The deflec-
tions and the crack increment for each vertex as well as the advance limit parameter provide the
new crack front position.

(b) Use FOM to estimate the crack increment limit to prevent self-intersections

• If the crack increment exceeds the limit, return the estimated advance limit parameter,α ,
and go to Step (6a) to provide new advance vectors for the crack vertices. Section 2.2.2
describes the procedure to compute the advance limit parameter.

• Otherwise, update crack front position using either PAE or PAS andbreak while loop.
Section2.2.3describes the details of the crack front updates PAE and PAS.

7. i = i +1 and if i < n, go to Step (1), otherwise,stop.

A similar sequence of steps is also performed in the researchcodes that use the standard FEM for
fatigue crack growth assessment such as FRANC3D [8], ADAPCRACK3D [61] and Zencrack [80]. The
main difference is that, in this work, we explore the flexibility of thehp-GFEM to efficiently build accurate
approximations at each crack step and evolve the crack surface without the mesh topology issues usually
found in crack growth simulations with standard FEM [77]. Another important feature of the proposed
approach is that the FOM is applied along the crack front to predict eventual self-intersections and to
ensure geometrically feasible crack front descriptions for each crack growth step.

5 Numerical examples

This section presents numerical analyses of three-dimensional fatigue crack growth problems using the
algorithm presented in Section4.3. The numerical examples are solved using thehp-GFEM with the refine-
ment and enrichment recommendations as well as the crack surface representation presented in [50, 51]. At
each crack increment in all examples, a static crack problemis solved with polynomial orderp= 3 for both
continuous and discontinuous components of the solution (Equation (9)), crack front enrichment (Equation
(10)), and localized crack front refinement ofLe/ao ≃ 10−2, whereLe is the size of a tetrahedron element
on the crack front andao is the initial characteristic crack length.

16



5.1 Crack front self-intersection verification for FOM - Non-convex crack front

This example consists of a planar surface-breaking crack with non-convex crack front in a prism. Figure
6 illustrates the initial coarse tetrahedral mesh and the initial crack surface description. The geometric
parameters of the problem areL/ao = 2, ao/bo = 2, andao/t = 1. E = 2.0×105MPa andν = 0.30 are
Young’s Modulus and Poisson’s ratio, respectively. The prism is subjected to a uniform tension cyclic
load,σ(t), on top and bottom surfaces of the domain as illustrated in Figure6. The fatigue parameters are
C = 1.463×10−11MPa−2.1m−0.05/cycle, m= 2.1, σmax= 1MPa andR= 0.

σ(t)

L

tL

t

Crack surface

Crack front
Y

X
ao

bo

Figure 6: Non-convex crack front example - model description.

In this example, self-intersection of the crack front is imminent. The main goal here is to verify the face
offsetting method (FOM) for crack growth. The FOM provides geometrically feasible crack front descrip-
tions by setting the crack advance limit that prevents self-intersection of the crack front. This simulation is
performed withn = 19 incremental steps and the maximum increment size is∆amax= 0.05ao.

This example is subjected only to modeI throughout the simulation. In general, the effects of fatigue
tend to smooth out the crack front curvature such that the variation of the stress intensity factorKI is
reduced. Moreover, this simulation is likely to present thecrack front tunneling effect, i.e. a curved crack
front configuration due to the variation of stress intensitydistribution caused by the domain boundary.

Figure7(a) shows the crack front position for each step of the fatigue crack growth simulation. The
crack front geometry is smoothed out due to the fatigue process. In this case, the crack front middle
propagates faster than the crack front ends. In addition, the tunneling effect is also observed after the crack
front becomes straight. Figure7(b)plots the normalized mode I stress intensity factors along the crack front
for all steps during the simulation. The normalized stress intensity factor is defined as

K̄I =
KI

σ
√

πao
. (22)
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As expected, the results show that the stress intensity factors are smoothed out due to the fatigue process.
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(a) Growth of planar crack with non-convex crack front in a
prism.
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Figure 7: Crack front configurations and SIF values along the crack front for non-convex crack front.

(a) Step 0. (b) Step 8. (c) Step 18.

Figure 8: Non-convex crack front - localized mesh refinement around the crack front for three crack steps (top view).

The main goal of this example is to trigger the FOM self-intersection detection during the simulation.
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In the first step of the simulation, FOM predicted the self intersection and the crack increment was reduced
to ∆alimit = 0.93∆amax. This detection scheme prevents the creation of voids in thecrack front and provides
geometrically feasible crack front representations throughout the simulation. The crack front geometry
results presented in Figure7(a)are as expected. These results ensure that the FOM techniques applied to
track the crack front evolution do not affect the physics of the problem.

Adaptive high-order discretizations are automatically built for each crack step during the crack growth
simulation. These high-order discretizations are easily built using thehp-GFEM since the volume mesh
need not fit the crack surface. Localized mesh refinement and unrefinement are applied along the crack
front in order to provide a mesh refinement that follows the position of the crack front throughout the
simulation. Figures8 and9 illustrate the localized refinement applied along the crackfront and a planar cut
through the mesh showing the von Mises stress at the mid frontfor steps 0, 8 and 18, respectively.

(a) Step 0. (b) Step 8. (c) Step 18.

Figure 9: Non-convex crack front - cut through von Mises stress solution at mid front (off diagonal view).

5.2 Validation against experimental results

This example consists of the fatigue simulation of a plate containing an inclined crack as illustrated in
Figure10. The geometry of the plate model and the experimental data for the position of the crack front
throughout the simulation are provided in [55]. The material used for the plate specimen is the titanium
alloy Ti− 6Al − 4V. The cyclic load applied in the experiment isσmax = 172.37MPa with ratio of the
minimum to the maximum tensile loadsR= 0.1. According to [55], the maximum tensile load is selected
such that the radius of the plastic zone around the crack front is approximately 0.25mm, i.e less than 10%
of the specimen thickness, therefore, the assumption of small scale yielding applies.

Figure 10 shows the dimensions of the model. In [55], the dimensions used in the specimens are
h = 102.4mm, w = 38.1mm, t = 3.175mmanda = 6.73mm. The slope of the crack with respect to the
y-axis isβ = 43◦ (see Figure10). To apply the cyclic load, the machine utilized in the experiments required
two sets of holes on the top and bottom regions of the plate height. Due to the lack of information about
the dimensions of the plate holes used in the experiments andin order to be able to assume a uniformly
distributed load at the ends of the plate, we adapted a plate model with a smaller height. As such, the
height of the plate model is set to be 2/3 of the height of the specimen and all other dimensions are the
same. Since the variation of the crack front increment through the thickness of the plate is not a concern
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Figure 10: Inclined crack model and crack growth steps.

in this simulation, we assume that the crack front remains straight throughout the simulation and the SIF
values along the front are constant and equal to the SIF values in the middle of the front. In [55], the
material parameters and the parameters for Paris-Erdogan equation (18) are not provided. In the numerical
simulation, we use Young’s modulus,E = 115× 103N/mm2, and Poisson’s ratioν = 0.32 as material
parameters andC = 1.251×10−11(N/mm2)−2.59mm−0.295/cycleandm= 2.59 as Paris-Erdogan equation
parameters for the titanium alloyTi−6Al −4V. These parameters can be found in [1].

Figure11 illustrates the GFEM mesh discretization for three steps ofthe inclined crack growth sim-
ulation. The proposed approach facilitates the automatic construction of strongly graded meshes around
the crack fronts along the simulation. Localizedh-refinement is applied to the elements that intersect the
crack front. After propagating the crack fronts, the mesh isunrefined to its initial coarse configuration
(cf. Figure10) and a new refinement is applied to the elements that intersect the new crack fronts in their
new positions. This procedure reduces the computational cost of the simulation by avoiding unnecessary
degrees of freedom in the discretization. The same procedure cannot be applied when the volume mesh is
used to represent the crack surface as in level set methods. In these approaches, all elements that intersect
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(a) Step 0. (b) Step 8.

(c) Step 16.

Figure 11: Inclined crack - localized mesh refinement around the crack fronts for three crack steps (front view).
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Figure 12: Front view of crack configuration - experimentalvs. numerical.
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the crack surface may have to be refined in order to provide an accurate crack surface representation. As an
example, the representation of the crack turn shown in Figure 11(c), requires a fine mesh around the crack
turning point.

In the proposed methodology, no volume mesh refinement is required to represent the special features
of the crack surface in the simulation. As illustrated in Figure10, the proposed crack surface representation
is able to model the sharp turn in crack direction at the beginning of the simulation and keep this feature of
the crack surface throughout the simulation.

Figure12 plots the crack frontX andY global coordinates using the experimental data provided by
[55] and the numerical results. The coordinates from the numerical results are based on the position of the
middle of the crack front during the simulation. The numerical results for the prediction of the crack path
show good agreement with the experimental results.

5.3 Verification of robustness - Wavy crack front

This example considers a planar crack with planar perturbations along the crack front, hereafter, referred
to as wavy crack. The analysis domain is a cube with dimension2L and subjected to a uniform tension
cyclic load of maximum magnitudeσmax = 1MPa perpendicular to the plane of the crack surface, i.e.z-
direction, as illustrated in Figure13. The geometric parameters of the crack surface area0/L = 0.25,
nwave= 6, ∆amax = 0.035a0, andε = 0.1, wherea0 is the radius of the reference penny-shaped crack,
nwave is an integer parameter that defines the number of waves alongthe crack front, andε is the crack
front geometry perturbation with respect to a penny-shapedcrack. The fatigue parameters areC = 1.463×
10−11MPa−2.1m−0.05/cycle, m = 2.1, andR= 0. This simulation is performed withn = 30 incremental
steps.E = 1.0×103MPa andν = 0.30 are Young’s Modulus and Poisson’s ratio, respectively. The main
objective of this numerical example is to show the evolutionof the crack front geometry during the fatigue
process.

planar wavy crack

right viewtop view

X

Y

θ

Y

Z

a(θ)

2L

σ(t)

Figure 13: Wavy crack model description.
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In this case, the crack surface is planar and perpendicular to the direction of the applied load and,
therefore, the crack is subjected only to modeI throughout the simulation. According to [10], experimental
observations indicate that the effects of fatigue tend to smooth out the crack front curvature such that the
variation of the stress intensity factorKI is minimized. Gao and Rice [22] presented a first-order accurate
solution for planar quasi-circular tensile cracks. In the case of wavy cracks whose front is described by

a(θ ) = a0 [1+ ε cos(nwaveθ )] (23)

the asymptotic solution for stress intensity factorsKasym.
I is given by

Kasym.
I (θ ) = K∞

I (a(θ ))

[

1− ε
nwave

2
a0

a(θ )
cos(nwaveθ )

]

(24)

whereθ is a parametric coordinate along the crack front, as illustrated in Figure13, andK∞
I (a) is the stress

intensity factor for a penny-shaped in an infinite domain, which is given by

K∞
I (a) = σ

√

a
π

. (25)

One can observe thatK∞
I varies along the crack front. Lai et al. [34] presented a static solution of this

problem, i.e. n=0, using the boundary element method. A crack growth simulation using the XFEM
coupled with fast marching method was presented by Sukumar et al. in [69].
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(a) Growth of a wavy crack embedded in a cube.
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Figure 14: Crack front configurations and SIF values along the crack front for wavy crack.

Figures14(a)and14(b)plot the crack front position for all steps during the simulation and the normal-
ized modeI stress intensity factor for the first,̄K f irst

I , and last,K̄ last
I , steps of the simulation, respectively.

The normalized stress intensity factor is defined as

K̄step
I =

Kstep
I

K∞
I (a(θ ))

(26)

23



wherestepis either the first or last step of the simulation. The resultsshow that the wavy crack eventually
grows to a penny-shaped crack, which corroborates experimental observations. The ratio of the maximum to
the minimum radii of the crack front at the beginning and at the end of the simulation areaf irst

max/af irst
min = 1.2

andalast
max/alast

min = 1.004, respectively. As expected, the variation of the SIFs issmoothed out as the crack
evolves. The ratio of the maximum to the minimum SIFs at the beginning and at the end of the simulation
areK f irst

max /K f irst
min = 1.64 andK last

max/K last
min = 1.01, respectively.

(a) Step 0. (b) Step 15. (c) Step 29.

Figure 15: Wavy crack - localized mesh refinement around the crack frontfor three crack steps (top view).

Figure15shows the GFEM mesh discretization for three steps of the wavy crack growth simulation. The
h-adaptive refinement and unrefinement procedure described in Section5.2 is also applied in this example.
One can observe that the refinement along the crack front follows the crack front position throughout the
simulation.

5.4 Crack growth under mixed-mode - Inclined penny-shaped crack

This example consists of an inclined penny-shaped crack in acube with dimension 2L. The cube is
subjected to a uniform tension cyclic load of maximum magnitudeσmax = 1MPa along they-direction,
as illustrated in Figure16. The initial coarse mesh and the initial crack surface configuration are also
illustrated in Figure16. The geometric parameters of the crack surface area0/L = 0.1 andβ = π/4, where
ao is the radius of the initial crack andβ is the slope with respect to theyz-plane. The maximum crack
front increment allowed in each step is∆amax = 0.02a0. In this case, the simulation is performed with
n = 38 incremental steps. The fatigue parameters areC = 1.5463×10−11MPa−2.1m−0.05/cycle, m= 2.1,
andR= 0. E = 1.0×103MPa andν = 0.30 are Young’s Modulus and Poisson’s ratio, respectively. The
main objective of this numerical example is to show the evolution of the crack surface geometry during the
fatigue process.

According to experimental observation in fatigue crack growth, cracks tend to grow in a direction that
provides modeI dominance. In the inclined penny-shaped case, the fatigue process imposes a twist to the
crack front in order to make it perpendicular to the applied load. In addition, the crack front tends to remain
circular throughout the simulation. This example is a mixed-mode problem in which all three modes are
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Figure 16: Inclined penny-shaped crack model description.

present. The stress-intensity factors along the crack front in an infinite domain are given by [74]

K in f .
I =

2
π

[

σsin2(β )
]

K in f .
II =

4
π(2−ν)

[σsin(β )cos(β )]cos(θ )
√

πa

K in f .
III =

4(1−ν)

π(2−ν)
[σsin(β )cos(β )]sin(θ )

√
πa.

(27)

whereθ is an angular coordinate on the crack plane that represents aposition on the crack front. The same
problem was solved by Gravouil et al. in [26] with the XFEM coupled with the level set method and by
Sukumar et al. in [69] with the XFEM coupled with the fast marching method.

Figures17(a)and17(b)plot the variation of the SIFs along the crack front for the first and last steps
of the simulation, respectively. One can observe that the stress intensity factors (SIFs) for modesI , II , and
III in step 0 show good agreement with the SIFs for infinite domain, which ensures an accurate crack front
prediction for the next step. We can also observe that the SIFvalues for modesII andIII vanish and the
SIF for modeI becomes dominant towards the end of the simulation.

Figures18 and 19 show the top views of mesh refinement and off left views of the crack surface
representation, respectively, at different incremental steps. As the crack evolves, we can observe that the
crack front tends to become perpendicular to the axis of the applied load while keeping a circular shape.
These results also show that there is no need toa priori refine the mesh in the region of potential crack
growth, as proposed in [7]. This procedure would lead to substantial increase in problem size of this
example due to the nonplanar crack surface path.

Figure20 shows a cut through the solution at different incremental steps. Thanks to the volume mesh
independence of the explicit crack surface representationadopted here and the integration subelements for
non-planar cracks presented in [50], the crack surface can assume an arbitrary shape inside of avolume
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(b) Step 37.

Figure 17: SIFs variation along the crack growth simulation for inclined penny shaped crack.

step 0 step 7 step 14

step 28step 21 step 37

Figure 18: Inclined penny-shaped crack - localized mesh refinement around the crack front at various crack growth
steps (top view).
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step 7 step 14step 0

step 21 step 28 step 37

Figure 19: Inclined penny-shaped crack - crack surface representation at various crack growth steps (off left view).

step 0 step 7 step 14

step 21 step 28 step 37

Figure 20: Inclined penny-shaped crack - cut through solution mesh at the center of the domain at various crack
growth steps (off left view).
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mesh with large elements. Moreover, special features of thecrack surface, such as sharp turns, can be
represented with high fidelity regardless the sizes of the elements of the volume mesh. This feature may not
be important for the overall solution of the present problem, however, an accurate description of the crack
surface is crucial for crack problems in which the physics isdependent on the crack surface description.
Some examples of problems with crack surface dependent physics are crack growth driven by hydraulic
pressure applied to the crack surface, crack growth with cohesive models, cracks under compressive loads
and so forth.

Again, thehp-GFEM discretizations are automatically built at each crack step (cf. Figure18). Mesh
refinement and unrefinement is applied along the crack front in order to provide a localized refinement
that automatically follows the crack front throughout the simulation. In contrast with standard FEM tech-
niques, this process does not introduce additional computational cost to the simulation since there are no
requirements for the volume mesh to be conforming with the crack surface.

Mode III effects on crack path The effects of mixed modality on fatigue crack growth orientation and,
consequently, on the crack surface shape have been the main subject of study of several researchers for
many years. A detailed literature survey of mixed mode fatigue crack growth can be found in [56]. The
crack orientation for mixed mode problems with modesI andII is very well understood. Erdogan-Sih’s [20]
criterion, also called maximum tangential stress criterion or hoop stress criterion, is widely used for crack
path prediction in two dimensional simulations. However, three-dimensional effects on the orientation of
mixed mode fatigue crack growth is not fully understood. Theeffects of modeIII in mixed mode fatigue
crack growth are discussed and formulated in the works of Pook [52, 53], Scḧollmann et al. [62], and
Richard et al. [58].

In general, computational simulations for three-dimensional crack growth found in literature do not
consider modeIII effects in the prediction of the crack path. Although Erdogan-Sih’s [20] criterion con-
siders only modesI and II to predict the crack growth orientation, this criterion is broadly applied in
three-dimensional simulations to provide the growth direction along the crack front. The works of Carter
et al. [8], Krysl et al. [33] and Gravouil et al. [26] are among the works that apply Erdogan-Sih’s criterion
for crack growth orientation in three-dimensional simulations.

Figure21 illustrates the results for the same inclined penny-shapedcrack example presented in this
Section with the crack growth methodology proposed in this paper but consideringKIII = 0 in Equations
(16) and (17), which is equivalent to applying Erdogan-Sih’s [20] criterion for crack growth orientation.
By comparing Figure19 and Figure21(a), one can observe that the simulation without modeIII effects
does not provide a planar modeI crack growth after 38 crack growth steps. Indeed, Figures21(b)and21(c)
show that modeIII stress intensity factors are not completely vanished at theend of the simulation. The
modeIII stress intensity factor values are reduced by only 58% of their initial values at step 0.

Gerstle [25] proposed a criterion that extends Erdogan-Sih’s [20] criterion to three dimensional simu-
lations by considering an equivalent modeI stress intensity factor which combines modesI andIII . This
criterion was applied in three dimensional crack growth simulations with boundary element method (BEM)
by dell’Erba and Aliabadi [11] and with FEM by Okada et al. [44]. As observed by dell’Erba and Aliabadi
[11], crack growth simulations with this criterion do not show significant reduction in the modeIII stress
intensity factors after several crack growth steps.
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(a) Crack surface at step 37 (off left view).
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(b) SIFs along crack front at step 37.
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(c) ModeIII SIFs along crack front at steps 0 and 37.

Figure 21: Inclined penny shaped crack results for crack growth orientation without KIII effects.

6 Concluding remarks

This paper presents a robust methodology for modeling three-dimensional crack growth simulations of
crack surfaces with arbitrary shapes. The proposed methodology is based on thehp-GFEM for fracture
mechanics [50] to automatically build high-order discretizations coupled with the FOM [29] to track the
evolution of the crack front. The verification and validation presented in Section5 are focused on the
analysis of fatigue crack growth, however, thehp-GFEM coupled with FOM can be extended to other
applications, e.g., dynamic crack growth and crack growth with cohesive elements.

Fatigue crack growth is modeled as a sequence of linear elastic fracture mechanics (LEFM) solutions.
Based on the LEFM solutions, Schöllmann’s criterion and Paris-Erdogan’s equation providethe direction
and amount of crack advance, respectively. High-order discretizations with adaptive crack front refinement
are automatically generated at each crack step. Thehp-GFEM presented in [50] is utilized to solve static
crack problems at each crack step of the simulation. This process ensures accurate SIFs along the crack
front and, consequently, accurate crack growth surface path prediction.

FOM guarantees the geometrical feasibility of the crack surface representation. The FOM is a numerical
technique for tracking the evolution of explicit surfaces [29]. In this work, the FOM is applied to track the
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evolution of the crack front throughout the crack growth simulation. At each crack growth step, the FOM
verifies the crack front advance and, if necessary, providesthe advance limit that prevents self-intersections
of the crack front.

The proposed methodology provides very accurate crack pathdescription. Prediction of crack growth
corroborates experimental data and experimental observations as presented in Section5. This methodology
also allows the crack surface to grow arbitrarily inside of volume meshes with non-uniform refinement.
The results presented in Section5.4 show that crack growth simulations with explicit crack surface repre-
sentation do not requirea priori refinement of the volume mesh in the region of potential crackgrowth. A
combination of an explicit crack surface representation and non-planar cuts inside of elements, proposed
in [50] for static cracks, results in a powerful tool that allows the representation of arbitrarily continu-
ous cracks with non-smooth surfaces in crack growth simulations. Non-smooth crack surfaces are very
common in mixed mode crack growth. An accurate representation of crack surfaces is essential when sim-
ulating problems in which the physics depend on the crack surface geometry. Some examples of these
types of problems are hydraulically induced crack growth, crack growth with cohesive models and contact
of crack surfaces due to crack closure.
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