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Abstract

In this paper, heat transfer problems exhibiting sharmtla¢gradients are analyzed using the classi-
cal and generalized finite element methods. The effect afisol roughness on the ability of the methods
to obtain accurate approximations is investigated. Caamre studies show that low order (linear and
guadratic) elements require strongly refined meshes fapable accuracy.

We propose a generalized FEM with global-local enrichméarttghe class of problems investigated
in the paper. In this procedure, a global solution space eléfim a coarse mesh is enriched through the
partition of unity framework of the generalized FEM with gtidns of local boundary value problems.
The local problems are defined using the same procedure ke gidbal-local FEM, where boundary
conditions are provided by a coarse scale global solutioar€z, uniform, global meshes are acceptable
even at regions with thermal spikes that are orders of mad@ismaller than the element size. Conver-
gence on these discretizations was achieved even when maitad convergence was observed in the
local problems. Two approaches are proposed to improvedbedary conditions prescribed on local
problems and their convergence. The use of the correspgimdjproved local solutions as enrichments
for the global problem extends the range of target erroi fewehe enriched global problem.

The two-way information transfer provided by the proposedegalized FEM is appealing to several
classes of problems, especially those involving multipltisl scales. The proposed methodology brings
the benefits of generalized FEM to problems were limited anfarmation about the solution is known
a-priori.

1 Introduction

Many applications in engineering practice involve the gsial of structural behavior with multiple spatial
scales of interest. One such case is seen in structurestje intense loadings of a localized nature. The
motivation for this particular investigation is the anadysf localized heat sources on the skin of hypersonic
flight vehicles. The methodology proposed here, howevey, Ibeaapplied to any of a number of practical
situations involving intense, and highly localized heatrses, such as in the case of laser heating and
welding, to name only a few.

Vehicles in hypersonic flight are subjected to very seveegntiv-mechanical loadings (only the thermal
loadings are considered here). At very high speeds, thersignificant changes in the properties of the



compressed air, such as the density and temperatl}e Changes in the pressure distributions on a hy-
personic flight vehicle can cause the formation of shock wanespecific locations. Possible interactions
of these shock waves can cause very intense thermal loaduhgsh are very localized and exhibit sharp
gradients. The characterization of the resulting thermadlings and pressure distributions, as well as the
effect of these loadings on the aeroelastic behavior of ¢émécle itself has been the focus of many research
investigationsT, 23, 24, 32, 44, 45, 47]. The most severe of these loadings is the so-called Ednpg I/
shock wave interaction, which is a bow shock/cowl shockrattéon which may occur on the leading edge
of a wing. Attempts have also been made to take into accoenttiemistry of the high-speed flow field
itself [25] and to develop a fully analytical solution for the Type IMénaction P2]. A nice summary of the
research performed in the area of high-speed air-vehiale®e found in41].

Several investigations have been performed into the naadesolutions of heat transfer problems with
localized effects, similar to the type of problems of insrim this work. Tamma and Saw offe2q] a
local, hierarchicalb-enrichment strategy for thermal problems in which a-pasteerror estimates are
used to drive the locgb-enrichment in elements whose error level is deemed untetdlep The effects

of localized, intense laser irradiation on a functionaltgdpd composite plate is investigated i, [using

a Meshless Local Petrov-Galerkin Method. The effects ot lgeaerated due to dynamic fracture in an
elastic-plastic medium is investigated i29. The authors are able to obtain good results with the use of
the Streamline Upwind Petrov-Galerkin Method, which efiates the spurious oscillations seen in results
generated by traditional FEM and finite difference methddg46] the authors investigate crack initiation
in the regions near localized heat sources, such as thehoeks. The work most closely related to the
present investigation i3[l] in which a moving, localized spike in the internal sourcamalyzed using the
X-FEM. The authors were able to efficiently solve the probleimg special enrichment functions based on
their knowledge of the solution. The model problem to be e in this paper is obtained fror&]] and
used as a benchmark for the proposed methodology.

In the next section, we discuss the formulation of the gawgraquations, i.e. the steady-state heat equation.
A brief presentation of generalized finite element (GFEM)ragimations [, 2, 15, 35, 42] is provided in
Section 3. Section 4 provides a detailed account of the moaddlem to be investigated in this paper.
Output obtained from standard FEAT, 49| is presented along with data obtained from GFEM analyses
of the same problem. Motivated by the potential to solve ttoblem using specially-designed, but more
general shape functions, a detailed analysis of the moadllgon using the Generalized Finite Element
Method with global-local enrichmentSEEMY) is performed to study the methods ability to effectively
control the error in the solution. The final section then jmes the main conclusions and future directions
for the current investigation.

2 Problem Formulation

This paper investigates steady-state heat transfer pnsbigth solutions exhibiting highly localized sharp
thermal gradients. Consider a dom&n— R® with boundarydQ decomposed a@Q = urf with r'n
' = 0. The strong form of the governing equation is given by miss equations

—0O(kOu)=q(x) in Q 1)

whereu(x) is the temperature fiel is the thermal conductivity tensor an¢x) is the internal heat source.
The following boundary conditions are prescribedodn

u=u on (2)



—kOu-n=f on rf (3)

wheren is the outward unit normal vector fo' andf anduare prescribed normal heat flux and temperature,
respectively.

3 Generalized FEM Approximations

The generalized FEM1| 2, 15, 35, 42] is one instance of the partition of unity method. This metias

its origins in the works of Bahkika et al. [, 2, 30] (under the names “special finite element methods”,
“generalized finite element method” and “finite element igiart of unity method”) and Duarte and Oden
[12, 18, 19, 20, 35] (under the nameshp clouds” and "cloud-basebp finite element method”). Several
meshfree methods proposed in recent years can also be vaswvegecial cases of the partition of unity
method. In the GFEM, discretization spaces for a Galerkithot are defined using the concept of a
partition of unity and local spaces that are built based pri@d knowledge about the solution of a problem.
A shape functiongyi, in the GFEM is computed from the product of a linear finitenedét shape function,
¢4, and an enrichment functiohg;,

@i (X) = ¢a(X)Lai(X)  (no summation omr), (4)

wherea is a node in the finite element mesh. Figliidustrates the construction of GFEM shape functions.

The linear finite element shape functiahg, a = 1,...,N, in a finite element mesh with nodes constitute
a partition of unity, i.e.,zgz1 dq(X) =1 for all x in a domainQ covered by the finite element mesh.
This is a key property used in partition of unity methods. Aprari error estimate for partition of unity
approximations and, in particular, for the generalizeddielement method, was proved by Baka et al.
[1,2, 30].

Enrichment functions The GFEM has been successfully applied to the simulationoohbary layers
[13], dynamic propagating fracturesq], line singularities 15], acoustic problems with high wave number
[3], polycrystalline microstructurest], porous materials42], etc. All these applications have relied on
closed form enrichment functions that are known to apprexinwell the physics of the problem. These
custom or special enrichment functions are able to provideeraccurate and robust simulations than the
polynomial functions traditionally used in the standardViEvhile relaxing some meshing requirements
of the FEM. However, for many classes of problems—like thaselving multiscale phenomena or non-
linearities—enrichment functions with good approximatgroperties are, in general, not available analyti-
cally. In Sectiorb, we present a procedure to numerically build enrichmenttians for problems exhibit-
ing highly localized sharp thermal gradients. The approadiased on the solution of local boundary value
problems and can be used when no or limited a-priori knovdeadgput the solution is available.

4 Mode Problem

A model problem representative of thermal loads experigfgea hypersonic vehicle subjected to a Type
IV interaction (Cf. Sectiorl) is defined in this section. This problem is used to assespédtfermance of
the FEM and the GFEM when solving problems with solutionsilgkihg highly localized sharp thermal
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Figure 1. Construction of a generalized FEM shape funct&ngia polynomial (a) and a non-polynomial
enrichment (b). Hereg, is the function at the top, the enrichment functidg;, is the function in the
middle, and the generalized FE shape functign, is shown at the bottom.

gradients. The solution of the model problem is given by

u(x) = exp ") 4 sin (HTX ) (5)

wherexg = 125mm, L = 500, mm andy is a parameter controlling the roughness of the solutionle&in
otherwise indicated, the value gfis taken as D. The temperature profil&) is shown in Figure. The
temperature distribution on a plafehas a sharp localized spike in a small neighborhooxho$imilar to
the types of distributions described in, 47]. This model problem was originally proposed by Merle and
Dolbow [31] and was also analyzed by O’Harzq].

The domain is taken 8@ = {x € R®: 0 < x < 500, 0 < y < 250,0 < z < 30} where all dimensions are in
mm. Homogeneous Dirichlet boundary conditions are appliethoasx = 0 andx = 500 and homogeneous
Neumann boundary conditions are prescribed on all othesfak heat source given by

a(x) = —CPu(x),

with u defined in B), is prescribed ir.
The energy norm associated with the problem defined in Sezti®given by

lulle = v/B(u,u) = \//Q(DU)K(Du)dQ

whereB(u,u) is the bilinear form associated with the Laplace operator.
In the numerical experiments presented below, the accuiayhumerical approximatiom, of u is mea-
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Figure 2: Temperature profile of model problem. The solutsosmooth everywhere in the domain except
in a small neighborhood of = 125mm, where a sharp temperature spike develops.

sured using the relative error in the energy norm, i.e.,

_ lu—unfe _/B(u,u) —B(un, un)
©= [ulle \/ B(u,u)

The reference value for the energy of the solutignig taken as

B(u,u) = 947462

4.1 Convergence Analysis

In this section, the model problem described above is solsadg the FEM and the GFEM. One, two
and three-dimensional discretizations are used. Thisssiple due to the one-dimensional nature of the
exact solution. In all the numerical experiments presebeldw, a high order Gaussian quadrature rule
was used to compute the load vector over elements near ttreahgpike atxy. This is required due to the
non-polynomial nature of heat sourge In the case of three-dimensional discretizations, a tepsmiuct
Gaussian rule with 729 points is used. This rule was selexiel that the convergence studies presented
below are not affected by integration errors. Details onrhimerical experiments used in the selection of
this rule can be found ir3p].

For 1-D analyses, the domain is a 1-dimensional bar,r&®dn length, discretized with either 2-noge
hierarchical elements, or 2-node GFEM elements. FigwkBows how the 1-D meshes are broken up into
three regions. The left- and right-most regions have fixedheht sizes, andhg, respectively. The middle
region, containing the spike (128m < x < 130mm), is the only region which is refined, with element size
h;. For 2-D analyses, the domain is 5@hin length, 2nmin width, and discretized with 8-node (quadratic)
or 4-node (linear) quadrilateral elements. Uniform mestresused in the 2-dimensional case. For the 3-D
analyses, the domain is discretized using 4-node GFEMhedral elements. In the 3-dimensional case
the mesh is again locally refined, as shown in Figlyrevhere refinement is done only in the portion of



the domain which contains the peak. The element size in gporaling plots refers to the length in the
x-direction of the smallest elements in the refined region.

0mm 120 mm 130 mm 500 mrr
| I |
F | | 1
hi=15 mm hg=15.42 mm
h, =5,2.5,1.25,0.625, 0.3125 mm

Figure 3: Typical structure of the locally refined mesheglusdhe 1-D model. Element size in subsequent
plots refers tdy;.

Figure 4: Locally refined 3-D mesh using a bounding box to @etfire region of local mesh refinement.

Convergence in energy norm of one dimensional FEM and GFERrelizations is shown Figuke Linear
and quadratig-hierarchical FEM 43] and two-node quadratic GFEML}, 35] elements are used. The
convergence rates are denoted in the pldBasFrom the plot, we can observe that quadratic GFEM and
p-hierarchical FEM deliver the same level of accuracy. Tlilue,curves for these elements coincide. The
curves also show that there is a delay in reaching the optialof convergence due to the rough nature of
the solution, and the difficulty in resolving the localizéetmal spike. The asymptotic convergence rates
obtained are very close to the optimal rates of 1.0 for lirdaments (B = 0.97), and 2.0 for quadratic
elements (B = 1.96).

Figure6 shows convergence in energy norm for quadratic discréizatvith 1-D and 3-D GFEM elements;
1-D p-hierarchical elements; and 2-D Serendipity elements. r€laive error in energy norm is plotted
against element size in the x-direction. The convergenbaier is similar in each of the four discretization
sequences used, achieving near the theoretical convergatecof 2.0 ( B = 1.96).

Figure7 shows the convergence in energy norm of 3-D GFEM discrétiaat The data for the quadratic
element is the same as in Figuebut here the relative error in energy norm is plotted vetkesnumber

of degrees of freedom instead of element size. It is quiteuag that in 3-D, the required element size to
achieve acceptable error values translates into a verg langber of degrees of freedom. In the case of
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Figure 5: Convergence in energy norm for low order 1-D gdimad andp-hierarchical finite elements.
Quadratic GFEM ang-hierarchical FEM deliver the same level of accuracy. Tlmy two curves can be
seen in the plot.
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Figure 6: Convergence in energy norm for discretizationth WD and 3-D GFEM elements; 1-p-
hierarchical elements; and 2-D quadratic Serendipity etgs The curves for 1-D elements coincide.



linear elements, nearly $@legrees of freedom were required to achieve an error leveiE) %. With
this in mind, and considering that the geometry of the dosaia are interested are much more complex
than in our model problem and that time dependent effects beisonsidered, a more efficient solution
methodology is required. One point to take note of is thatigufe 7, the relative error values are cut off
at 1.0. As can be seen in the plot, there is a pre-convergemt, xchere the error is 100 percent or higher,
before a minimal level of refinement is reached. The pre-ement regions on the curves are due to the
mesh being too coarse to capture the localized behavioeddhution. A similar phenomenon is observed
in [26] in which the capability of the finite element method to sai&mholtz’s equation is investigated.

0.1

Relative Error (energy norm)

‘ L1111l ‘ Il L1 1111l
0.01 100 10000 1le+0¢

dofs

Figure 7: Convergence in energy norm for 3-D linear and catédtetrahedral elements. Sequences of
meshes locally refined around the thermal spike are used.

411 Thermal gradient not aligned with mesh

In all the discretizations used previously, the spike inltzaling was favorably oriented with respect to the
mesh. In the previous analysis, there were element edgasiediin the global x-direction which coincides
with the direction of the gradient in the temperature prafiewn in Figure2. This may not always be the
case in practice, however; because the orientation of slvaeks and thermal loadings may not line up with
a primary axis of the coordinate system used to create thé e an unstructured mesh is used. The
effect of the orientation of the elements with respect tagteelient in the temperature profile is investigated
in this section.

The model problem with roughness paramsatet 0.05 is solved on domains with different orientations
with respect to the gradient in the temperature profile. &ifst case, the domain is as defined in Secfion
while in the second one the domain is rotated 45 degreeswlsek In this case, the line along the thermal
spike cuts the elements at a 45 degree angle. Figuw@ows one mesh with this orientation. Neumann
boundary conditions derived from the analytic solutibnare applied to all faces of this domain. Quadratic
tetrahedral GFEM elements are used in both cases. Theme&value for the exact strain energy for the
case of the domain oriented as in the previous section imtakB(u,u) = 217921. In the second case,
the reference value is taken Béu,u) = 299280, and was obtained using a mesh with 23 levels of local
refinement.

Figure9 shows the convergence in the energy norm for the two dom&ntations considered. From this
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plot it can be seen that a significant increase in the numbedegfees of freedom, in some instances up to
100 times more, is required to solve for the situation whenpbak does not line up with the mesh, and in

fact with this situation there is a pre-convergent zone thioes not show up for the case where the peak
is aligned with the mesh. While we are not solving the samélpro in both cases, the smoothness of the
solution is the same. Thus it is reasonable to attest thatitfegence in convergence between the two cases
is mainly due to the change of orientation of the thermaldayieh respect to the mesh.

Figure 8: Temperature distribution computed on a mesh wtierdine along the thermal peak cuts the
domain at a 45 degree angle. Roughness pararyet€r05.
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Figure 9: convergence in the energy norm for the two domaentations considered. In one case, the
internal layer is aligned with element edges while in theoselccase it is not. The roughness paramgisr
taken as M5.

From the numerical experiments presented above, it is thedthe approximation of functions exhibiting

highly localized gradients requires strongly refined meshdigh order elements can reduce the need for
mesh refinement but not eliminate &€]. Hp discretizations in which both element size and polynomial
order are optimally distributed in the doma#) §, 10, 34, 38, 39] are able to deliver exponential convergence



for problems like the one analyzed here. Optirhpldiscretizations use strongly refined meshes around
regions with sharp thermal gradients. This creates sonfieudifes in the case of, e.g., time-dependent
problems. The refinement/unrefinement must follow a movirigrnal layer and thus the problem must
be solved from scratch after each mesh update even in theotdisear problems. In the next sections,
we investigate the possibility of exploring the flexibilipyovided by the generalized FEM to avoid mesh
refinement/unrefinement cycles and instead using custdngréchment functions able to approximate
well the behavior of the solution on a fixed coarse mesh. Augignesh refinement/unrefinement will be
important in the consideration of transient problems duth&energy conserving nature of avoiding the
re-meshing process, as provenf [

4.2 GFEM with Special Enrichment Functions

In all numerical experiments presented in previous sestionly polynomial enrichment functions are used.
As a result, a high level of mesh refinement is required in ofaleacceptable error levels to be obtained.
Merle and Dolbow 81], demonstrated that far greater efficiency can be achieveshva-priori knowledge
of the solution is used, and an exponential enrichment fonaf the form

L(x) = exp *%0)’ (6)

is used to create GFEM shape functions specifically taildoesolve the model problem previously de-
scribed.

For the purpose of comparison, a one-dimensional meshstongsof five, equally-sized, quadratic GFEM
elements and 12 degrees of freedom was used to solve the maddém, yielding a relative error in

the energy norm of @96. When the element containing the thermal spike is eedetith the exponential

enrichment functiong) the relative error in the energy norm drops t6810-3, a three-orders of magnitude
reduction by adding two degrees of freedom to the discridizaFigurel0shows the solution obtained with
this discretization.

2 I |

— 1-D GFEM Solutior
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Temperature
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Figure 10: One-Dimensional GFEM solution computed on aarnifmesh with five quadratic elements.
The element containing the thermal spike is enriched wigloagntial enrichment functioi®).
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This numerical experiment demonstrates that it is possibéehieve a high level of accuracy using coarse
meshegprovided appropriate enrichment functions are used. Nonetheless, enrichments able to approximate
well small scale behavior like the one exhibited in our mqgaeblem are, in general, not known. Thus, a
more general approach to building special enrichment fonstis needed. The proposed approach is based
on the generalized finite element method with global-looaldaments GFEM9") presented inf4, 17]. As
demonstrated in the next sections, the so-called glolal-lenrichments can be defined even when limited
or no a-priori information about the solution of a problemaisilable while enabling the use of coarse
macro-scale meshes.

5 Generalized Finite Element Analysiswith Global-L ocal Enrichments

In this section, we present a procedure to build enrichmemdtfons for the class of problems governed by
(1) and subjected to boundary conditior® &nd @). The formulation and application of tH@FEM9 to
three-dimensional elasticity equations can be foundn17, 28|

5.1 Formulation of Global Problem

Consider a domaifg = Qs N JdQg as illustrated in Figuré1(a). The boundary is decomposedd3s =
rgu Fé with TN Fé = 0. The solutioru of the global or macroscale problem obeys Poisson’s equatio
(1) on Qg and the boundary conditions prescribeddf®s and given by 2) and @). A generalized FEM
approximationug, of the solutioru can be found solving the following problem:

Findud € X2P(Qg) € HY(Qg) such thaty V& € XP(Qg)
/ DuOGKDv%dQJrr// ugvgdr:/ quGdQJr/f FvOGdr+r;/ aAdr )
Qg rg Qg Mg Fg

where,Xgp(QG) is a discretization oH(Qg) built with generalized FEM shape functions, ands a
penalty parameter. The enforcement of the Dirichlet bomndandition could also be done using, e.g., the
Nitsche method or the Characteristic function method. iBeta these methods, as well as their theoretical
analysis within the framework of the GFEM, are presentetiénsurvey paper by Babuska et &l]. [In this
paper, the penalty method is used due to its simplicity ofié@mentation.

Problem () leads to a system of linear equations for the unknown degréé&reedom ofu%. The mesh
used to solve problen¥) is typically a coarse quasi-uniform mesh. This global ocroacale problem7|
is denoted hereafter agitial global problem for convenience.

5.2 Local Problems

Let Qioc denote a subdomain @lg as illustrated in Figurd1(b). In this paper, we consider the case in
which the solutioru exhibits a strong internal layer, in the form of a sharp spilk¢he local domair)oc.

The following local problem is solved i« after the global solution is computed as described above:
Find Ui € X (Qioc) € HY(Qioc) SUch that Viee € X™P(Qioc)

/Q OujocK DViocdQ 41 UlocViocdll =
loc

dQIoc\(anocmré;)

/ qVIoch+/ ; f_Vlocdr (8)
aQIoc\(dQIOCQdQG) aQIocmr% a

Q.OCmFG

loc
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Boundary Conditions

Enrichment Functions

(a) Global problem defined . (b) Local problem defined o€, .

Figure 11: The generalized FEM with global-local enrichiniemctions. (a) Initial and enriched global

problems discretized with a coarse mesh. The initial glpbalblem provides boundary conditions for local
problems containing sharp thermal spikes. (b) Local pmblsed to compute global-local enrichment
functions.

where,)(lgg(QmC) is a discretization oH*(Q|o) using GFEM shape functions.

A key aspect of problem8] is the use of the generalized FEM solution of the global tmnbuoe, as
boundary condition 0@ Q|qc\(0Qioc N dQs). Exact boundary conditions are prescribed on portions of
0Qoc that intersect eithdr or I’é. Problem 8) is named hereaftéocal problemfor convenience.

5.3 Global-Local Enrichment Functions

The procedure described above to compute the local solugigiis the well known global-local analysis
[11, 21, 33]. This procedure enables the computation of local quastitif interest while not requiring
modifications on the usually large and complex global meghis &lso computationally efficient since
a single global analysis needs to be performed, even whe dp@ntities must be computed at several
subdomain®,,c C Qg. However, the error of the local solutiomgc, depends not only on the discretization
used in local domaif,o, but also on the quality of boundary conditions used@@qc\ (9Qjoc N IQG),
which are provided by the global solutiu@. One approach to address the poor accuracy of these boundary
conditions is to use a sufficiently large local domain. Naeétss, the minimum size 64, for acceptable
results is problem dependent. In particular, for the clagsablems we are interested, the error of the global
solutionu may be large even far from the thermal spike. This is illustidn Figurel2. Thus, the local
solutionu,oc Will have in general a large error, even when very fine meskressed in the local domain.

In the GFEM with global-local enrichment&EEMY™) the poor accuracy afi. is addressed by going one
step further in the analysis and using. as an enrichment function for the global discretizationn&alized
FEM shape functions for the global problem are defined as

Qo = $alioc 9

where¢, denotes a partition of unity function of the coarse globasmandu, is called aglobal-local
enrichment function. The function defined in9) is used at nodex, of the global mesh whose support,
Wy, is contained in the local domaiR,,.. The global problem enriched with these functions is sowed
guantities of interest computed. The solution of ténsiched global problem is hereafter denoted mg
The GFEMY'! approach is illustrated in Figurkl. The global solution provides boundary conditions for
local problems while local solutions are used as enrichrherdtions for the global problem through the

12
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Figure 12: Error of solution computed on a uniform global medth 50 elements in the—direction and
one element in thg— direction. Standard eight-node quadratic finite elemerdgsuaed. The location of
the thermal spike is indicated in the figure. We can obseratttie error in the computed temperature is
relatively large even far from the thermal spike. Error whiemexact solution is given hy(x) = sin(7x/L),
i.e., the thermal spike*V(X*"O)2 is removed is also provided. In this case, the error of theefieiement
solution is very small.

partition of unity framework of the GFEM. The procedure dédsad above may be repeated. The solution
u§ is used as boundary conditions for the local problem and sdbis strategy is investigated in Section
6.2

The enriched global problems do not have, in general, to heeddrom scratch since the shape function
(9) is hierarchically added to the global space and only a smatiber of nodes in the global problem is
enriched. This is demonstrated it]. The relation of theaSFEM9"! with other methods is also discussed in
[14].

The performance of th@FEMY! when solving steady-state heat transfer problems wittisolsiexhibiting
highly localized sharp thermal gradients is investigatetihe next sections.

6 Analysisof Model Problem Using the GFEM ¢

The generalized FEM with global-local enrichment funcid@FEMY") described above is used in this
section to solve the model problem defined in SectloriThe global,Qg, and local,Q,,., domains are
discretized with four node tetrahedral GFEM elemeiifs.[ Quadratic and quarticp(= 4) elements are
used in global and local domains, respectively. Uniform mssin x-, y- and z-direction are used in the
global domain. The meshes are created by first generatingl ofidnexahedral elements and then dividing
each element into 6 tetrahedral elements. Hereafter, mesbalefined based on the number of hexahedral
elements used in their generation, not the number of tedrahelements. Each global mesh has 2 elements
in the y-direction, and 1 element in thedirection. Mesh 0x has 10 elements in thdirection, Mesh 1x
has 20 element in the-direction, and Mesh 2x has 40 elements in xddirection. The global domains
show increasing levels of refinement in tki@irection only because the solution only exhibits a gradie
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in the x—direction, and is constant mandz. These meshes are shown in Figui&¢c), 19(c)and20(c),
respectively.

Creation of Local Problems Local domains and their corresponding initial discretimas are defined by
copying elements from the global mesh around the thermkésgihis is done with the aid of global seed
nodes which are selected via a bounding box containing thpaeature spike. For the analyses presented
here, the same bounding box is used for each of the threelgtashes—Meshes 0x, 1x and 2x. As such,
the smallest possible bounding box size is determined bgdhesest global mesh, Mesh 0x. The bounding
box is defined from mir= [100,0, 0] to max= [150,250,30]. Figurel13illustrates this procedure. Lefseq

50 mm 100 mm 150 mm 200 mn

Figure 13: Extraction of initial local mesh from global Me$k. The bounding box used for selection of
seed nodes is shown (rectangle) along with the seed nodasdsoles). Nine seed nodes are shown, but
there are eighteen in total: Nine on top surface (shown) amelan the bottom surface of mesh.

denote the indices of all global seed nodes in the bounding Adocal domain corresponding to a mesh
with one layer of elements around the seed nodes is given by

inayzl:: U wB

loc
BE Iseed

where wg is the union of (copy of) global elements sharing nogle B € Y«eq. Local domains with
additional layers of elements around the seed nodes areedefitalogously. The mesh corresponding to a
local domain withm layers of elements around a given s&teq is given by the union of (copy of) the mesh
with m— 1 layers and the global elements sharing a vertex node in ¢ meithm— 1 layers.

The size of the local domains are also kept constant for eltdalgmesh used, and once again are deter-
mined by Mesh 0x. One layer of elements in Mesh Ox is selecgsdlting in the local domaifjoc = {X €
R®:50< x < 200, 0 <y < 2500 < z< 30}. Two and four layers of elements around the seed nodes are
used for Meshes 1x and 2x, respectively. Again, this wasssleo maintain a constant size in the local
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domain.

The local meshes themselves are then refined by bisectitgtr@hedral elements inside of the bounding
box defined by min= [1225,0,0] and max= [127.5,250 30| for the case whey = 1.0. A local mesh is
shown in Figurel4 corresponding to Mesh 1x with 9 levels of local refinement.

122.5 127.5 mm

— e e T T T e T T
e I e e e O e O e I R I e g

Figure 14: Local mesh extracted from Mesh 1x, and 9 levelsddllirefinement are used. The rectangle in
the figure represents the bounding box used for refinement.t(\scale)

The seed nodes used to create the local domains are the sdesewlnich are then enriched with the local
solution (global-local enrichments). Twelve nodes aréolied on Mesh 0x; eighteen nodes are enriched on
Mesh 1x and thirty nodes are enriched on Mesh 2x. This istithtisd in Figured.8(c), 19(c)and20(c).

The number of degrees of freedom (DOFs) in the global problmains almost constant when global-
local enrichments are used. In addition, the number of D@FRhe& enriched global problem does not
depend on the number of DOFs in the local problem. Theretbeenumber of DOFs in the enriched global
problem is not a good measure for the computational cosEofIn the convergence analyses presented
hereafter, the computational cost for both local and glpbatblems are measured with respect to CPU time,
not number of DOFs. All measures are in seconds. For ploténdeaith local problems, the CPU time
considers the time taken for assembly and solution of thal lpblem. Plots dealing with the enriched
global domain consider the CPU time taken for assembly alutiso of the enriched global domain as well
as the assembly and solution time taken in the correspordaad domain. The CPU times are meant to
reflect the total computational effort required to genethtesolution of interest, which is the underlying
reason for the selection of each component considered meaese.
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6.1 H-extensionsin thelocal problem

The convergence of the enriched global problem whexxtensions are performed in the local problem
is investigated in this section. The local problems are emlusing Dirichlet boundary conditions on
0Qi0c\ (0Qi0cN Q) provided by the initial global problem as discussed in $&dii2. For reasons which
will become more clear in the subsequent sections, the rdetbgy used in this section will be referred to
aslnitial Global Problemwith Spike, or IGW/S,

Figure15 shows the relative error in energy norm in the enriched dlpbzblems associated with meshes
0x, 1x and 2x. All three cases show convergence of the ertdrighabal problem as the local problems are
refined. The global mesh is kept fixed for each curve showry, th@ global-local enrichments (solution
of local problems) are updated. The CPU time on the horizantis includes the CPU time taken for
assembly and solution of the enriched global domain as vgetha assembly and solution time taken in
the corresponding local domain. Thus, as the local domaimsedined, the reported CPU time increases.
From the figure, we can observe that the pre-asymptotic reedieces as finer global meshes are used. In
addition, for a given computational effort the accuracyha enriched global solution computed on Mesh
2x can be up to one order of magnitude higher than on the otltemeshes.

1 L T T L ‘ T T T 1T ‘ T T 1T ‘ ]
E | ]
o
c L
>
<y
2 0.1 —
o C ]
E - .
Qo - 4
© L i
= L |
<] L |
i
_g 0.0l |A—A MeshOx (IGw/S .
% C Mesh 1x (IGw/S E
@ L Mesh 2x (IGw/S ]

0001 Il I x Il Il 111 x Il Il 111 x
10 100 1000
CPU Time

Figure 15: Relative error in energy norm for enriched glgirablems associated with meshes 0x, 1x and
2x. Each curve corresponds to a fixed global meshraextensions in the local problems. The CPU time
includes the CPU time taken for assembly and solution oftinieleed global domain as well as the assembly
and solution time taken in the corresponding local domain.

Figure 16 shows the relative error in energy norm in the local problenigected to boundary conditions
provided by global solutions computed on meshes 0x, 1x and/@wy large errors and poor or no conver-
gence can be observed. Local problems subjected to boundadjtions from global meshes 1x and 2x
initially show convergence but then the error levels offisl@hows that the poor quality of the boundary con-
ditions is controlling the error. This is confirmed in Sea®.2 and6.3 where we present two approaches
to improve the quality of the boundary conditions for thedlggroblems. Interestingly, the global problems
enriched with these poor local solutions show convergesadistussed above, attesting the robustness of
the propose@SFEMY'. However, the convergence of the enriched global problefratvsome point level

off since the local solutions do not converge to the solutibtine global problem due to errors in boundary
conditions applied to local problems. This can be obsemdtigurel7 which shows more data points than
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in Figure15. The convergence for Meshes 1x and 2x level off due to poolityus local solutions. The
convergence for other meshes are also expected to evgrima off. In Sections$.2and6.3we propose
two approaches to extend the convergent range of the edrgibbal problem.
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Figure 16: Relative error in energy norm for local problembjscted to boundary conditions provided by
global solutions computed on meshes 0x, 1x and 2x. The CP& donsiders the time taken for assembly
and solution of the local problem.
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Figure 17: Data of Figuré5 plotted against the number of DOFs in the local problems. glbeincludes
data points that could not be included in Figdfedue to a limitation of the function we use to measure
CPU time.

Figuresl8, 19and20 show temperature distributions computed in each phase@GFEMY"'—initial global,
local, and enriched global problems—corresponding toalateshes 0x, 1x and 2x, respectively, and 13
levels of refinement in the local problems. Solutions ofiahiglobal problems solved with meshes 0x and
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1x completely miss the thermal spike and as a result the kaations are of poor quality. The thermal
spike, however, is clearly captured in all three enrichaibgl problems, attesting the importance of the
extra step in the proposg@FEMY'. This is in agreement with the convergence plots shown it
15and16. One other point of interest is the resolution of the spik€&igure 18(c) where a well-resolved
spike can be seen in the temperature field even with the userpiarge elements. In fact, the spike in the
temperature field falls within elements, and not along a dihrodes, reflecting the shape of the specially-
tailored enrichment functions from the local problem.

(a) Solution of initial global problem. (b) Solution of local problem.

(c) Solution of enriched global problem.

Figure 18: Temperature distributions computed in theahgiobal, local, and enriched global problems
corresponding to global Mesh Ox and 13 levels of refinemetitériocal problem. Th&Gw/S methodology

is used. The thermal spike is well resolved in the enrichedajlproblem even though it falls within quite
large elements. Enriched nodes in global domain are demotedure18(c)by red glyphs.
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(a) Solution initial global problem. (b) Solution of of local prob-
lem.

(c) Solution of enriched global problem.

Figure 19: Temperature distributions computed in theahiobal, local, and enriched global problems
corresponding to global Mesh 1x and 13 levels of refinemetitérocal problem. ThéGw/S methodology
is used. Enriched nodes in global domain are denoted in &igfi(c) by red glyphs .
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(a) Solution of initial global problem. (b) Solution of local prob-
lem.

(c) Solution of enriched global problem.

Figure 20: Temperature distributions computed in theahgiobal, local, and enriched global problems
corresponding to global Mesh 2x and 13 levels of refinemetitériocal problem. Th&Gw/S methodology
is used. Enriched nodes in global domain are denoted in &&f(c) by red glyphs.
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6.2 A Two-Step Approach to Improve Local Solutions

As discussed in Sectidn3, the error of the global solutiomg may be large even far from the thermal spike
(Cf. Figurel2). Thus, local problems may be subjected, for the class dflpras we are interested, to
poor boundary conditions. As a result, the error of the Iso#litions can not be controlled simply by mesh
refinement or element enrichment (Cf. Figd®. In this section, we address this issue by performing one
additional global-local cycle. The solutimﬁ is used as boundary conditions for the local problems ard the
we proceed as before—Solve the local problems and enriagfidbal discretization with local solutions. For
simplicity this approach is hereafter referred td @s/S-11-the two-step version dfow/S. This particular
approach is investigated because it has potential to be@igxglin a transient solution to a time-dependent
problem when the enriched global solution from time dtepan be used as boundary conditions for the
local problem at time stefg. 1.

Figure 21 shows the temperature distributions computed in the Inifi@bal, local, and enriched global
problems of the Gw/S-II strategy. Here, the initial global problem correspondshi énriched global

problem in thel Gw/S strategy. The thermal spike is well resolved in this probimd thus improved BCs
are imposed on the local problem which can also capture Willlkdehavior and, in turn, provide good
enrichment functions for the enriched global problem (Gfulre 21(c)).

Figure22 shows the relative error in energy norm in the local problemsrategiesGw/S andIGw/S 1.
Local boundary conditions are provided by global solutioomputed on meshes 0x, 1x and 2x. We can
observe a dramatic difference between the two strategieexpected, the local problems in the second step
of the IGW/S I strategy are subjected to much improved boundary conditilean in the first step which
lead to the improvement seen in convergence.

Figures23 shows the relative error in energy norm for enriched glolvabjems in strategiekGw/S and
IGW/S-I. All three cases, Meshes 0x, 1x and 2x, show convergencesdadrtiiched global problem as the
local problems are refined. The behavior of the energy nomoisas dramatically different between the
two strategies, which is evidence of the robustness ofREMY' to take local solutions which may be
very poor and still deliver reasonable convergence in dldbaain. Nonetheless, some differences do exist
at low error levels. The enriched global solution in strgté@w/S-I1 does not level off as in theEGw/S
strategy. Thus, thEGw/S |1 strategy extends the range of target error level for thecbad global problem.
Of course the convergence of the enriched glé@al/S-11 may eventually level off but at a lower error level
than in thelGw/S strategy. We have not, however, experienced this in any rnoai@xperiments we have
performed so far.
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(a) Solution of initial global problem ilGw/S-11 strategy. This is the solution of the enriche@b) Solution of local problem.
global problem in théGw/Sstrategy (Cf. Sectiof.1).

(c) Solution of enriched global problem.

Figure 21: Temperature distributions computed in theahiobal, local, and enriched global problems
corresponding to global Mesh 2x and 13 levels of refinemetiteriocal problem. TheGw/S 11 strategy is
used. The thermal spike is well resolved in the initial glglr@blem and thus the local problem can also
capture well this behavior.
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Figure 22: Relative error in energy norm for local problemsirategiesGw/S and IGw/S1I. The only
difference in the local problems is the boundary conditigsesd.
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Figure 23: Relative error in energy norm for enriched glgivablems in strategid&Sw/SandIGw/S 1.
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6.3 Spike Absent from Initial Global Problem

In this section, we investigate another approach to imptgdoundary conditions for the local problems
and thus extend the range of target error level for the eadalobal problem. In the strategy investigated
here, the rough portion of the thermal loading applied taniteal global problem is removed. This idea is
based on the fact that the spike in the temperature profilerislgcalized, and it has virtually no effect on the
exact solution outside of a small neighborhood of the thermalespiherefore, as long as the local problem
boundaries are not within a few millimeters of the tempamfpeak, the correct boundary conditions are
essentially those from the smooth portion of the loadingtae@xponential portion will have no appreciable
effect. For simplicity, this approach will be referred tolaiial Global problem without Spike, or |Gw/0S.
Figure 24 shows the temperature distributions computed in the Inifi@bal, local, and enriched global

problems of thd Gw/oS strategy. The thermal spike is well resolved in both thellaca enriched global
problems even though it is absent in the initial global peaotnl

(a) Solution of initial global problem ihnGw/oS strategy. The thermal spike is absent from(b) Solution of local problem.
this solution.

(c) Solution of enriched global problem.

Figure 24. Temperature distributions for initial globabdcal, and enriched global problems flgsw/0S
strategy corresponding to global Mesh 2x, 13 levels of refigt in the local problem. Meshes 0x and 1x
provide qualitatively similar results. The thermal spigevell resolved in both the local and enriched global
problems.
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Figures25 shows the relative error in energy norm in the local problenstrategiesGw/SandlGw/oS. As
in the case of stratedsw/S-11, we can observe a dramatic improvement on the convergehewioe of the
local solutions when strated%w/oSis used. In fact, the performance of stratedi®@a/oSandIGw/S I is
very similar (Cf. Figure22).
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Figure 25: Relative error in energy norm for local problemssirategiedGw/S and IGw/oS. The only
difference in the local problems is the boundary conditiosesd. In the case ¢Gw/oSstrategy, The thermal
spike was removed from the initial global domain.

Figure 26 shows the relative error in energy norm for enriched globabjems in strategieeGw/S and
IGw/oS. We can observe convergence of the enriched global solatioyputed with strateghGw/oS over a
larger range of target error level than in the casE3f/S strategy.
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Figure 26: Relative error in energy norm for enriched glgirablems in strategid&w/S andl Gw/oS.
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6.4 Effect of Enrichingthe Global Problem

The GFEMY”, as noted previously, differs from the traditional globadal FEM in that there is the added
step of enriching the global domain with the local solutiad ae-solving the global problem. In this section,
we compare the performance of these two methods for eacle atithtegies proposed in previous sections,
i.e., IGW/S, IGW/S Il andlGw/oS.

Figure27 compares the convergence in energy norm in the local andrettiglobal domains for strategy
IGW/S. In these plots, there is a significant difference in the eogence rates as well as the error values
between local and enriched global solutions. In some césegnrichment of the global domain can take
local solutions which show no convergence behavior, andge leelative error, and convert this local infor-
mation into a global solution which shows good convergerad®bior, as well as significantly lower error
values.
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Figure 27: Comparison of convergence in energy norm in lacal enriched global domains foGw/S
strategy.

Figures28 and29 compare the convergence in energy norm in the local andtextiglobal domains for
strategylGw/S 1. The local domains, in this case, are provided with good Hannconditions, and thus the
local domains themselves do provide accurate solutiong.rAsult, the improvement is not as drastic as that
seen in theGw/S case. The only noticeable improvement is in the case of Megsind at low error levels
(Cf. Figure29). As was mentioned earlier, the scenario where a well-vesio$pike is used in the initial
global problem is of particular interest because it will leied upon particularly in the transient setting,
where the enriched global problem of one time step may be tasprbvide accurate boundary conditions
for the local problem in the next time step. This methodo]digguccessful, will provide us with the ability
to resolve very fine local features using a fixed, coarse @jlmeah throughout the entire transient analysis.

Figure30 compares the convergence in energy norm in the local andhedriglobal domains fdiGw/oS
strategy. As in theGw/S1 case, the local domains are provided with good boundaryitons, so the
local domains are able to generate accurate solutions. Asutrthe improvement is once again not as
drastic as that seen in th&w/S case.
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7 Conclusions

In this paper, the generalized FEM with global-local enmiemts GFEM9") [14, 17, 28] is formulated for
steady-state heat transfer problems with solutions etithipbhighly localized sharp thermal gradients. The
proposed method is related to the classical global-locM FEL-FEM) [11, 21, 33] which is broadly used
in the industry. They share several attractive features lik

(i) the possibility of capturing localized solution feadgrusing uniform, coarse, global meshes. This
removes, for example, the need to refine global meshes thatsaially complex and very large. A
single global mesh can be used to analyze the effect of lmmhthermal loads at different parts of a
structure. All that is needed is the computation of localisohs and the hierarchical enrichment of
the global solution space. Additional computational irogtions of this feature of theFEMY" are
discussed in Sectiofiland in [L4];

(i) the size of the enriched global problem is about the samthe initial global problem and it does not
depend on the size or discretization used in the local pnogle

(iii) while not explored in this paper, it is conceivable teaiin theGFEMY! different approximation meth-
ods to solve the global and local problems, like in @ieFEM. Hp adaptive finite elements methods
[8, 9, 10, 34, 38, 39, for example, would be an excellent option for solving tbedl problems;

(iv) the solution of multiple local problems can be para#et without difficulty allowing the solution of
large problems very efficiently. The parallelization of BEEM9” is the subject of a forthcoming
paper;

(v) the GL-FEM uses the same variational principle as the original proldadhthus no stability issues
are introduced by the method.

While the GFEMY9! share many of the attractive features of Gle-FEM, the numerical experiments pre-
sented here and infl, 28], demonstrate that theFEMY is much more robust than thHeL-FEM. The
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former was able to deliver accurate global solutions eveannimited or no convergence was observed in
the local problems. The errors in the enriched global probleere, in some cases, orders of magnitude
smaller than in the local problems. The difficulties of tBle-FEM with the class of problems investigated
here is due to the large errors of global solutions computedoarse meshes. This is illustrated in Figure
12 which shows that the discretization error may be large eaefrém the thermal spike.

The numerical experiments presented here also demonstitéhe information transfer between local
(fine) and global (coarse) scales using the partition ofyuingmework is very effective (Cf. Sectidgh4).
We show that the global problem converges at least as fasteal®tal problems and in many cases the
enriched global problem can deliver much more accurateieakithan the local ones.
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