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Abstract

In this paper, heat transfer problems exhibiting sharp thermal gradients are analyzed using the classi-
cal and generalized finite element methods. The effect of solution roughness on the ability of the methods
to obtain accurate approximations is investigated. Convergence studies show that low order (linear and
quadratic) elements require strongly refined meshes for acceptable accuracy.

We propose a generalized FEM with global-local enrichmentsfor the class of problems investigated
in the paper. In this procedure, a global solution space defined on a coarse mesh is enriched through the
partition of unity framework of the generalized FEM with solutions of local boundary value problems.
The local problems are defined using the same procedure as in the global-local FEM, where boundary
conditions are provided by a coarse scale global solution. Coarse, uniform, global meshes are acceptable
even at regions with thermal spikes that are orders of magnitude smaller than the element size. Conver-
gence on these discretizations was achieved even when no or limited convergence was observed in the
local problems. Two approaches are proposed to improve the boundary conditions prescribed on local
problems and their convergence. The use of the corresponding improved local solutions as enrichments
for the global problem extends the range of target error level for the enriched global problem.

The two-way information transfer provided by the proposed generalized FEM is appealing to several
classes of problems, especially those involving multiple spatial scales. The proposed methodology brings
the benefits of generalized FEM to problems were limited or noinformation about the solution is known
a-priori.

1 Introduction

Many applications in engineering practice involve the analysis of structural behavior with multiple spatial
scales of interest. One such case is seen in structures subjected to intense loadings of a localized nature. The
motivation for this particular investigation is the analysis of localized heat sources on the skin of hypersonic
flight vehicles. The methodology proposed here, however, may be applied to any of a number of practical
situations involving intense, and highly localized heat sources, such as in the case of laser heating and
welding, to name only a few.

Vehicles in hypersonic flight are subjected to very severe thermo-mechanical loadings (only the thermal
loadings are considered here). At very high speeds, there are significant changes in the properties of the
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compressed air, such as the density and temperature [41]. Changes in the pressure distributions on a hy-
personic flight vehicle can cause the formation of shock waves in specific locations. Possible interactions
of these shock waves can cause very intense thermal loadings, which are very localized and exhibit sharp
gradients. The characterization of the resulting thermal loadings and pressure distributions, as well as the
effect of these loadings on the aeroelastic behavior of the vehicle itself has been the focus of many research
investigations [7, 23, 24, 32, 44, 45, 47]. The most severe of these loadings is the so-called Edney Type IV
shock wave interaction, which is a bow shock/cowl shock interaction which may occur on the leading edge
of a wing. Attempts have also been made to take into account the chemistry of the high-speed flow field
itself [25] and to develop a fully analytical solution for the Type IV interaction [22]. A nice summary of the
research performed in the area of high-speed air-vehicles can be found in [41].

Several investigations have been performed into the numerical solutions of heat transfer problems with
localized effects, similar to the type of problems of interest in this work. Tamma and Saw offer [27] a
local, hierarchicalp-enrichment strategy for thermal problems in which a-posteriori error estimates are
used to drive the localp-enrichment in elements whose error level is deemed unacceptable. The effects
of localized, intense laser irradiation on a functionally graded composite plate is investigated in [5], using
a Meshless Local Petrov-Galerkin Method. The effects of heat generated due to dynamic fracture in an
elastic-plastic medium is investigated in [29]. The authors are able to obtain good results with the use of
the Streamline Upwind Petrov-Galerkin Method, which eliminates the spurious oscillations seen in results
generated by traditional FEM and finite difference methods.In [46] the authors investigate crack initiation
in the regions near localized heat sources, such as thermal shocks. The work most closely related to the
present investigation is [31] in which a moving, localized spike in the internal source isanalyzed using the
X-FEM. The authors were able to efficiently solve the problemusing special enrichment functions based on
their knowledge of the solution. The model problem to be analyzed in this paper is obtained from [31] and
used as a benchmark for the proposed methodology.

In the next section, we discuss the formulation of the governing equations, i.e. the steady-state heat equation.
A brief presentation of generalized finite element (GFEM) approximations [1, 2, 15, 35, 42] is provided in
Section 3. Section 4 provides a detailed account of the modelproblem to be investigated in this paper.
Output obtained from standard FEA [37, 48] is presented along with data obtained from GFEM analyses
of the same problem. Motivated by the potential to solve the problem using specially-designed, but more
general shape functions, a detailed analysis of the model problem using the Generalized Finite Element
Method with global-local enrichments (GFEMg-l) is performed to study the methods ability to effectively
control the error in the solution. The final section then provides the main conclusions and future directions
for the current investigation.

2 Problem Formulation

This paper investigates steady-state heat transfer problems with solutions exhibiting highly localized sharp
thermal gradients. Consider a domainΩ ⊂ IR3 with boundary∂ Ω decomposed as∂ Ω = Γu ∪Γ f with Γu ∩
Γ f = /0. The strong form of the governing equation is given by Poisson’s equations

−∇(κκκ∇u) = q(xxx) in Ω (1)

whereu(xxx) is the temperature field,κκκ is the thermal conductivity tensor andq(xxx) is the internal heat source.

The following boundary conditions are prescribed on∂ Ω

u = ū on Γu (2)
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−κκκ∇u ·nnn = f̄ on Γ f (3)

wherennn is the outward unit normal vector toΓ f and f̄ andū are prescribed normal heat flux and temperature,
respectively.

3 Generalized FEM Approximations

The generalized FEM [1, 2, 15, 35, 42] is one instance of the partition of unity method. This method has
its origins in the works of Babǔska et al. [1, 2, 30] (under the names “special finite element methods”,
“generalized finite element method” and “finite element partition of unity method”) and Duarte and Oden
[12, 18, 19, 20, 35] (under the names “hp clouds” and ”cloud-basedhp finite element method”). Several
meshfree methods proposed in recent years can also be viewedas special cases of the partition of unity
method. In the GFEM, discretization spaces for a Galerkin method are defined using the concept of a
partition of unity and local spaces that are built based on a-priori knowledge about the solution of a problem.
A shape function,φα i, in the GFEM is computed from the product of a linear finite element shape function,
ϕα , and an enrichment function,Lα i,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα), (4)

whereα is a node in the finite element mesh. Figure1 illustrates the construction of GFEM shape functions.

The linear finite element shape functionsϕα , α = 1, . . . ,N, in a finite element mesh withN nodes constitute
a partition of unity, i.e.,∑N

α=1 ϕα(xxx) = 1 for all xxx in a domainΩ covered by the finite element mesh.
This is a key property used in partition of unity methods. An a-priori error estimate for partition of unity
approximations and, in particular, for the generalized finite element method, was proved by Babuška et al.
[1, 2, 30].

Enrichment functions The GFEM has been successfully applied to the simulation of boundary layers
[13], dynamic propagating fractures [16], line singularities [15], acoustic problems with high wave number
[3], polycrystalline microstructures [40], porous materials [42], etc. All these applications have relied on
closed form enrichment functions that are known to approximate well the physics of the problem. These
custom or special enrichment functions are able to provide more accurate and robust simulations than the
polynomial functions traditionally used in the standard FEM, while relaxing some meshing requirements
of the FEM. However, for many classes of problems–like thoseinvolving multiscale phenomena or non-
linearities–enrichment functions with good approximation properties are, in general, not available analyti-
cally. In Section5, we present a procedure to numerically build enrichment functions for problems exhibit-
ing highly localized sharp thermal gradients. The approachis based on the solution of local boundary value
problems and can be used when no or limited a-priori knowledge about the solution is available.

4 Model Problem

A model problem representative of thermal loads experienced by a hypersonic vehicle subjected to a Type
IV interaction (Cf. Section1) is defined in this section. This problem is used to assess theperformance of
the FEM and the GFEM when solving problems with solutions exhibiting highly localized sharp thermal
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(a) (b)

Figure 1: Construction of a generalized FEM shape function using a polynomial (a) and a non-polynomial
enrichment (b). Here,ϕα is the function at the top, the enrichment function,Lα i, is the function in the
middle, and the generalized FE shape function,φα i, is shown at the bottom.

gradients. The solution of the model problem is given by

u(x) = exp−γ(x−x0)
2
+sin

(πx
L

)

(5)

wherex0 = 125mm, L = 500,mm andγ is a parameter controlling the roughness of the solution. Unless
otherwise indicated, the value ofγ is taken as 1.0. The temperature profile (5) is shown in Figure2. The
temperature distribution on a plateΩ has a sharp localized spike in a small neighborhood ofx0, similar to
the types of distributions described in [7, 47]. This model problem was originally proposed by Merle and
Dolbow [31] and was also analyzed by O’Hara [36].

The domain is taken asΩ = {xxx ∈ IR3 : 0 < x < 500, 0 < y < 250,0 < z < 30} where all dimensions are in
mm. Homogeneous Dirichlet boundary conditions are applied onfacesx = 0 andx = 500 and homogeneous
Neumann boundary conditions are prescribed on all other faces. A heat source given by

q(xxx) = −∇2u(x),

with u defined in (5), is prescribed inΩ.

The energy norm associated with the problem defined in Section 2 is given by

‖u‖E =
√

B(u,u) =

√

∫

Ω
(∇u)κκκ(∇u)dΩ

whereB(u,u) is the bilinear form associated with the Laplace operator.

In the numerical experiments presented below, the accuracyof a numerical approximationuh of u is mea-
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Figure 2: Temperature profile of model problem. The solutionis smooth everywhere in the domain except
in a small neighborhood ofx0 = 125mm, where a sharp temperature spike develops.

sured using the relative error in the energy norm, i.e.,

er
E =

‖u−uh‖E

‖u‖E
=

√

B(u,u)−B(uh,uh)

B(u,u)

The reference value for the energy of the solution (5) is taken as

B(u,u) = 9474.62

4.1 Convergence Analysis

In this section, the model problem described above is solvedusing the FEM and the GFEM. One, two
and three-dimensional discretizations are used. This is possible due to the one-dimensional nature of the
exact solution. In all the numerical experiments presentedbelow, a high order Gaussian quadrature rule
was used to compute the load vector over elements near the thermal spike atx0. This is required due to the
non-polynomial nature of heat sourceq. In the case of three-dimensional discretizations, a tensor-product
Gaussian rule with 729 points is used. This rule was selectedsuch that the convergence studies presented
below are not affected by integration errors. Details on thenumerical experiments used in the selection of
this rule can be found in [36].

For 1-D analyses, the domain is a 1-dimensional bar, 500mm in length, discretized with either 2-nodep-
hierarchical elements, or 2-node GFEM elements. Figure3 shows how the 1-D meshes are broken up into
three regions. The left- and right-most regions have fixed element sizeshL andhR, respectively. The middle
region, containing the spike (120mm ≤ x ≤ 130mm), is the only region which is refined, with element size
hi. For 2-D analyses, the domain is 500mm in length, 2mm in width, and discretized with 8-node (quadratic)
or 4-node (linear) quadrilateral elements. Uniform meshesare used in the 2-dimensional case. For the 3-D
analyses, the domain is discretized using 4-node GFEM tetrahedral elements. In the 3-dimensional case
the mesh is again locally refined, as shown in Figure4, where refinement is done only in the portion of
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the domain which contains the peak. The element size in corresponding plots refers to the length in the
x-direction of the smallest elements in the refined region.

i

0 mm 500 mm120 mm 130 mm

h = 15 mm
h   = 5, 2.5, 1.25, 0.625, 0.3125 mm

L Rh  = 15.42 mm

Figure 3: Typical structure of the locally refined meshes used in the 1-D model. Element size in subsequent
plots refers tohi.

Figure 4: Locally refined 3-D mesh using a bounding box to define the region of local mesh refinement.

Convergence in energy norm of one dimensional FEM and GFEM discretizations is shown Figure5. Linear
and quadraticp-hierarchical FEM [43] and two-node quadratic GFEM [15, 35] elements are used. The
convergence rates are denoted in the plot as′B′. From the plot, we can observe that quadratic GFEM and
p-hierarchical FEM deliver the same level of accuracy. Thus,the curves for these elements coincide. The
curves also show that there is a delay in reaching the optimalrate of convergence due to the rough nature of
the solution, and the difficulty in resolving the localized thermal spike. The asymptotic convergence rates
obtained are very close to the optimal rates of 1.0 for linearelements (B = 0.97), and 2.0 for quadratic
elements (B = 1.96).

Figure6 shows convergence in energy norm for quadratic discretizations with 1-D and 3-D GFEM elements;
1-D p-hierarchical elements; and 2-D Serendipity elements. Therelative error in energy norm is plotted
against element size in the x-direction. The convergence behavior is similar in each of the four discretization
sequences used, achieving near the theoretical convergence rate of 2.0 ( B = 1.96).

Figure7 shows the convergence in energy norm of 3-D GFEM discretizations. The data for the quadratic
element is the same as in Figure6, but here the relative error in energy norm is plotted versusthe number
of degrees of freedom instead of element size. It is quite apparent that in 3-D, the required element size to
achieve acceptable error values translates into a very large number of degrees of freedom. In the case of
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Figure 5: Convergence in energy norm for low order 1-D generalized andp-hierarchical finite elements.
Quadratic GFEM andp-hierarchical FEM deliver the same level of accuracy. Thus,only two curves can be
seen in the plot.
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Figure 6: Convergence in energy norm for discretizations with 1-D and 3-D GFEM elements; 1-Dp-
hierarchical elements; and 2-D quadratic Serendipity elements. The curves for 1-D elements coincide.

7



linear elements, nearly 106 degrees of freedom were required to achieve an error level below 10 %. With
this in mind, and considering that the geometry of the domains we are interested are much more complex
than in our model problem and that time dependent effects must be considered, a more efficient solution
methodology is required. One point to take note of is that in Figure7, the relative error values are cut off
at 1.0. As can be seen in the plot, there is a pre-convergent zone, where the error is 100 percent or higher,
before a minimal level of refinement is reached. The pre-convergent regions on the curves are due to the
mesh being too coarse to capture the localized behavior of the solution. A similar phenomenon is observed
in [26] in which the capability of the finite element method to solveHelmholtz’s equation is investigated.
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Figure 7: Convergence in energy norm for 3-D linear and quadratic tetrahedral elements. Sequences of
meshes locally refined around the thermal spike are used.

4.1.1 Thermal gradient not aligned with mesh

In all the discretizations used previously, the spike in theloading was favorably oriented with respect to the
mesh. In the previous analysis, there were element edges oriented in the global x-direction which coincides
with the direction of the gradient in the temperature profileshown in Figure2. This may not always be the
case in practice, however; because the orientation of shockwaves and thermal loadings may not line up with
a primary axis of the coordinate system used to create the mesh or if an unstructured mesh is used. The
effect of the orientation of the elements with respect to thegradient in the temperature profile is investigated
in this section.

The model problem with roughness parameterγ = 0.05 is solved on domains with different orientations
with respect to the gradient in the temperature profile. In the first case, the domain is as defined in Section4
while in the second one the domain is rotated 45 degrees clockwise. In this case, the line along the thermal
spike cuts the elements at a 45 degree angle. Figure8 shows one mesh with this orientation. Neumann
boundary conditions derived from the analytic solution (5) are applied to all faces of this domain. Quadratic
tetrahedral GFEM elements are used in both cases. The reference value for the exact strain energy for the
case of the domain oriented as in the previous section is taken asB(u,u) = 2179.21. In the second case,
the reference value is taken asB(u,u) = 2992.80, and was obtained using a mesh with 23 levels of local
refinement.

Figure9 shows the convergence in the energy norm for the two domain orientations considered. From this
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plot it can be seen that a significant increase in the number ofdegrees of freedom, in some instances up to
100 times more, is required to solve for the situation when the peak does not line up with the mesh, and in
fact with this situation there is a pre-convergent zone which does not show up for the case where the peak
is aligned with the mesh. While we are not solving the same problem in both cases, the smoothness of the
solution is the same. Thus it is reasonable to attest that thedifference in convergence between the two cases
is mainly due to the change of orientation of the thermal layer with respect to the mesh.

Figure 8: Temperature distribution computed on a mesh wherethe line along the thermal peak cuts the
domain at a 45 degree angle. Roughness parameterγ = 0.05.
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Figure 9: convergence in the energy norm for the two domain orientations considered. In one case, the
internal layer is aligned with element edges while in the second case it is not. The roughness parameterγ is
taken as 0.05.

From the numerical experiments presented above, it is clearthat the approximation of functions exhibiting
highly localized gradients requires strongly refined meshes. High order elements can reduce the need for
mesh refinement but not eliminate it [36]. Hp discretizations in which both element size and polynomial
order are optimally distributed in the domain [8, 9, 10, 34, 38, 39] are able to deliver exponential convergence
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for problems like the one analyzed here. Optimalhp discretizations use strongly refined meshes around
regions with sharp thermal gradients. This creates some difficulties in the case of, e.g., time-dependent
problems. The refinement/unrefinement must follow a moving internal layer and thus the problem must
be solved from scratch after each mesh update even in the caseof linear problems. In the next sections,
we investigate the possibility of exploring the flexibilityprovided by the generalized FEM to avoid mesh
refinement/unrefinement cycles and instead using customized enrichment functions able to approximate
well the behavior of the solution on a fixed coarse mesh. Avoiding mesh refinement/unrefinement will be
important in the consideration of transient problems due tothe energy conserving nature of avoiding the
re-meshing process, as proven in [6].

4.2 GFEM with Special Enrichment Functions

In all numerical experiments presented in previous sections, only polynomial enrichment functions are used.
As a result, a high level of mesh refinement is required in order for acceptable error levels to be obtained.
Merle and Dolbow [31], demonstrated that far greater efficiency can be achieved when a-priori knowledge
of the solution is used, and an exponential enrichment function of the form

L(x) = exp−(x−x0)
2

(6)

is used to create GFEM shape functions specifically tailoredto solve the model problem previously de-
scribed.

For the purpose of comparison, a one-dimensional mesh consisting of five, equally-sized, quadratic GFEM
elements and 12 degrees of freedom was used to solve the modelproblem, yielding a relative error in
the energy norm of 0.996. When the element containing the thermal spike is enriched with the exponential
enrichment function (6) the relative error in the energy norm drops to 1.58x10−3, a three-orders of magnitude
reduction by adding two degrees of freedom to the discretization. Figure10shows the solution obtained with
this discretization.
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Figure 10: One-Dimensional GFEM solution computed on a uniform mesh with five quadratic elements.
The element containing the thermal spike is enriched with exponential enrichment function (6).
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This numerical experiment demonstrates that it is possibleto achieve a high level of accuracy using coarse
meshesprovided appropriate enrichment functions are used. Nonetheless, enrichments able to approximate
well small scale behavior like the one exhibited in our modelproblem are, in general, not known. Thus, a
more general approach to building special enrichment functions is needed. The proposed approach is based
on the generalized finite element method with global-local enrichments (GFEMg-l) presented in [14, 17]. As
demonstrated in the next sections, the so-called global-local enrichments can be defined even when limited
or no a-priori information about the solution of a problem isavailable while enabling the use of coarse
macro-scale meshes.

5 Generalized Finite Element Analysis with Global-Local Enrichments

In this section, we present a procedure to build enrichment functions for the class of problems governed by
(1) and subjected to boundary conditions (2) and (3). The formulation and application of theGFEMg-l to
three-dimensional elasticity equations can be found in [14, 17, 28]

5.1 Formulation of Global Problem

Consider a domain̄ΩG = ΩG ∩∂ ΩG as illustrated in Figure11(a). The boundary is decomposed as∂ ΩG =
Γu

G ∪Γ f
G with Γu

G ∩Γ f
G = /0. The solutionu of the global or macroscale problem obeys Poisson’s equation

(1) on ΩG and the boundary conditions prescribed on∂ ΩG and given by (2) and (3). A generalized FEM
approximation,u0

G, of the solutionu can be found solving the following problem:

Find u0
G ∈ Xhp

G (ΩG) ⊂ H1(ΩG) such that,∀ v0
G ∈ Xhp

G (ΩG)

∫

ΩG

∇u0
Gκκκ∇v0

GdΩ+η
∫

Γu
G

u0
Gv0

GdΓ =
∫

ΩG

qv0
GdΩ+

∫

Γ f
G

f̄ v0
GdΓ+η

∫

Γu
G

ūv0
GdΓ (7)

where,Xhp
G (ΩG) is a discretization ofH1(ΩG) built with generalized FEM shape functions, andη is a

penalty parameter. The enforcement of the Dirichlet boundary condition could also be done using, e.g., the
Nitsche method or the Characteristic function method. Details on these methods, as well as their theoretical
analysis within the framework of the GFEM, are presented in the survey paper by Babuska et al. [4]. In this
paper, the penalty method is used due to its simplicity of implementation.

Problem (7) leads to a system of linear equations for the unknown degrees of freedom ofu0
G. The mesh

used to solve problem (7) is typically a coarse quasi-uniform mesh. This global or macroscale problem (7)
is denoted hereafter asinitial global problem for convenience.

5.2 Local Problems

Let Ωloc denote a subdomain ofΩG as illustrated in Figure11(b). In this paper, we consider the case in
which the solutionu exhibits a strong internal layer, in the form of a sharp spike, in the local domainΩloc.

The following local problem is solved onΩloc after the global solutionu0
G is computed as described above:

Find uloc ∈ Xhp
loc(Ωloc) ⊂ H1(Ωloc) such that,∀ vloc ∈ Xhp

loc(Ωloc)

∫

Ωloc

∇ulocκκκ∇vlocdΩ+η
∫

∂Ωloc\(∂Ωloc∩Γ f
G)

ulocvlocdΓ =

η
∫

∂Ωloc\(∂Ωloc∩∂ΩG)
u0

GvlocdΓ+η
∫

∂Ωloc∩Γu
G

ūvlocdΓ+

∫

Ωloc

qvlocdΩ+

∫

∂Ωloc∩Γ f
G

f̄ vlocdΓ (8)
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Enrichment Functions

(a) Global problem defined onΩG. (b) Local problem defined onΩloc.

Boundary Conditions

Figure 11: The generalized FEM with global-local enrichment functions. (a) Initial and enriched global
problems discretized with a coarse mesh. The initial globalproblem provides boundary conditions for local
problems containing sharp thermal spikes. (b) Local problem used to compute global-local enrichment
functions.

where,Xhp
loc(Ωloc) is a discretization ofH1(Ωloc) using GFEM shape functions.

A key aspect of problem (8) is the use of the generalized FEM solution of the global problem, u0
G, as

boundary condition on∂ Ωloc\(∂ Ωloc ∩ ∂ ΩG). Exact boundary conditions are prescribed on portions of
∂ Ωloc that intersect eitherΓu

G or Γ f
G. Problem (8) is named hereafterlocal problem for convenience.

5.3 Global-Local Enrichment Functions

The procedure described above to compute the local solutionuloc is the well known global-local analysis
[11, 21, 33]. This procedure enables the computation of local quantities of interest while not requiring
modifications on the usually large and complex global mesh. It is also computationally efficient since
a single global analysis needs to be performed, even when local quantities must be computed at several
subdomainsΩloc ⊂ ΩG. However, the error of the local solution,uloc, depends not only on the discretization
used in local domainΩloc, but also on the quality of boundary conditions used on∂ Ωloc\(∂ Ωloc ∩ ∂ ΩG),
which are provided by the global solutionu0

G. One approach to address the poor accuracy of these boundary
conditions is to use a sufficiently large local domain. Nonetheless, the minimum size ofΩloc for acceptable
results is problem dependent. In particular, for the class of problems we are interested, the error of the global
solutionu0

G may be large even far from the thermal spike. This is illustrated in Figure12. Thus, the local
solutionuloc will have in general a large error, even when very fine meshes are used in the local domain.

In the GFEM with global-local enrichments (GFEMg-l) the poor accuracy ofuloc is addressed by going one
step further in the analysis and usinguloc as an enrichment function for the global discretization. Generalized
FEM shape functions for the global problem are defined as

φα = ϕαuloc (9)

whereϕα denotes a partition of unity function of the coarse global mesh anduloc is called aglobal-local
enrichment function. The function defined in (9) is used at nodesxxxα of the global mesh whose support,
ωα , is contained in the local domainΩloc. The global problem enriched with these functions is solvedand
quantities of interest computed. The solution of thisenriched global problem is hereafter denoted byuE

G.
The GFEMg-l approach is illustrated in Figure11. The global solution provides boundary conditions for
local problems while local solutions are used as enrichmentfunctions for the global problem through the
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Figure 12: Error of solution computed on a uniform global mesh with 50 elements in thex−direction and
one element in they− direction. Standard eight-node quadratic finite elements are used. The location of
the thermal spike is indicated in the figure. We can observe that the error in the computed temperature is
relatively large even far from the thermal spike. Error whenthe exact solution is given byu(xxx) = sin(πx/L),
i.e., the thermal spikee−γ(x−x0)

2
is removed is also provided. In this case, the error of the finite element

solution is very small.

partition of unity framework of the GFEM. The procedure described above may be repeated. The solution
uE

G is used as boundary conditions for the local problem and so on. This strategy is investigated in Section
6.2.

The enriched global problems do not have, in general, to be solved from scratch since the shape function
(9) is hierarchically added to the global space and only a smallnumber of nodes in the global problem is
enriched. This is demonstrated in [14]. The relation of theGFEMg-l with other methods is also discussed in
[14].

The performance of theGFEMg-l when solving steady-state heat transfer problems with solutions exhibiting
highly localized sharp thermal gradients is investigated in the next sections.

6 Analysis of Model Problem Using the GFEMg-l

The generalized FEM with global-local enrichment functions (GFEMg-l) described above is used in this
section to solve the model problem defined in Section4. The global,ΩG, and local,Ωloc, domains are
discretized with four node tetrahedral GFEM elements [15]. Quadratic and quartic (p = 4) elements are
used in global and local domains, respectively. Uniform meshes in x-, y- and z-direction are used in the
global domain. The meshes are created by first generating a mesh of hexahedral elements and then dividing
each element into 6 tetrahedral elements. Hereafter, meshes are defined based on the number of hexahedral
elements used in their generation, not the number of tetrahedral elements. Each global mesh has 2 elements
in the y-direction, and 1 element in thez-direction. Mesh 0x has 10 elements in thex-direction, Mesh 1x
has 20 element in thex-direction, and Mesh 2x has 40 elements in thex-direction. The global domains
show increasing levels of refinement in thex-direction only because the solution only exhibits a gradient
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in the x−direction, and is constant iny andz. These meshes are shown in Figures18(c), 19(c)and20(c),
respectively.

Creation of Local Problems Local domains and their corresponding initial discretizations are defined by
copying elements from the global mesh around the thermal spike. This is done with the aid of global seed
nodes which are selected via a bounding box containing the temperature spike. For the analyses presented
here, the same bounding box is used for each of the three global meshes–Meshes 0x, 1x and 2x. As such,
the smallest possible bounding box size is determined by thecoarsest global mesh, Mesh 0x. The bounding
box is defined from min= [100,0,0] to max= [150,250,30]. Figure13 illustrates this procedure. LetIseed
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Figure 13: Extraction of initial local mesh from global Mesh1x. The bounding box used for selection of
seed nodes is shown (rectangle) along with the seed nodes (solid circles). Nine seed nodes are shown, but
there are eighteen in total: Nine on top surface (shown) and nine on the bottom surface of mesh.

denote the indices of all global seed nodes in the bounding box. A local domain corresponding to a mesh
with one layer of elements around the seed nodes is given by

Ωnlay=1
loc :=

⋃

β∈Iseed

ωβ

whereωβ is the union of (copy of) global elements sharing nodexxxβ , β ∈ Iseed . Local domains with
additional layers of elements around the seed nodes are defined analogously. The mesh corresponding to a
local domain withm layers of elements around a given setIseed is given by the union of (copy of) the mesh
with m−1 layers and the global elements sharing a vertex node in the mesh withm−1 layers.

The size of the local domains are also kept constant for each global mesh used, and once again are deter-
mined by Mesh 0x. One layer of elements in Mesh 0x is selected,resulting in the local domainΩloc = {xxx ∈
IR3 : 50< x < 200, 0 < y < 250,0 < z < 30}. Two and four layers of elements around the seed nodes are
used for Meshes 1x and 2x, respectively. Again, this was selected to maintain a constant size in the local
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domain.

The local meshes themselves are then refined by bisecting alltetrahedral elements inside of the bounding
box defined by min= [122.5,0,0] and max= [127.5,250,30] for the case whenγ = 1.0. A local mesh is
shown in Figure14corresponding to Mesh 1x with 9 levels of local refinement.

122.5 127.5 mm

Figure 14: Local mesh extracted from Mesh 1x, and 9 levels of local refinement are used. The rectangle in
the figure represents the bounding box used for refinement. (Not to scale)

The seed nodes used to create the local domains are the same nodes which are then enriched with the local
solution (global-local enrichments). Twelve nodes are enriched on Mesh 0x; eighteen nodes are enriched on
Mesh 1x and thirty nodes are enriched on Mesh 2x. This is illustrated in Figures18(c), 19(c)and20(c).

The number of degrees of freedom (DOFs) in the global problemremains almost constant when global-
local enrichments are used. In addition, the number of DOFs in the enriched global problem does not
depend on the number of DOFs in the local problem. Therefore,the number of DOFs in the enriched global
problem is not a good measure for the computational cost ofuE

G. In the convergence analyses presented
hereafter, the computational cost for both local and globalproblems are measured with respect to CPU time,
not number of DOFs. All measures are in seconds. For plots dealing with local problems, the CPU time
considers the time taken for assembly and solution of the local problem. Plots dealing with the enriched
global domain consider the CPU time taken for assembly and solution of the enriched global domain as well
as the assembly and solution time taken in the correspondinglocal domain. The CPU times are meant to
reflect the total computational effort required to generatethe solution of interest, which is the underlying
reason for the selection of each component considered in each case.
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6.1 H-extensions in the local problem

The convergence of the enriched global problem whenh-extensions are performed in the local problem
is investigated in this section. The local problems are solved using Dirichlet boundary conditions on
∂ Ωloc\(∂ Ωloc∩∂ ΩG) provided by the initial global problem as discussed in Section5.2. For reasons which
will become more clear in the subsequent sections, the methodology used in this section will be referred to
asInitial Global Problem with Spike, or IGw/S.

Figure15 shows the relative error in energy norm in the enriched global problems associated with meshes
0x, 1x and 2x. All three cases show convergence of the enriched global problem as the local problems are
refined. The global mesh is kept fixed for each curve shown, only the global-local enrichments (solution
of local problems) are updated. The CPU time on the horizontal axis includes the CPU time taken for
assembly and solution of the enriched global domain as well as the assembly and solution time taken in
the corresponding local domain. Thus, as the local domains are refined, the reported CPU time increases.
From the figure, we can observe that the pre-asymptotic rangereduces as finer global meshes are used. In
addition, for a given computational effort the accuracy of the enriched global solution computed on Mesh
2x can be up to one order of magnitude higher than on the other two meshes.
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Figure 15: Relative error in energy norm for enriched globalproblems associated with meshes 0x, 1x and
2x. Each curve corresponds to a fixed global mesh andh-extensions in the local problems. The CPU time
includes the CPU time taken for assembly and solution of the enriched global domain as well as the assembly
and solution time taken in the corresponding local domain.

Figure16 shows the relative error in energy norm in the local problemssubjected to boundary conditions
provided by global solutions computed on meshes 0x, 1x and 2x. Very large errors and poor or no conver-
gence can be observed. Local problems subjected to boundaryconditions from global meshes 1x and 2x
initially show convergence but then the error levels off. This shows that the poor quality of the boundary con-
ditions is controlling the error. This is confirmed in Sections6.2and6.3where we present two approaches
to improve the quality of the boundary conditions for the local problems. Interestingly, the global problems
enriched with these poor local solutions show convergence as discussed above, attesting the robustness of
the proposedGFEMg-l. However, the convergence of the enriched global problem will at some point level
off since the local solutions do not converge to the solutionof the global problem due to errors in boundary
conditions applied to local problems. This can be observed in Figure17which shows more data points than
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in Figure15. The convergence for Meshes 1x and 2x level off due to poor quality of local solutions. The
convergence for other meshes are also expected to eventually level off. In Sections6.2and6.3we propose
two approaches to extend the convergent range of the enriched global problem.
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Figure 16: Relative error in energy norm for local problems subjected to boundary conditions provided by
global solutions computed on meshes 0x, 1x and 2x. The CPU time considers the time taken for assembly
and solution of the local problem.
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Figure 17: Data of Figure15 plotted against the number of DOFs in the local problems. Theplot includes
data points that could not be included in Figure15 due to a limitation of the function we use to measure
CPU time.

Figures18, 19and20show temperature distributions computed in each phase of theGFEMg-l–initial global,
local, and enriched global problems–corresponding to global meshes 0x, 1x and 2x, respectively, and 13
levels of refinement in the local problems. Solutions of initial global problems solved with meshes 0x and
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1x completely miss the thermal spike and as a result the localsolutions are of poor quality. The thermal
spike, however, is clearly captured in all three enriched global problems, attesting the importance of the
extra step in the proposedGFEMg-l. This is in agreement with the convergence plots shown in Figures
15 and16. One other point of interest is the resolution of the spike inFigure18(c)where a well-resolved
spike can be seen in the temperature field even with the use of very large elements. In fact, the spike in the
temperature field falls within elements, and not along a lineof nodes, reflecting the shape of the specially-
tailored enrichment functions from the local problem.

(a) Solution of initial global problem. (b) Solution of local problem.
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(c) Solution of enriched global problem.

Figure 18: Temperature distributions computed in the initial global, local, and enriched global problems
corresponding to global Mesh 0x and 13 levels of refinement inthe local problem. TheIGw/S methodology
is used. The thermal spike is well resolved in the enriched global problem even though it falls within quite
large elements. Enriched nodes in global domain are denotedin Figure18(c)by red glyphs.
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(a) Solution initial global problem. (b) Solution of of local prob-
lem.

��

����

�� ��

��

����

��

(c) Solution of enriched global problem.

Figure 19: Temperature distributions computed in the initial global, local, and enriched global problems
corresponding to global Mesh 1x and 13 levels of refinement inthe local problem. TheIGw/S methodology
is used. Enriched nodes in global domain are denoted in Figure19(c)by red glyphs .
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(a) Solution of initial global problem. (b) Solution of local prob-
lem.
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(c) Solution of enriched global problem.

Figure 20: Temperature distributions computed in the initial global, local, and enriched global problems
corresponding to global Mesh 2x and 13 levels of refinement inthe local problem. TheIGw/S methodology
is used. Enriched nodes in global domain are denoted in Figure20(c)by red glyphs.

20



6.2 A Two-Step Approach to Improve Local Solutions

As discussed in Section5.3, the error of the global solutionu0
G may be large even far from the thermal spike

(Cf. Figure12). Thus, local problems may be subjected, for the class of problems we are interested, to
poor boundary conditions. As a result, the error of the localsolutions can not be controlled simply by mesh
refinement or element enrichment (Cf. Figure16). In this section, we address this issue by performing one
additional global-local cycle. The solutionuE

G is used as boundary conditions for the local problems and then
we proceed as before–Solve the local problems and enrich theglobal discretization with local solutions. For
simplicity this approach is hereafter referred to asIGw/S-II–the two-step version ofIGw/S. This particular
approach is investigated because it has potential to be exploited in a transient solution to a time-dependent
problem when the enriched global solution from time steptn can be used as boundary conditions for the
local problem at time steptn+1.

Figure 21 shows the temperature distributions computed in the initial global, local, and enriched global
problems of theIGw/S-II strategy. Here, the initial global problem corresponds to the enriched global
problem in theIGw/S strategy. The thermal spike is well resolved in this problemand thus improved BCs
are imposed on the local problem which can also capture well this behavior and, in turn, provide good
enrichment functions for the enriched global problem (Cf. Figure21(c)).

Figure22 shows the relative error in energy norm in the local problemsin strategiesIGw/S andIGw/S-II.
Local boundary conditions are provided by global solutionscomputed on meshes 0x, 1x and 2x. We can
observe a dramatic difference between the two strategies. As expected, the local problems in the second step
of the IGw/S-II strategy are subjected to much improved boundary conditions than in the first step which
lead to the improvement seen in convergence.

Figures23 shows the relative error in energy norm for enriched global problems in strategiesIGw/S and
IGw/S-II. All three cases, Meshes 0x, 1x and 2x, show convergence of the enriched global problem as the
local problems are refined. The behavior of the energy norm isnot as dramatically different between the
two strategies, which is evidence of the robustness of theGFEMg-l to take local solutions which may be
very poor and still deliver reasonable convergence in global domain. Nonetheless, some differences do exist
at low error levels. The enriched global solution in strategy IGw/S-II does not level off as in theIGw/S
strategy. Thus, theIGw/S-II strategy extends the range of target error level for the enriched global problem.
Of course the convergence of the enriched globalIGw/S-II may eventually level off but at a lower error level
than in theIGw/S strategy. We have not, however, experienced this in any numerical experiments we have
performed so far.
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(a) Solution of initial global problem inIGw/S-II strategy. This is the solution of the enriched
global problem in theIGw/S strategy (Cf. Section6.1).

(b) Solution of local problem.

(c) Solution of enriched global problem.

Figure 21: Temperature distributions computed in the initial global, local, and enriched global problems
corresponding to global Mesh 2x and 13 levels of refinement inthe local problem. TheIGw/S-II strategy is
used. The thermal spike is well resolved in the initial global problem and thus the local problem can also
capture well this behavior.
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Figure 22: Relative error in energy norm for local problems in strategiesIGw/S and IGw/S-II. The only
difference in the local problems is the boundary conditionsused.
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Figure 23: Relative error in energy norm for enriched globalproblems in strategiesIGw/S andIGw/S-II.
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6.3 Spike Absent from Initial Global Problem

In this section, we investigate another approach to improvethe boundary conditions for the local problems
and thus extend the range of target error level for the enriched global problem. In the strategy investigated
here, the rough portion of the thermal loading applied to theinitial global problem is removed. This idea is
based on the fact that the spike in the temperature profile is very localized, and it has virtually no effect on the
exact solution outside of a small neighborhood of the thermal spike. Therefore, as long as the local problem
boundaries are not within a few millimeters of the temperature peak, the correct boundary conditions are
essentially those from the smooth portion of the loading andthe exponential portion will have no appreciable
effect. For simplicity, this approach will be referred to asInitial Global problem without Spike, or IGw/oS.

Figure 24 shows the temperature distributions computed in the initial global, local, and enriched global
problems of theIGw/oS strategy. The thermal spike is well resolved in both the local and enriched global
problems even though it is absent in the initial global problem.

(a) Solution of initial global problem inIGw/oS strategy. The thermal spike is absent from
this solution.

(b) Solution of local problem.

(c) Solution of enriched global problem.

Figure 24: Temperature distributions for initial global, local, and enriched global problems forIGw/oS
strategy corresponding to global Mesh 2x, 13 levels of refinement in the local problem. Meshes 0x and 1x
provide qualitatively similar results. The thermal spike is well resolved in both the local and enriched global
problems.
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Figures25shows the relative error in energy norm in the local problemsin strategiesIGw/S andIGw/oS. As
in the case of strategyIGw/S-II, we can observe a dramatic improvement on the convergence behavior of the
local solutions when strategyIGw/oS is used. In fact, the performance of strategiesIGw/oS andIGw/S-II is
very similar (Cf. Figure22).
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Figure 25: Relative error in energy norm for local problems in strategiesIGw/S and IGw/oS. The only
difference in the local problems is the boundary conditionsused. In the case ofIGw/oS strategy, The thermal
spike was removed from the initial global domain.

Figure26 shows the relative error in energy norm for enriched global problems in strategiesIGw/S and
IGw/oS. We can observe convergence of the enriched global solutioncomputed with strategyIGw/oS over a
larger range of target error level than in the case ofIGw/S strategy.
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Figure 26: Relative error in energy norm for enriched globalproblems in strategiesIGw/S andIGw/oS.
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6.4 Effect of Enriching the Global Problem

TheGFEMg-l, as noted previously, differs from the traditional global-local FEM in that there is the added
step of enriching the global domain with the local solution and re-solving the global problem. In this section,
we compare the performance of these two methods for each of the strategies proposed in previous sections,
i.e., IGw/S, IGw/S-II andIGw/oS.

Figure27 compares the convergence in energy norm in the local and enriched global domains for strategy
IGw/S. In these plots, there is a significant difference in the convergence rates as well as the error values
between local and enriched global solutions. In some cases,the enrichment of the global domain can take
local solutions which show no convergence behavior, and a large relative error, and convert this local infor-
mation into a global solution which shows good convergence behavior, as well as significantly lower error
values.
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Figure 27: Comparison of convergence in energy norm in localand enriched global domains forIGw/S
strategy.

Figures28 and29 compare the convergence in energy norm in the local and enriched global domains for
strategyIGw/S-II. The local domains, in this case, are provided with good boundary conditions, and thus the
local domains themselves do provide accurate solutions. Asa result, the improvement is not as drastic as that
seen in theIGw/S case. The only noticeable improvement is in the case of Mesh 2x and at low error levels
(Cf. Figure29). As was mentioned earlier, the scenario where a well-resolved spike is used in the initial
global problem is of particular interest because it will be relied upon particularly in the transient setting,
where the enriched global problem of one time step may be usedto provide accurate boundary conditions
for the local problem in the next time step. This methodology, if successful, will provide us with the ability
to resolve very fine local features using a fixed, coarse global mesh throughout the entire transient analysis.

Figure30 compares the convergence in energy norm in the local and enriched global domains forIGw/oS
strategy. As in theIGw/S-II case, the local domains are provided with good boundary conditions, so the
local domains are able to generate accurate solutions. As a result, the improvement is once again not as
drastic as that seen in theIGw/S case.
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Figure 28: Comparison of convergence in energy norm in localand enriched global domains forIGw/S-II
strategy.
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Figure 29: Data of Figure28 plotted against the number of DOFs in the local problems. Theplot includes
data points that could not be included in Figure28 due to a limitation of the function we use to measure
CPU time.
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Figure 30: Comparison of convergence in energy norm in localand enriched global domains forIGw/oS
strategy.

7 Conclusions

In this paper, the generalized FEM with global-local enrichments (GFEMg-l) [14, 17, 28] is formulated for
steady-state heat transfer problems with solutions exhibiting highly localized sharp thermal gradients. The
proposed method is related to the classical global-local FEM (GL-FEM) [11, 21, 33] which is broadly used
in the industry. They share several attractive features like

(i) the possibility of capturing localized solution features using uniform, coarse, global meshes. This
removes, for example, the need to refine global meshes that are usually complex and very large. A
single global mesh can be used to analyze the effect of localized thermal loads at different parts of a
structure. All that is needed is the computation of local solutions and the hierarchical enrichment of
the global solution space. Additional computational implications of this feature of theGFEMg-l are
discussed in Section4.1and in [14];

(ii) the size of the enriched global problem is about the sameas the initial global problem and it does not
depend on the size or discretization used in the local problems;

(iii) while not explored in this paper, it is conceivable to use in theGFEMg-l different approximation meth-
ods to solve the global and local problems, like in theGL-FEM. Hp adaptive finite elements methods
[8, 9, 10, 34, 38, 39], for example, would be an excellent option for solving the local problems;

(iv) the solution of multiple local problems can be parallelized without difficulty allowing the solution of
large problems very efficiently. The parallelization of theGFEMg-l is the subject of a forthcoming
paper;

(v) theGL-FEM uses the same variational principle as the original problemand thus no stability issues
are introduced by the method.

While theGFEMg-l share many of the attractive features of theGL-FEM, the numerical experiments pre-
sented here and in [14, 28], demonstrate that theGFEMg-l is much more robust than theGL-FEM. The
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former was able to deliver accurate global solutions even when limited or no convergence was observed in
the local problems. The errors in the enriched global problem were, in some cases, orders of magnitude
smaller than in the local problems. The difficulties of theGL-FEM with the class of problems investigated
here is due to the large errors of global solutions computed on coarse meshes. This is illustrated in Figure
12which shows that the discretization error may be large even far from the thermal spike.

The numerical experiments presented here also demonstratethat the information transfer between local
(fine) and global (coarse) scales using the partition of unity framework is very effective (Cf. Section6.4).
We show that the global problem converges at least as fast as the local problems and in many cases the
enriched global problem can deliver much more accurate solutions than the local ones.
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[2] I. Babǔska, G. Caloz, and J.E. Osborn. Special finite element methods for a class of second order
elliptic problems with rough coefficients.SIAM Journal on Numerical Analysis, 31(4):745–981, 1994.
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