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SUMMARY

In spite of significant advancements in automatic mesh generation during the past decade, the
construction of quality finite element discretizations on complex three-dimensional domains is still a
difficult and time demanding task.

In this paper, the partition of unity framework used in the generalized finite element method
(GFEM) is exploited to create a very robust and flexible method capable of using meshes that are
unacceptable for the finite element method, while retaining its accuracy and computational efficiency.
This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements.
The clusters define a modified finite element partition of unity that is constant over part of the clusters.
This so-called clustered partition of unity is then enriched to the desired order using the framework
of the GFEM.

The proposed generalized finite element method can correctly and efficiently deal with: (i) Elements
with negative Jacobian; (ii) Excessively fine meshes created by automatic mesh generators; (iii) Meshes
consisting of several sub-domains with non-matching interfaces. Under such relaxed requirements
for an acceptable mesh, and for correctly defined geometries, today’s automated tetrahedral mesh
generators can practically guarantee successful volume meshing that can be entirely hidden from the
user. A detailed technical discussion of the proposed generalized finite element method with clustering
along with numerical experiments and some implementation details are presented. Copyright c© 2006
John Wiley & Sons, Ltd.
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2 C. A. DUARTE ET AL.

1. INTRODUCTION

Computational simulation on complex three-dimensional (3-D) domains has become a common
task in recent years in many research laboratories and industries. The construction of quality
finite element discretizations on complex 3-D domains is, however, a difficult and time
demanding task. Acceptable finite element meshes must satisfy several criteria that are not
easily matched when the geometry of the domain is complex. All elements in a mesh must, for
example, be properly connected to their neighbors and accurately represent the geometry of
the domain. In addition, the aspect ratio of the elements must be within acceptable bounds
and elements with small or negative Jacobians are not acceptable.

In spite of significant advancements in automatic mesh generation during the past decade,
several difficulties still exist. Automatic mesh generators for hexahedral elements are still a
subject of intense research and those currently available require considerable user intervention
and tuning of parameters in order to produce acceptable meshes in complex geometries. This
limitation has lead to increasing use of automatic tetrahedral mesh generators, although the
solutions from these elements are in general of lesser quality than comparable hexahedral
models. Tetrahedral mesh generators are much more robust then their hexahedral counterparts,
but they also suffer from several limitations. They tend, for example, to produce elements of
poor quality near curved boundaries that need to be manually fixed by the user, leading to
an overall very time consuming process. These difficulties are compounded when quadratic or
higher order elements are used (Cf. Section 7). Automatic mesh generators also often create an
excessive number of elements in order to keep the aspect ratio of the elements within reasonable
bounds. This is especially pronounced when the domain has transition zones between bulky and
slender parts. Another drawback of automatic mesh generators, especially when tetrahedral
elements are used, is that they inhibit the optimal use of p-anisotropic approximations, that is,
approximations that have different polynomial orders associated with each direction. Problems
where boundary layers occur, such as in the analysis of orthotropic materials or high speed
flow or where one of the dimensions of the structural part is much smaller than the others,
are examples in which p-orthotropic approximations may lead to considerable savings in the
number of degrees of freedom needed to achieve acceptable accuracy [34].

It is common practice, especially in the well established finite element (FE) analysis centers
in the industry, that the solution process be split into two (very) separate stages: meshing
and analysis. As the main effort measurable in human time expenditure is used on creating
acceptable FE meshes, the meshing itself became the goal, although actually it has absolutely
no value to the engineer, who is interested in the numerical solution (e.g. stress distribution
and its implications for the design process).

The difficulties associated with the generation of quality meshes for the finite element
method has lead to the investigation of alternative methods for solving boundary value
problems. In particular, this has lead to the development of the so-called meshless or meshfree
methods [4, 15, 16, 18, 22–24, 28, 41, 42, 46, 47, 58, 59, 61, 63, 66, 71–73, 82–85, 88, 89].
Excellent overviews of meshfree methods and their applications can be found in, for example,
[6, 14, 48, 51, 57, 60, 62]. Variants of the finite element method were also proposed in the last
decade with the aim of removing some limitations of the classical finite element method. Among
these alternatives is the generalized finite element method (GFEM) [9, 35–37, 64, 68, 69, 78, 79]
and the extended finite element method [27, 32, 65, 80, 81]. These methods are instances of the
so-called partition of unity method [8, 9, 33, 40, 42, 64] and are closely related to the classical
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CLUSTERED GENERALIZED FE 3

finite element method while providing a much higher level of flexibility than the later.
This paper presents a generalized finite element method that addresses the problem of

meshing complex 3-D domains by reducing the quality requirements for the initial mesh and
thus allowing the analyst to concentrate on the solution process as a whole, in particular,
on the quality of the computed solution, as opposed to the meshing process. Our goal is to
create a fully automatic analysis package, where automatic mesh generators are a hidden part
of the whole process, and the output solution is of guaranteed good accuracy, even if the
automatically generated mesh is not acceptable for a standard finite element method. This is
accomplished not by changing the mesh but instead by “clustering” sets of nodes and elements.
The clusters define a modified finite element partition of unity that is constant over part of
the clusters. This so-called clustered partition of unity is then enriched to the desired order
using the framework of the GFEM. We refer to the GFEM presented here as a GFEM with

clustering.
The proposed generalized finite element method has the following unique features:

1. It can perform effective unrefinement of finite element meshes composed of any type
of elements in two- or three-dimensional spaces. Numerical examples demonstrating the
application of the proposed technique to large, three-dimensional, meshes are presented
in Section 5.

2. It accepts non-matching finite element meshes. That is, meshes composed of subparts
that were meshed independently of each other. Here, the partition of unity framework is
used to “glue” the subparts together in such way that the solution is continuous along
the entire interface between the subparts. This technique along with numerical examples
are presented in Section 6. A brief review of existing techniques to handle non-matching
finite element meshes is also presented in Section 6.

3. The proposed GFEM with clustering can also accept meshes containing elements with
large aspect ratios and even elements with negative Jacobians, while retaining its
accuracy and computational efficiency (Cf. Section 7).

The proposed GFEM with clustering combines and extends the best features of the finite
element method while allowing for easier and automatic model preparation. It may virtually
guarantee that an acceptable computational model can be created even for the most complex
domains with little or no user intervention, and that such a model can be solved using the
computer facilities currently available to the analyst. Importantly, presently there are very few
techniques that are able to handle non-matching meshes, mesh unrefinement and, especially,
elements of poor quality. Some existing methods, while used in practice, have difficulties
in retaining theoretical correctness and consistency. A detailed technical discussion of the
proposed GFEM with clustering along with numerical experiments are presented in the next
sections. Brief reviews of related techniques are presented as well.

2. PARTITION OF UNITY AND GENERALIZED FINITE ELEMENT METHODS

The clustered generalized finite element method presented in this paper is one instance of the
so-called partition of unity approximations [9, 35, 36, 41, 42, 64, 69, 78, 79]. A partition of
unity-based approximation of a scalar field u(x) defined on a domain Ω ⊂ IRn, n = 1, 2, 3, can
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4 C. A. DUARTE ET AL.

be written as

uh(x) =
N∑

α=1

ϕα(x)uhα(x) (1)

where

(i) POUN = {ϕα}
N
α=1 constitute a partition of unity (POU) with N functions ϕα defined on

Ω and with properties

ϕα ∈ Cs
0(ωα), s ≥ 0, 1 ≤ α ≤ N (2)

N∑

α

ϕα(x) = 1 ∀x ∈ Ω (3)

The support of ϕα, {x : ϕα(x) 6= 0}, is denoted by ωα (often called cloud) and xα

denotes a node associated with function ϕα and its support. Examples of partition of
unities are standard finite element shape functions, functions generated by moving least
squares methods and Shepard functions [42, 56].

(ii) uhα(x) denotes a local approximation of the field u(x) defined on ωα and belonging to
the local space

χα(ωα) = span{Liα(x)}i∈I(α) (4)

where the basis functions Liα, i ∈ I(α), are also denoted by enrichment functions and
I(α) is an index set such that

L1α = 1 (5)

Examples of enrichment functions for a node xα = (xα, yα) in two-dimensions are
{

1,
(x − xα)

hα
,
(y − yα)

hα

}

linear

{

1,
(x − xα)

hα
,
(y − yα)

hα
,
(x − xα)2

h2
α

,
(x − xα)

hα

(y − yα)

hα
,
(y − yα)2

h2
α

}

quadratic (6)

where hα is a scaling factor [36].
Using the definitions above, we can write uhα(x) as

uhα(x) =
∑

i∈I(α)

aiαLiα(x), aiα ∈ IR (7)

The approximations used in all partition of unity methods like the hp-cloud method [41, 42],
the generalized finite element method [9, 35, 36, 64, 69, 78, 79], the particle-partition of
unity method [47, 49, 50], the extended finite element method [17, 65, 81], among others,
are special cases of (1), the basic difference being the choice of the partition of unity functions,
ϕα, α = 1, . . . , N, and/or the enrichment functions, Liα, i ∈ I(α).

The partition of unity approximation uh(x) can be written as

uh(x) =

N∑

α=1

ϕα(x)
∑

i∈I(α)

aiαLiα(x) =

N∑

α=1

∑

i∈I(α)

aiαφiα(x) (8)
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where

φiα(x) := ϕα(x)Liα(x) (no sum on α) (9)

are denoted partition of unity, cloud or generalized finite element shape functions.

In the generalized finite element method the partition of unity is in general provided by
linear Lagrangian finite element shape functions. The support ωα of ϕα is then given by the
union of the finite elements sharing a vertex node xα. Figure 1 shows a one-dimensional finite
element discretization. The partition of unity functions ϕα are the usual global finite element
shape functions, the classical “hat-functions”, associated with node xα. The support ωα is thus
the union of the elements τα−1 and τα. The resulting shape functions are called generalized

ταω

α

α

ϕα ϕ

α + 1

α + 1

x x

τα − 1

Figure 1. One-dimensional finite element partition of unity.

finite element shape functions. Figure 2 illustrates the construction of these functions in two
dimensions. The number of partition of unity functions, N , is given by the number of vertex
nodes, xα, in the finite element mesh. The enrichment, Liα, and corresponding shape functions,
φiα, are defined on a node-by-node or cloud-by-cloud basis. Each node may have a different
set of enrichment functions [36, 69].

Figure 2. Construction of a generalized FE shape function using polynomial enrichment: In this
example, ϕα is the function on the top, the enrichment function, Liα, is the function in the middle,

and the generalized FE shape function, φiα, is the resulting bottom function.
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6 C. A. DUARTE ET AL.

Using property (5), we can write a partition of unity and, in particular, a generalized finite
element approximation as

uh(x) =

N∑

α=1

∑

i∈I(α)

aiαϕα(x)Liα(x)

=
N∑

α=1

ϕα(x)



a1α +
∑

i∈I(α),i6=1

aiαLiα(x)





=

N∑

α=1

a1αϕα(x)

︸ ︷︷ ︸

regular interpolation

+

N∑

α=1

∑

i∈I(α),i6=1

aiαϕα(x)Liα(x)

︸ ︷︷ ︸

POU-based enrichment

(10)

The above decomposition of uh(x) is used in the extended finite element method [17, 65, 81].
An a-priori error estimate for partition of unity approximations and, in particular, for the

generalized finite element method, was proved by Babuška and Melenk [64]. The estimate says
that if the partition of unity POUN = {ϕα}

N
α=1 satisfies some mild requirements and the error

of the local approximations, uhα ∈ χα(ωα), α = 1, . . . , N , are bounded by

‖u − uhα‖E(ωα) < ε(α, u), α = 1, . . . , N, (11)

then the error of a partition of unity approximation, uh, given by (1) is bounded by

‖u − uh‖E(Ω) < C

(
N∑

α=1

ε2(α, u)

)1/2

(12)

where ‖.‖E denotes the energy norm and C is a constant. Details and proofs can be found in
[33, 42, 64].

3. A GENERALIZED FINITE ELEMENT METHOD WITH CLUSTERING

The definition of a partition of unity given in the previous section (Cf. (2) and (3)) imposes only
mild requirements on the partition of unity functions ϕα, α = 1, . . . , N . In particular, given
any partition of unity POUN = {ϕα}

N
α=1, another partition of unity, POUN ′ with N ′ < N , can

be created by adding elements ϕβ , β ∈ J , belonging to the original partition of unity POUN ,
where J is an index set. The resulting set of functions has less elements then the original one
if J 6= ∅. This idea of creating new partitions of unity from existing ones is the cornerstone of
the generalized finite element clustering technique presented here.
Unrefined or Clustered Partition of Unity:

Let POUN = {ϕα}
N
α=1 be a partition of unity composed of N functions. A clustered or unrefined

partition of unity is then defined by

POUN ′ = {ϕα =
∑

β∈J (α)

ϕβ : α = 1, . . . , N, α 6∈ Jclustered} (13)

Here, J (α) are the indices of the functions that are added to build the clustered function ϕα

and Jclustered are the indices of the functions in the original set that are not in the clustered
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CLUSTERED GENERALIZED FE 7

or unrefined set POUN ′ . The dimension of the set Jclustered is an indication of the degree of
clustering performed.

Let us consider some examples of clustered partitions of unity in the case of a finite element
partition of unity in one- and two-dimensional spaces. From now on, we will refer to “partition
of unity function associated with a node” simply by “node”. In the figures, solid circles indicate
nodes with a standard FE POU function; A solid square indicates a node with a clustered POU

function, ϕα =
∑

β∈J (α) ϕβ , dim{J (α)} > 1, as defined in (13); A circle indicates a node
whose function ϕα ∈ Jclustered .

Figure 3 shows a one-dimensional finite element partition of unity composed of seven
functions (N = 7). Figure 4 shows examples of clusterings performed on the original partition
of unity of Fig. 3. In the figure, shaded boxes indicate regions where a partition of unity
function is identically equal to one. In the case of the unrefined partition of unity shown in
Fig. 4 we have, using the notation introduced in (13),

N = 7, N ′ = 5, Jclustered = {3, 6}

J (2) = {2, 3}, J (5) = {5, 6}, J (α) = α : α = 1, 4, 7

If J (α) = α, the partition of unity function ϕα is not modified.

α = 2 α = 3 α = 6α = 5α = 4α = 1 α = 7

7ϕ4 ϕ5ϕ3

Ω

ϕ ϕ ϕ ϕ1 2 6

Figure 3. One-dimensional finite element partition of unity composed of seven functions (N = 7).

α = 4α = 1 α = 7

7

α = 2 α = 3 α = 6α = 5

ϕ4 ϕ5ϕ2

Ω

ϕ ϕ1

Figure 4. Unrefinement of the partition of unity shown in Fig. 3.

Figure 5 shows examples of clusterings or unrefinements performed on a uniform 3×3 mesh
of quadrilateral finite elements. In the figure, shaded boxes indicate regions where a partition
of unity function is identically equal to one. In this example, all partition of unity functions
of the upper-right element were clustered into a single function while three functions of the
lower-left element were clustered . For this example we have

N = 16, N ′ = 11, Jclustered = {2, 5, 12, 15, 16}

J (1) = {1, 2, 5}, J (11) = {11, 12, 15, 16}, J (α) = α : α 6∈ Jclustered and α 6= 1, 11
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α = 8

α = 14

α = 7

α = 10

α = 6

α = 11

α = 1

α = 12

α = 2 α = 3 α = 4

α = 5

α = 9

α = 13 α = 16α = 15

Figure 5. Clustering or unrefinement of a two dimensional finite element mesh. The clustering can
be done quite arbitrarily. In this example, all nodes (i.e., partition of unity functions) of the right-
upper element were clustered into a single node. As a result, the partition of unity function ϕ11(x) is

identically equal to one over the element.

3.1. GFEM Shape Functions with Clustered POU

A clustered or unrefined partition of unity can be used in the construction of generalized finite
element shape functions exactly as described in Section 2, Equation (9). Consider, for example,
the case of the clustered POU shown in Fig. 4. The GFEM shape functions are given by

φiα(x) = ϕα(x)Liα(x), α = {1, 2, 4, 5, 7}, i ∈ I(α)

where I(α) is an index set for the enrichment functions used at node xα. A single set of GFEM
shape functions is used with each clustered POU functions ϕ2 and ϕ5.

The convergence properties of the GFEM shape functions with clustered POU follows from
the a-priori error estimate discussed in Section 2.

The proposed unrefinement or clustering technique is conceptually simple, very generic, can

be used with any type of finite element and in any spatial dimension. One important property
of the technique is that there is no loss of information about the geometry of the domain as
the finite element mesh is clustered since all the elements of the original (not clustered) mesh
are used in the clustered mesh. The reduction in the number of degrees of freedom comes from
the clustering of partition of unity functions associated with finite element nodes in the mesh.

Besides being used to reduce the size of a computational model (Cf. Section 5), the clustering
technique described above can also be used, in a local sense, to handle non-matching finite
element meshes (Section 6), meshes with very distorted elements, and even elements with
negative Jacobians (Section 7). A clustered POU function is identically equal to one over
part of its support as illustrated in Figs. 4 and 5. This property can be used to eliminate
the well known linear dependence of generalized finite element shape functions [36, 87]. The
multigrid method is not directly applicable to the linear system when the stiffness matrix is
positive semi-definite [6]. Superconvergent points for the GFEM solution can be created when
the POU functions are identically equal to one over part of their support [7]. These last two
applications are not investigated in this paper. Additional discussion on the application of the
proposed clustered GFEM can be found in [38, 39].
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3.2. Polynomial Enrichment of Clustered Generalized FE Approximations

Generalized finite element shape functions, as defined in (9), are built from the product of a
partition of unity function, ϕα, and a local enrichment function, Liα. If the partition of unity
functions are linear finite element shape functions and the enrichment functions are of degree
p − 1, the resulting shape functions are of degree p [36].

Let us now consider the case of a clustered partition of unity as defined in (13). In this case,
a POU function ϕα may be constant over an edge or face of an element, an entire element, or
a combination of these entities. Therefore, the corresponding generalized FE shape functions
do not have a well defined polynomial order. If the enrichment functions, Liα, are of degree
p− 1, the generalized FE shape functions are of degree p over edges, faces, and elements with
partition of unity functions that are not clustered and of degree p− 1 elsewhere. This must be
taken into account when enriching a clustered discretization.

p p p

p p p

ppp

p p

p

p p

p

ppp

p

p−1

p

p−1p

p

p−1

p−1

p−1

(a) (b) (c)

p−1

p−1

p−1

p−1p−1

(3)

(7)

p−1

Figure 6. Nodal enrichment of the clustering shown in Fig. 5 using the proposed approaches.

We list three approaches to enrich a clustered generalized FE approximation to degree p.
The clustering shown in Fig. 5 is used to illustrate and contrast the approaches. They are
described with the aid of Fig. 6 which corresponds to the clustering illustrated in Fig. 5.

1. The first approach uses local enrichment functions, Liα, of degree (up to) p at every
node. This is the most conservative approach and leads to the largest number of degrees
of freedom among all strategies discussed here. Figure 6(a) illustrates the application of
this approach to the clustering shown in Fig. 5. This approach leads to an approximation
of degree p + 1 over elements that do not have any clustered node (elements (3) and (7)
of Fig. 6(a), for example).

2. In this approach, local enrichment functions of degree (up to) p are used at all the nodes
of elements that have at least one partition of unity function that has been clustered. This
guarantees that linear combinations of the shape functions of any element can reproduce
polynomials of degree (up to) p, as is the case of standard finite elements of degree p.
For this reason, we adopt this approach in all numerical experiments presented in this
paper. Figure 6(b) illustrates the application of this approach to the clustering shown in
Fig. 5.

3. The third approach uses local enrichment functions of degree (up to) p only at nodes
associated with partition of unity functions that has been clustered. This will lead to the
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10 C. A. DUARTE ET AL.

smallest number of degrees of freedom among all enrichment strategies proposed here.
Figure 6(c) illustrates this approach.

Each enrichment strategy leads, in general, to a different number of degrees of freedom
and to a different approximation space. Clustered nodes have more degrees of freedom than
unclustered ones in all strategies described above. However, the overall number of degrees of
freedom is still reduced depending on the size of the clusters.

4. IMPLEMENTATION OF THE CLUSTERED GFEM

In this section, we briefly discuss some implementation aspects of a clustered generalized
finite element method. We start by introducing some terminology. Hereafter, node means the
partition of unity function associated with a node. Cluster denotes a set of partition of unity
functions (nodes) that have been clustered (unrefined) into a single function (node) and a
clustered element is an element with all nodes clustered into a single node.

4.1. Stiffness and Mass Matrix Calculation

The proposed mesh unrefinement technique preserves the representation of the geometry of
the domain since all elements from the original (not clustered) mesh are used in the clustered
mesh. This however implies that the computational work to compute the global stiffness and
mass matrices are the same in the original and unrefined mesh. In fact, the cost to compute
the matrices in the unrefined mesh can be larger than in the original mesh if the same global
polynomial order is used. This is due to the fact that, as described in the previous section,
the polynomial order of the transition elements between clustered and non-clustered elements
is one degree higher than the polynomial order in the clustered elements. Therefore, these
transition elements have more degrees of freedom and also require more integration points
than the elements in the original mesh.

The cost of computing the matrices relative to the cost of solving the system of equations
decreases as the number of degrees of freedom increases. In addition, the matrix computations
can be fully parallelized almost trivially as in most finite element methods. The cost of matrix
computations can also be reduced if we take advantage of special features of GFEM shape
functions over clustered elements. Two approaches are discussed below.

4.1.1. Local Assembly of Clustered Elements All clustered elements belonging to a given
cluster have the same set of shape functions and, therefore, the same set of degrees of freedom.
This suggests that it is more efficient to locally assemble the stiffness/mass matrices of these
elements into a local matrix and only then assemble this single matrix into the global matrix.
This minimizes the number of direct accesses to the global matrices, which involves searching
operations in the case of, for example, sparse matrix storages.

4.1.2. Enrichment Functions that Satisfy the Underlying PDE The local enrichment
functions Liα used in the construction of the GFEM shape functions can be chosen with great
freedom. They can, for example, be functions that satisfy the partial differential equations
being solved. Let us consider the case of a GFEM shape function of an element τ in which all
partition of unity functions (nodes) have been clustered into a single function (node) ϕβ as in
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CLUSTERED GENERALIZED FE 11

the case of the right-upper element shown in Fig. 5. The resulting partition of unity function
over this clustered element τ is identically equal to one and a GFEM shape function for this
element is given by

φiβ(x) = ϕβ(x)Liβ(x) = Liβ(x), x ∈ clustered element, (14)

according to (9). Therefore, if Liα satisfies the partial differential equations being solved, φiβ

also does. This property can be used during the matrix calculations to transform domain
integrals into boundary integrals. That is, instead of integrating over all elements in a given
cluster, the integration can be done over the boundary of the cluster. For clusters composed
of a large number of elements this can lead to substantial savings in the computation of global
matrices. This technique however, requires the knowledge of local enrichment functions Liα

that satisfy the partial differential equations being solved. Similar techniques are used in the
implementation of hybrid finite elements like the Voronoi finite element method proposed by
Ghosh et al. [44, 45].

4.2. Clustering Techniques

The existing technology for finite element mesh unrefinement is limited to two-dimensional
meshes [29, 53]. In the case of three-dimensional meshes, the unrefinement can, in general,
only be done on meshes obtained by successive refinements [76]. That is, the unrefinement
algorithms cannot be used to obtain a mesh that is coarser than the initial mesh.

The unrefinement procedure described in the previous section, in contrast, can be used
with any type of finite element and in any spatial dimension. The clustering technique can be
applied to as many nodes in a finite element mesh as needed. In addition, any set of nodes can
be clustered into a single node.

The approximation properties of clustered GFE shape functions depend on the size and
shape of their support which, in turn, depend on the set of nodes used in the construction of
the clusters. Therefore, care must be taken in the selection of nodes used in each cluster. The
optimal selection of these nodes for complex unstructured finite element meshes is not trivial.

We denote by a clustering technique an algorithm for the selection of groups of nodes used
in clusters. We have investigated two techniques based on mesh partitioning algorithms for
distributed memory parallel finite element processing. The first one uses Hilbert-Peano space
filing curves [77] and the second one is based on the Metis algorithm [55] which is based on the
theory of graphs. In both cases, either nodes or elements can be send to the mesh partitioner to
create cluster data. The Metis-based technique produced usually more compact clusters, and
node-based partitioning produced somewhat better clusters, and it was also algorithmically
simpler, so this was selected as the default method in our code.

The performance of a clustering technique can be measured by (i) Convexity of the clusters.
Non-convex clusters tend to produce stiff solutions and therefore should be avoided; (ii)
Continuity of the clusters. The clustering algorithm should guarantee that each cluster is
contiguous and possibly simply connected.

Clusters created using either the Metis- or the space filing curve-based technique can be
further improved using the concept of Voronoi cells. Additional details on the implementation
of clustering techniques used in our code can be found in [39].

4.2.1. Special Cases Our current implementation of the clustered GFEM is quite conservative
and prohibits, with a few exceptions, clustering of nodes with boundary conditions or connected
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to a non-GFEM element (typically, a structural element like a shell or beam). This restriction
prevents unrefinement below a certain level even if only a few (and therefore large) clusters are
requested. This is mostly a limitation of our current implementation and not of the clustering
technique itself. We are currently investigating how to more efficiently handle clustering of
nodes with boundary conditions.

5. NUMERICAL EXAMPLES: GENERALIZED MESH UNREFINEMENT

In this section, examples are solved using the GFEM with clustering presented in previous
sections. The CPU times are reported in seconds for an Athlon 2400 Linux computer. Most of
examples presented are small and as such the time spend on the computation and assembly of
global matrices is large compared with the linear solver time. None of the techniques discussed
on Section 4.1 were used to optimize the matrix computation and assembly. Thus, CPU times
are relative only, and in particular should not be used to judge the effectiveness of the method
in terms of CPU time.

Increasing the size of a cluster of nodes or elements in a GFEM discretization reduces the
total number of degrees of freedom and has the same effect as using a coarser (unrefined)
standard finite element mesh. Therefore, the discretization error increases with the size of
the clusters. On the other hand, the CPU time and memory required for the solution of the
problem is reduced.

Given a finite element mesh, it is also possible to select the size of the clusters such that a
quick solution that provides a rough idea of the exact solution can be computed. This kind of
analysis is difficult to be done using the standard finite element method since it would entail
the construction of coarser meshes, a task that in most cases is not feasible to automate or is
very time consuming.

5.1. Patch Test

The patch test illustrated in Fig. 7 is solved in this section. This particular type of the patch
test corresponds to form C described in [92]. The domain is 10 units long in both x and y

directions with a constant thickness of 0.1 units. The mesh is also illustrated in Fig. 7. A single
layer of elements is used in the z direction. The elements have an aspect ratio of about 10:1.
Unity tractions are applied as illustrated in Fig. 7 and point Dirichlet boundary conditions are
prescribed in order to prevent rigid body motion. The material is isotropic and linearly elastic
with Young’s modulus E = 1.0 and Poisson’s ratio ν = 0.3.

The proposed clustered GFEM is used with polynomial order p = 1 and 20 clusters. Figure
8 illustrates the clusters built using a Metis-based algorithm as described in Section 4.2.
Stress components are computed at element nodes and are exact to within round-off error
(double precision was used which produced round-off error of less than 10−12 in the quantities
computed).

5.2. Cantilever Beam

The cantilever beam shown in Fig. 9 is solved in this section using the GFEM with and without
clustering. The mesh has elements with 1:20 aspect ratio. This example tests the robustness
of the GFEM to this kind of mesh and also the performance of the proposed GFEM with
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Figure 7. Top view of tetrahedral mesh used for patch test. Unity tractions are applied at the left and
right hand side faces of the domain.

Figure 8. Clustered GFEM discretization. The color of the elements indicate the number of nodes
clustered: orange = all nodes, red = three nodes, purple = two nodes, blue = none (standard GFEM).

The mesh has 600 elements and 20 clusters were requested.
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clustering.
The model without clustering has 24 nodes that are enriched with polynomial functions of

degree (up to) p = 2. The enrichment functions are from the same family illustrated in (6).
The resulting GFEM shape functions are of degree p = 3. The number of degrees of freedom
for this model is

Number of dofs = 24 ∗ 10 ∗ 3 = 720

since there are 10 polynomials of degree less or equal p = 2 in three-dimensions.
A single cluster is used for the GFEM model with clustering. The nodes with boundary

conditions (four at x = 0.0 and four at x = L), are not clustered, as discussed in Section 4.2.
These nodes are enriched with polynomial functions of degree (up to) p = 2. All other nodes
are clustered into a single node. This node is enriched with polynomial functions of degree (up
to) p = 4. The number of degrees of freedom for this model is

Number of dofs = 8 ∗ 10 ∗ 3 + 1 ∗ 35 ∗ 3 = 345

since there are 35 polynomials of degree less or equal p = 4 in three-dimensions. This is less
than half the number of degrees of freedom of the GFEM model without clustering.

The material parameters, mesh and domain dimensions are indicated in Fig. 9. Table I
summarizes the results. The stress component σxx is reported at the center of top surface
with coordinates x = (12.5, 0.5, 1). The results are compared with those of the Euler-Bernoulli
beam theory. It can be observed that the GFEM method, with or without clustering, provides
very accurate results.

Figure 9. Simple cantilever beam of length L = 25 and square cross-section of dimensions 1 × 1. The
tetrahedral mesh has elements with 1:20 aspect ratio.

Table I. Results for the analysis of the cantilever beam shown in Fig. 9.

Method: No clustering One cluster Exact
# eqns. 720 345 ( beam theory)
Max. displ. 0.624 0.618 0.625
Strain energy 3.120 3.090 3.125
σxx at (12.5,0.5,1) 745 735 750
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5.3. Bulky Three-Dimensional Model

The three-dimensional model shown in Fig. 10 is used in this section to investigate the effects
of mesh clustering. The material is assumed to be isotropic and linear elastic with Young’s
modulus E = 210, 000 and Poisson’s ratio ν = 0.3. Tetrahedral meshes with up to 820, 142
elements are used. The component is fixed at both vertical openings and a unity pressure is
applied on faces of elements at the upper opening, as illustrated in Fig. 10.

Figure 11 shows a clustered GFEM discretization. In this example, 120 clusters were
requested and a Metis-based algorithm, as discussed in Section 4.2, was used on a mesh with
15, 527 elements. The color of the elements indicate the number of nodes clustered in the
element: orange = all nodes, red = three nodes, purple = two nodes, blue = none. Our current
clustering algorithm, as discussed in Section 4.2.1, does not cluster nodes with boundary
conditions. This explains the large number of blue elements around the vertical openings in
Fig. 11.

The bracket has singularities along the non-convex edges. Clustering nodes in the
neighborhood of these edges substantially increases the discretization error and should
therefore be avoided. This is not taken into account by our clustering algorithm. Figure 11
shows cluster of nodes across non-convex edges of the bracket.

Large models could not be solved on a 32-bit computer without clustering. Also, a large
number of clusters, especially for p = 2, required more memory than available.

Figure 10. Bulky three-dimensional model used to investigate the proposed unrefinement algorithm.
The component is fixed at both vertical openings and a unity pressure is applied on faces of elements

at the upper opening as indicated in the figure.

Tables II and III summarize the results for meshes with 92, 149 and 820, 142 elements,
respectively. The number of equations and corresponding CPU time, memory usage and
computed strain energy are listed for different levels of mesh clustering and polynomial order
equal to p = 1 and p = 2. Reducing the number of clusters leads to a larger number of nodes in
each cluster and therefore to fewer equations in the model and larger discretization errors. The
computed strain energy decreases quite substantially with clustering of nodes. The clustering
of nodes in the neighborhood of the non-convex edges contributes to this behavior, as discussed
above.
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Figure 11. Clustered GFEM discretization built using a Metis-based algorithm. The color of the
elements indicate the number of nodes clustered: orange = all nodes, red = three nodes, purple = two
nodes, blue = none (standard GFEM). The mesh has 15, 527 elements and 120 clusters were requested.

The results clearly show that it is possible to reduce the CPU time and memory requirements
using the proposed clustering technique. The tables show that clustering can be used to solve
problems that would otherwise be beyond the available computational resources. On the other
hand, the solution computed on models with large clusters is of lesser quality, as expected.

It can be observed from Table III, that models with 2000 clusters have substantially fewer
degrees of freedom than those without clustering. Requesting fewer clusters, however, do not
further reduce the number of equations substantially. This happens because, in our current
implementation, nodes with applied boundary conditions are never clustered (Cf. Section
4.2.1). Therefore, this creates a lower bound on the number of degrees of freedom in a model.

Table II. Results for the analysis of the three-dimensional model shown in Fig. 10. Mesh with 92, 149
elements.

# of clusters # Eqns CPU time RAM(MB) Strain Energy
p = 1

No clustering 61,041 60.05 70 1.289970
200 21,072 28.76 116 0.881289
20 18,888 23.91 99 0.466014

p = 2
No clustering 244,164 2,018.01 549 1.351846

200 39,738 109.32 169 1.202554
20 34,296 82.78 137 0.910704
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Table III. Analysis on a mesh with 820, 142 elements. Empty entries correspond to models that could
not be solved on a 32-bit computer.

# of clusters # Eqns CPU time RAM(MB) Strain Energy
p = 1

No clustering 505,209 – – –
2000 129,936 468.53 387 1.219049
200 108,300 350.08 334 0.806180
20 106,116 332.57 328 0.397022

p = 2
No clustering 2,020,836 – – –

2000 250,608 – – –
200 196,518 927.34 843 1.258240

6. NON-MATCHING MESHES

In this section, we describe how the clustering technique presented in Section 3 can be used to
handle finite element meshes that have localized mesh inconsistencies. This kind of mesh can
arise in several applications. It is not uncommon, for example, to have complex mechanical
parts divided in subparts that are geometrically simpler and meshed independently of each
other. The problem then is how to “tie” the subparts together such that the behavior of the
assembly can be accurately represented.

Several methods to handle non-conforming or non-matching finite element meshes have been
proposed in the literature. Among the widely used ones are the mortar element or Lagrange
Multiplier method [19, 43, 74, 90] and rigid elements or point collocation in solid mechanics
[12, 91]. Lagrange Multiplier methods [5] lead to a saddle point problem and the Babuška-
Brezzi condition [20, 67] must be satisfied for stability. This is not trivial to accomplish
especially when the interfaces between the subparts have corners or other types of singularities
or the interfaces are between different materials. In addition, this approach leads to non-
positive definite matrices.

In the rigid-element or point-collocation approach, the continuity of the solution between
subparts is imposed only at a discrete set of points. Therefore, the behavior of the whole
assembly depends on the number and configuration of rigid elements/collocation points
used. Moreover, the solution in the neighborhood of the interfaces exhibits artificial stress
singularities that do not disappear with mesh refinement.

Another approach to connected dissimilar finite element meshes is to modify the formulation
of the elements at the non-matching interface such that first-order patch tests are passed
[30, 31]. This method is recommended only for the case of linear elements since it leads to
sub-optimal convergence rates in the case of higher order elements. Mixed finite elements
[2, 3], discontinuous Galerkin finite element methods [21], Nitsche’s method [13, 52], interface
elements based on moving least-square approximations [25, 26], among others, have also been
used to handle the problem of non-matching meshes.

Huang and Xu [54] and Bacuda and Xu [11] have presented the theory of a finite element
method for non-matching overlapping grids based on the concept of a partition of unity. The
non-overlapping case of their method is related to the approach described below.
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6.1. Local Clustering for Non-Matching Interfaces

The technique presented in this section is basically a local application of the shape function
clustering technique presented in Section 3. As such, it can be used with standard variational
principles while rendering a solution that is continuous along the entire interface between
inconsistent meshes.

The technique is better described with the aid of a few examples. Let us consider as a first
example the mesh shown in Fig. 12(a). This mesh can not be used, as it is, in the classical
finite element method since the global shape functions associated with nodes 3, 4 and 5 are
discontinuous along the boundary between elements τ3 and τ1, τ2. These global shape functions
are given by

ϕ3 = N τ1

3 ∪ Nτ3

3 , ϕ4 = N τ1

4 ∪ Nτ2

4 , ϕ5 = N τ2

5 ∪ Nτ3

5 (15)

where N τi

α represents the bilinear shape function of element τi associated with global node α.

τ1 τ2

τ3

6 7

3 4 5

8

1 2

(a)

τ1 τ2

τ3

6 7 8

1 2

t 4 53

(b)

Figure 12. (a) Non-matching mesh between element τ3 and elements τ1 and τ2. (b) Representation of
the clustered partition of unity used to handle the non-matching mesh of Fig. 12(a). The partition of
unity function ϕ3(x) is identically equal to one along the non-matching interface and it is therefore

continuous.

These discontinuous global functions can be clustered into a single function using the
definition of a clustered POU given in (13) with

N ′ = 6, Jclustered = {4, 5}

J (3) = {3, 4, 5}, J (α) = α : α = 1, 2, 6, 7, 8

This gives
ϕ3

.
= ϕ3 + ϕ4 + ϕ5 (16)

A representation of the clustered partition of unity is shown in Fig. 12(b). Let us now show
that this partition of unity is continuous. Let t ∈ τ̄1∩ τ̄3, as shown in Fig. 12(b). If this function
is computed from element τ1 we have

ϕ3|τ1
(t) = N τ1

3 (t) + N τ1

4 (t) = 1 (17)
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since the only non-zero shape functions of element τ1 along the edge τ̄1 ∩ τ̄3 are N τ1

3 and
Nτ1

4 and the shape functions of a Lagrangian finite element constitute a partition of unity.
Similarly, if function ϕ3 is computed from element τ3 we have

ϕ3|τ3
(t) = N τ3

3 (t) + N τ3

5 (t) = 1 (18)

Therefore ϕ3|τ1
(t) = ϕ3|τ3

(t) and the function ϕ3 is continuous at t. The same argument can
be used at any other point along the interface between element τ3 and τ1, τ2.

As a second example, let us consider the finite element mesh shown in Fig. 13(a). The global
shape functions associated with nodes 1−7 are discontinuous. These functions can be clustered
into a single function using again the definition of a clustered POU given in (13) with

Jclustered = {2, . . . , 7}

J (1) = {1, . . . , 7}, J (α) = α : α 6∈ Jclustered and α 6= 1

This gives

ϕ1
.
=

7∑

β=1

ϕβ (19)

which can be shown to be continuous using the same arguments as in the previous example.
A representation of the resulting clustered partition of unity is shown in Fig. 13(b). This
continuous partition of unity can then be used to build GFEM shape functions as described
in Section 3.1.

Based on the examples above, an algorithm to handle a non-matching mesh is proposed
below.

Let Γm ⊂ Ω be a non-matching interface. This is a curve in two-dimensional domains and a
surface in the case of three-dimensional domains. We assume that there are no gaps between
the non-matching meshes along Γm. A method to handle non-matching grids with gaps between
meshes can be found in [43]. Let

Jm = {α : ϕα(x) 6= 0, x ∈ Γm}

denote the index set of partition of unity functions that are discontinuous due to the non-
matching interface Γm. Let β be an arbitrary node with index in Jm (β = 1 in the example
of Fig. 13). A continuous, clustered, partition of unity can then be built using (13) with

Jclustered = Jm − β

J (β) = Jm

J (α) = α : α 6∈ Jclustered and α 6= β

6.2. Techniques to Handle Large Non-Matching Interfaces

The technique described above is quite general and can be used with any type of element
that can be clustered using the method presented in Section 3. One limitation, however, is
the size of the support of the GFEM shape functions along a non-matching interface Γm. The
support of a GFEM shape function is given by the intersection of the supports of a POU and
an enrichment function (Cf. (9)).

The support of a clustered partition of unity function at a non-matching interface is equal
to the union of the support of all originally discontinuous functions along the interface. In
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1 2

3

4

5

6 7

(a) Non-matching mesh.

1 2

3

4

5

6 7

(b) Representation of the clustered par-
tition of unity used to handle the non-
matching mesh.

Figure 13. Non-matching mesh composed of quadrilateral and triangular elements and corresponding
clustered partition of unity. The dashed lines in Fig. (b) indicate the boundary of the support of the

clustered function ϕ1.

addition, only one set of GFEM shape functions is used with each clustered POU function, as
discussed in Section 3.1. In case of the clustered POU represented in Fig. 13(b), for example,
the only POU function along the non-matching interface is ϕ1. The support of ϕ1 is equal
to the union of all elements sharing nodes 1 − 7. This support is represented by the dashed
lines in the figure. If polynomial enrichments are used at node x1, the support of the GFEM
shape functions will be equal to that of ϕ1 since polynomials do not have compact support.
The approximation at a non-matching interface is analogous to a single finite element with
size equal to the union of all elements with nodes on the interface. This may sometimes lead
to problems.

The size of the support of a clustered partition of unity function can be minimized by
clustering only nodes that are strictly necessary to make the approximation continuous across a
non-matching interface. These are the nodes with index in the set Im defined above. However,
this does not guarantee that the supports of the shape functions at the interface are small
enough to give acceptable results. Reducing the size of the non-matching interface will, of
course, reduce the supports of the corresponding shape functions at the interface but this is
not always feasible. If, however, the solution is smooth along a non-matching interface then the
quality of the GFEM approximation can be controlled through p-enrichments. This approach
is used in the example presented in Section 6.3.

Alternatively, the size of the support of GFEM shape functions along a non-matching
interface, and their approximation properties, can be controlled by using enrichment functions
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with compact support. These enrichment functions can be, for example, hp cloud shape
functions [41, 42] which are, themselves, partition of unity shape functions with compact
support and arbitrary degree of smoothness.

6.3. Numerical Examples: Non-Matching Meshes

6.3.1. Plate with a Hole A three-dimensional model of a plate with a hole is solved in this
section. The finite element model includes both hexahedral and very long tetrahedral elements
and has a large non-matching interface. Figure 14 shows a top view of the mesh. The technique
described in Section 6.1 is used to handle the non-matching mesh. The material is assumed to
be isotropic and linearly elastic with Young’s modulus E = 3000.0 and Poisson’s ratio ν = 0.3.
Symmetry boundary conditions and a unity traction are applied on the right and left faces of
the domain, respectively.

The non-matching interface is quite large but since the solution of this problem is smooth
along the non-matching interface, p enrichment can approximate the solution well [86]. The
hexahedral elements are enriched to p = 2 in the in-plane directions and to p = 1 in the
out-of-plane direction while the tetrahedrals are enriched to p = 4 in the in-plane directions
and to p = 1 in out-of-plane direction. Orthotropic enrichment of GFEM discretizations is
described in [34]. The number of equations for this discretization is equal to 49, 800.

The computed displacements and stresses are shown in Figs. 15 and 16, respectively. They
exhibit very good symmetry with respect to the vertical and horizontal planes of symmetry.

The analytic solution for an infinite two-dimensional strip in plane stress gives σxx = 3.25 at
the top and bottom of the hole. The GFEM results compare quite favorably with this solution:
σxx = 3.38 at the top of the hole and σxx = 3.14 at the bottom of the hole. These are raw
stress values. No averaging or smoothing was done.

Figure 14. Top view of non-matching mesh and boundary conditions for a plate with a hole. A unity
traction and symmetry boundary conditions are applied on the left and right faces of the domain,

respectively.
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Figure 15. Contour plot of the horizontal component of the displacement vector.

Figure 16. Computed stress component σxx.

7. ELEMENTS OF UNACCEPTABLE QUALITY

It is well known by finite element practitioners and from a-priori error estimates that the
quality of a finite element approximation to the solution of boundary or initial value problems
depends on the aspect ratio of the elements in the mesh. The aspect ratio of an element is
defined as the ratio between the diameter of the smallest circle (or sphere) that circumscribes
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the element and the diameter of the largest circle (or sphere) that can be inscribed in the
element [67, 70].

Elements of unacceptable aspect ratio can appear in a finite element mesh for several
reasons. During the mesh generation, for example, the transition zones between small and
large elements, in general, contain elements with large aspect ratios. This can only be avoided,
in most cases, by substantially increasing the number of elements in the mesh. Even meshes
initially containing only elements of good quality can become unacceptable in the course
of a simulation involving nodal movement. This happens, for example, during the shape
optimization of mechanical parts (cf. Figs. 17(a) and 17(b)) or in the analysis of problems
involving finite deformations using a Lagrangian formulation. A common approach to handle
this situation is to remesh the entire domain whenever elements of unacceptable quality appear.
This cannot always be done without the intervention of the user and in general leads to a loss
of accuracy caused by mapping the solution between meshes.

(a) The mesh seems correct because element
edges are usually drawn as straight lines.

(b) Zoom on the area with
distorted elements. Some edges of
the elements near the hole cross
over their neighbors.

Figure 17. Elements distorted due to translation of a hole during the shape optimization of a
mechanical part.

In this section, we describe how elements of unacceptable quality for the finite element
method can be handled in the GFEM using a local version of the element clustering technique
proposed in Section 3. We concentrate on the case of elements with a Jacobian equal or close
to zero at some point(s) in the element. This causes the transformation from the reference or
master coordinate system to the physical or global coordinate system to be non-invertible. This
inverse mapping is used in most finite element implementations to compute derivatives of the
shape functions of the element in the physical directions. Elements with this type of problem
arise quite often during automatic mesh generation around curved boundaries as illustrated
in Fig. 18. Most mesh generators for elements with quadratic geometry, first generate a mesh
with straight edges or faces and then move the center nodes on the edges or faces to the actual
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Figure 18. Element of unacceptable quality near a curved boundary. The mapping from the reference
element to the shaded element cannot be inverted. If the element is clustered, however, the inverse

mapping is not needed.

geometry. This last step is very prone to deteriorating the quality of elements. An example of a
mesh generated using this approach is shown on Fig. 18. The edge of the shaded element that is
on the curved boundary was moved from the dashed line to the position shown. The resulting
element has a negative or zero Jacobian at several points and is therefore unacceptable.

Let us consider more closely how the shape functions and their derivatives are computed
in an element τ , in which all partition of unity functions (nodes) have been clustered into a
single function (node) ϕβ as in the case of the shaded elements shown in Figs. 18 and 5. Such
an element is said to be clustered. The resulting partition of unity function over element τ is
identically equal to one and a GFEM shape function φiβ for this element is given by

φiβ(x) = ϕβ(x)Liβ(x) = Liβ(x) x ∈ clustered element (20)

according to (9). The derivatives of these functions with respect to the global directions
(x1, x2, x3) are therefore given by

∂φiβ

∂xa
=

∂Liβ

∂xa
a = 1, 2, 3 (21)

The computation of the derivatives of enrichment functions Liβ does not use the inverse of
the Jacobian matrix since these functions are independent of the partition of unity. Therefore,
the calculation of the GFEM shape functions and their derivatives over clustered elements is
not affected by the shape of the elements. This property of the GFEM shape functions over
clustered elements suggests the following strategy to handle elements of unacceptable quality:

• Check the element Jacobians at sampling points and cluster those with near zero or
negative values. Here, the sampling points can be, for example, the vertices of elements,
integration points, etc.

• Check the quality of elements in a given mesh by computing the aspect ratio and/or any
other measure of element quality and cluster elements of unacceptable quality.

• Enrich the approximation to the desired order.

The approach to handle elements of unacceptable quality can be used with any type of finite
element in two- and three-dimensional meshes. In addition, it does not require any modification
of the finite element mesh.
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The numerical integration over an element with negative volume (“flipped-out”) or over
portions of an element which has a negative Jacobian, is equivalent to the subtraction of
the element contribution. When there are two overlapping elements, the overlapped area is
integrated three times–once with a negative sign and twice with positive sign. Therefore the
final result is correct. This also works correctly for elements which are “flipped-out” and extend
outside of the actual domain, which often happens on curved boundaries as illustrated in Fig.
18. In this case, the volume outside of the actual domain is covered by two elements and
their contributions cancel out. In the case of standard finite elements this approach works for
volume computation (which is equivalent to the integration of a constant function). However,
it does not work in general for the integration of the stiffness or mass matrices, for example.
In standard finite elements, each element integrates its own shape functions and therefore the
contributions do not cancel out. In the case of a clustered GFEM subdomain, the same shape
functions are defined over the entire cluster and the finite elements inside of the cluster serve
only as numerical integration domains.

7.1. Numerical Examples: Elements of Unacceptable Quality

The examples in this section illustrate the proposed technique to handle elements of
unacceptable quality. The meshing errors in the examples below are not detected by some
commercial finite element codes while some others do and either refuse to use the mesh or
require the use of commands that force the computation of solution, while warning that
results may be incorrect. Our GFEM code does not require such warning, because, with proper
clustering, as described in the previous section, the formulation is mathematically correct, even
when elements with negative Jacobian are present.

7.1.1. Hoop with Negative Jacobian Elements Figure 19(a) shows the geometry and boundary
conditions for the model of a quarter of a hoop. The reference solution for this problem was
obtained using the hp-adaptive finite element code PHLEXsolid [75] and a hexahedral mesh.
The GFEM results presented below are normalized with respect to this reference solution. The
problem was solved with the GFEM using the mesh of curved tetrahedral elements shown in
Fig. 19(a). The elements on the left side of the figure are longer than those on the right side,
and as a result of the curved edges, four elements (shown in orange) have a negative Jacobian
at some vertices. This tetrahedral model was solved using the GFEM with clustering of the
elements with negative Jacobian as described in Section 7. With second order approximation,
the normalized maximum von Mises stress along the left and right planes of symmetry were
0.87 and 0.96, respectively. By using third order approximation, the normalized maximum
von Mises stress was 0.98 and 0.99, respectively. Figure 19(b) shows the Von Mises stress
distribution on the clustered mesh and p = 3.

7.1.2. Elements with Zero Jacobian As a second example, we consider the wheel rim model
shown in Fig. 20. The mesh contains elements on the surface that has exactly zero volume.
Such elements are often generated by automatic mesh generators on highly curved domains.
In this example, five such elements are present. Most finite element codes require manual
“pruning” of these elements. The problem was solved with the GFEM using the mesh of Fig.
20. The computed maximum von Mises stress was within 6% of the maximum value computed
on a mesh with all zero volume elements removed. The computed von Mises stress distribution
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(a) (b)

Figure 19. (a) Tetrahedral element model with boundary conditions. The curved elements with
negative Jacobian, showed in orange, are clustered. (b) Von Mises stress distribution on clustered

mesh and p = 3.

in the region with maximum stress is shown in Fig. 21. The mesh with zero-volume elements
shown in Fig. 20 was used in the computations.

Figure 20. Wheel rim model: Zero Jacobian elements. Five clusters with faulty elements are shown.
The color of the elements indicate the number of nodes clustered (orange = all nodes, red = three

nodes, purple = two nodes)

8. SUMMARY AND CONCLUSIONS

The GFEM presented in this paper addresses difficulties with meshing complex three-
dimensional geometries by reducing the quality requirements for the initial mesh. The
combination of the proposed GFEM with a-posteriori error estimation and hp adaptivity
[1, 10, 86] may allow the creation of fully automatic analysis packages, where automatic
mesh generators are a hidden part of the process, and the computed solution is of guaranteed
accuracy even if the automatically generated mesh is not ideal.

The proposed technique may have a great impact in computer engineering and scientific
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Figure 21. Von Mises stress distribution computed on the mesh with zero-volume elements shown in
Fig. 20.

simulations by providing the following benefits:

• A virtually 100 percent success rate in automatic discretization of complex CAD

geometries without user intervention. Given the relaxed requirements for an acceptable
GFEM mesh (high element distortions, negative Jacobians, collapsed elements, element
mis-matches), today’s automated tetrahedral mesh generators can practically guarantee
successful volume meshing of geometries that are correctly defined, i.e., without gaps,
overlaps, etc. The automation of the meshing generation process will make it feasible to
investigate a much broader range of alternative designs, thus leading to better designs
in a shorter period of time;

• Reduction of mesh size through “clustering”. This guarantees, within reasonable bounds,

the solution of large models using only the computational resources available to the

analyst. Our current implementation, however, prevents unrefinement of a model below
a certain level, as discussed in Section 4.2.1. The CPU times and memory requirements
presented in Section 5, show that for large meshes it is possible to reduce problem size
and CPU usage in exchange for the accuracy of the solution. Thus eventually it should be
possible to implement a user controllable “slider”, to select how much accuracy or how
much computer resources should be used to solve a given problem. The automatic model
reduction capability may also be used to perform convergence analysis using several levels
of mesh resolution with little or no user intervention;

• The capability of mesh unrefinement considerably expands the scope of mesh adaptivity.
With today’s technology, a mesh can not be unrefined (coarsened) past the initial mesh
even if it is too fine for the requested accuracy. In addition, with the proposed mesh
reduction, the representation of the geometry of the domain is preserved, i.e., there is
no loss in the approximation of the geometry of the domain. This is in contrast with
traditional mesh coarsening and it is unlikely that such a feature will be matched in the
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near feature using existing meshing technology.

In addition, the method presented herein retains all of the attractive features of classical
finite element methods. In particular:

1. The shape functions are polynomials and the integration of the matrices is done with the
aid of the so-called master element exactly as in the classical finite element. This is in
contrast with most meshless methods in which the numerical integration of the matrices
is a major issue;

2. The computational performance is essentially the same as a finite element method when
the same mesh is used. This is mainly due to the previous property;

3. It can be applied to solve the same classes of problems solvable by the finite element
method (linear and non-linear, static, time-dependent, eigenvalue problems, etc.) In
addition, a GFEM discretization can be mixed with classical finite elements if such a
need arises.

To our knowledge, there is no technique available in the literature that can deliver all the
features above.

As topics for future work we can mention:

• Improvement of clustering algorithms: Clustering techniques based on mesh partitioning
algorithms for distributed memory parallel finite element processing are quite generic
and computationally efficient. However, further improvements are needed. In particular,
we plan to further investigate the following aspects:

– Control of convexity and continuity of the clusters (Section 4.2);
– Improved handling of nodes with prescribed boundary conditions. Our currently

implementation prohibits, with a few exceptions, clustering of nodes with boundary
conditions. This constraint may greatly limit mesh clustering capabilities and the
performance of the method.

• Optimization of stiffness and mass matrices computation: In our current implementation,
the computational work to compute the global stiffness and mass matrices does not
reduce with mesh unrefinement and may even increase in some cases. Possible solutions
to this limitation are discussed in Section 4.1.

• Large non-matching interfaces: The presented algorithm used to handle non-matching
meshes is not effective, in general, for large non-matching interfaces. Section 6.2 presents
some possible solutions.
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