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Abstract

This paper is aimed at presenting a partition of unity method for the simulation of three-dimensional dynamic crack propagation.

The method is a variation of the partition of unity ®nite element method and hp-cloud method. In the context of crack simulation, this

method allows for modeling of arbitrary dynamic crack propagation without any remeshing of the domain. In the proposed method,

the approximation spaces are constructed using a partition of unity (PU) and local enrichment functions. The PU is provided by a

combination of Shepard and ®nite element partitions of unity. This combination of PUs allows the inclusion of arbitrary crack ge-

ometry in a model without any modi®cation of the initial discretization. It also avoids the problems associated with the integration of

moving least squares or conventional Shepard partitions of unity used in several meshless methods. The local enrichment functions can

be polynomials or customized functions. These functions can ef®ciently approximate the singular ®elds around crack fronts. The crack

propagation is modeled by modifying the partition of unity along the crack surface and does not require continuous remeshings or

mappings of solutions between consecutive meshes as the crack propagates. In contrast with the boundary element method, the

proposed method can be applied to any class of problems solvable by the classical ®nite element method. In addition, the proposed

method can be implemented into most ®nite element data bases. Several numerical examples demonstrating the main features and

computational ef®ciency of the proposed method for dynamic crack propagation are presented. Ó 2001 Elsevier Science B.V. All

rights reserved.

1. Introduction

This paper is aimed at presenting a partition of unity (PU) method tailored for three-dimensional crack
simulations. The importance and di�culty of such simulations is re¯ected by the number of approaches
that have been proposed over the past decades. Most of the techniques proposed so far are restricted to
stationary cracks or to cracks propagating in two-dimensional manifolds. A survey of methods available
can be found in [21,32]. In addition, many of the techniques aimed at modeling three-dimensional crack
propagation are restricted to planar crack con®gurations [9] or require considerable intervention of the
analyst during the simulation process. Among the most versatile and promising techniques for simulation
of arbitrary crack propagation in three dimensions are: (i) The boundary element method (BEM) is a
very appealing approach to solve this class of problems because it leads to a reduced dimensionality.
Examples of BEMs for three-dimensional crack propagation can be found in [18,19,24,45]. The main
drawbacks of this approach are those inherent to the BEM. Namely, they are di�cult to be extended to
nonlinear problems and can be quite computationally expensive; (ii) ®nite element methods with local
remeshing around the crack front [8,28,41], while versatile, are quite complex and cannot be implemented
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in most existing ®nite element data structures. The continuous remeshing and projections between
successive meshes are also a drawback of this approach; (iii) the element free Galerkin method
[4±6,20,21,37], the hp-cloud method [13±15,33,35], the reproducing kernel particle method [25] are
examples of the so-called meshless methods. Krysl and Belytschko [20,21] have recently shown
that the high ¯exibility of these methods can be exploited to model arbitrary crack propagation
in three-dimensional spaces. Nonetheless the high ¯exibility of these methods comes at a
substantial computational cost. Moreover, they cannot be implemented into existing ®nite element data
structures.

This paper presents a PU method aimed at modeling crack propagation in a three-dimensional space.
This method uses the same PU framework used in hp-cloud [13,14], partition of unity ®nite element
(PUFEM) [2,29] and generalized ®nite element method (GFEM) [12,39]. The key difference between
these methods and the method presented here is in the choice of the partition of unity. Here, the PU is
provided by a combination of Shepard [22,38] and ®nite element partitions of unity. This PU allows the
inclusion of arbitrary crack geometry in a model without any modi®cation of the initial discretization.
We call this partition of unity a ®nite element-Shepard partition of unity. This choice of PU also avoids
the problem of integration associated with the use of moving least squares or conventional Shepard
partitions of unity which are used in several meshless methods [6,26,31]. Although the PU used in the
method proposed in this paper differs from that used in the GFEM presented in [12,39], we believe that it
is appropriate to refer to method developed here as GFEM. This is justi®ed by the fundamental simi-
larities of the two methods and because the method presented here can also be interpreted as a variation
or generalization of the classical ®nite element method. Therefore we refer to the PU method proposed
here as GFEM.

This paper is organized as follows. In Section 2, the formulation of generalized ®nite element approxi-
mations is presented. This includes the de®nition of the FE-Shepard PU used over cracked elements, the
de®nition of generalized ®nite element (GFE) shape functions and modeling of the crack front using
customized functions. Sections 3 and 4 describe the crack mechanics and physics used in the study. In
Section 5, the computational engine used to represent the crack surface and the boundary of the domain
and their interaction is brie¯y described. Several numerical examples are presented in Section 6. Finally, in
Section 7, major conclusions of this study are given.

2. Formulation of generalized ®nite element approximations for 3D crack modeling

We begin this section by reviewing the concept of PU.
Let X be an open domain in Rn; n � 1; 2; 3 and TN an open covering of X consisting of N supports xa

(often called clouds) with centers at xa; a � 1; . . . ;N , i.e.,

TN � fxagN
a�1;

�X �
[N
a�1

xa;

where the over bar indicates closure of a set.
The basic building blocks of any PU approximation are a set of functions ua de®ned on the supports

xa; a � 1; . . . ;N , and having the following property:

ua 2 Cs
0�xa�; s P 0; 16 a6N ;X

a

ua�x� � 1 8x 2 X:

The ®rst property implies that the functions ua; a � 1; . . . ;N , are non-zero only over the supports
xa; a � 1; . . . ;N . The functions ua are called a PU subordinate to the open covering TN . Examples of
partitions of unity are Lagrangian ®nite elements, moving least squares and Shepard functions [14,22]. In
the current work, two types of PUs are utilized: Finite element PU and a version modi®ed for cracked
elements.
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2.1. Finite element partition of unity

The case of a ®nite element partition of unity (FEPU) over non-cracked elements is brie¯y discussed in
this section. The case of elements intersecting the crack surface is discussed in Sections 2.3 and 2.7.

In the case of a FEPU, the support (cloud) xc is simply the union of the ®nite elements sharing a vertex
node xc (see, for example, [29,34] and Fig. 1). The PU function uc is equal to the usual global ®nite element
shape function Nc associated with a vertex node xc.

Let s be a ®nite element with nodes xb; b 2 Is, where Is is an index set and let x � �x; y; z� 2 �s. In this
work, we restrict ourselves to the case of linear Lagrangian FEPU and perform p-enrichments using the
technique presented in Section 2.4. Let Nb be linear shape functions associated with nodes xb; b 2 Is.
Then, from the de®nition of Nb, there exist constants ax

b; ay
b; az

b; b 2 Is, such that 8 x 2 �s,X
b2Is

Nb�x� � 1; �1�X
b2Is

ax
bNb�x� � x; �2�X

b2Is

ay
bNb�x� � y; �3�X

b2Is

az
bNb�x� � z: �4�

These basic properties of the ®nite element partition of unity are used in subsequent sections.

2.2. Shepard partition of unity

The construction of a PU using the so-called Shepard formula [23,38] is reviewed in this section.
Let Wa : Rn ! R denote a weighting function with compact support xa that belongs to the space Cs

0�xa�;
s P 0. Suppose that such weighting function is built at every cloud xa; a � 1; . . . ;N . Then the PU functions
ua associated with the clouds xa, a � 1; . . . ;N , is de®ned by

Fig. 1. Clouds xa, xb and xc for a ®nite element mesh with a crack. Polynomials of di�ering degree pa, pb and pc can be associated with

nodes at xa, xb and xc so as to produce non-uniform p approximations.
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ua�x� �
Wa�x�P
b Wb�x� ; b 2 fc jWc�x� 6� 0g �5�

which are known as Shepard functions [23,38].
Consider now the case in which the weighting functions Wa are taken as the global linear ®nite element

shape functions Na associated with node xa; a � 1; . . . ;N . Let s be a ®nite element with nodes xb; b 2 Is

where Is is an index set. The only non-zero PU functions at x 2 �s are given by

ub�x� �
Nb�x�P

c2Is
Nc�x� �

Nb�x�
1
� Nb�x�; b 2 Is

since the ®nite element shape functions form a PU. Therefore, it is not necessary to use the Shepard formula
to build the PU when the weighting functions are taken as global ®nite element shape functions. However,
as demonstrated next, the above formula is the key to build a PU when the ®nite element s is severed by a
crack.

2.3. Construction of a discontinuous partition of unity

In this section, a technique to modify a ®nite element partition of unity over elements cut by a crack
surface is described. The PU is modi®ed such that a discontinuity in the displacement ®eld across the crack
surface is created. The PU is modi®ed only for elements cut by the crack. Elsewhere, a ®nite element
partition of unity, as described in Section 2.1, is used. The technique allows for elements to be arbitrarily
cut by the crack surface without any mesh modi®cation. Over cracked elements, the PU is built using the
Shepard formula (5) and ®nite element shape functions as weighting functions in combination with the
visibility criteria [5,6]. This PU is denoted by FE-Shepard PU. The technique is ®rst presented in a general
setting followed by several illustrative examples in a two-dimensional manifold.

Let s be a ®nite element with nodes xb; b 2 Is, where Is is an index set. Let Nb;b 2 Is, denote a linear
®nite element shape functions for element s. In the visibility criteria, the crack surface is considered opaque.
At a given point x 2 s, a weighting function Na used in (5) is taken as non-zero if and only if the segment
�xÿ xa� connecting x and xa does not intersect the crack surface. This criteria was originally introduced by
Belytschko et al. [5,6] to model cracks in the element free Galerkin method and has since been used in
several other meshless methods.

Let Ivis
s �x� � Is denote the index set for all weighting functions that are non-zero at point x 2 s ac-

cording to the visibility criteria, i.e.,

Ivis
s �x� � c 2 Is j �x

� ÿ xc� \ crack surface � ;	: �6�

Note that this set may be di�erent for each point inside an element.
The FE-Shepard partition of unity for an element s with nodes xb; b 2 Is is de®ned by

ub�x� �
Nb�x�P

c2Ivis
s �x�

Nc�x�
if b 2 Ivis

s �x�;

0 if b 62 Ivis
s �x�:

8<: �7�

The de®nition above is valid for any type of ®nite elements and in any dimension. The discontinuity in the
FE-Shepard PU is created by the fact that two points located at opposite sides of the crack surface use
di�erent sets of weighting functions to build the PU. The index set Ivis

s is distinct at these points although
they may be geometrically very close to each other. Several illustrative examples are given below using the
discretization depicted in Fig. 2.

For elements that do not intersect the crack surface, the FE-Shepard PU is provided by linear ®nite
element shape functions. For example, at any point x 2 s1 shown in Fig. 2 we have

Ivis
s1
�x� � Is1

� f1; 2; 5; 6g:
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Therefore, the PU is given by

u1�x� � N1; u2�x� � N2; u5�x� � N5; u6�x� � N6:

The FE-Shepard formula (7) can also be used to build the PU but, in this case, the results are trivial

ua�x� �
Na�x�

N1�x� � N2�x� � N5�x� � N6�x� � Na�x�; a � 1; 2; 5; 6:

Consider now the case of the element s2 shown in Fig. 2. At point y 2 s2, according to the visibility criteria,
the only non-zero weighting functions are N6 and N7, since the segments �yÿ x10� and �yÿ x11� intersect the
crack surface. That is

Ivis
s2
�y� � f6; 7g:

The PU at y 2 s2 is then given by

u6�y� �
N6�y�

N6�y� � N7�y� ; u7�y� �
N7�y�

N6�y� � N7�y� ; u10�y� � 0; u11�y� � 0:

Note that

u6�y� � u7�y� �
N6�y� � N7�y�
N6�y� � N7�y� � 1:

Therefore, the functions u6 and u7, as de®ned above, constitute a PU.
At point z 2 s2

Ivis
s2
�z� � f10; 11g

and the PU is given by

u10�z� �
N10�z�

N10�z� � N11�z� ; u11�z� �
N11�z�

N10�z� � N11�z� ; u6�z� � 0; u7�z� � 0:

Therefore, the FE-Shepard PU as de®ned above is discontinuous across the crack surface.
As another example, consider the case of the element s3 with nodes x5; x6; x9 and x10 as depicted in Fig. 2.

At point r 2 s3

Fig. 2. Example of discretization cut by a crack.

C.A. Duarte et al. / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2227±2262 2231



Ivis
s3
�r� � f5; 6; 9g

and the PU is given by

u5�r� �
N5�r�

N5�r� � N6�r� � N9�r� ; u6�r� �
N6�r�

N5�r� � N6�r� � N9�r�

u9�r� �
N9�r�

N5�r� � N6�r� � N9�r� ; u10�r� � 0:

At point s 2 s3

Ivis
s3
�s� � f10g

and the PU is given by

u10�s� �
N10�s�
N10�s� � 1; u5�s� � u6�s� � u9�s� � 0:

Let us now show that the FE-Shepard PU is continuous at the boundary between cracked and non-cracked
elements.

Let s1 and s2 be a cracked and a non-cracked element, respectively. Let t 2 �s1 \ �s2. Suppose that the
elements share a face in three dimensions or an edge in two dimensions. Let Is1\s2

denote the index set of
the nodes along this common face/edge. Note that

Ivis
s1
�t� � Is1\s2

since s2 is not cracked (which implies that the crack does not intersect the face/edge �s1 \ �s2).
In addition,

Na�t� � 0 if a 2 Is2
� ÿIs1\s2

� or a 2 Ivis
s1
�t�

�
ÿIs1\s2

�
8t 2 �s1 \ �s2

since the only non-zero FE shape functions along a face/edge are those associated with nodes on the face/
edge. Therefore, the face/edge shape functions must form a PU. Then, for any b 2 Is1\s2

,

ubjs1
�t� � Nb�t�P

c2Ivis
s1
�t� Nc�t� �

Nb�t�P
c2Is1\s2

Nc�t� � Nb�t�;

ubjs2
�t� � Nb�t�:

Consider, as an example, the point t located at the boundary between elements s2 and s6, shown in Fig. 2. In
this case,

Is2\s6
� f10; 11g � Ivis

s2
�t�:

Consider the PU function u10 associated with node x10. If this function is computed from element s2 we
have

u10js2
�t� � N10�t�

N10�t� � N11�t� � N10�t�:

If the function u10 is computed from element s6 we have

u10js6
�t� � N10�t�

N10�t� � N11�t� � N13�t� � N14�t� � N10�t�:

Therefore u10js2
�t� � u10js6

�t� and the function u10 is continuous at t.
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The FE-Shepard PU de®ned in (7) allows arbitrary cut of the ®nite element mesh by the crack surface.
Therefore, from the view point of modeling crack propagation, this technique enjoys all the ¯exibility of the
so-called meshless methods. The computational cost of FE-Shepard PU over cracked elements is only
marginally higher than usual ®nite element shape functions. For non-cracked elements this PU degenerates
to the usual FEPU. In contrast, the computational cost of moving least squares functions, which are used in
several meshless methods, is orders of magnitude higher than usual ®nite element shape functions, espe-
cially in three-dimensional settings (see [15] for a comparison).

The FE-Shepard PU functions (7) are, in general, rational polynomials which are non-zero only over part
of a cracked element. Therefore special care must be taken to numerically integrate these functions over
cracked elements. In our current implementation, higher-order Simpson rule is used for cracked elements.
More e�cient approaches, however, can be used. One possibility is to use an integration mesh over cracked
elements that follows the crack boundaries. This mesh can easily be generated since it is used only for
integration/visualization purposes and does not have to conform with neighboring elements. In the case of
non-cracked elements, standard Gaussian quadrature can be used.

All the computations can be carried out at the element level as in standard ®nite element codes. And,
importantly, the numerical integration of FE and FE-Shepard PU can be done very e�ciently since the
intersections of these functions coincide with the integration domains. This is in clear contrast with
meshless methods based on moving least squares functions where the integration of the sti�ness and mass
matrices is computationally expensive.

Linear combination of FE-Shepard functions cannot, in general, reproduce linear polynomials. That is,
properties (2)±(4) do not hold for the PU associated with elements intersecting the crack surface. In Section
2.4, we present a technique to hierarchically add shape functions to cracked elements such that the resulting
GFEM approximation can reproduce linear or higher-order polynomials.

2.3.1. FE-Shepard PU for elements at the crack front
Let us consider more closely the case of elements that contain the crack front. The same technique

described above to build the FE-Shepard PU can be used at these elements. Consider, for example, point y
in element s with nodes x5; x6; x8 and x9 as depicted in Fig. 3. According to (7), the PU is given by

u5�y� �
N5�y�

N5�y� � N6�y� ; u6�y� �
N6�y�

N5�y� � N6�y� ; u8�y� � 0; u9�y� � 0:

Consider now point z 2 s, at the other side of the crack surface. Here, the PU is given by

u8�z� �
N8�z�

N8�z� � N9�z� ; u9�z� �
N9�z�

N8�z� � N9�z� ; u5�z� � 0; u6�z� � 0:

The PU is therefore discontinuous along the crack surface.

Fig. 3. Construction of a FE-Shepard PU for an element at the crack front using the visibility criteria.

C.A. Duarte et al. / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2227±2262 2233



Consider now points r and s 2 s as depicted in Fig. 4. Eq. (7) gives

u8�s� �
N8�s�

N5�z� � N6�z� � N8�z� � N9�z� � N8�s� 6� 0

while

u8�r� � 0

since the segment �rÿ x8� intersects the crack surface. Therefore, the visibility criteria leads to spurious
lines/surfaces of discontinuities inside the elements at the crack front. This problem is intrinsic to the
visibility criteria and it appears in all meshless methods that use it to model crack surfaces [4,13,36]. In
spite of this drawback, the visibility criteria is the favorite technique to model cracks in the context of
meshless methods, probably because of its ¯exibility and relative ease of implementation in any
dimension. Also, numerical experiments demonstrate that in spite of the spurious discontinuities intro-
duced, the visibility criteria allows the computation of accurate stress intensity factors (see Section 6 and
[5,20,21]).

Another technique to model the crack front is presented in Section 2.7. This technique is based on the
wrap-around (WA) algorithm [13,15] and the use of customized functions. In contrast to the visibility
criteria, the WA criteria does not introduce spurious discontinuities.

2.4. Generalized ®nite element shape functions: the family Fp
N

The construction of the so-called generalized ®nite element or cloud shape functions is based on the
following observation:

Let fLigi2I denote a set of functions which can approximate well, in an appropriate norm k � kE,
the solution u of a boundary value problem posed on a domain X. Therefore, there exists uhp 2 spanfLig
given by

uhp �
X
i2I

uiLi;

where I denotes an index set, such that

kuhp ÿ ukE < �; �� 1:

Now consider the following set of so-called cloud or generalized ®nite element (GFE) shape functions,
de®ned as

/a
i :� uaLi; a � 1; . . . ;N ; i 2 I;

Fig. 4. Spurious discontinuity on a FE-Shepard PU created by the visibility criteria.
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where ua; a � 1; . . . ;N constitute a PU (of any type) subordinate to an open covering TN of X. Then, it is
not di�cult to show that linear combinations of these shape functions can also approximate well the
function uX

a

X
i

ui/
a
i �

X
a

X
i

uiuaLi �
X

a

ua

X
i

uiLi �
X

a

uauhp � uhp

X
a

ua � uhp: �8�

Note that:
(i) The shape functions /a

i ; a � 1; . . . ;N ; i 2 I, are non-zero only over the support of the function ua,
i.e., the cloud xa.
(ii) Linear combination of GFE shape functions can reproduce the approximation uhp to the function u.
(iii) The functions Li; i 2 I, can be chosen with great freedom. The most straightforward choice is poly-
nomial functions since they can approximate well smooth functions. However, for many classes of prob-
lems including the case of fracture mechanics problems, there are better choices. This case is discussed in
detail in Section 2.5.

In this section, GFE shape functions are de®ned in an n-dimensional setting using the idea outlined above.
Let the functions ua; a � 1; . . . ;N , denote a FE or FE-Shepard PU subordinate to the open covering

TN � fxagN
a�1 of a domain X � Rn; n � 1; 2; 3. Here, N is the number of vertex nodes in the ®nite element

mesh. The cloud xa is the union of the ®nite elements sharing the vertex node xa, regardless if the element is
cracked or not (cf. Fig. 1).

Let va�xa� � spanfLiagi2I�a� denote local spaces de®ned on xa; a � 1; . . . ;N , where I�a�; a � 1; . . . ;N ,
are index sets and Lia denote local approximation functions de®ned over the cloud xa. Possible choices for
these functions are discussed below.

GFE (known also as cloud) shape functions of degree p are de®ned by

Fp
N � /a

i

� � uaLia j a � 1; . . . ;N ; i 2 I�a�	: �9�
Let Ic denote the index set of the nodes xa that belong to cracked elements. For this set of nodes, we
enforce that

Pp�xa� � va�xa�; p P 1 a 2 Ic;

where Pp denotes the space of polynomials of degree less than or equal to p. For all other nodes, it is only
required that

Ppÿ1�xa� � va�xa�; p P 1 a 2 Ic:

The above requirements guarantee that linear combination of the GFE shape functions over any element
(cracked or not) can reproduce polynomials of degree p. The proof follows the same arguments used in (8)
and is presented in details in [12].

The GFE shape functions can then be used in combination with, e.g., a Galerkin method to solve any
class of boundary value problem solvable by the ®nite element method. We call this approach the GFEM.
The implementation of the method is essentially the same as in standard ®nite element codes, the main
di�erence being the de®nition of the shape functions given in (9). The FE and FE-Shepard partitions of
unity avoid the problem of integration associated with moving least squares PU built on circles or spheres.
This type of PU is used in several meshless methods. Here, the integrations can be e�ciently performed with
the aid of the so-called master elements since the intersections of the global GFE shape functions coincide
with the integration domains. Therefore, the GFEM can use existing infrastructure and algorithms for the
classical ®nite element method. In the context of crack modeling, the GFEM allows arbitrary cut of the
®nite element mesh by the crack surface while being computationally e�cient. The computational cost of
GFE shape functions over cracked elements is only marginally higher than usual ®nite element shape
functions. For non-cracked elements the computational cost of GFE shape functions is basically the same
as ®nite element shape functions of the same polynomial order.

There is considerable freedom in the choice of the local spaces va. The most obvious choice for a basis of
va is polynomial functions which can approximate well smooth functions. In this case, the GFEM over non-
cracked elements is essentially identical to the classical FEM. Some important di�erences do exist though
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[11,12]. There are many situations in which the solution of a boundary value problem is not a smooth
function. In these situations, the use of polynomials to build the approximation space, as in the FEM, may
be far from optimal and may lead to poor approximations of the solution u unless carefully designed
meshes are used. In the GFEM, we can use any a priori knowledge about the solution to make better
choices for the local spaces va. This is the case of fracture mechanics problems. The construction of these
so-called customized GFE shape functions over cracked elements is discussed in Section 2.5.

2.5. Customized GFE shape functions for a crack in 3D

The construction of customized GFE shape functions for a crack in a three-dimensional space is sum-
marized in this section. This is a special case of the formulation presented by Duarte et al. [12] which deals
with a convex edge of arbitrary angle.

Consider a crack embedded in a three-dimensional body as depicted in Fig. 5. Both a local Cartesian
coordinate system �n; g; f� and a cylindrical coordinate system �r; h; f0� are associated with the crack at
origin �Ox;Oy ;Oz�.

The displacement ®eld u�r; h; f0� in the neighborhood of a straight crack front far from its ends can be
written as [42,43]

u�r; h; f0� �
un�r; h�
ug�r; h�
uf�r; h�

8<:
9=; �X1

j�1

A�1�j

u�1�nj

u�1�gj

0

8><>:
9>=>;

264 � A�2�j

u�2�nj

u�2�gj

0

8><>:
9>=>;� A�3�j

0
0

u�3�fj

8<:
9=;
375; �10�

where �r; h; f0� are the cylindrical coordinates relative to the system shown in Fig. 5, un�r; h�, ug�r; h� and
uf�r; h� are Cartesian components of u in the n-, g- and f-directions, respectively.

Assuming that the crack boundary is traction-free and neglecting body forces, the functions u�1�nj , u�1�gj , u�2�nj ,
u�2�gj are given by [42,43]

u�1�nj �r; h� �
rkj

2G
j
hn
ÿ Q�1�j �kj � 1�

i
cos kjhÿ kj cos�kj ÿ 2�h

o
;

u�2�nj �r; h� �
rkj

2G
j
hn
ÿ Q�2�j �kj � 1�

i
sin kjhÿ kj sin�kj ÿ 2�h

o
;

u�1�gj �r; h� �
rkj

2G
j
hn
� Q�1�j �kj � 1�

i
sin kjh� kj sin�kj ÿ 2�h

o
;

u�2�gj �r; h� � ÿ
rkj

2G
j
hn
� Q�2�j �kj � 1�

i
cos kjh� kj cos�kj ÿ 2�h

o
;

Fig. 5. Coordinate systems associated with an edge in 3D space.
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where the eigenvalues kj are k1 � 1=2; kj � �j� 1�=2; j P 2. The material constant j � 3ÿ 4m and
G � E=2�1� m�, where E is Young's modulus and m is Poisson's ratio.

The parameters Q�1�j and Q�2�j are given by

Q�1�j � ÿ1; j � 3; 5; 7; . . . ;
ÿKj; j � 1; 2; 4; 6; . . . ;

�
Q�2�j � ÿ1; j � 1; 2; 4; 6; . . . ;

ÿKj; j � 3; 5; 7; . . . ;

�

where Kj � �kj ÿ 1�=�kj � 1�.
Assuming that the crack boundary is traction-free, body forces are negligible, and crack front is straight,

the functions u�3�fj are given by [42]

u�3�fj �
r
k
�3�
j

2G sin k�3�j h; j � 1; 3; 5; . . . ;

r
k
�3�
j

2G cos k�3�j h; j � 2; 4; 6; . . . ;

8><>:
where k�3�j � j=2; j P 1.

Prior to employing the above functions to build customized GFE shape functions, they ®rst have to be
transformed to the physical coordinates x � �x; y; z�. The transformation method is described in [12].

Let

u�1�x1 ; u�1�y1 ; u�3�z1 ; u�2�x1 ; u�2�y1 ; u�3�z2 �11�

denote the result of such transformation applied to u�1�n1 , u�1�g1 , u�3�f1 , u�2�n1 , u�2�g1 , u�3�f2 , respectively.
The construction of customized GFE shape functions using singular functions then follows the same

approach as in the case of polynomial type shape functions. Here, the singular functions from (11) take the
role of the basis functions Lia de®ned in Section 2.4 and are multiplied by the PU functions ua associated
with nodes near a crack front. The customized GFE shape functions used in the computations of Section 6
are built as

ua � u�1�x1 ; u
�1�
y1 ; u

�3�
z1 ; u

�2�
x1 ; u

�2�
y1 ; u

�3�
z2

n o
: �12�

Here, a is the index of a ®nite element vertex node near a crack front in 3D. Note that not necessarily the
same set of singular functions is used at all enriched nodes. As discussed in Section 5, the crack front is
modeled as a piecewise linear object. Therefore the orientation of the local coordinate systems used to build
the customized functions (see Fig. 5) changes along the crack front.

The customized functions u�1�xj , u�1�yj , u�3�zj , u�2�xj , u�2�yj de®ned above are presented here as a simple illustrative
example and, as such, they are limited to the special case of piecewise linear crack fronts. It also assumes
that the crack surface near the crack front is ¯at. More general types of customized functions, built ana-
lytically as above or perhaps numerically, can be used without any change to the de®nition of the cus-
tomized GFE shape functions. The GFEM does not require the availability of customized functions to be
able to model a crack. As shown in Section 2.3, the crack can be modeled through proper construction of
the PU. Nonetheless, if customized functions are available, they can considerably improve the accuracy of
the method and, as shown in the next section, they can also be used to model the crack front without the
spurious discontinuities created by the visibility criteria.

The enrichment of the elements near the crack front with singular functions brings up the issue of nu-
merical integration. In this investigation, our main goal is to analyze the e�ectiveness of this type of en-
richment and, for simplicity, we use a high-order quadrature rule in the elements with singular functions.
We adopt the Simpson rule with 10 points in each direction for the case of hexahedral elements. Integration
of the singular functions can, of course, be implemented in a much more e�cient way. Adaptive integration
schemes, such as the one proposed in [40], can be used.
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2.6. Examples of GFE shape functions

In this section, GFE shape functions for cracked and non-cracked elements are presented using de®nition
(9). The issue of linear dependence of these functions and how to solve the resulting system of equations is
discussed in [12,39].

Let s � R3 be a ®nite element with nodes xb, b 2 Is, where Is is an index set. The case of elements in
one- or two-dimensional spaces is analogous.

2.6.1. Quadratic GFE shape functions for a non-cracked element
Quadratic GFE shape functions for a non-cracked element s are given by

Sp�2
s :� ub � 1;

xÿ xb

hb
;

y ÿ yb

hb
;

zÿ zb

hb

� �
; b 2 Is; �13�

where ub is a standard linear Lagrangian FEPU, xb � �xb; yb; zb� are the coordinates of node b and hb is the
diameter of the largest ®nite element sharing the node b. Details are described in [12]. It can be shown that
the shape functions de®ned above are complete of degree two [12].

2.6.2. Linear GFE shape functions for a cracked element
Here, we consider the case in which an element sc with nodes xb 2 Isc

is fully or partially severed by the
crack surface. The PU over this element is given by the FE-Shepard formula (7). Linear combination of
these functions cannot, in general, reproduce linear polynomials although in many cases, depending on how
the crack surface is located within the element, some linear monomials can still be reproduced. For sim-
plicity, and taking into account that the number of cracked elements is much smaller than the total number
of elements, we prefer to assume that the PU over cracked elements can reproduce only a constant.
Therefore, the PU has to be enriched with linear polynomials in order to guarantee that the GFE shape
functions over cracked elements are complete of degree one

Sp�1
sc

:� ub � 1;
xÿ xb

hb
;

y ÿ yb

hb
;

zÿ zb

hb

� �
; b 2 Isc

: �14�

The only di�erence between (13) and the above is in the de®nition of the PU ub.

2.6.3. Linear GFE shape functions for a cracked element enriched with customized shape functions
Customized GFE shape functions as those de®ned in (12) can be added to the shape functions of ele-

ments containing the crack front. A linear cracked element enriched with functions (12) has the following
shape functions

Sp�1;�
sc

:� ub � 1;
xÿ xb

hb
;

y ÿ yb

hb
;

zÿ zb

hb
; u�1�x1 ; u�1�y1 ; u�3�z1 ; u�2�x1 ; u�2�y1 ; u�3�z2

� �
; b 2 Is: �15�

2.7. Crack front modeling using WA approach and customized functions

In this section, another technique to model the crack at elements intersecting the crack front is presented.
The technique is based on the WA algorithm [13,15] and the use of customized functions like those de®ned
in Section 2.5. In contrast with the technique based on the visibility criteria, the WA criteria does not
introduce spurious discontinuities.

From the de®nition of the GFE shape functions given in (9) it is observed that if the functions Lia are
discontinuous, the resulting GFE shape functions are also discontinuous. The crack can therefore be
modeled by simply multiplying a standard FEPU (or any other PU) by appropriate customized functions
that can accurately represent the displacement ®eld near the crack (not only at the crack front). This ap-
proach has been successfully used by Duarte and Oden [15,33,35] in two dimensions. It is also essentially
the same technique used in [40] to model holes and inclusions in elastic plates. More recently, Belytschko
et al. [3,10,30] have applied this approach to propagating cracks in two dimensions. They have also pro-
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posed several variations for the functions Lia including discontinuous step functions and near crack tip
assymptotic ®elds. Suppose now that such customized functions are available at least near the crack front.
Then, customized GFE shape functions can be used for elements near the crack front and the de®nition of
the FE-Shepard PU given in (7) can be modi®ed such that no spurious discontinuity is created.

The FE-Shepard PU is de®ned as follows in the case of WA algorithm. First, all nodes belonging to
elements that intersect the crack front are marked as wrap-around nodes. Then, instead of the index set
de®ned in (6), the following is used at a point x belonging to ®nite element s

Iwa
s �x� � c 2 Is j �x

� ÿ xc� \ crack surface � ; or xc is a wrap-around node
	
: �16�

The FE-Shepard PU for an element s with nodes xb; b 2 Is is then de®ned as

ub�x� �
Nb�x�P

c2Iwa
s �x�

Nc�x�
if b 2 Iwa

s �x�;
0 if b 2 Iwa

s �x�:

8<: �17�

For elements at the crack front it is as if the crack does not exist since all nodes of the element are marked as
WA nodes then,

Iwa
s �x� � Is 8x 2 s:

In this case, the crack front is modeled by customized shape functions as those de®ned in (12). In addition
to rendering a discontinuous ®eld at the crack front, these GFE shape functions allow accurate approxi-
mation of the solution without any mesh modi®cations. For elements that have a neighboring element at
the crack front, the crack is modeled by a combination of the visibility algorithm and the customized shape
functions. But in this case case, no spurious discontinuities are created. In the case of other cracked ele-
ments, the crack is modeled solely by the visibility algorithm. Here again, no spurious discontinuities are
created.

As an example consider the element s depicted in Fig. 6. At point r 2 s, we have

Iwa
s �r� � Is � f5; 6; 8; 9g:

In the same ®gure, at point t 2 �s we have

Iwa
�s �t� � I�s � f4; 5; 7; 8g:

While for point z 2 �s,

Iwa
�s �z� � f5; 8g:

Fig. 6. Modeling the crack front using the WA algorithm.
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3. Extraction of stress intensity factors: the least squares ®t method

Once the solution is obtained at some time step, the amount and direction of crack propagation over the
next time increment can be predicted. The crack front is represented as a series of straight line segments
connected at vertices. The stress intensity factors (SIFs) are calculated at the vertex points along the crack
front. Fig. 7 represents ¯owchart of the computer program PHLEXcrackTM used for this study with the
fracture dynamics process implemented in it.

The least squares ®t method is used for the calculations of SIFs. In this method, the SIFs are obtained by
minimizing the errors among the discretized stresses calculated from the solution and their asymptotic
values. The method has produced accurate results in ®nite element settings. In this work, it has been ex-
tended to be used with the three-dimensional dynamic GFE model used.

De®ne the least-squares functional as

J Kl
M�y�

ÿ �
:� rh
ÿ ÿ r; rh ÿ r

�
y
; M � I±III and l � 1; . . . ; lmax;

Fig. 7. Flowchart of PHLEXcrackTM.
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where Kl
M is the lth stress intensity factor associated with mode M at vertex y. The inner product � ; �y is

de®ned as

�u; v�y �
XNspl

a�1

Xm

j�1

Xm

i�1

ui�xa�Dÿ1
ij vj�xa�

 !
Wa�y�;

and (see Fig. 8)
u � fu1; u2; . . . ; umg; v � fv1; v2; . . . ; vmg are any two vectors in Rm,
rh�x� is the discretized stress vector at point x,
r�x� :�PIII

M�I

Plmax

l�1 Kl
M Fl

M�x�
� �

is the asymptotic stress vector,

Fl
M�x� � fl

M�r�gl
M�h� are the asymptotic functions,

y is the position vector of a vertex on the crack front,
xa is the position vector of a sampling point,
Nspl is the number of sampling points in a domain centered at y,
Dÿ1 2 Rm � Rm is the inverse of an auxiliary matrix D. Appropriate choices for D are the material sti�-
ness matrix or the identity matrix, and
Wa�y� 2 R�X� is a weighting function associated with sampling point xa and is given by

Wa�y� � 1

kyÿ xakp
Rm
; where p is typically 3±6:

Stress intensity factors Kl
M are found by minimizing the least-squares functional:

oJ
oKl

M
� 0; M � I±III; l � 1; . . . ; lmax:

This leads to the following system of equations:XIII

M�I

Xqmax

q�1

Kq
M Fq

M ;F
l
M 0

ÿ �
y
� rh;Fl

M 0
ÿ �

y
; M 0 � I±III; l � 1; . . . ; lmax:

If only the ®rst terms (l � 1) of the three modes are used, the three corresponding Ks are found by solving:

�F1
I ;F

1
I �y �F1

I ;F
1
II�y �F1

I ;F
1
III�y

�F1
II;F

1
I �y �F1

II;F
1
II�y �F1

II;F
1
III�y

�F1
III;F

1
I �y �F1

III;F
1
II�y �F1

III;F
1
III�y

264
375 K1

I

K1
II

K1
III

8<:
9=; �

�rh;F1
I �y

�rh;F1
II�y

�rh;F1
III�y

8><>:
9>=>;:

Fig. 8. Domain used for the least squares ®t method.
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The domain used for the least squares ®t method is a cylinder centered at the vertex with its axis along the
tangent of the crack front at that vertex. The dimensions of the cylinder and the number of sampling points
in the r; h, and z directions are input data. In addition, one can choose the type of the D matrix and the
weight p.

4. Crack evolution models

SIFs calculated above are used to determine whether the crack will advance or not, and the amount and
direction of propagation, if any. The front is then advanced to its new position, the crack surface is ex-
tended, and the numerical model is updated accordingly.

Crack propagation quantities are calculated based on some physical models. Crack physics, however, are
not well known, especially so for three-dimensional problems. Therefore, fracture models usually make
extensive use of plane strain physics models. In this work, two physical models have been used.

4.1. The Freund model [16,20,37]

In this model, direction of crack growth in the plane normal to the crack front is given by

h � 2 tanÿ1 1

4

KI

KII

0@8<: ÿ sign�KII�
�������������������������

KI

KII

� �2

� 8

s 1A9=; �18�

for KII 6� 0, and h � 0 for KII � 0. In the equation above, h is measured with respect to the forward vector
n1. Vector n1 is the crack front forward normal vector; it lies along the intersection of the planes normal and
tangent to the front at the vertex (see Fig. 9).

It was assumed that mode-III does not a�ect crack direction; it only a�ects crack speed. The term
sign�KII� in Eq. (18) above is to guarantee a positive stress intensity factor along the direction given by h. It
also corresponds to the direction normal to the maximum hoop stress.

The current energy release rate of a stationary crack is calculated at every vertex as

G�0� � K2
I;equiv

E�
� K2

III

2l
;

where

KI ;equiv � KI cos3�h=2� ÿ 3

2
KII cos�h=2� sin h;

Fig. 9. Local unit vectors at crack vertex.
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where l is the shear modulus, and E� is the e�ective Young's modulus. For plane strain, E� is given by

E� � E
1ÿ m2

;

where E is Young's modulus and m is Poisson's ratio. Crack will propagate at a vertex if

G�0� > Gcrit; �19�
where Gcrit is the critical energy release rate given by

Gcrit � K2
ID� _a�
E�

� K̂2
ID

E�

and KID is the dynamic fracture toughness in a pure mode-I crack (in general a function of crack speed, _a);
it is approximated by the constant value K̂ID which is given as a material property.

The speed at which the crack will propagate at a vertex ( _a) is then calculated by solving for the roots of
the quadratic equation

W�2 ÿ �W� 1��� Cÿ 1

C
� 0;

where C � G�0�=Gcrit P 1, W � cR=clim > 1, and � � _a=cR6 1. clim is the limiting crack speed (<cR) given as
an input quantity. cR is Rayleigh wave speed given as a root of

4b1b2 ÿ �1� b2
2�2 � 0;

where

b2
1 � 1ÿ cR

cd

� �2

cd

 
� dilatational wave speed �

�����������
j� 1

jÿ 1

r ���
l
q

r
in plane strain

!
;

b2
2 � 1ÿ cR

cs

� �2

cs

�
� shear wave speed �

���
l
q

r
in plane strain

�
;

and j � Kosolov constant � 3ÿ 4m (for plane strain).
In the above, l is the shear modulus and q is the mass density.

4.2. Prescribed velocity model

In this model, the propagation angle is calculated using Eq. (18) above, and the propagation criteria is
given by Eq. (19). The crack speed, however, is calculated according to a pre-de®ned function. This
function is given as an input data. The function is usually a piecewise linear function of time that can take
into account for instance the initial time needed for stress waves to reach the crack front.

5. Representation of the crack surface

The representation of the crack surface in the proposed method is completely independent of the mesh
used. In our present implementation, the crack surface is represented as a set of ¯at triangles as shown in,
for example, Figs. 11(a), 13(b) and 27. The crack front is represented by straight line segments connecting
the nodes of the triangles along the front. This model of the crack surface is the same used by [21]. The
representation of the outer skin of the body is also required by the ``crack geometric engine'', i.e., the part
of the code that handles the crack representation. Figs. 11(a) and 27 show examples of the representation of
the other skin of a body. They are as simple as possible and can be composed of several types of geometric
entities. The geometric engine handles queries about intersection of segments with the crack surface,
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distance of a point from the crack surface, orientation of normal and tangent vectors along the crack
surface, etc. The geometric engine also updates the crack surface after each crack advancement. It auto-
matically re®nes the triangles at the crack front in order to ensure a geometrically precise representation of
the crack surface. This can easily be implemented since the triangulation of the crack surface does not have
to constitute a valid ®nite element mesh. The geometric engine uses the representation of the outer skin of
the body in order to handle surface breaking cracks and cracks intersecting the boundary.

6. Numerical examples

GFEM presented previously is used in this section to solve several illustrative examples. In all examples,
the stress intensity factors are computed using the least squares ®t method presented in Section 3.

6.1. Single crack with mode-I solution under static loading

The edge-cracked panel illustrated in Fig. 10(a) is analyzed in this section using the GFEM. The fol-
lowing parameters are assumed in the computations: h � b � 1.0, a � 0.5, distributed tractions r � 1:0
and uniform thickness t � 0.1. The material is assumed to be linearly elastic with E � 1000:0 and m � 0:3.

The domain is discretized using the hexahedral mesh shown in Fig. 10(b). There are 961 elements in the
mesh. A state of plane strain is modeled by constraining the displacement in the z-direction at z � 0 and
z � t. The representation of the crack surface is shown in Fig. 11(a). It is composed of four triangles and
two edge elements (used to identify the crack front). These triangles are used only for the geometric rep-
resentation of the crack surface. There are no degrees of freedom associated with them. The stress intensity
factors reported for this problem are computed at x � �0:5; 1:0; 0:05� which is a point at the crack front
located at the middle plane of the body. The geometric de®nition of the outer skin of the domain (shown in

Fig. 10. Single edge-noth test specimen and GFEM discretization.
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Fig. 11(a)) is also given as input data for the crack geometric engine. The base vectors of the coordinate
system associated with singular functions used at the crack front are also displayed in Fig. 11(a). The base
vectors and corresponding singular functions are computed completely automatically using the geometric
engine. This functionality is specially important during dynamic crack propagation simulations or when the
geometries of the domain or crack surface are not so trivial as in this example.

Fig. 11(b) shows a closer look at the discretization near the crack front. It can be observed that the crack
surface does not respect the element boundaries ± It can arbitrarily cut the elements in the mesh. The nodes
carrying singular degrees of freedom are represented by diamond-shaped dots. The singular functions used
at these nodes are those presented in Section 2.5. Whenever they are used, only the nodes of the elements
that contain the crack front are enriched with these singular shape functions (in this example, there is only
one element at the crack front). The enrichment of the elements at the crack front with appropriate singular
functions is done automatically using the geometric engine to construct appropriate coordinate systems at
the crack front.

The computed values of KI and of the strain energy, U, for several discretizations are shown in Tables 1
and 2. In the tables, Neq denotes the number of equations associated with a particular discretization. The
crack is modeled using a FE-Shepard PU as de®ned in Section 2.3 or 2.7. In the ®rst case, the discontinuity
in the displacement ®eld is modeled using the visibility algorithm in combination or not with singular
functions. The results using this approach are shown in Table 1. In the second case, the WA approach in
combination with singular functions at the crack front is used. The results using this approach are shown in
Table 2. In both cases, p-enrichment is done using the family of functions Fp

N de®ned in Section 2.4. The
notation p � 1� px; 1� py ; 1� pz � 1� �px; py ; pz� is used to denote the polynomial order of the approxi-
mation over non-cracked elements. The ``1's'' indicating the linear order of the functions de®ning the PU
(linear hexahedral ®nite element shape functions in this case) and px; py ; pz denote the degrees of the
polynomial basis functions Lia in the x; y; z directions, respectively. The functions Lia are de®ned in Section
2.4. If only the PU is used, we have p � 1� 0; 1� 0; 1� 0 � 1� 0. A quadratic approximation in the plane
XY and linear in the z-direction is denoted by p � 1� 1; 1� 1; 1� 0 � 1� �1; 1; 0�. For cracked elements,
the polynomial degree of the approximation is denoted by pc � 0� px; 0� py ; 0� pz � 0� �px; py ; pz�. The

Fig. 11. Crack representation.
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``0's'' indicating that, in general, the functions de®ning the PU over cracked elements can only represent a
constant function. A quadratic approximation in the plane XY and linear in the z-direction over cracked
elements (fully or partially cracked) is denoted by pc � 0� 2; 0� 2; 0� 1 � 0� �2; 2; 1�.

The stress intensity factors are computed using the least squares ®t method presented in Section 3. The
following parameters are used in all computations presented in this section:
· Dimensions of the extraction domain: d � �0:4; 1:0; 0:05�, which represents a cylinder of radius 0.4 and

length 0.05.
· Number of integration points in the r; h and z directions: n � �10; 20; 1�, respectively.
· Type of weighting matrix D: identity matrix
· Power of the weighting functions: 6.

It was observed from numerical experiments on this and other examples that the choice of the matrix D
(material or identity) does not have tangible e�ects on the calculated values of the stress intensity factors. In
addition, di�erent values for the power of the weighting function were tested. A value in the range of [3±6]
was observed to be su�cient.

As a reference, the value of KI computed by Tada et al. [44] using a boundary technique is used. The
value KTada

I � 3:54259 reported in [44] has an error smaller than 0.5%.
The discretizations Vis-1, Vis-3 and Vis-5 do not use singular functions at the crack front while the

discretizations Vis-2, Vis-4 and Vis-6 do. All `Vis' discretizations use the visibility approach to build the PU
over cracked elements as described in Section 2.3. It can be observed from Table 1 that the use of singular
functions gives a noticeable improvement on the computed stress intensity factors while the increase in the
number of degrees of freedom is only marginal (less than one percent in the case of the discretization Vis-5).
In contrast, the p-enrichment of the cracked elements (discretizations Vis-1 and Vis-3) gives little im-
provement on the computed KI. Nonetheless, the enrichment does improve the computed strain energy by
about 3%. This behavior indicates that the technique used to compute the stress intensity factor is not
optimal since, optimally, the computed stress intensity factors must converge at the same rate as the
computed strain energy [42,43].

The discretizations WA-1, WA-2 and WA-3 use singular functions in combination with the WA tech-
nique to build the PU over cracked elements as described in Section 2.7. Comparing the results for the
discretizations Vis-2 with WA-1 or Vis-4 with WA-2, it can be observed that, for the same number of
degrees of freedom, the WA approach gives better results for the stress intensity factors than the visibility
approach. This is in spite of the fact that the discretizations using WA have a smaller strain energy than the

Table 1

GFEM using the partition of unity de®ned in Section 2.3. The stress intensity factor is computed at (0.5,1.0,0.05)a

Discr p � 1� pc � 0� Sing Fn Neq U � 104 KI KI=KTada
I

Vis-1 (0,0,0) (1,1,1) No 6756 2.27136 3.2387 0.91422

Vis-2 (0,0,0) (1,1,1) Yes 6900 2.32941 3.3741 0.95244

Vis-3 (0,0,0) (2,2,1) No 7776 2.33848 3.2495 0.91727

Vis-4 (0,0,0) (2,2,1) Yes 7920 2.36701 3.3938 0.95800

Vis-5 (1,1,0) (2,2,1) No 19 656 2.38643 3.4339 0.96932

Vis-6 (1,1,0) (2,2,1) Yes 19 800 2.42281 3.4584 0.97623

a ``Discr'' stands for discretization, ``Sing Fn'' stands for singular functions at the crack front, ``Neq'' stands for number of equations

and U stands for strain energy.

Table 2

GFEM using the partition of unity de®ned in Section 2.7. The stress intensity factor is computed at �0:5; 1:0; 0:05�

Discr p � 1� pc � 0� Sing Fn Neq U � 104 KI KI=KTada
I

WA-1 (0,0,0) (1,1,1) Yes 6900 2.22465 3.3886 0.95653

WA-2 (0,0,0) (2,2,1) Yes 7920 2.25596 3.4228 0.96618

WA-3 (1,1,0) (2,2,1) Yes 19 800 2.29396 3.3431 0.94369
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corresponding discretizations using visibility. This can be explained by the fact that the visibility approach
creates spurious discontinuities in the displacement ®eld near the crack front which results in a less sti�
discretization compared with the WA approach (which does not create such spurious discontinuities). It can
be observed that the discretization WA-2 gives a better value for KI than the discretization WA-3 in spite of
the fact that the later gives a larger value for the strain energy. This, again, points to limitations of the
technique used to compute the stress intensity factor.

6.2. An inclined crack problem

As another test problem, we consider the cracked panel shown in Fig. 12(a). This problem was analyzed
by Szab�o and Babu�ska [42] using the p-version of the ®nite element method and by Oden and Duarte [33]
using the hp-cloud method. In both references, plane stress condition and unit thickness are used. Here, the
plane stress condition is approximated by using a small thickness, t � 0:1, for the domain compared to the
other dimensions. In addition, we assume Young's modulus E � 1, Poisson's ratio m � 0:3, distributed
traction r � 1:0 and w � 1 (see Fig. 12(a)). These same values are used in Refs. [33,42]. We adopt as a
reference, the values of KI, KII and strain energy, U, computed by Oden and Duarte [33]. They are, re-
spectively,

KRef
I � 1:508284; KRef

II � ÿ0:729706; URef � 0:170402:

Fig. 12. Mixed-mode crack problem.
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These values agree very well with those computed by Szab�o and Babu�ska [42] (less than 0.1% di�erence).
The value of the URef was scaled to take into account the di�erence in thickness used here (t � 0:1) and
adopted by Oden and Duarte [33] (t � 1:0).

The discretization of the domain using 765 hexahedral elements is shown in Fig. 12(b). The inclined crack
is also shown in the ®gure. Fig. 13(a) shows a closer look near the crack. It can be observed that the crack
surface cuts the elements in the mesh in a quite arbitrary manner. In fact, the meshing of the domain is done
as if there is no crack at all. The only consideration used during the meshing of the domain was to use a
more re®ned mesh near the location of the crack front. The crack representation is created and passed to
the geometric engine as input data. The geometric engine uses no information whatsoever about the mesh.
Nodes in the mesh that are too close to the crack surface are then automatically moved a small distance
away from the crack surface (this can be observed in Fig. 13(a) near the crack front). This is required
because an approximation node must be located at one or another side of the crack surface. The repre-
sentation of the crack surface used here is topologically identical to the one used in the previous example
(see Fig. 11(a)). Fig. 13(b) shows a closer look at the mesh and crack surface near the crack front. The
nodes carrying singular degrees of freedom are represented by diamond-shaped dots. The singular func-
tions used at these nodes are those presented in Section 2.5. As in the previous example, whenever they are
used, only the nodes of the elements that contain the crack front are enriched with these singular shape
functions.

The notation used to describe the various discretizations (Vis-i, i � 1; 6 and WA-j, j � 1; 3) is the same as
in the previous example. The stress intensity factors are computed at a point in the crack front located at
the middle surface of the body. The following parameters are used for extracting the stress intensity factors
using the least squares method:
· Dimensions of the extraction domain: d � �0:2; 1:0; 0:05�, which represents a cylinder of radius 0.4 and

length 0.05.
· Number of integration points in the r; h and z directions: n � �10; 40; 1�, respectively.
· Type of weighting matrix D: identity matrix
· Power of the weighting functions: 6.
Fig. 14(a) shows a contour plot of the displacement in the vertical direction near the crack computed using
the discretization WA-3. The discontinuity in the displacement ®eld constructed using the technique pre-
sented in Section 2.7 is clearly observed. Fig. 14(b) shows a contour plot for the von Mises stress computed
with this discretization and Fig. 15(a) shows a closer look near the crack front. The computed stresses are
all raw stresses computed at arbitrary points inside each element. Fig. 15(b) shows the same quantity
computed using the discretization Vis-5. It can be observed that the stress ®eld is quite disturbed near the

Fig. 13. Crack representation.
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crack front. This is caused by the spurious discontinuities created by the visibility approach near the crack
front.

A summary of the results is presented in Tables 3 and 4. Table 3 shows the computed strain energy for the
various discretizations using the PU as de®ned in Section 2.3 (visibility approach with or without singular
functions). It can be observed that the p-enrichment of the approximation has a more signi®cant effect on
the strain energy values than the addition of singular functions at the crack front. Nonetheless, as in the
previous example, the addition of singular functions improves considerably the computed stress intensity
factors. In the case of the discretization Vis-3, for example, the enrichment with singular functions adds
only 1.8% more degrees of freedom while the error on the computed value of KI decreases from 14.0% to
only 3.5% and the error on the computed KII decreases from 10.8% to only 1.4%. That is, the error on the
computed KI and KII decrease by 75.0% and 87.0%, respectively.

The results for the discretizations that use the WA approach (Section 2.7) are presented in Table 4.
The discretization WA-3 has a relative error in energy, �URef ÿ U�=U Ref , of only 0.02% which corre-
sponds to a relative error in the energy norm of only 1.41%. This same problem was also solved using the
classical hp ®nite element method with the hp adaptation driven by error indicators based on the element
residual method (see, for example [1]). The results obtained after seven adaptive cycles are shown in
Table 5. The relative error in energy and in the energy norm for this discretization are 0.3 and 5.5%,
respectively. Note that this discretization has more degrees of freedom (18 585) than the discretization

Fig. 14. Displacement and stress computed using the discretization WA-3.
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WA-3 (16 632) but an error in the energy norm almost four times bigger. The reason for this is that the
GFEM discretization can capture the singular ®eld near the crack front more ef®ciently by using cus-
tomized singular functions.

Fig. 15. Zoom at the crack front showing von Mises stress.

Table 3

GFEM using visibility to build the PU over cracked elementsa

Discr p � 1� pc � 0� Sing Fn Neq U=URef KI=KRef
I KII=KRef

II

Vis-1 (0,0,0) (1,1,1) No 5874 0.9271 0.7286 0.8052

Vis-2 (0,0,0) (1,1,1) Yes 6018 0.9310 0.8391 0.9447

Vis-3 (0,0,0) (2,2,1) No 7764 0.9651 0.8595 0.8921

Vis-4 (0,0,0) (2,2,1) Yes 7908 0.9686 0.9647 0.9864

Vis-5 (1,1,0) (2,2,1) No 16 488 1.0044 0.9881 1.0076

Vis-6 (1,1,0) (2,2,1) Yes 16 632 1.0068 1.1002 1.0589

a ``Discr'' stands for discretization, ``Sing Fn'' stands for singular functions at the crack front, ``Neq'' stands for number of equations

and U stands for strain energy.

Table 4

GFEM using wrap-around and visibility to build the PU over cracked elements

Discr p � 1� pc � 0� Sing Fn Neq U=U Ref KI=KRef
I KII=KRef

II

WA-1 (0,0,0) (1,1,1) Yes 6018 0.9271 0.8735 0.8782

WA-2 (0,0,0) (2,2,1) Yes 7908 0.9635 0.9722 0.9472

WA-3 (1,1,0) (2,2,1) Yes 16 632 0.9998 1.0800 0.9979

Table 5

Results using the hp ®nite element method and seven adaptive cycles

Discr Neq U U=URef KI KII KI=KRef
I KII=KRef

II

hp FEM 18 585 0.16988 0.9969 1.4680 ÿ0:7041 0.9733 0.9649
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6.3. Plate under impact load

In this section, we investigate the performance of the GFEM in modeling propagating cracks in a body
subjected to impact loads. The test problem is illustrated on Fig. 16. This problem was analyzed by Lu et al.
[27], Krysl and Belytschko [20], Organ [37] and Belytschko and Tabbara [7] using the element free Galerkin
method, by Gallego and Dominguez [17] using a boundary element method, among others. A state of plane
strain and the following parameters are adopted
· Dimensions: b � 10:0, h � 2:0, a � 5:0 and uniform thickness t � 0:1.
· Loading: r�t� � r̂H�t� � 63750:0 H�t�; t P 0. Here, H�t� is the Heaviside step function.
· Material properties: Linear elastic material with E � 2:0� 1011, m � 0:3 and q � 7833:0.
· Time step: Dt � 10ÿ5.

A state of plane strain is modeled by constraining the displacement in the z-direction at z � 0 and z � t.
Two uniform hexahedral meshes are used. The ®rst one has 125, 49 and 1 element in the x-, y- and z-di-
rections, respectively. This same mesh was used in the computations of Krysl and Belytschko [20]. We
denote this as the ®ne mesh. The second mesh has 65, 25 and 1 element in the x-, y- and z-directions,
respectively. This mesh is denoted as the coarse mesh. The representation of the crack surface and of the
outer skin of the body are shown in Figs. 17(a) and (b). It is composed of ®ve triangles and four edge
elements. There are ®ve vertex nodes uniformly spaced at the crack front. The stress intensity factors re-
ported for this problem are computed at x � �5:0; 2:0; 0:05� and is located at the middle plane of the body.
This vertex node is denoted vertex 3 hereafter.

The stress intensity factors are computed using the least squares ®t method. The following parameters are
used in all computations presented in this section:
· Dimensions of the extraction domain: d � �1:0; 1:0; 0:05�. Which represents a cylinder of radius 1.0 and

length 0.05.
· Number of integration points in the r; h and z directions: n � �5; 30; 1�, respectively.
· Type of D matrix equal material matrix
· Power of the weighting function: 3.

Four GFEM discretizations are used (the notation used for p and pc is de®ned in Section 6.1):
· Discretization 1:
� Fine mesh (125� 49� 1 elements).
� Degree of approximation over non-cracked elements p � 1� 0.
� Degree of approximation over cracked elements pc � 0� 1.
� Crack modeled using a FE-Shepard PU and visibility approach as de®ned in Section 2.3. No singular

functions are used.

Fig. 16. Model problem used to analyze the performance of the GFEM in modeling propagating cracks in a body subjected to impact

loads.
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· Discretization 2: Same as Discretization 1 except that here the crack is modeled using the WA approach
and singular functions as de®ned in Section 2.7.

· Discretization 3: Same as Discretization 1 but using the coarse mesh (65� 25� 1 elements) instead.
· Discretization 4: Same as Discretization 3 but here the degree of approximation over cracked elements is

pc � 0� �2; 2; 1�.

6.3.1. Reference solution
The GFEM results are compared to the analytic solution for a semi-in®nite crack in the plane proposed

by Freund [16]. The problem solved by Freund is represented in Fig. 18. The two-dimensional domain has a
straight semi-in®nite crack, is in a state of plane strain and is loaded by uniformly distributed tractions
applied at time t � 0. The mode-I stress intensity factor, as a function of time and crack speed C is given
by [16]

Fig. 18. De®nition of reference problem.

Fig. 17. Crack representation.
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KI�t;C� � 4r̂H�t ÿ t̂�k�C�
1ÿ m

�����������������������������������
�1ÿ 2m��t ÿ t̂�Cd

p

r
;

where
· r̂ is the magnitude of the tensile tractions.
· Cd is the pressure wave speed in the body which is given by

Cd �
������������������
l�j� 1�
q�jÿ 1�

s
;

where l � E=2�1� m� and j � 3ÿ 4m (for plane strain state). For the material properties given previ-
ously, we get Cd � 5862:7.

· t̂ is the time the elastic wave hits the crack. For the problem represented in Fig. 16 and Cd � 5862:7

t̂ � 0:000341:

· k�C� is scaling factor that takes into account that the crack front is advancing with speed C and is
given by

k�C� � 1:0ÿ C=CR

1:0ÿ 0:5� C=CR

;

where CR is the Rayleigh wave speed. For this test problem, with the material properties given above,
CR � 3030 (see Section 4).
Due to symmetries, KII � 0. The magnitude of the energy release rate is given by

G�C; t� � 1

�
ÿ C

CR

�
G�C � 0; t�;

where

G�C � 0; t� � K2
I �C � 0; t�

E�

and, for plane strain,

E� � E
1ÿ m2

:

It should be noted that due to the ®nite dimensions of the domain modeled here there will be waves
re¯ected by the boundary. These re¯ected waves will eventually reach the crack front and a comparison of
the numerical solution with the above reference solution will no longer be valid. The ®rst re¯ected wave to
reach the crack is a pressure wave after traveling from a loaded edge to the opposite edge and then back to
the crack front [20]. This happens at

�t � 3h
Cd

� 6

5862:7
� 0:00102:

A more detailed discussion on the wave patterns that reach the crack front can be found in [20].

6.3.2. Stationary crack
As a ®rst test, we consider the case of a stationary crack. Discretizations 1 and 2 as described above are

used. The computed mode-I and mode-II stress intensity factors and the energy release rate G are plotted in
Figs. 19 and 20, respectively. It can be observed a good agreement between the computed and reference
values for t < �t. The ®nite dimensions of the extraction domain for the stress intensity factors and of the
support of the shape functions are responsible for the non-zero values computed before the pressure wave
hits the crack front (at t � t̂). It can also be observed that both discretizations give basically identical
results.
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6.3.3. Moving crack with prescribed speed
Here, the crack speed is given by

C�t� � H�t ÿ 0:00044�CR

3
� H�t ÿ 0:00044�1010:0

and the direction of the crack advancement is given by (18). Discretization 1 (®ne mesh) and 3 (coarse
mesh) are used. Figs. 21 and 22 show the time history for KI, KII and G, respectively. While the computed

Fig. 20. Time history for the energy release rate G using Discretizations 1 and 2. Stationary Crack.

Fig. 19. Time history for mode-I and mode-II stress intensity factors KI and KII using Discretizations 1 and 2. Stationary crack.
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values present some oscillation, they are in good agreement with the reference solution before t � t̂ (when
re¯ected waves hits the crack surface). Organ [37], Krysl and Belytschko [20] and Belytschko and Tabbara
[7] also reported oscillations on their results obtained with the element free Galerkin method. It can be
observed that the GFEM solution was able to capture very well the slope of the reference solution. Fig. 23
shows the crack surface at time t � 0:00168 s.

Fig. 21. Time history for KI and KII computed with Discretizations 1 and 3. The crack advancement direction is computed using (18).

Fig. 22. Time history for G computed with Discretizations 1 and 3. The crack advancement direction is computed using (18).
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The e�ect of p-enrichment of the cracked elements is investigated by using Discretization 4. The results
for this discretization are shown in Figs. 24 and 25. It can be observed the the p-enrichment of the cracked
elements increases the amplitude of the oscillations of the computed quantities. Fig. 26 is identical to Fig. 25
but here the tic marks of the x-axis are placed exactly at the times when the crack front crossed the
boundary between two elements. It can be observed that the peaks in the oscillations occur just before those
instants. Note that as the crack crosses the boundary between two elements it passes close to the nodes.
This same phenomena was observed by Organ [37] using the element free Galerkin method.

6.4. Welded T-joint with a crack

In this section we present a truly 3D example on using GFEM for crack propagation. The example, as
shown in Fig. 27, is a beam with welded cross-section (T-section). An initial half-penny crack is placed
longitudinally between the weld and the web as shown in the ®gure. The crack propagates due to an impact
couple loading applied at time� 0 at the end of the beam. Dynamic waves travel through the body. Once
they reach the crack area, stresses increase sharply so that crack is propagated. It is assumed that both
domain and loading are symmetric with respect to the other end of the beam and, therefore, only half of the
domain is analyzed.

Both the web and the ¯ange are made of the same linear elastic material with the following properties:
· Young's modulus � 200� 109.
· Poisson's ratio � 0.3.
· Mass density � 7833.
The weld material is assumed to be 10 times sti�er than the latter (i.e., Young's modulus � 200� 1010).
The Freund propagation model is used to advance the crack (see Section 4.1). The dynamic fracture
properties and parameters used to propagate the crack are as follows:
· Least squares ®t extraction domain: Cylinder of radius 0.5 and length 0.25.
· Number of integration points in the r; h and z directions: n � �5; 10; 3�, respectively.
· D is the material matrix.
· Power for the weighting function � 3.
· Dynamic fracture toughness in a pure mode-I, K̂ID � 75000.
· Crack speed limit � 1212.
The couple is applied as two equal and opposite impact forces at the two corners of the edge cross-section
with a value of 5� 106 each.

Fig. 23. Crack surface at t � 0:00168 s. Moving crack with advancement direction given by (18).
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The initial crack surface de®nition is shown in Fig. 27. Note that the web is not in contact with the
¯ange, but rather a small gap exists between the two. The domain is discretized for GFEM as shown in
Fig. 28. Note that the grid is made ®ner around the crack area. Linear approximation is used over all the
domain.

Fig. 24. Time history for KI and KII using coarse mesh and pc � 0� 1, pc � 0� �2; 2; 1� (Discretizations 3 and 4).

Fig. 25. Time history for G using coarse mesh and pc � 0� 1, pc � 0� �2; 2; 1� (Discretizations 3 and 4).
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Fig. 26. Time history for G using coarse mesh and pc � 0� 1, pc � 0� �2; 2; 1� (Discretizations 3 and 4). The tic marks of the x-axis

are placed exactly when the crack front crosses the boundary between two elements.

Fig. 27. Welded T-section beam with a crack. The initial crack surface is represented using 14 ¯at triangles. The representation of the

outer skin of the body is also shown. The crack surface and the outer skin of the body are used by the geometric engine as described in

Section 5.
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A transient dynamic analysis is performed on the model described above. Newmark method is used to
march the solution over time. Figs. 29, 30 and 31 represent the crack surface at times 0.0015, 0.0020, and
0.0030, respectively. A solution for this problem is not available in the literature. Presentation of this ex-

Fig. 28. GFEM discretization for welded T-section beam.

Fig. 30. Crack surface of welded T-section example at time 0.0020.

Fig. 29. Crack surface of welded T-section example at time 0.0015.
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ample serves the purpose of demonstrating the capabilities and potential of the proposed methodology to
solve three-dimensional crack propagation problems in geometrically complicated domains.

7. Conclusions

A PU method for the simulation of three-dimensional dynamic crack propagation is proposed in this
paper. The discontinuity in the displacement ®eld across the crack surface is modeled by using a discon-
tinuous Shepard PU to build the shape functions. The PU is computed using Shepard formula, the visibility
or wrap-around criteria and FE shape functions as weighting functions. This so-called FE-Shepard PU has
several powerful properties. It allows arbitrary cut of the ®nite element mesh by the crack surface. In fact,
the ®nite element mesh generation can be done as if there is no crack at all in the domain. The crack surface
representation is independently created of the ®nite element mesh and passed to the geometric engine which
provides basic functionality like distance from a point to the crack surface, intersection of segments with
the crack surface, etc. This high level of modeling ¯exibility avoids the continuous remeshing of the domain
during the simulation of propagating cracks as done in standard ®nite element methods. The examples
presented in Section 6 illustrate this feature.

The computational cost of the FE-Shepard PU over cracked elements is only marginally higher than
usual ®nite element shape functions and much smaller than, for example, moving least square functions.
The numerical integration of the shape functions can also be done as e�ciently as in the ®nite element
method since the intersections of these functions coincide with the integration domains.

The FE-Shepard PU degenerates to a standard ®nite element PU along the boundary between cracked
and non-cracked elements and over non-cracked elements. Therefore, it is not necessary to use any special
transition element.

Customized shape functions that can reproduce, for example, the asymptotic expansion of the elasticity
solution near the crack front can easily and naturally be constructed using the PU framework. The ex-
amples presented in Section 6 demonstrate the e�ectiveness of using customized functions near the crack
front.

The present method can accommodate very general physics to predict crack direction and speed of
propagation since it imposes no restriction on the geometry of the crack surface(s). Most importantly, the
implementation of the proposed method is quite straightforward. It is essentially the same as in standard
®nite element codes, the main di�erence being the de®nition of the shape functions. The proposed method
can be implemented into most legacy ®nite element data bases.

Fig. 31. Crack surface of welded T-section example at time 0.0030.
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