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Abstract

The Generalized Finite Element Method (GFEM) presented in this paper combines and extends
the best features of the finite element method with the help of meshless formulations based
on the Partition of Unity Method. Although an input finite element mesh is used by the pro-
posed method, the requirements on the quality of this mesh are significantly relaxed. The main
technique presented in this paper, "element clustering", allows the combination of neighbor-
ing elements, and generate mathematically correct and smooth solution approximation for such
clusters. The paper shows how this can be used to effectively hide mesh defects internal to each
cluster, and also allows for effective coarsening of the solution to reduce the computational cost
and memory requirements in exchange for the solution accuracy.

In particular, the proposed GFEM can correctly and efficiently deal with: (i) severely distorted or
elements with large aspect ratio; (ii) elements with negative Jacobian (inverted inside–out); (iii)
large number of small elements; (iv) meshes consisting of several sub-domains with mismatched
interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined
geometries, today’s automated tetrahedral mesh generators can practically guarantee successful
volume meshing that can be entirely hidden from the user. In addition, the method is fully
applicable to all existing finite element algorithms (e.g. non–linear, time–dependent) and is also
fully hp-adaptive.

Keywords: Meshless methods; Generalized finite element method; Partition of unity method; Hp-
cloud method; Adaptivity.
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1 Introduction

Computational simulation on complex three-dimensional (3D) domains has become a common task in recent
years in many research laboratories and industries. However, the construction of an appropriate finite element
discretization on complex 3D domains is still a difficult and time demanding task. The finite element method,
which is widely used in industry and research, requires the generation of a mesh satisfying several quality
criteria that are not easily matched when the geometry of the domain is complex. All elements in a mesh
must, for example, be properly connected to their neighbors and accurately represent the geometry of the
domain. In addition, the aspect ratio of the elements must be within acceptable bounds and elements with
small or negative Jacobians are not acceptable.

Automatic mesh generators are now widely used in computational mechanics. However, the current
state of the art in automatic mesh generation suffers from several limitations. Automatic mesh generators
for hexahedral elements are still a subject of intense research and those currently available require consider-
able user intervention and tuning of parameters in order to produce acceptable meshes. This limitation has
lead to increasing use of automatic tetrahedral mesh generators, although the solutions from these elements
are in general of lesser quality than comparable hexahedral models. Tetrahedral mesh generators are much
more robust then their hexahedral counterparts, but they also suffer from several limitations common to any
automatic mesh generator. They tend, for example, to produce elements of poor quality near curved bound-
aries that need to be manually fixed by the user, leading to an overall very time consuming process. These
difficulties are compounded when quadratic or higher order elements are used. Automatic mesh generators
also often create an excessive number of elements in order to keep the aspect ratio of the elements within
reasonable bounds. This is especially pronounced when the domain has transition zones between bulky and
slender parts. Another drawback of automatic mesh generators, especially when tetrahedral elements are
used, is that they inhibit the optimal use of p-anisotropic approximations, that is, approximations that have
different polynomial orders associated with each direction. Problems where boundary layers occur, such as
in the analysis of orthotropic materials or high speed flow or where one of the dimensions of the structural
part is much smaller than the others, are examples in which p-orthotropic approximations may lead to con-
siderable savings in the number of degrees of freedom needed to achieve acceptable accuracy. Similarly,
when modeling element parts with different leading dimensions (e.g. thick plates), considerable savings can
be obtained if consistent orthotropic approximation of different p-orders can be used.

It is common practice, especially in the well established FEM analysis centers in the industry, that the
solution process is split into two (very) separate stages: meshing and analysis. As the main effort measurable
in human time expenditure is used on creating acceptable FE meshes, the meshing itself became the goal,
although actually it has absolutely no value to the engineer, who is interested in the numerical solution (e.g.
stress distribution and its implications for the design process). The first attempts to combine the meshing
and solution process into a single, fully automated process, employed error estimation techniques and mesh
adaptivity. This resolved one aspect of the meshing: that of attaining suitable mesh density to reduce solution
approximation errors without solving overkill large problems with very fine mesh. Unfortunately, adaptive
finite element programs did not help in automatic mesh generation, and in many cases actually made mesh
generation more difficult. Traditional finite element codes will very often accept meshes with topological
errors (e.g duplicate elements, mismatched edges) or bad elements, and may produce “acceptable” results,
while automatic adaptivity will usually outright refuse to accept such a mesh, or at least expose these errors
by producing local solution singularities.

The difficulties associated with the generation of quality meshes for the finite element method has
lead to the investigation of alternative methods for solving boundary value problems. In particular this lead
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to huge popularity during last decade of all numerical techniques which could claim the “meshless method”
name. Among these alternatives is the the generalized finite element method (GFEM) [3, 12, 13, 15, 28, 31,
32,35,36]. This method is a special case of the so-called partition of unity method [2,3,16,18,19,28] and is
closely related to the classical finite element method (FEM) while providing a much higher level of flexibility
than the later. The partition of unity framework used in the GFEM can be exploited to create a very robust and
flexible method capable of using meshes that are unacceptable for the finite element method, while retaining
its accuracy and computational efficiency. The GFEM method presented in this paper, although focused on
the solver technology, is aimed at solving meshing problems by reducing the quality requirements for the
initial mesh, and thus allowing the analyst to concentrate on the solution process as a whole, in particular on
the quality of final solution results, without artificial emphasis on the meshing process. Hopefully, this may
allow creation of fully automatic analysis packages, where automatic mesh generators are a hidden part of
the whole process, and the output solution is guaranteed good accuracy, even if the automatically generated
mesh is not perfect.

This paper investigates possible extensions to the partition of unity framework used in the GFEM so
that the resulting method has the following unique features:

1. It can perform effective unrefinement of finite element meshes composed of any type of elements in
two- or three-dimensional spaces. This is accomplished not by changing the mesh, but by “clustering”
a set of nodes into a single node or “cluster” with the aid of a modified finite element partition of
unity, as described in Section 2.2. We refer to the GFEM presented here as a GFEM with clustering
(GFEMC) whenever we want to emphasize its distinction from existing generalized finite element
methods.

2. It accepts mismatched finite element meshes. That is, meshes composed of subparts that were meshed
independently of each other. Here, the partition of unity framework is used to “glue” the subparts
together in such way that the solution is continuous along the entire interface between the subparts.
This technique is presented in Section 2.4.

3. It accepts meshes containing elements with bad aspect ratios and even elements with negative Jaco-
bians, while retaining its accuracy and computational efficiency. This again is handled by clustering
all of the nodes of an unacceptable element into a single node as described in Section 2.5.

In addition, the method presented herein retains all of the attractive features of classical finite element meth-
ods. In particular:

1. The shape functions are polynomials and the integration of the matrices is done with the aid of the so-
called master element exactly as in the classical finite element. This is in contrast with most meshless
methods [4, 17, 18, 25, 26].

2. The computational performance is essentially the same as a finite element method when the same mesh
is used. This is mainly due to the previous property.

3. It can be applied to the solve the same classes of problems solvable by the finite element method
(elasto-statics, heat transfer, fluid mechanics, acoustics, etc.). In addition, the GFEM discretization
can be mixed with classical finite elements if such a need arises.
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A detailed technical discussion of the GFEM with clustering is presented in Section 2. Here, it is im-
portant to note that the technique can have a great impact in computer engineering and scientific simulations
by providing the following benefits:

• A virtually 100 percent success rate in the automatic discretization of complex CAD geometries with-
out user intervention. Given the relaxed requirements for an acceptable GFEM mesh (high element
distortions, negative Jacobians, collapsed elements, element mis-matches), today’s automated tetra-
hedral mesh generators can practically guarantee successful volume meshing of geometries that are
correctly defined, i.e., without gaps, overlaps, etc. The automation of the meshing generation process
will make it feasible to investigate a much broader range of alternative designs, thus leading to more
optimal designs in a shorter period of time.

• Reduction of mesh size through “clustering”. This guarantees, within reasonable bounds, the solution
of large models using only the computational resources available to the analyst. This automatic model
reduction capability may also be used to perform convergence analysis using several levels of mesh
resolution with little or no user intervention.

• The capability of mesh unrefinement considerably expands the scope of mesh adaptivity. With today’s
technology, a mesh can not be unrefined (coarsened) past the initial mesh even if it is too fine for the
requested accuracy. In addition, with the proposed mesh reduction, the representation of the geometry
of the domain will be preserved, i.e., there will be no loss in the approximation of the geometry of the
domain. This is in contrast to traditional mesh coarsening and it is unlikely that such a feature will be
matched in the near feature using existing meshing technology.

In summary, the GFEM with clustering combines and extends the best features of the finite element method
while allowing for easier and automatic model preparation. It may virtually guarantee that an acceptable
computational model can be created even for the most complex domains with little or no user intervention,
and that such a model can be solved using the computer facilities currently available to the analyst.

Importantly, presently there are very few techniques available in finite element analysis that can be
used to handle mismatched meshes, mesh coarsening and, especially, element of poor quality. Some exist-
ing methods, while practically usable, have difficulties in retaining theoretical correctness and consistency.
Below, we present a brief overview of techniques in this class.

1.1 Mismatched Meshes

Several methods to handle non-conforming or mismatched finite element meshes have been proposed in the
literature. Among the widely used are the mortar element or Lagrange Multiplier method and rigid elements
or point collocation in solid mechanics. The mortar/Lagrange Multiplier method suffers from Babuška-
Brezzi [5, 30] type instability problems, especially when the interfaces between the subparts have corners or
other types of singularities. The case of interfaces between different materials is also not trivial. In addition,
this approach leads to non-positive definite matrices.

The use of rigid elements or point collocation does not lead to a saddle point problem like in the
mortar/Lagrange Multiplier method. However, the continuity of the solution between subparts is imposed
only at a discrete set of points. Therefore the behavior of the whole assembly depends on the number and
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configuration of rigid elements/collocation points used. Moreover, the solution in the neighborhood of the
interfaces exhibits artificial stress singularities that do not disappear with mesh refinement.

Another approach to connected dissimilar finite element meshes is to modify the formulation of
the elements at the mismatched interface such that first-order patch tests are passed [7, 8]. This method is
recommended only for the case of linear elements since it leads to sub-optimal convergence rates in the case
of higher order elements.

1.2 Mesh Unrefinement

The existing technology for finite element mesh unrefinement is limited to two-dimensional meshes [6, 20].
In the case of three-dimensional meshes, the unrefinement can, in general, only be done on meshes obtained
by successive refinements [33]. That is, the unrefinement algorithms cannot be used to obtain a mesh that is
coarser than the initial mesh.

1.3 Elements of Unacceptable Quality

The approach described in Section 2.5 to handle elements of unacceptable quality in a finite element mesh
enjoys the following features:

• Can be used with any type of finite element in two- and three-dimensional meshes;

• does not require any modification of the mesh;

• optimal convergence rates are achieved if the mesh is refined or enriched.

To our knowledge, there is no technique available in the literature that can deliver all the features
above.

2 A GFEM with Clustering

2.1 Background – Generalized Finite Element Methods

In this section, we review the basic ideas behind the construction of generalized finite element approx-
imations in a one-dimensional setting using a 1D linear finite element partition of unity. The two- and
three-dimensional cases are based on exactly the same ideas and are discussed in Section 2.1.1. For a more
detailed discussion on the theoretical aspects of GFE approximations, see, for example, [3,13,17,28,32] and
the references therein. The eXtended Finite Element Method [29,38] is another method closed related to the
generalized finite element method.

Let u be a function defined on a domain Ω ⊂ IR. Suppose that we build an open covering

TN = {ωα}
N
α=1 Ω̄ ⊂

N⋃

α=1

ωα
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of Ω consisting of N supports ωα (often called clouds) with centers at xα, α = 1, . . . , N .
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Figure 1: Local approximations defined on the supports ωα.

Let uα be a local approximation of u that belongs to a local space χα(ωα) defined on the support ωα. It
is presumed that each space χα(ωα), α = 1, . . . , N , can be chosen such that there exists a uα ∈ χα(ωα) that
can approximate well u|ωα

in some sense. Here, u|ωα
denotes the restriction of u to ωα. Figure 1 illustrates

the definitions given above. In this case, the supports ωα are open intervals with centers xα.

The local approximations uα, α = 1, . . . , N , have to be somehow combined together to give a global
approximation uhp of u. This global approximation has to be built such that the difference between uhp and
u, in a given norm, be bounded by the local errors u−uα. In partition of unity methods, this is accomplished
using functions ϕα defined on the supports ωα, α = 1, . . . , N , and having the following property

ϕα ∈ Cs
0(ωα), s ≥ 0, 1 ≤ α ≤ N (1)

∑

α

ϕα(x) = 1 ∀x ∈ Ω (2)

The functions ϕα are called a partition of unity (POU) subordinate to the open covering TN . Examples of
partitions of unity are Lagrangian finite elements, the various “reproducing” functions generated by moving
least squares methods and Shepard functions [18, 22].

ω

α

α

ϕα

τ

ϕ

τα

α + 1

α + 1

1

Ω x x

Figure 2: One-dimensional finite element partition of unity.

In the case of finite element partitions of unity, the supports (clouds) ωα are simply the union of
the finite elements sharing a vertex node xα (see, for example, [28, 32]). In this case, the implementation
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of the method is essentially the same as in standard finite element codes, the main difference being the
definition of the shape functions as explained below. This choice of partition of unity avoids the problem of
integration associated with the use of moving least squares methods or Shepard partitions of unity used in
several meshless methods. Here, the integrations are performed with the aid of the so-called master elements,
as in classical finite elements. Therefore, the GFEM can use existing infrastructure and algorithms developed
for the classical finite element method.

Figure 2 shows a one-dimensional finite element discretization. The partition of unity functions ϕα

are the usual global finite element shape functions, the classical “hat-functions”, associated with node xα.
The support ωα is thus the union of the elements τα−1 and τα.

Consider now the element τα with nodes xα and xα+1 as depicted in Fig. 2. Suppose that the following
shape functions are used on this element

Sα = {ϕα, ϕα+1} × {1, uα, uα+1} = {ϕα, ϕα+1, ϕαuα, ϕαuα+1, ϕα+1uα, ϕα+1uα+1}

That is, the element τα has a total of six shape functions (three at each node) built from the product of
the standard Lagrangian finite element shape functions (a partition of unity), and the local approximations
uα, uα+1 that, by assumption, can approximate well the function u over the finite element τα. Of course, we
can further generalize this idea by increasing the number of functions uα and uα+1, resulting in a space Sα

of still larger dimension. This approach is discussed in the next section.

Thanks to the partition of unity property of the finite element shape functions, we can easily show that
linear combinations of the shape functions defined above can reproduce the local approximations uα, uα+1,
that is,

ϕαuα + ϕα+1uα = uα(ϕα + ϕα+1) = uα (no sum on α)

ϕαuα+1 + ϕα+1uα+1 = uα+1(ϕα + ϕα+1) = uα+1

In other words,
uα, uα+1 ∈ span{Sα}.

The basic idea in partition of unity methods and, in particular, in the GFE method, is to use the
partition of unity to "paste" together local approximation spaces. The shape functions are built such that
they can reproduce, through linear combinations, the local approximations defined on each cloud ωα. The
approximation properties of such functions are discussed in the next section.

2.1.1 Generalized Finite Element Shape Functions: The Family of Functions F p
N

In this section, we define generalized finite element shape functions in an n-dimensional setting using the
ideas outlined in the previous section.

Let the functions ϕα, α = 1, . . . , N , denote a finite element partition of unity subordinate to the open
covering TN = {ωα}

N
α=1 of a domain Ω ⊂ IRn, n = 1, 2, 3. Here, N is the number of vertex nodes in the

finite element mesh. The cloud ωα is the union of the finite elements sharing the vertex node xα.

Let χα(ωα) = span{Liα}i∈I(α) denote local spaces defined on ωα, α = 1, . . . , N , where I(α), α =
1, . . . , N , are index sets and Liα denotes local approximation or enrichment functions analogous with the
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functions uα mentioned in the previous section. Possible choices for these functions are discussed below.

Suppose that the finite element shape functions, ϕα, are linear functions and that

Pp−1(ωα) ⊂ χα(ωα) α = 1, . . . , N,

where Pp−1 denotes the space of polynomials of degree less or equal to p− 1. The generalized finite element
shape functions of degree p are defined by [12, 13, 28, 32, 35–37]

Fp
N = {φα

i = ϕαLiα, α = 1, . . . , N, i ∈ I(α)} (3)

Note that there is considerable freedom in the choice of the local spaces χα. The most obvious
choice for a basis of χα is polynomial functions which can approximate smooth functions well. In this case,
the GFEM is essentially identical to the classical FEM. The approximations can also be non-isotropic (i.e.,
different polynomial orders in different directions), regardless of the choice of finite element partition of
unity (hexahedral, tetrahedral, etc.) [9–11].

There are many situations in which the solution of a boundary value problem is not a smooth function.
In these situations, the use of polynomials to build the approximation space, as in the FEM, may be far from
optimal and may lead to poor approximations of the solution u unless carefully designed meshes are used. In
the GFEM, we can use any a-priori knowledge about the solution to make better choices for the local spaces
χα. Then we can use the local spaces χα to build generalized finite element shape functions that represent
these singularities much more effectively than polynomial functions.

2.1.2 Adaptivity in the GFEM

Generalized FEM is so similar to the “traditional” Finite Element Method, that all well known adaptation
methods can be almost immediately applied to it. In particular, h-adaptation (refinement of elements), and
r -adaptation (adjustment of nodal coordinates), being independent of shape functions do not require any
modifications to be immediately applicable to the GFEM. p-adaptivity (modification of local order of ap-
proximation) is accomplished by varying the number α and type of local approximation functions Liα in Eq.
(3). Note that these enrichment functions are not limited by local element coordinate system (actually they
can’t be, because they usually span neighboring elements, as opposed to traditional FE enrichment functions,
which are confined to each element). In particular, families χα can be selected as:

• traditional monomials of p-order defined in the global coordinate system (1, x, y, x2, xy, y2, . . . ) or
any global coordinate system suitable to the problem,

• the same monomials but rotated in local coordinate system suitable for each node. Orientation of such
coordinate system may be given as a part of the problem definition or determined dynamically using
some kind of “directional error indicator”. Note that this technique may allow substantial convergence
improvement in boundary layers or for thin solid models, because the orthotropic p-approximation can
be optimally oriented independently of local element orientation in the mesh (structured or unstruc-
tured) [9, 11].

• special function families selected based on a-priori knowledge of the solution (e.g. bi-harmonic func-
tions to solve linear elasticity problems, singular expansion around the crack tip in fracture mechan-
ics [14, 15], etc.)
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The implementation of h and p adaptivity is, however, greatly simplified by the partition of unity
(POU) framework. Since each basis function, {Liα}i∈I(α), α = 1, . . . , N , can have a different polynomial
order for each α, we can have different polynomial orders associated with each vertex node of the finite
element mesh [32]. The concept of edge and middle nodes, which is used in conventional p FEMs, is
not needed in the framework of the GFEM. Therefore, the implementation of h adaptivity for high-order
approximations (hp-adaptivity) is the same as for linear approximations (there is no need, for example, of
using high-order constraints and very complex consistency rules as is done in hp-adaptive finite element
methods.

The concept of clustering presented in this paper introduces a new type of adaptivity (c-adaptivity)
discussed in Section 3.1.3.

Detailed convergence analysis of the generalized finite element method can be found in [18, 19, 27,
28]. Several a-priori error estimates along with numerical experiments demonstrating their accuracy can also
be found in those works.

2.2 Generalized Mesh Unrefinement Technique

The definition of a partition of unity given by (1) and (2) imposes only mild requirements on the partition of
unity functions ϕα, α = 1, . . . , N . In particular, given any partition of unity

POUN = {ϕα}
N
α=1

another partition of unity, POUN ′ with N ′ < N , can be created by adding elements ϕβ, β ∈ I, belonging to
the original set, where I is an index set. The resulting set has less elements then the original set if I 6= ∅. This
property of a partition of unity is the cornerstone of the generalized mesh unrefinement technique presented
here.

An unrefined or clustered partition of unity is defined as follows:

Let POUN = {ϕα}
N
α=1 be a partition of unity composed of N elements. A clustered or unrefined partition

of unity is then given by

POUN ′ = {ϕα =
∑

β∈I(α)

ϕβ : α = 1, . . . , N, α 6∈ Iclustered} (4)

Here, I(α) are the indexes of the functions that are added to build the clustered function ϕα and Iclustered

are the indexes of the functions in the the original set that are not in the clustered or unrefined set POUN ′ .
The dimension of this set relative to the original number of nodes is an indication of the degree of clustering
performed.

Let us consider some examples of clustered partitions of unity in the case of a finite element partition
of unity in one- and two-dimensional spaces. From now on, we will refer to “partition of unity function
associated with a node” simply by “node”.

Figure 3 shows a one-dimensional finite element partition of unity composed of seven elements (N =
7). Figures 4, 5 and 6 show examples of unrefinements performed on the original partition of unity of Figure
3. In the figures, the boxes indicate the regions where the partition of unity is identically equal to one. In the
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unrefined partition of unity shown in Figure 4 we have

N ′ = 6

Iclustered = {5}

I(4) = {4, 5}

I(α) = α : α = 1, 2, 3, 6, 7

If I(α) = α, the partition of unity function ϕα is not modified. In the case of Figure 5 we have

N ′ = 5

Iclustered = {4, 5}

I(3) = {3, 4, 5}

I(α) = α : α = 1, 2, 6, 7

and in the case of Figure 6 we have

N ′ = 5

Iclustered = {3, 6}

I(2) = {2, 3}

I(5) = {5, 6}

I(α) = α : α = 1, 4, 7

α = 2 α = 3 α = 6α = 5α = 4α = 1 α = 7

7ϕ4 ϕ5ϕ3

Ω

ϕ ϕ ϕ ϕ1 2 6

Figure 3: One-dimensional finite element partition of unity composed of seven elements (N = 7).

α = 2 α = 3 α = 6α = 1 α = 7

7

α = 4

ϕ3 ϕ4

Ω

ϕ ϕ ϕ ϕ1 2 6

Figure 4: Unrefined finite element partition of unity. Functions ϕ4 and ϕ5 of Figure 3 were clustered into a
single partition of unity function.

Figures 7 and 8 show examples of unrefinements of a uniform 3 × 3 mesh of quadrilateral finite
elements. In the figures, the boxes indicate the regions where the partition of unity is identically equal to
one. In the case of Figure 7, all partition of unity functions of the element in the center of the mesh were
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α = 2 α = 6α = 1 α = 7

7

α = 3

ϕ3

Ω

ϕ ϕ ϕ ϕ1 2 6

Figure 5: Resulting partition of unity from the clustering of functions ϕ3, ϕ4 and ϕ5 of Figure 3.

α = 4α = 1 α = 7

7

α = 2 α = 5

ϕ4 ϕ5ϕ2

Ω

ϕ ϕ1

Figure 6: Unrefinement of the partition of unity shown in Figure 3.

clustered into a single function reducing the number of functions by three. For this example we have

N = 16

N ′ = 13

Iclustered = {7, 10, 11}

I(6) = {6, 7, 10, 11}

I(α) = α : α 6∈ Iclustered and α 6= 6

In the case of Figure 8 we have

N = 16

N ′ = 11

Iclustered = {2, 5, 12, 15, 16}

I(1) = {1, 2, 5}

I(11) = {11, 12, 15, 16}

I(α) = α : α 6∈ Iclustered and α 6= 1, 11

An unrefined or clustered partition of unity built as described above can be used in the construction
of generalized finite element shape functions exactly as described in Section 2.1.1 for the case of a standard
finite element partition of unity. This unrefinement technique although conceptually simple is very generic
and can be used with any type of finite element and in any spatial dimension. Note also that there is no loss
in the information about the geometry of the domain since all the elements of the original (not clustered)
mesh are used in the clustered mesh. The reduction in the number of degrees of freedom comes from the
clustering of partition of unity functions associated with finite element nodes in the mesh.

Besides being used to reduce the size of a computational model, the unrefinement technique described
above can also be used in a local sense, for example, to handle inconsistent finite element meshes, meshes
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α = 5 α = 8

α = 9
α = 12

α = 13 α = 14 α = 15 α = 16

α = 1 α = 2 α = 3 α = 4

α = 6

Figure 7: Representation of the unrefinement of a two dimensional finite element mesh. The partition of
unity functions (nodes) of the element in the center of the domain were unrefined (clustered) into a single
function (node). As a result, the partition of unity is identically equal to one over that element.

with very distorted elements, and even elements with negative Jacobians. These two topics are discussed in
Sections 2.4 and 2.5, respectively.

2.3 Limitations of the Generalized Mesh Unrefinement Technique

In this section we discuss the limitations of the mesh unrefinement technique presented in the previous
section.

2.3.1 Cluster Quality

The unrefinement procedure described in the previous section can be applied to as many nodes in a finite
element mesh as needed. In addition, any set of nodes can be clustered into a single node. Here, the term
node means the partition of unity function associated with a node. We also use the terms cluster to denote a
set of partition of unity functions (nodes) that have been clustered (unrefined) into a single function (node)
and clustered element to denote an element with all nodes clustered into a single node.

The approximation properties of the resulting GFE shape functions strongly depends on the size and
shape of underlying partition of unity functions and care must be taken in the selection of the nodes used in
each cluster. The optimal selection of these nodes is indeed not trivial. The automatic selection of a group
of nodes to be clustered into a single node is denoted by a clustering technique. The techniques we have
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α = 8

α = 9

α = 13 α = 14

α = 3 α = 4

α = 1

α = 7

α = 10

α = 11

α = 6

Figure 8: Unrefinement of a two dimensional finite element mesh. The clustering can be done quite arbitrar-
ily. In this example, three nodes (i.e., partition of unity functions) of one element have been clustered into a
single node.

13



investigated and how the effectiveness of each approach can be measured are described in this section.

Three clustering methods have been implemented: Hilbert-Peano space filing curve [34], Metis
(based on the theory of graphs) [21] and Voronoi cells. Combinations of these techniques are also possi-
ble. The first two techniques have extensively been used in domain decomposition for parallel finite element
solvers. The third one is actually implemented as a “correction” step to improve the shape of clusters.

All these methods led to reasonable results in the case of a simple, bulky domain, but are not sufficient
in the case of multiply connected domains. The convergence of solutions was best when each cluster was
roughly spherical in shape, and as “full” as possible.

More general clustering algorithm should should also take into account:

• The smoothness of the computed stresses. Good clustering algorithms should be able to deliver smooth
stresses on clustered meshes if the solution of the problem is smooth and does not introduce artificial
stress concentrations (hot spots) or oscillatory stresses.

• Convexity of the clusters. Non-convex clusters tend to produce stiff solutions and therefore must be
avoided.

• Continuity of the clusters. The clustering algorithm must guarantee that each cluster is contiguous and
possibly simply connected.

Increasing the size of the clusters in a GFEM discretization reduces the total number of degrees of
freedom and has the same effect as using a coarser (unrefined) standard finite element mesh. Therefore, the
discretization error increases with the size of the clusters. Ideally, the rate of change of the discretization
error with respect to the number of degrees of freedom should be close to the one observed if the mesh
was manually unrefined by using larger (standard) finite elements. This suggests the following approach to
measure the performance of a clustering technique:

Starting from the original mesh, progressively cluster it and compute the corresponding discretization
error measured in the energy norm. Different approaches for mesh clustering can then be compared based
on:

• The algebraic rate of change of the error with respect to number of degrees of freedom, size of the
clusters, CPU time for solution of the system of equations or total CPU time. Optimally, the rate
should be as close as possible to the one obtained with traditional/manual mesh unrefinement.

• The monotonic or oscillatory behavior of the error relative to cluster size.

2.3.2 Global Enrichment of the GFEM Approximation

Generalized finite element shape functions, as defined in (3), are built from the product of a partition function,
ϕα, by a local enrichment function, Liα. If the partition of unity functions are linear finite element shape
functions and the enrichment functions are of degree p − 1, the resulting shape function, φα

i , is of degree p.

Let us consider now the case where the partition of unity is a clustered partition of unity as defined in
(4). In this case, the functions ϕα may be constant over an edge, face, element, or set of elements. Therefore
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the GFE shape functions built using this partition of unity do not have a well defined p order. It is of degree p

over edges, faces, and elements with partition of unity functions not clustered and of degree p− 1 elsewhere.
This must be taken into account when globally enriching a mesh.

At least three approaches can be used to globally enrich a GFE approximation to degree p when
clustered partitions of unity are used:

1. Use local enrichment functions of degree less than or equal to p at every node. This is the most
conservative approach and it considers that linear combinations of a clustered partition of unity can
reproduce only a constant.

2. Use local enrichment functions of degree less than or equal to p only on the nodes of elements that have
at least one partition of unity function that has been clustered. This guarantees that linear combinations
of the shape functions of any element can reproduce polynomials of degree less or equal to p, which
is the case of standard finite elements of degree p.

3. Use local enrichment functions of degree less then or equal to p only at nodes associated with partition
of unity functions that has been clustered. This will lead to the smallest number of degree of freedom
among the proposed enrichment strategies.

Each enrichment strategy leads, in general, to a different number of degrees of freedom and to a
different approximation.

2.3.3 Stiffness and Mass Matrix Calculation

The mesh unrefinement technique preserves the representation of the geometry of the domain since all the
elements of the original (not clustered) mesh are used in the clustered mesh. This however implies that
the computational work to compute the global stiffness and mass matrices are the same in the original and
unrefined mesh. In fact, the cost to compute the matrices in the unrefined mesh can be larger than in the
original mesh if the same global polynomial order is used. This is due to the fact that, as described in
the previous section, the polynomial order of the transition elements between clustered and non-clustered
elements is one degree higher than the polynomial order in the clustered elements. Therefore, these transition
elements have more degrees of freedom and also require more integration points than the elements in the
original mesh.

The cost of computing the matrices relative to the cost of solving the system of equations decreases
as the number of degrees of freedom increases. In addition, the matrix computations can be fully parallelized
almost trivially as in most finite element methods. Nonetheless, we believe that this does not justify neglect-
ing the cost of computing the matrices and we propose remedies to minimize this cost that take advantage of
the special features of the GFEM shape functions over clustered elements.

Local Assembly of Clustered Elements

All clustered elements belonging to a given cluster have the same set of shape functions and, there-
fore, the same set of degrees of freedom. This suggests that it is more efficient to locally assemble the
stiffness/mass matrices of these elements into a local matrix and only then assemble this single matrix into
the global matrix. This minimizes the number of direct accesses to the global matrix, which involves search-
ing operations in the case of, for example, sparse matrix storages.

15



Use of Functions that Satisfy the Underlying PDE

The local approximation functions Liα used in the construction of the GFEM as defined in (3) can be
chosen with great freedom. They can, in the case of some linear problems, be functions that satisfy the partial
differential equations being solved. Consider now the case of the GFEM shape functions of an element τ
in which all partition of unity functions (nodes) have been clustered into a single function (node) ϕβ as in
the case of the hatched element shown in Figure 7. Such an element is said to be clustered. The resulting
partition of unity function over element τ is identically equal to one and the GFEM shape functions are given
by

φβ
i = ϕβLiβ = Liβ i ∈ I(β)

according to (3). Therefore, if Liα satisfies the partial differential equations being solved, φβ
i also does. This

can be exploited during the matrix calculations to transform domain integrals into boundary integrals. That
is, instead of integrating over all the elements in a given cluster, the integration can be done over the boundary
of the cluster. For clusters composed of a large number of elements this can lead to substantial savings in
the computation of the global matrices. This technique however, requires the knowledge of local enrichment
functions Liα that satisfy the partial differential equations being solved.

2.4 Mismatched Meshes in the GFEM

In this section, we describe how the mesh unrefinement technique can be used to handle finite element
meshes that have localized mesh inconsistencies. This kind of mesh can arise in several situations. It is not
uncommon, for example, to have complex mechanical parts divided in subparts that are simpler and meshed
independently of each other. The problem then is how to “tie” the subparts together in a way such that the
behavior of the whole assembly can be accurately represented.

The technique presented in this section is basically a local application of the mesh unrefinement
method presented previously. As such, it does not suffer from Babuška-Brezzi type instability issues while
rendering a solution that is continuous along the entire interface between inconsistent meshes.

The technique is better described with the aid of a few examples. Let us consider as a first example
the mesh shown in Figure 9. This mesh can not be used, as it is, in the classical finite element method since
the global shape functions associated with nodes 3, 4 and 5 are discontinuous along the boundary between
elements τ3 and τ1, τ2. These global shape functions are given by

ϕ3 = N τ1
3 ∪ N τ3

3

ϕ4 = N τ1
4 ∪ N τ2

4

ϕ5 = N τ2
5 ∪ N τ3

5

where N τi

α represents the bilinear shape function of element τi associated with global node α.

These discontinuous global functions can be clustered into a single function using equation (4) with

N ′ = 6

Iclustered = {4, 5}

I(3) = {3, 4, 5}

I(α) = α : α = 1, 2, 6, 7, 8
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Figure 9: Mismatched mesh between element τ3 and elements τ1 and τ2.

This gives
ϕ3

.
= ϕ3 + ϕ4 + ϕ5

A representation of the clustered partition of unity is shown in Figure 10. Let us now show that this partition
of unity is continuous. Let t ∈ τ̄1 ∩ τ̄3, as shown in Figure 10. If this function is computed from element τ1

we have
ϕ3|τ1(t) = N τ1

3 (t) + N τ1
4 (t) = 1

since the only non-zero shape functions of element τ1 along the edge τ̄1 ∩ τ̄3 are N τ1
3 and N τ1

4 and the shape
functions of a Lagrangian finite element constitute a partition of unity. Similarly, if function ϕ3 is computed
from element τ3 we have

ϕ3|τ3(t) = N τ3
3 (t) + N τ3

5 (t) = 1

Therefore ϕ3|τ1(t) = ϕ3|τ3(t) and the function ϕ3 is continuous at t. The same argument can be used at any
other point along the interface between element τ3 and τ1, τ2.

As a second example, let us consider the finite element mesh shown in Figure 11. The global shape
functions associated with nodes 1, . . . , 7 are discontinuous.

The discontinuous global functions in the mesh of Figure 11 can be clustered into a single function
using equation (4) with

Iclustered = {2, . . . , 7}

I(1) = {1, . . . , 7}

I(α) = α : α 6∈ Iclustered and α 6= 1
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Figure 10: Representation of the clustered partition of unity used to handle the mismatched mesh of Figure 9.
The partition of unity is identically equal to one along the mismatched interface and it is therefore continuous.

1 2

3

4

5

6 7

Figure 11: Mismatched mesh composed of quadrilateral and triangular elements.
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This gives

ϕ1
.
=

7∑

β=1

ϕβ

which can be shown to be continuous using the same arguments as in the previous example. A representation
of the resulting clustered partition of unity is shown in Figure 12. This continuous partition of unity can then
be used to build GFEM shape functions as described in Section 2.1.1.

1

Figure 12: Representation of the clustered partition of unity used to handle the mismatched mesh of Figure
11. The dashed lines indicate the boundary of the support of the clustered function ϕ1.

From the two previous examples, we can see that an algorithm to handle a mismatched mesh can be
described as follows:

Let Γm ⊂ Ω be a mismatched interface. This is a curve in two-dimensional domains and a surface in the
case of three-dimensional domains. Let

Im = {α : ϕα(x) 6= 0, x ∈ Γm}

denote the index set of partition of unity functions that are discontinuous due to the mismatched interface
Γm. Let β ∈ Im . Then a continuous clustered partition of unity can be built using (4) with

Iclustered = Im − β

I(β) = Im

I(α) = α : α 6∈ Iclustered and α 6= β

The technique described above is quite general and can be used with any type of element that can
be unrefined using the method of Section 2.2. The technique however has some limitations that must be
addressed before it can find broader use. The support of the clustered partition of unity function at a mis-
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matched interface is equal to the union of the support of all originally discontinuous functions along the
interface. In case of the clustered POU represented in Figure 12, for example, the support of the partition of
unity function ϕ1 is equal to the union of all elements sharing nodes 1, . . . , 7. This support is represented by
the dashed lines in the figure. The GFE shape functions associated with ϕ1 have the same support. There-
fore, the approximation at a mismatched interface is analogous to a single finite element with size equal to the
union of all elements with nodes on the interface. The approximation properties of the shape functions at the
interface therefore deteriorates as the size of the mismatched interface grows. One approach to compensate
this loss of accuracy is to increase the polynomial order of the shape functions at the interface. However this
approach, in general, does not give satisfactory results if the solution of the problem has a singularity at the
interface since polynomial functions cannot approximate singularities well. In the next section we discuss
some approaches to handling this limitation.

2.4.1 Techniques to handle large mismatched interfaces

As discussed above, the clustering of nodes along and near a mismatched interface may in general give a
poor representation of the solution in this region. This effect can be diminished by clustering only the nodes
that are strictly necessary to make the approximation continuous across the mismatched interface. These are
the nodes with index in the set Im defined above. However, this does not guarantee that the supports of the
shape functions at the interface are small enough to give acceptable results, and this is certainly not enough
if the mismatched interface has points or lines of singularity.

Let ϕβ be the clustered partition of unity function at a mismatched interface Γm and let ωβ denote its
support. We can guarantee the quality of the GFEM approximation at a clustered mismatched mesh if we
can somehow perform h-refinement of ωβ in addition to p-enrichment. This can be done with the aid of a
mesh built on ωβ which is independent of the mesh used in Ω. This mesh can be built without much difficulty
since it has no relation with the mesh used in Ω. In addition, ωβ is a small domain with, in general, a simple
geometry. This approach is illustrated in Figure 13 (b). The support ω1 of the clustered partition of unity
function ϕ1 is represented by the dashed lines. The triangularization used on ω1 is shown on the right hand
side of the figure. This triangularization can then be used to create shape functions defined on ω1 and that
are zero on ∂ω1 ∩ Ω. This last requirement can be achieved by not using the nodes on ∂ω1 ∩ Ω.

The presence of different material properties across the mismatched interface surprisingly does not
complicate the situation. This discontinuity can be handled by simply forcing the local mesh to take into
account the material interface. One such example is illustrated in Figure 13 (c).

As a second example, let us consider the mismatched mesh of Figure 14. In this case, there are two
point singularities at the mismatched interface and p-enrichment of the clustered partition of unity function
ϕβ can not resolve these features. A triangularization of ωβ is shown on the right hand side of the figure. The
local mesh used does not match the mesh on Ω. The nodes not on ∂ωβ ∩ Ω are indicate by solid dots. Note
that the nodes located on the singular points can be used. This is in general the case. If the lines or points of
singularities happen to be on ∂ωβ ∩ Ω, then ωβ can always be extended (by clumping more nodes) such that
they belong to ωβ.

The examples above illustrate that the accuracy of the GFEM solution at the mismatched mesh can
be controlled using the proposed technique. This demonstrates the unique features of this technique, namely
stability and accuracy.
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1

(a)

(b)

(c)

Material Interface

Figure 13: Local meshes used to provide global functions with small support across a mismatched interface
in the case of continuous (b) and discontinuous (c) material properties across the interface. The vertex nodes
with degrees of freedom are indicated by small solid circles. The meshes are independent of the one used in
the domain Ω. They only need to cover the support ω1 of the clustered partition of unity ϕ1.
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ωβ

β

Figure 14: Local mesh used to provide global functions with small support across a mismatched interface.
The vertex nodes with degrees of freedom are indicated by small solid circles. The local mesh is independent
of the existing meshes at the subparts. This is in contrast with existing local remeshing approaches.
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2.5 Elements of Unacceptable Quality

It is well known by finite element practitioners and from the theoretical point of view that the quality of a
finite element approximation to the solution of boundary or initial value problems depends directly on the
aspect ratio of the elements in the mesh. The aspect ratio of an element is defined as the ratio between the
diameter of the smallest circle (or sphere) that circumscribes the element and the diameter of the largest
circle (or sphere) that can be inscribed in the element.

Elements of unacceptable aspect ratio can appear in a finite element mesh for several reasons. During
the mesh generation, for example, the transition zones between small and large elements, in general, contain
elements with large aspect ratios. This can only be avoided, in most cases, by substantially increasing the
number of elements in the mesh. Even meshes initially containing only elements of good quality can become
unacceptable in the course of a simulation involving nodal movement. This happens, for example, during
the shape optimization of mechanical parts or in the analysis of problems involving finite deformations using
a Lagrangian formulation. A common approach to handle this situation is to remesh the entire domain
whenever elements of unacceptable quality appear. This cannot always be done without the intervention
of the user and in general leads to a loss of accuracy caused by mapping the solution between consecutive
meshes.

In this section we describe how elements of unacceptable quality for the finite element method can
be handled in the GFEM using a local version of the mesh unrefinement technique proposed in Section 2.2.
We concentrate here on the case of elements with a Jacobian equal or close to zero at some point(s) in the
element. This causes the transformation from the reference or master coordinate system to the physical or
global coordinate system to be non-invertible. This inverse mapping is used by most finite element solvers
to compute derivatives of the shape functions of the element in the physical directions. Elements with this
type of problem arise quite often during automatic mesh generation around curved boundaries as illustrated
in Figure 15. Most mesh generators for elements with quadratic geometry, first generate a mesh with straight
edges or faces and then move the center nodes of the edges or faces to the actual geometry. This last step is
very prone to deteriorating the quality of elements. An example of a mesh generated using this approach is
shown on Figure 15. The edge of the hatched element that is on the curved boundary was moved from the
dashed line to the position shown. The resulting element has a negative or zero Jacobian at several points
and is therefore unacceptable.

Let us now consider more closely how the shape functions and their derivatives are computed in an
element τ , in which all partition of unity functions (nodes) have been clustered into a single function (node)
ϕβ as in the case of the hatched element shown in Figure 7. Such an element is said to be clustered. The
resulting partition of unity function over element τ is identically equal to one and the GFEM shape functions
are given by

φβ
i = ϕβLiβ = Liβ i ∈ I(β)

according to (3). The derivatives of these functions with respect to the global directions (x1, x2, x3) are
therefore given by

∂φβ
i

∂xa

=
∂Liβ

∂xa

i ∈ I(β), a = 1, 2, 3

The computation of the derivatives of enrichment functions Liβ does not use the inverse of the Jacobian
matrix since these functions are independent of the partition of unity. Therefore, the calculation of the
GFEM shape functions and their derivatives over clustered elements is not affected by the quality of the
elements. This property of the GFEM shape functions suggests the following strategy to handle elements of
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unacceptable quality:

• Check the element Jacobians at sampling points and cluster those with near zero or negative values.
Here, the sampling points can be, for example, the vertices of elements, integration points, etc.

• Check the quality of elements in a given mesh by computing the aspect ratio and/or any other measure
of element quality and cluster the elements of unacceptable quality.

• Enrich the approximation at the nodes to the desired order using any one of the techniques described
in Section 2.3.2.

Figure 15: Element of unacceptable quality near a curved boundary. The mapping from the reference element
to the hatched element cannot be inverted. If the element is clustered, however, the inverse mapping is not
needed.

3 Computer implementation

The GFEMC algorithms described above, were implemented using ProPHLEX hp-adaptive finite element
environment [23]. ProPHLEX is a customizable software library aimed at development of hp-adaptive finite
element solvers. It consists of several ready (“black box”) components needed for the solution of various
problems that can be formulated as second order partial differential equations:

• hp-adaptive finite elements, easily customizable for arbitrary PDE’s,

• error estimation and adaptivity algorithms,
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• linear, nonlinear, and time-dependent algebraic solvers,

• generic discrete (not automatically adaptive) elements,

• object oriented, dynamic data structures,

• customizable input deck reader (proprietary PHLEX format and Nastran compatible format),

• customizable command line language, and

• built–in interactive 3d post-processor.

The GFEM with clustering was implemented in ProPHLEX using generic, discrete, finite element concepts,
as a result only p-adaptivity and clustering are currently available (not traditional h-adaptivity).

The element formulation (numerical integration, shape functions, and PDE formulation) were imple-
mented mimicking that of the hp-adaptive finite elements already present in ProPHLEX. As a result, most of
the applications built on PHLEX can currently choose GFEMC as an alternative discretization method, and
many structural mechanics examples can be solved using classical FE’s, hp-adaptive technique and GFEMC
using almost identical input data files. It is also possible to mix and match these three approaches, i.e. solve
a single model containing seamless combination of all three types of elements.

3.1 Implementation of adaptivity algorithms

ProPHLEX code is not written using C++ or any other well known object oriented computer programming
language. Its object oriented technology is implemented in C and Fortran with the help of custom prepro-
cessor [1]. Thus the implementation details for GFEMC database are presented below as C–style struct
code.

Two main OBJECTs defining the database in ProPHLEX relevant for the GFEM are Gnode and
GenEl. Gnode (geometry node) represents a vertex of each element and stores nodal coordinates, solution
components (Lagrange style DOF’s) and some components of h-adaptive connectivities (Fig 16 a). GenEl
OBJECT (generic discrete finite element - Fig 17 a) represents traditional finite element, with data members
containing connectivities, physical/material properties, boundary condition, and some possible extensions
for adaptivity (family points to an OBJECT linking to parent and children, in the refinement element
tree). Class member points to a GenClass OBJECT, which is used mainly to reference methods needed
for element assembly, physics equations, reader and post-processing methods, but it can also have methods
refine_elem, unrefine_elem, and enrich_elem) which could be optionally coded to implement
h- and p-adaptivity.

3.1.1 p-adaptivity

The above OBJECTs were expanded to handle p-adaptivity in the GFEM:

• Gnode was augmented with Mnode (“meshless node”) (Fig. 16 b) to contain array of DOF’s needed
for all enrichment functions, and some additional flags defining family ϕα. CBasis and IsAtCrackFront
are used for the special, non–polynomial enrichment functions, which will not be discussed in this pa-
per (see, for example, [15, 24]).
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OBJECT Gnode {
int objname ;
int NodeID ;
int map ;
double xyz[NDIM]; /* node coordinates */
OBJECT Gconst * gconst ; /* h-adaptive constraint */
OBJECT DOF * dof ; /* solution */
OBJECT CIO * coor_system ;

};

OBJECT Mnode {
int objname ;
OBJECT Gnode * gnode ;
OBJECT DOF ** dofs ; /* array of DOFs */
OBJECT Any_Object * CBasis; /* special functions */
double size ;
UBYTE ndofs; /* number of unknowns */
UBYTE weight_type ;
UBYTE basis; /* type of PoU basis */
UBYTE IsAtCrackFront;
UBYTE order[NDIM] ; /* p_order */
UBYTE shared ;

};

Figure 16: OBJECT for finite element’s node, and its’ expansion to handle GFEMC meshless nodal data
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OBJECT GenEl {
int objname ;
int ElemID ;
OBJECT Gnode ** gnodes ; /* geometry vertices */
OBJECT GenEl * neigh [ NFACE ] ; /* neighbors */
OBJECT CIO * material;
OBJECT UserData * userElem;
OBJECT GenClass * Class; /* incl. object method’s */
OBJECT BCelem * BCinfo ;
OBJECT ErrEst * ElemErr ; /* error estimator data */
OBJECT Any_Object * appData;
OBJECT Genealogy * family; /* for h-adaptivity */
UBYTE is_boundary ;
UBYTE geom_type;
UBYTE num_nodes;
UBYTE solver_flags;

};

OBJECT Cloud {
int objname;
int nMnodes;
OBJECT Mnode ** m_nodes ; /* solution nodes */
OBJECT Any_Object * appData;
UBYTE* localMasterIndex ;
int NumICinClump;
UBYTE nMsSlvNodes;
UBYTE IntOrder[NDIM]; /* p_order */
UBYTE ICCrackness ;

};

Figure 17: OBJECT for generic element data in ProPHLEX, and its expansion to handle GFEMC element
data.
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• GenEl OBJECT was expanded with Cloud, (Fig. 17 b), which stores mainly connectivities to
Mnodes, needed to evaluate shape functions during assembly and post-processing.

In addition the OBJECT method enrich_elemwas coded in such a way, that a request to enrich an
element is transferred to all connected Mnodes, which in turn are modified to contain at least all monomials
needed for a specified p-order. After modifications of all Mnodes in an element, local member order[]
is adjusted to contain the maximum p–order of all Mnodes- this value is needed e.g. to properly choose
integration formula used during element assembly.

3.1.2 h-adaptivity

h-adaptivity can be implemented via refine_elem method in GenClass OBJECT. It is currently not
implemented in the traditional element refinement sense – instead it is used during element clustering (see
below).

3.1.3 c-adaptivity

All mesh modifications needed for mesh clustering (c-adaptivity) are implemented in the same way, as it does
not really matter whether clustering was triggered by misaligned connectivities, negative Jacobian elements,
or if it is used to coarsen the solution. The database modifications implemented for p-adaptivity in GFEM (
Mnode and Cloud) are sufficient for the clustering, because they allow for full separation of:

• geometry definition, where element (i.e. integration cell) is defined by geometry nodes, and

• solution approximation, where solution patch (i.e. element or cluster of elements) is defined by mesh-
less nodes (representing families of functions ϕα).

Elements which are fully “clustered–out” point to a single Mnode. For a cluster consisting of multiple
elements, all Clouds point to the same Mnode. The position XYZ of this Mnode is arbitrarily adjusted
to be close to the geometrical center of the cluster, thus minimizing ill–conditioning when higher order
polynomials are used. All Cloud’s which point to a single Mnode (member NumICinClump= 1) use
reduced number of integration points (lower order Gauss formulas) because their PoU is constant (does not
contain linear x, y, z terms) and they are also shown during post-processing with lowered p–order.

Some basic refinement/unrefinement operations are as follows:

• refine_elemmethod, when applied to a cluster of multiple elements, deletes the single Mnode, re-
places it with two or more Mnodes, arbitrarily located. All elements of the cluster are then reattached
to new Mnodes.

• refine_elem method, when applied to a single element (cluster with one element) regenerates
Mnodes associated with element vertices, thus creating “regular” GFEM element.

• unrefine_elem method performs actions opposite to refine_elem. In particular it can:

– convert single “regular” GFEM element to a single element cluster (element with “flat” PoU),
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– replace two or more elements or clusters with a single Mnode/Cloud pair.

Note that refinement in c-adaptivity (and also h-adaptivity for GFEM, when implemented) in general
cannot be performed in such a way as to preserve exactly existing solution. This is in contrast to hp-adaptivity
implemented in PHLEX, in which solution space before refinement is contained in the solution space after
refinement. This property is quite important in time dependent solution sequences. In the GFEM, like
in almost all meshless techniques, the solution needs to be recomputed after each adaptation, using L2–
projection or similar technique. The errors introduced in this step, and their possible effects on solution
quality and stability need to be further investigated.

3.2 Voronoi clustering technique

Initial clustering in the mesh is based on any mesh partitioning technique appropriate for parallel FEM
solver. Two such algorithms have been implemented: using space filling curves [34], and public domain
Metis partitioner [21]. In both cases either nodes or elements can be send to partitioner to create cluster data.
Metis partitioner produced usually more compact clusters, and node-based partitioning produced somewhat
better clusters, and it was also algorithmically simpler, so this was selected as the default method in the code.

Voronoi based clustering is actually a smoothing algorithm, i.e. it starts with existing partitioning
(e.g from Metis) and rearranges clusters by:

• identifying all Mnodes associates with clusters (one Mnode per cluster),

• adjusting all Mnodes to locations at the geometric center of each cluster, and

• disregarding all cluster connectivities, and reassigning each element to the “best” Mnode, based pri-
marily on the distance between the Mnode and the element center.

This process is conceptually identical to generating Voronoi cells for all Mnodes and assigning to each
cluster all elements falling inside Voronoi cells.

Voronoi smoothing can be applied to the initial (global) clustering, but it can also be used during
the adaptivity, to readjust clusters after each adaptation step, which results in smoother mesh (more uniform
cluster sizes).

3.2.1 Additional considerations during adaptivity in the GFEM with clustering

To ensure continuity of the solution and avoid unexpected local mis–behaving of the solution, clustering (as
described above) needs to be adjusted to account for:

• presence of point boundary conditions,

• surface-based boundary conditions,

• interfaces with non-GFEM elements or pseudo–elements (RBE, MPC, etc)
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• non–convex parts of the domain (see example 4.1.2)

Current implementation over conservatively prohibits clustering and limits p-adaptivity in all el-
ements connected to boundary conditions and non–GFEM elements, although it is possible to relax this
restriction for surface-based boundary conditions (e.g. pressures). This can be seen in the examples in the
following section, when low number of requested clusters still uses relatively large number of equations.

The algorithms to properly handle non-convex domains also need to be further investigated.

3.2.2 Automatic handling of incorrect meshes

Figure 18: Beam model with severely misplaced node, resulting in elements with negative volume.

Figure 19: Elements distorted due to misplaced mid edge nodes. Global mesh seems to be correct because
edges are customarily not drawn as curved.

The GFEM with clustering can handle several types of incorrect meshes, assuming that the mesh
has properly defined connectivities and that the boundary geometry is approximated correctly. Additionally,
with manual intervention, mesh with incorrect connectivities along the surface (misaligned mesh) can also
be handled.

Most common examples of incorrect meshes result in negative Jacobian elements:

• Incorrectly placed node (Fig. 18) results in mesh “folded” on itself. Elements on two sides of the
“fold” overlap, and the element(s) in between have negative Jacobian (negative volume). As a result,
total volume may be computed correctly.

• Incorrectly placed mid-node for second order elements (Fig. 19 - 21). Jacobian changes sign within a
single element, and parts of the element “fold” onto the neighboring elements.
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Figure 20: Elements distorted due to misplaced mid edge nodes. Zoom on the area with distorted elements.

Figure 21: Elements distorted due to misplaced mid edge nodes. Element clusters encapsulating overlapping
zones.

• Ill-conditioned elements (see 4.3.2), mostly due to bad aspect ratio, or large internal element angles.
Some of these elements do not need special handling as the GFEM is less sensitive to bad aspect
ratio elements, others, especially ones with large internal angles, have to be handled the same way as
negative Jacobian elements.

In both cases the challenge is to detect the bad elements, and also properly determine the extent of over-
lapping regions. During initial mesh checks most finite element codes verify value of element Jacobian,
the GFEM code tests this value at multiple points inside each element (using Gauss points and/or element
vertices). All elements with bad Jacobian are automatically clustered with neighboring elements. The code
properly handles “flipped” elements (clusters sufficient number of neighbors). Current code is limited to
separated incorrect elements, i.e. cannot connect two negative element Jacobian elements sharing common
node. In such case special command element_patch is used in the input deck, which defines list of nodes
to be clustered, or bounding box surrounding the problem area.

Inconsistent mesh (see e.g. fig. 30) in general cannot be efficiently handled fully automatically.
The brute force search for elements which are neighbors but do not share common vertices is possible,
albeit costly, but it will of course generate incorrect results when mesh contains intentional discontinu-
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ities (contact zones, or fracture mechanics problems). Such meshes are handled semi-automatically, using
element_patch command.

Techniques to handle large mismatched interface presented in 2.4.1 have not been implemented in
present version of the code.

4 Numerical Examples

Several examples were solved using the GFEM with clustering presented in previous sections. The CPU
times, where reported, are in seconds for Athlon 2400 Linux computer. Most of examples presented are
small enough such that the time spent in the element assembly is large compared with the linear solver time.
The routines used for assembly were not optimized, thus CPU times are relative only, and in particular should
not be used to judge the effectiveness of the method.

4.1 Clustering techniques

4.1.1 Bulky 3–d model

Simple three–dimensional model (Fig 22) was used to investigate the effects of mesh clustering. For the
convergence tests several meshes with different number of tetrahedrals were used, ranging from 15527 up
to 825996 elements. Large models could not be solved on 32-bit computer without clustering, also large
number of clusters, especially for p = 2, required more memory than available. Note also that elements with
prescribed displacements on their faces were excluded from clustering, thus even for very small number of
clusters the number of linear equations was significant, especially for the large models. This can be improved
with better handling of boundary conditions, and better clustering algorithms near the boundary. Figs. 23
and 24 show the effects of partitioning of the smallest mesh into 120 clusters, using Metis partitioning and
Metis with Voronoi cells, respectively.

Tables 1, and 2 summarizes convergence of the solution with varying number of clusters and different
approximation order p. Tables 3 and 4 show selected results for the eigenvalue problem. All times reported
in this example are for Athlon 2000 computer. Since the maximum stress for this problem is not well defined
due to the presence of singularities, total strain energy was used for comparison.

Figure 25 shows the unexpected stress distribution, when computed directly from derivatives of the
displacements. By comparison with Fig. 23 one can observe that single layer of “full” GFEM elements,
i.e., with all their nodes, interfacing clusters of elements acts as relatively soft “glue” and absorbs most of
deformations resulting in thin bands of large stress. This should be resolved by smoothing stresses across
larger patches, via appropriate stress extraction technique.

Figure 26 shows error distribution computed for the full GFEM model (approximation order p = 2).
While actual value for the error is computed with unknown constant and cannot be used to estimate global
error in the solution, error distribution is suitable for adaptation process to select candidate elements for
(un)refinement or enrichment. For derivation of error estimator see [24].
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Figure 22: Bulky three–dimensional model. It is fully supported at perimeter of vertical openings, loaded
with uniform normal pressure on a part of horizontal, upper openings

Figure 23: Metis based partitioning. White elements use “flat” PoU, i.e., all Mnodes clustered into a single
Mnode, darkest ones have 4 distinct Mnodes, similarly to standard FEM.
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Figure 24: Metis based partitioning with Voronoi algorithm

Figure 25: Stress distribution for partitioning in Fig 23 computed directly from pointwise derivatives of
displacements.
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Figure 26: Error distribution for model without clustering.

# of clusters # eqns CPU time RAM(MB) Tot energy
p-order= 1
20 18888 23.91 99 0.466014
200 21072 28.76 116 0.881289
2000 42312 89.98 105 1.188349
p-order= 2
20 34296 82.78 137 0.910704
200 39738 109.32 169 1.202554
2000 92838
no clustering
p = 1 61041 60.05 70 1.289970
p = 2 244164 2018.01 549 1.351846

Table 1: Convergence of the solution for bulky three–dimensional model. Mesh with 92149 elements.

# of clusters # eqns CPU time RAM(MB) Tot energy
p-order= 1
20 106116 332.57 328 0.397022
200 108300 350.08 334 0.806180
2000 129936 468.53 387 1.219049
p-order= 2
20 191058 1133.50 808 0.877485
200 196518 927.34 843 1.258240
2000 250608
no clustering
p = 1 505209
p = 2 2020836

Table 2: Convergence of the solution for bulky three–dimensional model. Mesh with 820142 elements.
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# of clusters # eqns CPU time RAM(MB) Eig 1 (Hz) Eig 10 (Hz)
p-order= 1
20 16104 43.13 128 68.1 418.8
200 18264 56.65 151 45.3 331.5
2000 39360 181.01 138 36.4 287.3
p-order= 2
20 27318 193.30 160 41.1 322.7
200 32718 277.22 201 35.0 284.9
no clustering
p = 1 241089 3810.55 957 33.5 267.1

Table 3: Convergence of eigenvalue solution for generic bulky model, 91124 tetrahedral elements. Full
model could not be solved on 32-bit computer at p = 2.

# of clusters # eqns CPU time RAM(MB) Eig 1 (Hz) Eig 10 (Hz)
p-order= 1
20 91920 530.18 389 92.1 491.1
200 94068 582.44 397 54.8 370.2
2000 115836 806.50 473 38.9 296.9
p-order= 2
20 155514 2242.82 970 47.8 331.9
200 160884 2016.43 1016 36.4 289.9

Table 4: Convergence of eigenvalue solution for generic bulky model, 825996 tetrahedral elements. Full
model could not be solved on 32-bit computer even at p = 1.
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4.1.2 Plate with T–section ribs

The following example tests clustering algorithm for non–convex 3–dimensional model: plate with T–shaped
ribs (Fig. 27). The model has 720 linear brick elements (HEX8) and with low number of requested clusters
it will create non–convex clusters, as shown in Fig. 28.

Figure 27: Plate model with T shaped ribs.

Although true adaptive solution would eventually detect and resolve singularities along all the T
joints, the model is coarse enough that this behavior does not interfere with the results listed in the table. The
reference solution is obtained using PHLEXsolid (hp-adaptive FE method) with the same mesh; all elements
with edge support were excluded from adaptation. Maximum stress appears on the top surface of ribs (Fig.
29), and it is relatively smooth; this explains good convergence for stress in the table.

Table 5 shows convergence results for this example, and Table 6 shows the convergence of eigen-
problem for the same model. It may be noted that results for low number of clusters with p-order equal 1 are
very stiff – this is caused by clusters including void space in their span (e.g. two front–most clusters in Fig.
28). Such clusters behave as if the void had some fractional non–zero stiffness, because the shape function
within the cluster are continuous in the void and in the elements next to the void. For such examples, the
partitioning algorithm should detect non–convex clusters and automatically refine them.
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Figure 28: Plate with ribs. Cluster distribution for 50 requested clusters - The image shows only elements
with single Mnode, actual clusters contain additional Gnodes.

Figure 29: Plate with ribs. Stress distribution for 20 requested clusters.
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# of clusters # eqns CPU time Tot energy Max displ Max VM stress
Reference
hp-FEM 86394 3.29949 0.0492413 36.0042
p-order= 1
20 3540 7.37 0.37220 0.0052948 20.0547
50 3948 8.05 0.89328 0.0115606 20.9156
200 5820 9.83 2.35183 0.0314791 29.1563
500 8616 11.70 2.95466 0.0410756 31.7996
p-order= 2
20 7626 25.39 2.90423 0.0376752 31.9445
50 8646 29.07 3.06821 0.0407663 33.5929
200 13326 41.19 3.21160 0.0453042 35.4000
500 20316 67.94 3.28508 0.0484317 35.0655
no clustering
p = 1 4662 6.56 2.57123 0.0339121 27.8050
p = 2 18648 24.78 3.28089 0.0485858 35.0892

Table 5: Convergence of the solution for plate with ribs model

# of clusters # eqns CPU time RAM(MB) Eig 1 (kHz) Eig 10 (kHz)
p-order= 1
20 3540 6.12 17 3.639 19.628
50 3948 6.43 19 2.820 12.977
200 5820 8.79 31 1.763 10.446
500 8616 11.74 52 1.588 7.773
p-order= 2
20 7626 24.20 75 1.575 10.678
50 8646 28.75 92 1.545 8.845
200 13326 42.73 155 1.523 5.964
500 20316 90.69 135 1.512 5.492
no clustering
p = 1 4662 5.07 13 1.697 9.147
p = 2 18648 34.89 177 1.513 5.498

Table 6: Convergence of eigenvalue solution for plate with ribs model
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4.2 Mismatched meshes

4.2.1 2.5–d plate with the hole

A three-dimensional model of a plate with the hole shown in Fig. 30 includes both hexahedral and very long
tetrahedral elements, mismatched along a relatively large section of the domain. In spite of this discrep-
ancy, the displacements and stresses calculated with the GFEM (see Fig. 31 and Fig32) exhibit very good
symmetry. Also, the GFEM results compare favorably with an analytical solution: the calculated maximum
longitudinal stress component σxx was equal 3.44, while the analytical value for two-dimensional problem
is 3.25.

Figure 30: Plate with the hole with inconsistent mesh.

Figure 31: Plate with the hole with inconsistent mesh.Displacement distribution.
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Figure 32: Plate with the hole with inconsistent mesh. Stress distribution.

4.2.2 T connected beams

The model of a T–shaped beam (Fig. 33) subjected to a bending load, with mesh inconsistencies present
along three surfaces (see Fig.34, note that the mesh on the crossbar does not even place nodes on the inner
T-corner). After user-defined identification of the mismatched surfaces (a task which can be automated) the
domain was covered with GFEM discretization nodes (Mnodes) as shown in Fig. 35. The GFEM results
(von Mises stress distribution) are shown in Fig. 36. The solution satisfies all the necessary continuity and
consistency requirements. Moreover, it captures the stress concentration on or near the inner T-corner.

Figure 33: T-shaped domain under bending load.
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Figure 34: T-shaped domain under bending load: inconsistent tetrahedral mesh.

Figure 35: T-shaped domain under bending load: GFEM-Mnodes.

Figure 36: T-shaped domain under bending load: stress distribution.
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4.3 Elements of unacceptable quality

All examples in this section can be solved and compared with various commercial FEA codes. Such com-
parisons were performed but are not described here. Some commercial codes do not detect such meshing
errors, some others do and either refuse to solve or require special override command, while warning that
results may be incorrect. Our GFEM code does not require such warning, because, with proper clustering,
the formulation is mathematically correct, even with negative Jacobians.

4.3.1 Very long beam

A simple cantilever beam was solved using both finite element and GFE methods (Fig. 37). Table 7 sum-
marizes the results for order of approximation p = 3; the stress σxx is reported at the center of top surface
(away from singularities). It can be observed that, while the finite element solution, even with third order
approximation, is too stiff, the GFEM method provides very accurate results, with and without clustering of
degrees of freedom.

Figure 37: Simple cantilever beam, using tetrahedral elements with 1:20 aspect ratio.

Method: FEM GFEM full GFEM w/ clustering Exact
# eqns. 522 720 345 ( beam theory)
Max. displ. 0.168 0.624 0.618 0.625
Strain energy 0.824 3.120 3.090 3.125
σxx at(12.5,0.5,1) 0.27 745 735 750

Table 7: Comparison of solutions for the cantilever beam.

4.3.2 Very long tetrahedral elements

In this example, a plate with the circular hole was solved. The mesh, shown in Fig. 38. used second order
tetrahedral elements with straight edges. The aspect ratio of the worst element is 1/12.8. The solution (tip
displacement) obtained with GFEM is 1.006 of exact two-dimensional theoretical value, while the solution
with standard TET10 elements was 0.942. GFEM elements allowed also selective enrichment of approxima-
tion; by using p = 4 in plane and p = 2 out–of–plane, the normalized stress solution was 0.999.
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Figure 38: Plate with a hole: Elements with large aspect ratio.

4.3.3 Negative Jacobian elements

The thick shell model (hoop problem) was solved using second order tetrahedral elements with curved edges.
The model shown in the Fig. 39. contains a quarter of the shell, with bottom edge supported and inner edge
loaded with vertical tension opening the shell. The reference solution was obtained using PHLEXsolid hp-
adaptive code, with hexahedral mesh. Elements on the left side of the Figure were longer than on the right
side, and as a result of curved edges, 4 elements (shown in dark grey color) had negative value of Jacobian at
some vertices. This problem was solved using the GFEM with clustering in the negative Jacobian area. With
second order approximation, normalized peak stress along left plane of symmetry was 0.87 and 0.96 on the
right side. By using third order approximation, the solution was 0.98 and 0.99 respectively.

Figure 39: Thick shell model: curved elements with negative Jacobian. Clustered elements showed in dark
grey.

4.3.4 Elements with zero Jacobian

The wheel rim model shown in Fig. 40. contains elements on the surface that had exactly zero volume. Such
elements are often generated by an automatic mesh generators for highly curved non-convex domains. In this
example five such elements were present. While most FE codes require manual “pruning” of bad elements,
the GFEM produced correct results, without any difference between the results on the original and corrected
mesh.
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Figure 40: Wheel rim model: Zero Jacobian elements. 5 clusters around the faulty elements shown in dark
grey.

5 Summary and Conclusions

The techniques presented in this paper can be immediately applied to any truly continuum finite element
algorithms 1:

• linear and non–linear,

• static, time–dependent, eigenvalue problems,

• two– and three– dimensional problems, even time–space elements, and higher dimensional problems.

Examples presented in this paper show that the GFEM with clustering can handle correctly most of
finite element meshes, even those which, when used in standard FEA codes, could lead to erroneous results,
or would require very time–consuming manual corrections. This capability makes the proposed method a
very promising tool in the development of truly “meshless” application (i.e. FEA code with fully automatic
meshing process hidden from the user).

CPU times and memory requirement presented in section 4.1, show that for the large mesh it is
possible to reduce problem size and CPU time, in exchange for the accuracy of the solution. Thus eventually
it should be possible to implement user controllable “slider”, to select how much accuracy or how much
computer resources should be used to solve a given problem.

The clustering technique applied for the coarsening of very large meshes showed to produce expected
results, although actual computer implementation needs further development. In particular, the following
aspects of the technique should be further investigated:

• Improve clustering algorithms to detect and avoid non–convex clusters: The quality of the numerical
solution on clustered models is directly related to size and shape of the element clusters. In this regard
new clustering algorithms must be identified which produce optimal element clusters. A discussion on
this issue is presented in Section 2.3.1.

1as with any hp-adaptive FE code, it will require some modifications for underintegrated formulation
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• Implement stress extraction algorithms to avoid artificially high stresses in the zones between clusters:
The numerical solution for the primary variables (displacement field) on clustered meshes is reasonably
smooth and continuous. However, the derivatives of the solution are poor. In the context of the linear
statics test code these derivatives lead to unacceptable stress values.

• Improve clustering algorithms to handle various types of boundary conditions: Algorithms for special
handling of Dirichlet and possibly non-homogeneous Neumann boundary conditions during clustering
need to be devised. Without these algorithms the utility and performance of the method could be
greatly affected.

• Optimize generation of stiffness matrices for each cluster, to reduce unnecessary CPU time during
assembly: The overall performance of the solver on clustered meshes was found to scale very poorly
in regard to the final model size. In fact, for clustered meshes that contained relatively small element
clusters the overall performance was generally worse than solving the entire model. We believe this
scaling can be significantly improved using specialized assembly techniques, optimized integration
rules, special functions that satisfy the partial differential equations, and/or possibly through parallel
processing as discussed in Section 2.3.3.

For models that have mis-matched meshes, “gluing” the sub-parts together using the partition of unity
framework is not a trivial task. The primary open issues associated with this technique are related to handling
the deterioration of the approximation properties of the GFEM shape functions at the interface as the size of
the mis-match grows. Possible solutions for this problem are discussed in Section 2.4.1.

Finally, regarding the acceptance of poor quality meshes and even bad meshes, the open issues here
are primarily related to local mesh clustering (as opposed to global mesh clustering for solver performance)
and the quality/stability of the numerical approximation that can be expected in clustered regions.
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