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Abstract

A high-order generalized finite element method (GFEM) for non-planar three-dimensional crack
surfaces is presented. Discontinuousp-hierarchical enrichment functions are applied to strongly graded
tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack
arbitrarily located within a finite element mesh and thus theproposed method allows fully automated
fracture analysis using an existing finite element discretization without cracks. We also propose a crack
surface representation that is independent of the underlying GFEM discretization and controlled only
by the physics of the problem. The representation preservescontinuity of the crack surface while being
able to represent non-planar, non-smooth, crack surfaces inside of elements of any size. The proposed
representation also provides support for the implementation of accurate, robust and computationally
efficient numerical integration of the weak form over elements cut by the crack surface. Numerical
simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors
along non-planar curved crack fronts and the robustness of the method.

Keywords: Generalized finite element method; Extended finite element method; Fracture; High-order
approximations.

1 Introduction

Crack growth prediction is of great importance in many areasof application, such as assessment of struc-
tural components subjected to extreme loading conditions and fatigue failure analysis. In these cases, engi-
neering decisions must be based on accurate evaluation of crack front quantities such as energy release rate
and stress intensity factors. These quantities are, in turn, dependent on the accuracy of the 3-D numerical
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analysis performed. However, accurate 3-D analysis of fracture mechanics problems is still a challenging
task.

In a standard finite element analysis, it is well known that the combination ofh- andp-extensions, the so-
calledhp-version [55], exhibits exponential convergence rates for fracture mechanics problems. However,
the craft of optimalhp FEM discretizations for arbitrary 3-D crack problems is nota trivial task and is
difficult to fully automate. It requires, in general, human intervention and thus leading to a costly analysis.

Partition of unity methods such as the GFEM [4, 11, 12, 15, 41, 51] and the XFEM [7, 37] are promising
candidates to overcome the mesh design issues of the FEM. These methods greatly facilitate the modeling
of arbitrary 3-D cracks since element faces are not requiredto fit the crack surfaces.

Early developments ofp-hierarchical enrichment of arbitrary degree for the GFEM can be found in the
works of Duarte et al. [41] and Taylor et al. [58]. In these references, the method is applied to 2-D linear
elastic problems.P-hierarchical GFEMs for three-dimensional elasticity problems with edge-singularities
were first proposed in [11, 12]. Quadratic XFEM approximations for 2-D fracture problemshave been
presented in Stazi et al. [50], Wells and Sluys [60], and Mariani and Perego [34]. Cubic approximations are
discussed in the work of Laborde et al. [30]. Their high order approximations are based on non-hierarchical
Lagrangian shape functions.

A GFEM for 3-D cracks was proposed by Duarte et al. [13, 14, 15] using a discontinuous partition of
unity and enrichment functions built from high order polynomial and Westergaard near crack tip expansions.
Early works on the XFEM for 3-D planar and non-planar crack surfaces using Heaviside step function and
Westergaard functions include the works of Sukumar et al. [9, 52, 53] and Möes et al. [24, 38], respectively.
More recent developments for 3-D crack analysis include theworks of Areias and Belytschko [1], Gasser
and Holzapfel [22], Mergheim et. al.[36], and Oliver et al. [43].

Duarte et al. [16] have proposed a high-order GFEM for through-the-thickness branched cracks in
which the displacement field is enriched with high-orderp-hierarchical GFEM approximations. They have
consistently used high-order hierarchical GFEM approximations for single and multiple branched cracks
that are planar through the thickness of the analysis domain. In their work, the concept of the so-called
high-order step function is introduced. Their high-order enrichment functions are applied to the GFEM
approximation using the partition of unity concept with linear FE shape functions. A brief comparison
between Lagrangian andp-hierarchical GFEM enrichments is presented in [16].

This paper presents anhp-extension of the generalized finite element method (GFEM) for non-planar
3-D crack surfaces. Using the ease of creation of high-orderenrichment functions and the ability of the
GFEM to model a crack arbitrarily located within a finite element mesh, we are able to show that the
proposedhp-GFEM can provide accurate solutions and high convergence rates for stress intensity factors
of 3-D fracture mechanics problems.

H-refinements can be easily applied in the GFEM since the volume mesh need not fit the geometrical
representation of crack surfaces. This greatly facilitates the construction of strongly graded meshes in the
neighborhood of crack fronts while preserving the aspect ratio of the elements. The proposed discretization
process appliesp-hierarchical enrichment to meshes strongly graded around3-D crack fronts. Both the
p-enrichment and theh-refinement are fully automated, and thus the proposedhp methodology can be
applied to initial finite element meshes that are arbitrarily coarse. The proposed enrichment for nodes near
the crack front is based on the Westergaard expansion of the elasticity solution near a crack front. They
allow modeling of crack fronts located inside elements and not necessarily at their boundary.

The p-hierarchical enrichment developed here is an extension ofthe approach presented in [16] to
the case of non-planar 3-D crack surfaces. The high-order continuous and discontinuous approximations
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Figure 1: Examples of elements cut by a crack surface. Each figure showsa single computational element and
different planar and non-planar cuts. Sub-elements used tointegrate the weak form are also shown in Figure (b).
Details on these sub-elements are presented in Section4.2.

are able to deliver optimal convergence rates. The theoretical formulation of our approach is presented in
Section3.

Numerical examples demonstrating the flexibility and robustness of the proposed method are presented.
We show that the proposed GFEM enables fully automated simulations of fracture mechanics problems of
industrial level complexity.

Optimalhp-discretizations of fracture mechanics problems use strongly graded meshes and low-order
approximations near crack fronts and large, high-order, elements away from singularities [55]. Thus, opti-
malhp-GFEM discretizations may have large elements cut by a cracksurface since, in this class of methods,
a crack may be arbitrarily located within a finite element, asillustrated in Figures1 and9. The geometrical
representation of a crack surface must, therefore, be capable of handling 3-D non-planar crack surfaces
inside an element. In addition, the surface may be non-smooth inside an element in order to represent sharp
turns in a crack propagation simulation (Cf. Figure10(c)).

Commonly used crack surface representations assume, in general, that the surface is planar inside an
element [1, 21, 22, 36]. Thus, the actual surface is approximated by an average plane inside each element.
While this greatly facilitates the computational implementation, it may also lead to several issues even when
relatively small, low-order, elements are used. Accordingto [1, 22, 36], the use of the planar-cut approach
in a mixed-mode crack growth simulation, may lead to discontinuous crack surfaces along the boundary
between elements. Proposed remedies for this require modifications to the crack surface in order to enforce
continuity. Thus, the crack surfaces actually used in the computations are biased by the underlying meshes,
like in the FEM. Ideally, the crack surface geometry should be based only on the governing physics of
the problem, regardless of the discretization used for the field variables. The limitations of planar-cut
representations can be ameliorated by using finer finite element meshes along the crack surface. However,
this coupling between crack surface representation and problem discretization may substantially increase
the computational cost of problems with complex crack surfaces. This coupling also exists in methods
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that use the finite element mesh to define implicit representations of crack surfaces based on, for example,
level sets [47]. If linear finite elements are used to represent the level set function, the crack surface is
also planar inside each element. However, in this case, the level set function provides a continuous, albeit
approximated, crack surface representation. Level sets are broadly used in the eXtended finite element
method [24, 38, 53]. A review of level set techniques applied to crack surface representations can be found
in [19].

In this paper, we propose a crack surface representation that is independent of the underlying GFEM
discretization. It is based on an explicit 3-D surface triangulation of the crack surface, like in the approaches
proposed in [1, 15, 21, 22, 29]. It provides consistent representation of non-planar non-smooth crack sur-
faces inside of elements of any size, while preserving its continuity. Explicit crack surface representations
are also convenient to represent branched crack surfaces [16] and facilitate the visualization of crack sur-
faces using standard graphical post-processors. Details on the proposed approach are presented in Section
4.

Some examples to numerically verify the approach proposed in this paper are presented in Section
5. The level of refinement and the polynomial degree required in the approximation for a given level of
accuracy is discussed in the numerical examples. Moreover,the robustness of the present approach in
solving problems of increasing level of complexity is also verified in the subsequent sections. Thehp-
GFEM shows high convergence rates and accurate results for energy norm as well as for extraction of stress
intensity factors in arbitrary 3-D crack surface problems.

2 Problem formulation

In this paper, we analyze three dimensional fracture mechanics problems assuming linear elastic isotropic
material behavior. This section presents the weak and strong formulations for this kind of problem. How-
ever, the discrete formulation presented in Section4 is not limited to the type of problem presented in this
section.

2.1 Strong form

Consider a three dimensional domainΩ with boundary∂ Ω as illustrated in Figure2. The domain boundary
is subdivided intoΓu, Γt , andΓc. Displacements are prescribed inΓu and tractions are prescribed in both
Γt andΓc. Γc represents the crack surface.

For the sake of simplifying the notation, the formulation presented here is based on a single crack
surface with one crack front only. However, the procedure can be easily extended to several cracks and to
cracks with multiple fronts as well.

The equilibrium equations, constitutive relations and kinematic equations are given by

▽·σσσ +bbb = 000 in Ω (1)

σσσ = CCC : εεε
εεε = ▽suuu

whereσσσ is the Cauchy stress tensor,bbb are body forces,εεε is the linear strain tensor,▽s is the symmetric
part of the gradient operator andCCC is the Hooke’s tensor. The boundary conditions are prescribed in∂ Ω as
follows
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uuu = ūuu onΓu

σσσ ·nnn = t̄tt onΓt

σσσ ·nnn = t̄ttc onΓc

wherennn is an outward unit normal vector on∂ Ω andūuu, t̄tt, andt̄ttc are prescribed displacements and tractions,
respectively.

∂Ω
Ω

Γt

t̄c

Γc

Γu

t̄

ū

Figure 2: Three-dimensional boundary value problem.

2.2 Weak form

Let the set of kinematically admissible displacement fieldsbe

H̃1 (Ω) =
{

uuu | uuu∈ H1 (Ω) , uuu = ūuu onΓu}

whereH1 is the Hilbert space.

Let the set of virtual kinematically admissible displacement fields be

o

H1 (Ω) =
{

vvv | vvv∈ H1 (Ω) , vvv = 000 onΓu}

The weak form of the equilibrium equations can be stated as follows.

Find uuu∈ H̃1 (Ω) such that

B(uuu,vvv) = L(vvv) ∀ vvv∈
o

H1
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whereB(·, ·) andL(·) are the bilinear and linear forms, respectively, and are given by

B(uuu,vvv) =
∫

Ω
σσσ (uuu) : εεε(vvv)dΩ

L(vvv) =
∫

Ω
bbb·vvvdΩ+

∫

Γt
t̄tt ·vvvdΓ+

∫

Γc
t̄ttc ·vvvdΓ

Let us now consider the case of a Cauchy or spring boundary condition, t̄tts, applied onΓs and given by

κκκ (δδδ s−uuu) = t̄tts

whereκκκ is the constitutive tensor of the spring system,δδδ s is the prescribed displacement at the base of the
spring system. In the weak form, this type of boundary condition is added to the linear form as follows.

∫

Γs
t̄tts ·vvvdΓ =

∫

Γs
κκκ (δδδ s−uuu) ·vvvdΓ (2)

In the limit case, any type of boundary condition can be written in terms of Cauchy boundary condition
[55]. The penalty method, for example, corresponds to the case in which the stiffness of the spring is much
larger than the stiffness of the body. Dirichlet boundary conditions can then be enforced by settingκi j = 0
if i 6= j andκi j = η if i = j , δδδ s = ūuu, andΓs = Γu. Thus, Equation (2) can be rewritten as follows

∫

Γu
η III (ūuu−uuu) ·vvvdΓ = η

∫

Γu
ūuu·vvvdΓ−η

∫

Γu
uuu·vvvdΓ

The weak form is restated as

Find uuu∈ H1 (Ω) such that

B(uuu,vvv) = L(vvv) ∀ vvv∈ H1

where

B(uuu,vvv) =
∫

Ω
σσσ (uuu) : εεε(vvv)dΩ+η

∫

Γu
uuu·vvvdΓ

L(vvv) =

∫

Ω
bbb ·vvvdΩ+

∫

Γt
t̄tt ·vvvdΓ+

∫

Γc
t̄ttc ·vvvdΓ+η

∫

Γu
ūuu·vvvdΓ

The penalty formulation is attractive from the implementation point of view because it does not require,
for example, that the shape functions have the Kronecker delta property. The penalty number, however,
must be chosen with care. In the numerical examples presented in this paper, the penalty number is taken as
η = 108∗E∗J, whereE andJ are the Young’s modulus of the material and the Jacobian of a volume element
with a face onΓu, respectively. Theoretical analysis of the penalty methodfor the GFEM is presented in
[2]. Other methods, like the Nitsche method or the Characteristic function method could be used as well.
Details on these and other methods, as well as their theoretical analysis, is presented in the survey paper by
Babuska et al. [2].
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3 High Order GFEM for Arbitrary 3-D Cracks

This section discusses the discretization of the weak form presented in Section2.2. We show the selection
of enrichment functions that fit the goals of thehp-GFEM discretization.

3.1 GFEM–A Brief Overview

The generalized FEM [4, 12, 35, 41, 51] is an instance of the so-called partition of unity method [3, 17, 18].
It adds to the classical FEM some of the flexibility enjoyed bymeshfree methods [2, 8, 25, 32, 33]. The
GFEM can be regarded as a FEM with shape functions built usingthe concept of a partition of unity. In
the GFEM considered here, a shape functionφα i is built from the product of a linear finite element shape
function,ϕα , and an enrichment function,Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα) (3)

whereα is a node in the finite element mesh. Figure3 illustrates the construction of GFEM shape functions
using a polynomial enrichment function.

The linear finite element shape functionsϕα , α = 1, . . . ,N, in a finite element mesh withN nodes
constitute a partition of unity, i.e.,∑N

α=1 ϕα(xxx) = 1 for all xxx in a domainΩ covered by the finite element
mesh. This is a key property used in partition of unity methods.

Several enrichment functions can be hierarchically added to any nodeα in a finite element mesh. Thus,
if DL is the number of enrichment functions at nodeα , the GFEM approximation,uuuhp, of a functionuuu can
be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iϕα(xxx)Lα i(xxx)

=
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

uuuα iLα i(xxx) =
N

∑
α=1

ϕα(xxx)uuuhp
α (xxx)

whereuuuα i , α = 1, . . . ,N, i = 1, . . . ,DL, are nodal degrees of freedom anduuuhp
α (xxx) is a local approximation

of uuu defined onωα = {xxx ∈ Ω : ϕα(xxx) 6= 0}, the support of the partition of unity functionϕα . In the case
of a finite element partition of unity, the supportωα (often called cloud) is given by the union of the finite
elements sharing a vertex nodexxxα [12]. The equation above shows that the global approximationuuuhp(xxx) is
built by pasting together local approximationsuuuhp

α ,α = 1, . . . ,N, using a partition of unity. This is a concept
common to all partition of unity methods.

The local approximationsuuuhp
α , α = 1, . . . ,N, belong to local spacesχα(ωα) = span{Liα}DL

i=1 defined
on the supportsωα , α = 1, . . . ,N. The selection of the enrichment or basis functions for a particular local
spaceχα(ωα) depends on the local behavior of the functionuuu over the cloudωα . In the case of the fracture
mechanics problem described in Section2.1, the elasticity solutionuuu may be written as

uuu = ûuu+ ˜̃uuu+ ŭuu (4)

whereûuu is a continuous function,̃̃uuu is a discontinuous function but non-singular andŭuu is a discontinuous
and singular function. Thisa priori knowledge about the solutionuuu is used below to select basis functions
for a local spaceχα(ωα).
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L̂α i

φ̂α i

ϕα

xxxα

(a) Continuous high-order enrichment

ϕα

xxxα

φ̃α i

H × L̂α i

(b) Discontinuous high-order enrich-
ment

Figure 3: Construction of a GFEM shape function using a polynomial enrichment. Here,ϕα is the function at the
top, the enrichment function, Lα i , is the function in the middle, and the generalized FE shape function,φα i , is the
resulting bottom function.

3.2 Enrichment Functions

In this section, we select the enrichment functions used to build the GFEM shape functions defined in (3).
These functions, in turn, are basis functions for local spacesχα(ωα), α = 1, . . . ,N.

Local approximation for a continuous function Let ωα denote a cloud such that the elasticity solution,
uuu, is continuous overωα . A local approximation,̂uuuhp

α (xxx), of uuu overωα can be written as

ûuuhp
α (xxx) =

D̂L

∑
i=1

ûuuα i L̂α i(xxx)

whereD̂L is the dimension of a set of polynomial enrichment functionsof degree less than or equal top−1.

Our implementation follows [12, 41] and the set{L̂α i}D̂L
i=1 for a cloud associated with nodexxxα = (xα ,yα ,zα)

is given by
{

L̂α i
}D̂L

i=1 =

{

1,
(x−xα)

hα
,
(y−yα)

hα
,
(z−zα)

hα
,
(x−xα)2

h2
α

,
(y−yα)2

h2
α

, . . .

}

(5)

with hα being a scaling factor [12, 41]. These enrichment functions are identical to those definedin [12].
The corresponding generalized FE shape functions,φ̂α i, at a nodexxxα , are polynomials of degreep given by

φ̂α i(xxx) = ϕα(xxx)L̂α i(xxx) i = 1, . . . , D̂L (no summation onα) (6)

Local approximation for a discontinuous function Let Ic-f denote a set with the indices of cloudsωα
that intersect the crack surface but not the crack front. Thus, the crack surface dividesωα into two sub-
domains,ω+

α andω−
α such thatωα = ω+

α ∪ω−
α . In this section, we define basis functions for local spaces

χα(ωα), α ∈ Ic-f.
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The elasticity solutionuuu overωα , α ∈ Ic-f, can be written as [48, 60]

uuu = ûuu+ ˜̃uuu = ûuu+H ũuu

whereûuu andũuu are continuous functions andH(xxx) denotes a discontinuous function defined by

H (xxx) =

{

1 if xxx∈ ω+
α

0 otherwise
(7)

We assume that the crack faces, i.e.Γ+
c andΓ−

c are not in contact. In the case of contact, the non-penetration
condition can be enforced using, for example, a formulationbased on distributed springs with very large
stiffness in the direction normal to the surfaces [49].

A local approximation,uuuhp
α (xxx), of uuu overωα , α ∈ Ic-f, can be written as

uuuhp
α (xxx) = ûuuhp

α (xxx)+H ũuuhp
α (xxx) =

D̂L

∑
i=1

ûuuα i L̂α i(xxx)+
D̃L

∑
i=1

ũuuα iH L̂α i(xxx)

whereûuuhp
α (xxx) andũuuhp

α (xxx) are local approximations of̂uuu andũuu, respectively, and̂Lα i is a polynomial enrich-
ment function of degree less than or equal top−1 as previously defined.

The analysis of through-the-tickness cracks presented in [16] shows that the continuous and discontinu-
ous components of the solutionuuu should be approximated using the same polynomial order. Thus, we take
D̃L = D̂L in all computations presented in Section5.

Based on the above, the generalized FE shape functions of degree less than or equal top used at a node
xxxα , α ∈ Ic-f, are given by

ΦΦΦp
α =

{

φ̂α i , φ̃α i
}D̂L

i=1 (8)

whereφ̃α i = H φ̂α i andφ̂α i is defined in (6). The generalized FE shape functions for branched cracks pre-
sented in [16] reduce toΦΦΦp

α in the case of non-branching cracks. The enrichment functionsH L̂α i(xxx), i =
1, . . . , D̂L, are called high-order step functions [16].

Local approximation on a cloud that intersects the crack front Terms from the asymptotic expansion
of the elasticity solution near crack fronts are good choices for enrichment functions in clouds that intersect
the crack front. Expansions for three dimensional problemsare discussed in, for example, [26, 39]. The
intersection of a crack surface with the boundary of the domain creates complex stress distributions, which
make the asymptotic expansions in these regions quite complex and in general, not practical for engineering
applications. Currently, two dimensional expansions of the elasticity solution are used as enrichment func-
tions for three-dimensional cracks in finite size domains [12, 15, 38, 53]. As a consequence, a sufficiently
fine mesh must be used around the crack front to achieve acceptable accuracy.

Let Ifront denote a set with the indices of cloudsωα that intersect the crack front. In this paper, a local
approximation,̆uuuhp

α (xxx), of uuu overωα , α ∈ Ifront, is defined as

ŭuuhp
α =

2

∑
i=1







ŭξ
α i L̆ξ

α i(r,θ )
ŭη

α i L̆η
α i(r,θ )

ŭζ
α i L̆ζ

α i(r,θ )






(9)
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whereξ , η andζ are directions in a Cartesian coordinate system andθ is a polar coordinate, as illustrated
in Figure4, ŭξ

α i , ŭη
α i and ŭζ

α i are degrees of freedom in theξ−, η− andζ− directions, respectively. Here,
the degrees of freedom are scalar quantities, in contrast with those used before. The enrichment functions
are given by [12, 15, 40, 42]

L̆ξ
α1(r,θ ) =

√
r

[

(κ − 1
2
)cos

θ
2
− 1

2
cos

3θ
2

]

L̆η
α1(r,θ ) =

√
r

[

(κ +
1
2
)sin

θ
2
− 1

2
sin

3θ
2

]

L̆ζ
α1(r,θ ) =

√
r sin

θ
2

(10)

L̆ξ
α2(r,θ ) =

√
r

[

(κ +
3
2
)sin

θ
2

+
1
2

sin
3θ
2

]

L̆η
α2(r,θ ) =

√
r

[

(κ − 3
2
)cos

θ
2

+
1
2

cos
3θ
2

]

L̆ζ
α2(r,θ ) =

√
r sin

3θ
2

where the material constantκ = 3− 4ν andν is Poisson’s ratio. This assumes plane strain conditions,
which is in general a good approximation far from crack frontvertices.

Z

X

Y

ξ

Crack front

η

r

θ

ζ

(OX OY OZ)

Figure 4: Coordinate systems associated with a crack front in 3-D space.

We can observe that the basis functions are given by the first term of the modeI , II , and the first and
second terms of the modeIII components of the asymptotic expansion around a straight crack front, far
from the vertices and traction-free flat crack surface [55]. They can approximate the singularity of the exact
solution along the crack front and the discontinuity of the displacement field. They also allow crack fronts
arbitrarily located in a cloudωα . Thus, a crack front does not have to be located on element faces as in
[1, 21, 22].

Generalized FEM shape functions built with the enrichment functions (10) must be integrated with
care. In the numerical examples presented in this paper, this is achieved by using strongly graded meshes at
the crack front and an appropriate number of integration points. The number of integration points depends
on the level of accuracy aimed at for a particular problem. A detailed study of numerical integration and
computational performance of these functions is presentedin a forthcoming paper.

Different enrichment functions are used in (9) for each component of the displacement vector. This
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leads to a total of six additional degrees of freedom at a nodeα ∈ Ifront. More degrees of freedom would
be required if the same enrichment functions are used for allcomponents of the displacement vector. The
enrichment functions used in, e.g., [9, 38, 52, 53], lead, in 3-D, to twelve enrichment functions for nodes
in the setIfront since four enrichment functions are used foreachcomponent of the displacement vector.
In the approach used in (9), only two enrichments are used to enrich each component of the displacement
vector. The performance of these two choices of enrichment functions is analyzed in a forthcoming paper.

The basis functions (10) are defined in a coordinate system located along the crack front as illustrated
in Figure4. Thus, they must be transformed to the global Cartesian coordinate system(x,y,z) prior to their
use in the definition of GFEM shape functions. Details can be found in, for example, [12, 15]. For future
reference, let

L̆x
α1, L̆y

α1, L̆z
α1, L̆x

α2, L̆y
α2, L̆z

α2, (11)

denote the result of such a transformation applied to the functions given in (10).

As discussed in Section4, the crack front is represented as a piecewise linear object. Thus, the orien-
tation of the local coordinate systems used to build the enrichment functions defined in (10) changes along
the crack front and not all nodesα ∈ Ifront will use the same set of enrichment functions. In this paper,we
apply the above enrichment functions only to clouds that intersect the crack front. This approach is denoted
by topological enrichmentin [6, 30]. An alternative is the so-calledgeometrical enrichmentin which all
nodes within a prescribed distance of the crack front are enriched, regardless of the mesh refinement around
the crack front. The enrichment functions defined in (10) and those used in [6, 30] assume that the crack
surface is planar. Thus, the geometrical enrichment is onlysuitable when the crack surface is planar in the
(not necessarily small) sub-domain affected by the enrichment functions. Here, our goal is to model crack
surfaces that may be arbitrarily curved and thus we employ topological rather then geometrical enrichment
since the former assumes planar crack surfaces only in the clouds that intersect the crack front and the size
of these clouds is small.

Examples Below we list a few examples of shape functions for tetrahedral elements using the definitions
given above. Lets consider the elements shown in Figure5. In the figure, yellow nodes belong to the set
Ic-f while green nodes belong to the setIfront.

Intersection point

Crack surface

Crack front

Boundary
of the domain

Figure 5: Examples of elements cut by a crack surface. Nodes with yellow glyphs belong to the setIc-f while green
nodes belong to the setIfront. The crack front is represented by the red edge of the crack surface. Red glyphs represent
intersections of element edges with the crack surface.

• Linear Approximation:In this case, the local approximationsûuuhp
α (xxx) and ũuuhp

α (xxx) are constant over
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ωα and thus{L̂α i}D̂L=1
i=1 = {1}. The shape functions at a yellow nodexxxα are given by

ϕα ×{1,H } (12)

These are the same shape functions used in, for example, [1, 9, 21, 22, 38, 52, 53, 60].

At a green nodexxxα , the shape functions for thex−, y− andz− components of the displacement
vector are given by

ϕα ×
{

1, L̆x
α1, L̆

x
α2

}

, ϕα ×
{

1, L̆y
α1, L̆

y
α2

}

, and ϕα ×
{

1, L̆z
α1, L̆

z
α2

}

, (13)

respectively. The enrichment functions used above are defined in (11).

• Quadratic Approximation:The local approximationŝuuuhp
α (xxx) andũuuhp

α (xxx) are constant or linear over

a cloudωα associated with nodexxxα = (xα ,yα ,zα) and thus{L̂α i}D̂L=4
i=1 =

{

1, (x−xα )
hα

, (y−yα )
hα

, (z−zα )
hα

}

.

The shape functions at a yellow nodexxxα are given by

ϕα ×
{

1,
(x−xα)

hα
,
(y−yα)

hα
,
(z−zα)

hα
,H ,H

(x−xα)

hα
,H

(y−yα)

hα
,H

(z−zα)

hα

}

These shape functions are defined in (8).

At a green nodexxxα , the shape functions for thex−, y− andz− components of the displacement
vector are given by

ϕα ×
{

1, L̆x
α1, L̆

x
α2,

(x−xα)

hα
,
(y−yα)

hα
,
(z−zα)

hα

}

,

ϕα ×
{

1, L̆y
α1, L̆

y
α2,

(x−xα)

hα
,
(y−yα)

hα
,
(z−zα)

hα

}

,

ϕα ×
{

1, L̆z
α1, L̆

z
α2,

(x−xα)

hα
,
(y−yα)

hα
,
(z−zα)

hα

}

,

respectively. Higher order shape functions for green nodesare defined analogously.

The numerical examples presented in Section5 show that the generalized FEM shape functions pre-
sented above, combined with strongly graded meshes at the crack front, are able to deliver high convergence
rates for stress intensity factors.

4 Crack Surface Representation and Integration of Weak Form

Section4.1 presents a procedure to represent three-dimensional cracksurfaces in a generalized finite ele-
ment framework. We restrict the discussion to the case of non-branching crack surfaces but the procedure is
also amenable to this case (Cf. [16]). The numerical integration of the weak form over elementscut by the
crack surface is discussed in Section4.2. Numerical examples demonstrating the robustness and accuracy
of the proposed approach are also presented.
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4.1 Crack Surface Representation

Several methods capable of representing a crack surface canbe used with partition of unity methods like
the GFEM. The choice of a particular method is mostly based onimplementation considerations. In the
approach proposed here, a three-dimensional crack surfaceis represented by an explicit triangulation of the
surface. An example is depicted in Figure6. The triangulation is completely independent of the underlying
GFEM discretization. Thus, refinement of the volume GFEM mesh or a background mesh [9, 45, 52]
are not needed in order to improve the representation of the crack surface, as is the case with implicit
representations based on, for example, level set methods.

Additional features of the proposed crack surface representation include the following

• It provides support for the implementation of accurate, robust and computationally efficient numerical
integration of the weak form over elements cut by the crack surface. This is not a trivial task since
the integrand of the weak form is discontinuous, and possibly singular, over elements cut by the crack
surface;

•The geometry of the crack surface is controlled only by the governing physics of the problem. Physically-
consistent crack surface representations may be especially important in problems with loaded crack sur-
faces, or those involving cohesive fracture models [5, 20, 27];

•Adaptive control through refinement/unrefinement of the crack surface triangulation for accurate geo-
metric representation.

In the examples presented in this paper, crack surfaces are represented using flat triangles with straight
edges. Hereafter, we refer to these entities asfacets. The facets do not need to define a valid finite element
mesh as they are used for geometrical representation purposes only. Each facet has an orientation and thus
we can identify if a given point in the 3-D domain is above, below or on the surface. The crack front is
represented by straight line segments connecting the vertices of facet edges along the crack front. Thus,
curved crack fronts are approximated by these straight linesegments. The fidelity of this approximation
can be controlled by simply using a finer triangulation of thecrack surface. This process is independent of
the GFEM mesh and does not change the problem size. Crack front segments are marked in red in the crack
surfaces shown in Figures5 and6. Blue segments in the figures indicate segments that are on the boundary
of the solution domain and thus can not propagate. Similar representation of crack surfaces can be found
in, for example, [1, 15, 21, 22, 29].

4.2 Numerical Integration of Weak Form

Generalized FEM shape functions defined using enrichment functions (7) or (10) are discontinuous across
the crack surface which, in turn, may be located inside a finite element as illustrated in Figure5. Thus,
special care must be taken when integrating the weak form over these elements. A common approach used
to deal with this problem is to subdivide each computationalfinite element into integration sub-elements
with faces fitting the crack surface and use standard quadrature rules over each sub-element [24, 37, 38, 48,
53, 54, 60]. These sub-elements, denoted hereafter as integration elements, are used solely for the numerical
integration over their parent computational elements, andthus they do not introduce any additional degrees
of freedom in the problem.

In the crack surface representation proposed above, we allow non-planar, non-smooth crack surfaces
inside an element–the crack surface is not assumed to be planar inside an element. Therefore, the algorithm
used to generate integration sub-elements must be able to handle this level of generality. Below, we describe
an algorithm based on a Delaunay tetrahedralization [10] of elements cut by a crack surface. We assume
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Crack front

Boundary of the domain

Step function

Branch function

Bottom view Top view

Figure 6: Example of arbitrary crack surface representation and selection of nodal enrichment in an unstructured
three-dimensional mesh.

that the volume mesh is composed of tetrahedral elements. Modifications to handle other types of elements
are not difficult, as long as they have planar faces. A hexahedral element, for example, can be divided
into integration tetrahedral sub-elements before applying the algorithm described below. Alternatively, a
Delaunay tetrahedralization similar to the one proposed below, could be applied directly to hexahedral
elements with planar faces.

Given a crack surface and a tetrahedral (computational) element that intersects the surface (Figure7(a)),
the following steps are performed:

1. Compute the intersection of crack surface facets with faces of the computational finite element
(Figure7(b)).

2. Compute a Delaunay tetrahedralization [10] for the convex hull formed by the nodes of the compu-
tational element and the intersection points (Figure7(c)). This step creates integration elements at
both sides of the discontinuity.

3. Compute the orientation of the integration sub-elementswith respect to the surface, i.e., define the
position of the sub-elements with respect to the discontinuity (Figure7(d)). This orientation is used
in the computation of the step function defined in (7).

The integration over a computational element is given by thesum of the integrations over its sub-
elements. Standard quadrature rules for tetrahedral elements are used at integration sub-elements. In the
examples presented in this paper, we use the Keast quadrature rules introduced in [28].

It is worth mentioning that the sub-elements do not need to define a valid finite element mesh since
they are used for integration only. Thus, they can be generated on an element-by-element basis without
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(a) A tetrahedral element intersected by a non-planar crack
surface.

(b) Step1: Intersection of crack surface facets with faces of
the computational element.

(c) Step2: Delaunay tetrahedralization. (d) Step3: Computation of orientation of integration sub-
elements.

Figure 7: Construction of integration sub-elements of a tetrahedralelement intersected by a non-planar crack sur-
face.
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enforcing continuity between integration elements that belong to neighboring computational elements. In
addition, the integration of the weak form or the GFEM solution accuracy is not affected by the aspect-ratio
of the sub-elements since they are not used to define the shapefunctions. This last point is numerically
illustrated below. Under these relaxed conditions for the generation of integration sub-elements, Delaunay
tetrahedralization is a very robust and computationally efficient algorithm [10].

The above algorithm is also used to create integration sub-elements for elements partially cut by a crack
surface. In this case, the algorithm creates sub-elements with edges or vertices along the crack front, as
illustrated in Figure8. This feature is especially important when integrating enrichment functions that are
singular in the radial direction of the crack front, like those defined in (10).

Crack
front

Crack
surface

Sub-elements
above

Sub-elements
below

Computational
element

Figure 8: Integration sub-elements for a computational element partially cut by a crack surface. The computational
element is represented by solid and dotted black lines. Sub-elements above and below the crack surface (or its
extension) are represented in red and green colors, respectively. Edges of the sub-elements fit the crack front.

A high order or a special quadrature rule must be used to integrate non-polynomial enrichment functions
like those defined in (10). In the examples presented in Section5, we use 45 integration points over each
integration sub-element of computational elements enriched with these functions. Fewer points may be
used depending on the target error level for extracted stress intensity factors. In Section5, we present
several convergence studies and this high order quadraturerule was selected in order to guarantee that
results and conclusions are not affected by numerical integration errors. Detailed discussion and analysis
of the numerical integration of branch functions like thosedefined in (10) are presented in a forthcoming
paper.

4.2.1 Numerical Experiments

The accuracy of the numerical integration over elements fully cut by non-planar crack surfaces is inves-
tigated in this section. The integration of the stiffness matrix is performed with the aid of the integration
sub-elements generated by the algorithm described above. The examples demonstrate that the accuracy of
the numerical integration is not affected by the large aspect ratios of the sub-elements.

Curved crack surface Figure9(a)shows a computational element fully cut by a non-planar crack sur-
face and its integration sub-elements. We can observe that most sub-elements have a large aspect ratio. The
nodes of the computational element are enriched with continuous polynomial functions only (those defined
in (5)). Thus, exact numerical integration can be performed using a Keast quadrature rule and the compu-
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tational element. Of course, the discontinuity along the crack surface can not be represented by this choice
of shape functions.The crack surface was used here solely to trigger the creation of integration elements.
Table1 lists the Frobenius norm of the element stiffness matrix computed with the computational element
and with its integration sub-elements for various polynomial orders. The relative difference between the
two norms is also presented. The same quadrature rule is usedin the computational element and in each
integration sub-element. The Frobenius norm of a square matrix AAA of dimensionn is defined as [59]

‖ AAA ‖F=

(

n

∑
i=1

n

∑
j=1

| ai j |2
)

1
2

From the table, we can observe that the integration sub-elements can integrate the stiffness matrix with the
same accuracy as the parent computational element, in spiteof their large aspect ratios.

Sub-elements
above

Computational
element

Sub-elements
below

Crack
surface

(a) Smooth cut.

Crack
surface

Computational
element

Sub-elements
above

Sub-elements
below

(b) Non-smooth cut.

Figure 9: Computational elements with non-planar cuts and their integration sub-elements. The computational
element is represented by solid and dotted black lines. The orientation of the sub-elements with respect to the crack
surface is represented by their colors. Sub-elements aboveand below the crack surface are represented in red and
green colors, respectively.

Table 1: Frobenius norm of the stiffness matrix of the computationalelement shown in Figure9(a)computed with the
computational element (‖ ke

comp.elem. ‖F ) and with integration sub-elements (‖ ke
int.elem‖F ).

p-order ‖ ke
comp.elem. ‖F ‖ ke

int.elem‖F
|‖ ke

comp.elem‖F − ‖ ke
int.elem‖F |

‖ ke
comp.elem‖F

1 1.0972591518348518 1.097259151834852 2.02e-16
2 1.2517652266704329 1.2517652266704324 3.55e-16
3 1.278954417398664 1.2789544173986642 1.74e-16
4 1.2844325919324189 1.2844325919324218 2.25e-15
5 1.2856390512282414 1.2856390512282432 1.38e-15
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Crack with non-smooth surface The above numerical experiment was repeated for the case of anon-
smooth crack surface. Figure9(b) illustrates this case. The results are presented in Table2. Like in the
previous case, the sub-elements are able to numerically integrate the stiffness matrix very accurately using
standard Keast quadrature.

Table 2: Frobenius norm of the stiffness matrix of the computationalelement shown in Figure9(b).

p-order ‖ ke
comp.elem. ‖F ‖ ke

int.elem‖F
|‖ ke

comp.elem‖F − ‖ ke
int.elem‖F |

‖ ke
comp.elem‖F

1 1.0972591518348518 1.0972591518348522 4.05e-16
2 1.2517652266704329 1.2517652266704333 3.55e-16
3 1.278954417398664 1.2789544173986651 8.68e-16
4 1.2844325919324189 1.2844325919324193 3.46e-16
5 1.2856390512282414 1.2856390512282416 1.73e-16

Separation test The main objective of this example is to show that the aspect ratios of the integration
sub-elements do not affect the solution of the problem in a global sense. The boundary value problem
analyzed in this section is depicted in Figure10(a). Displacement boundary conditions are prescribed on
element faces that are orthogonal to thex-axis. In this example, the crack surface cuts the entire domain
separating it into two parts. Since the crack front does not intersect any element in the volume mesh, the
discontinuous solution can be discretized using only the high order step functions̃φα i defined in Section
3.2. The material and geometry parameters are taken asE = 2.0×105, ν = 0.30, andL = h = 6.0, t = 1.0,
respectively. Of course, these parameters do not play any role in the simulation since the resulting strain
energy of the system is zero.

The separation test is performed using smooth and non-smooth crack surfaces as illustrated in Figures
10(b)and10(c), respectively. Table3 lists the strain energy values for these two cases. One can observe
that the aspect-ratio of the integration sub-elements doesnot affect the solution since the error in strain
energy is of the order of machine precision.

Table 3: Strain energy for the separation test with smooth and non-smooth interface.

p-order Usmooth Unon−smooth

1 5.6412993017109327e-28 1.62e-29
2 1.088053440658176e-24 5.56e-27
3 2.2944093170070629e-14 7.18e-24
4 6.1029505746932564e-15 1.23e-15
5 1.9831522943527249e-14 5.14e-15

The results presented in this section, show that the proposed approach to integrate the weak form is
robust, accurate and computationally efficient. It allows numerical integration over elements containing
arbitrarily non-planar cuts. Also, this approach can handle coarse volume GFEM meshes cut by quite
arbitrary crack surfaces.
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(a) Separation test - Problem description.

(b) Smooth cut. (c) Non-smooth cut.

Figure 10: Separation test for smooth and non-smooth discontinuities.
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5 Numerical Examples

This section presents the numerical analyses of several three-dimensional fracture mechanics problems
with increasing level of complexity. The complexity of the problems ranges from simple cracked bar to
an industrial level problem with non-trivial geometry. Allproblems are solved using four-node tetrahedral
volume meshes for domain discretization, triangular surface meshes for crack surface representation and
hierarchical polynomial enrichment with localized mesh refinement at crack fronts. The aim of this section
is to show the robustness and accuracy of the proposed approach when solving these problems.

In the examples presented in this section, the extraction ofstress intensity factors (SIF) for planar and
non-planar cracks is performed by applying the cut-off function method (CFM) and the contour integral
method (CIM), respectively. These are superconvergent extraction techniques based on Betti’s reciprocity
law and, as such, deliver convergence rates for SIFs that areas fast as the convergence rate for strain energy
[44, 55, 56]. This feature of the CFM and CIM is also verified in the numerical examples.

5.1 Edge Cracked Bar

In this section, we analyze an edge cracked bar problem. It consists of a rectangular bar with a through-
the-thickness edge crack as illustrated in Figure11. The model is subjected to a uniform tensile traction
applied at both ends. Displacement boundary conditions areapplied only to prevent rigid body motion. Li
et al. [31] solved this problem using boundary element techniques which are known for delivering accurate
solutions for fracture mechanics problems. In order to allow a comparison with their numerical solution
for stress intensity factors, the geometric parameters areset ash/t = 0.875,a/t = 0.5 andw/t = 1.5. For
the material properties, we set Poisson’s ratioν = 1/3 and Young’s modulusE = 1.0. This example is
used to numerically verify the discretization approach presented in Section3 and to set some parameters
such as the element size at the crack front and the polynomialorder of enrichment functions to be used in
subsequent examples.

Since there is no closed form solution for this problem, we use a posteriorierror estimates [55] to
compute a reference value for the strain energy. In this example, the reference value is computed using the
p-version of the GFEM presented in [12], i.e., hierarchical continuous polynomial enrichment functions and
a mesh with double nodes to represent the discontinuity. Thecomputed reference value for strain energy is,
for a = 1,

Ure f = 1.37387247299454×10−4.

The stress intensity factors as well as the strain energy areused to verify the convergence rates of the present
approach.

5.1.1 Convergence and computational cost analyses

In this section, we perform ap-convergence analysis using a mesh locally refined at the crack front and
crack vertices (hereafter referred to ashp-GFEM). The resulting polynomial order of the approximation
ranges fromp = 1 to p = 4. The mesh is designed in such a way that the ratio of the element size to the
characteristic length of the crack(Le/a) is around 3.1× 10−2 for those elements that intersect the crack
front, 1.6×10−4 for those elements intersecting crack vertices, and 1.67 for the elements far from the crack
front and crack vertices (Cf. Figure12(a)). This mesh can be regarded as coarse when compared with those
used with standard low order finite elements. The mesh used inthis analysis and the displacement solution
for p = 4 are illustrated in Figure12(a). For comparison, we solve the same problem using quasi-uniform
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Figure 11: Edge cracked bar: Initial coarse mesh with boundary conditions and crack surface representation.
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meshes and low-order shape functions defined in (12) and (13). Hereafter, this type of discretization is
referred to ash-GFEM. One of theh-GFEM meshes used in the analysis and its respective solution are
illustrated in Figure12(b).

Le

a
= 1.67

Le

a
= 3.1×10−2

Le

a
= 1.6×10−4

(a) Hp-GFEM solution withp = 4 and localized refinement. (b) GFEM solution withp= 1 and quasi-uniform mesh.

Figure 12: Mesh design and solution for hp-GFEM with localized refinement and GFEM with quasi-uniform mesh.

Figure13(a) shows the variation of the error in energy norm, strain energy and the stress intensity
factor (SIF) in the center of the crack front with respect to the number of degrees of freedom for bothh- and
hp-GFEM. One can observe that for relative errors smaller thanabout 7% in energy or SIF, thehp-GFEM
is always more effective than theh-GFEM. In the case of relative error in energy norm, the threshold is
even higher–about 30%. Moreover,hp-GFEM delivers exponential convergence whileh-GFEM exhibits
algebraic convergence. As expected, the extracted SIF shows a convergence behavior that is comparable to
the convergence in strain energy in bothh- andhp-GFEM. In this example, we can see that an approximation
of orderp = 3 is enough to deliver a relative error level around 1% for both strain energy and SIF.

In Figure13(b), one can observe the variation of the relative error in energy norm, SIF and strain energy
with respect to the CPU time spent to solve the problem using different meshes inh-GFEM and different
polynomial orders inhp-GFEM. The CPU time consists of the time spent in assembling and solution of the
system of equations. The linear dependence of the system washandled using the algorithm presented in
[12]. For a given computational effort, thehp-GFEM with shape functions ofp-orderp > 1 provides more
accurate results thanh-GFEM. This is the same trend observed in Figure13(a),

5.1.2 SIF extraction along crack front

A particular feature of the edge-cracked bar example is the variation of the modeI stress intensity factor
along the crack front. It varies from a nearly plane strain SIF value at the middle of the crack front to
asymptotically zero at the crack vertex. The stress intensity factor tends to zero when the crack front
intersects the boundary of the domain because the singularity of the solution is less intense in that region
[31, 46].
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(b) Cost analysis - relative error vs. total CPU time.

Figure 13: Convergence and computational cost analyses.

Figure14(a)shows the normalized SIF extracted along the crack front using thehp-GFEM solution for
p = 1, . . . ,4. The normalized SIF is defined as

KI =
KI

σ
√

πa

whereKI is the stress intensity factor computed numerically. The results are plotted in parametric coor-
dinates at the crack front in whichs/w = 0.0 corresponds to the middle of the crack front ands/w = 0.5
corresponds to a crack vertex. We can observe that thehp-GFEM solution clearly converges to the BEM
solution of Li and Mear [31], as the polynomial order of the approximation is increased. Thehp-GFEM
results along the crack front are also consistent with the convergence analysis presented above, namely, the
results forp = 3 have already reached an acceptable level of accuracy for engineering purposes.

Many researchers have solved this problem using different techniques such as the standard finite element
with quarter-point elements [46], the X-FEM with hexahedral elements [53], and the boundary element
method [31]. Figure14(b)shows a comparison among these solutions, a plane strain solution and thehp-
GFEM solution forp = 4. One can observe that thehp-GFEM solution shows good agreement with the
BEM solution and can capture very well the boundary layer behavior ofKI .

Nearly optimal distribution of degrees of freedom In the examples presented above, thehp-GFEM is
applied using uniform polynomial enrichment over the entire domain. Of course, application of uniform
enrichment in problems of industrial level of complexity isunacceptable because it leads to a high number
of degrees of freedom. However, thehp-GFEM formulation is flexible enough to provide non-uniform
polynomial approximations over a domain of analysis. One can build an approximation applying high
order enrichment functions only where needed. According to[41, 55], an optimalhp discretization for
fracture mechanics problems consists ofh-refinement in geometrical progression towards the singularity
andp-enrichment of increasingp-order away from the singularity.

Figure15(b)shows a comparison of the results computed withhp-GFEM using uniform (p = 3) and
non-uniform polynomial order. The same mesh (cf. Figure12(a)) is used in both cases but in the later, the
p-order decreases towards the singularity, as illustrated in Figure15(a). The number of degrees of freedom
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(b) Comparison with SIF values in the literature.

Figure 14: Extraction of SIF along the crack front for edge cracked bar example.

in the solution with uniformp-enrichment is 78,234 while in the non-uniform distribution is 45,774, which
gives a problem size reduction of more than 40%. The CPU time spent in the simulation with uniform and
non-uniformp-enrichment was around 402 seconds and 254 seconds, respectively, which gives a computa-
tional cost reduction of 37%. By using this approach, we can save many unnecessary degrees of freedom in
the approximation while achieving an equivalent level of accuracy. Hence, this approach is more attractive
when solving large scale problems. An example of non-uniform enrichment applied to a problem with
industrial level of complexity is presented in Section5.4.

p = 3

p = 4

p = 2

(a) GFEM discretization with non-uniformp-
enrichment. The color of the sphere at a node
indicates the polynomial order used over the
corresponding nodal support.
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(b) SIF extraction along the crack front - uniform polynomial
enrichment vs. nearly optimal distribution of dofs.

Figure 15: SIF extraction using hp-GFEM with uniform and non-uniform p-enrichment.
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5.2 Planar Penny-Shaped Crack

In this section, we use the well-known penny shaped crack example to numerically verify the accuracy of
the extracted stress intensity factors (SIF) along a curvedcrack front of a planar surface. Consider a crack of
circular shape with radiusa localized in the center of a cube with dimension 2L as illustrated in Figure16.
The specimen in subjected to an axial tensile loading of magnitudeσ in y-direction. The numerical values
for the dimensions of the model and the magnitude of the axialtensile loading areLa = 10 andσ = 1.0,
respectively.

Figure16 illustrates the initial tetrahedral mesh, boundary conditions and crack surface representation
used in the numerical model. This mesh is automaticallyh-refined along the crack front as illustrated in
Figure17. We can observe that the aspect ratio of the elements is preserved with mesh refinement since
element faces do not have to fit the crack surface as in the classical FEM. The ratio of element size to
characteristic length of the crack surface ranges from{Le/a}max= 3.38×10−2 to {Le/a}min = 1.95×10−2

at the crack front. In this example, we perform ap-convergence analysis using the mesh shown in Figure
17. The polynomial order of the enrichment varies fromp = 1 to p = 3. The selection of GFEM shape
functions assigned to nodes depends on the behavior of the solution in the support,ωα , of the node, as
discussed in Section3.2.

θ

a

y

x

2L

σ

Figure 16: Penny shaped crack example: initial coarse mesh with boundary conditions and crack surface represen-
tation.

Figure18shows a plot with the normalized stress intensity factors along the crack front. The normalized
SIF is given by [57]

KI =
KI

K∞
I

whereK∞
I is the closed form solution of the penny shaped crack problemfor an infinite domain, which is

25



zoom in at crack surface

top view

Figure 17: Tetrahedral mesh strongly graded at the crack front. The type of GFEM shape functions used at some
nodes are also illustrated. Nodes with yellow glyphs have the GFEM shape functions̃φα i defined in (8). In this case,
the continuous and discontinuous shape functions are of thesame polynomial order. Nodes with green glyphs have
GFEM shape functions built with the functions defined in (11).

given by

K∞
I = 2σ

√

a
π

.

This reference solution is commonly used to normalized solutions computed in finite domains. Normalized
SIFs computed by Sukumar et al. [53] using the X-FEM [37] are also shown in the figure. In this case, the
same domain/crack size ratio,L

a , and a structured mesh of eight-node hexahedral elements were used.

0 90 180 270 360
θ (deg)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

K
I

hp-GFEM with p=1
hp-GFEM with p=2
hp-GFEM with p=3
X-FEM - Sukumar et al. (2000)

Figure 18: Stress intensity factorvs. position of the extraction at the crack front for various p order.
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Table4 lists the maximum, minimum, average and standard deviationof the relative error of the SIF
extracted fromhp-GFEM solutions with respect to the infinite domain solution. The results show good
agreement with the analytical value for infinite domain. Theaverage error for the solution enriched with
p = 3 compared with the infinite domain solution is less than 1%. We can also see that the relative error
values show fast convergence as the polynomial order of the approximation increases.

Table 4: Penny-shaped crack example: SIF relative error analysis for hp-GFEM for various p orders.

er
(

KI
)

p = 1 p = 2 p = 3
Max 18.80 3.21 1.32
Min 1.97 0.41 0.60

Average 5.94 1.35 0.90
Std. Dev. 4.68 0.69 0.21

5.3 Lens-Shaped Crack

In this example, we consider a lens-shaped crack problem. This numerical example is more challenging
than the problem presented in Section5.2because, in addition to the curved crack front, this crack surface
is non-planar. Consider a lens-shaped crack of characteristic parametersRandα (cf. Figure19) embedded
in a cube of edge 2L. The material parameters used in this example areE = 68.9× 109 andν = 0.22.
The specimen is subjected to a hydrostatic tensile loading of magnitudeσ . Again, we extract the stress
intensity factors (SIF) along the crack front in order to numerically verify the proposed approach to solve
crack problems. The CIM is used in this example to extract stress intensity factors. While the CIM is,
in general, less accurate than the CFM, it also shows superconvergent behavior [44, 55, 56]. In addition,
the implementation of the CIM is more straightforward than the CFM, especially in the case of non-planar
crack surfaces.

Figure19 depicts the initial coarse mesh, the boundary condition of the model and the representation
of the crack surface. The geometry of the problem is defined such that the effect of the boundary of the
domain in the extraction of the stress intensity factors is minimal. The numerical values for the characteristic
parameters of the model and the magnitude of the hydrostatictensile loading areLR = 5, α = π

4 andσ =
1.0, respectively. The results computed on this finite domain are compared with the analytical values for
an infinite domain. If one considers the same crack geometry but embedded in an infinite domain, the
analytical values of stress intensity factors for modesI andII are given by [23]

K∞
I = 0.877

2
π

σ
√

πa, K∞
II = 0.235

2
π

σ
√

πa (14)

wherea = Rcos(α).

The discretization applied to this problems is the same as inthe previous examples–strongly graded
mesh at the crack front, crack front enrichment and high order step functions. The tetrahedral mesh is
adapted with localized refinement along the crack front. Theratio of the size of the elements at the crack
front to the characteristic length of the crack

(Le
a

)

ranges between 0.013 and 0.024. The polynomial order
of the approximation used in this example isp = 3.

Figure20 shows the normalized stress intensity factors for mode I andII. The normalized SIF is given
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by

K i =
Ki

2
π

σ
√

πa

for a given modei. If we compare the extracted quantities with the solution for an infinite domain, the
SIFs for mode I and II converge to values around 6% larger and 8% smaller, respectively, than the reference
values. These are less accurate results than in the previousexamples even though comparable discretizations
are used. We believe this is due to the extraction method used. The CIM uses derivatives of the numerical
solution while the CFM uses only primary variables (displacements in the case of elasticity problems).
Thus, as indicated above, SIFs extracted with the CIM are of lower accuracy than those extracted with the
CFM. Nonetheless, we can observe that in Figure20 the extracted SIFs are almost constant along the crack
front, attesting the robustness of the extraction procedure and the accuracy of the solution. Figure20 also
shows SIFs computed with the finite element method on a finite cylinder and a domain integral method
for extraction [23]. In this case, the radius and the height of the cylinder were10 times the geometrical
parameterR. An eight-node hexahedral mesh withLe

a ≈ 0.0028 was used around the crack front.

α R

z

x

y

x

a

θ

z
2L

σ

Figure 19: Lens-shaped crack example: initial coarse mesh with boundary conditions and crack surface representa-
tion.

5.4 Industrial example - a pump part

In this section, we solve a problem of industrial level of complexity. The example illustrated in this section
consists of a pump part. The initial mesh, boundary conditions and crack surface representation are illus-
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Figure 20: Normalized stress intensity factor for mode I and mode II along crack front.

trated in Figure21. As in previous examples, the initial mesh does not model thecrack surface. The crack
surface is created later on using available geometric information of the model. The crack surface geometry
is then discretized with triangles. The resulting triangulation is inserted in the model and mesh refinement
as well as polynomial enrichment with respect to the crack front are automatically applied. This automa-
tion is easily applied inhp-GFEM since the mesh does not have to fit the crack surface representation and
the non-uniform polynomial enrichment does not require transition elements. The resulting discretization
around the crack surface is illustrated in Figure22.

In this example, the crack surface has a circular front of radius a = 0.22. We take this radius as the
characteristic length of the crack. The ratio of element size to characteristic crack length (Le/a) is 2.10
for those elements far away from the crack surface. Around the crack front,Le/a ranges from 0.023 to
0.16. The polynomial order of the approximation isp = 2 for the first layer of elements intersecting the
crack front,p = 3 for the four subsequent layers, andp = 2 elsewhere. Figure22 illustrates thehp-GFEM
solution usingh-refinement at the crack front and non-uniform enrichment. The material parameters for
this example areE = 2.0×105 andν = 0.30. This example illustrates the robustness and flexibilityof the
proposed approach where localized mesh refinement and non-uniform polynomial enrichment can be easily
applied even in the case of non-trivial geometries.

To verify the results of the discretization described above, we solve this example using the same mesh
and uniform polynomial enrichment of orderp = 4. Table5 lists the number of degrees of freedom and
the strain energy using both discretization. We can see thatthe solution using non-uniform discretization
requires around four times less degrees of freedom and has anerror of 4.8% in strain energy. The stress
intensity factors extracted along the crack front using non-uniform polynomial enrichment are compared
with the reference solution. The extractedKI andKII are plotted in Figures23(a)and23(b). The results
for SIF extraction using non-uniform enrichment also show good agreement with respect to the reference
solution. The relative error of the maximum SIF computed with non-uniform enrichment with respect to
the maximum SIF computed with uniform enrichment is 2.9% and 1% forKI andKII , respectively. These
results show that one only needs to use high-order approximations locally in order to achieve an engineering
acceptable level of accuracy in SIF.

29



off front view top view zoom in at crack surface

θ
a

Figure 21: Model description and crack surface representation. Three-dimensional mesh courtesy of ABAQUS, Inc.
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Figure 22: Hp-GFEM solution for non-uniform polynomial enrichment, discretization around crack surface and
crack opening using integration elements as graphical elements.
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Table 5: Number of degrees of freedom and strain energy for uniform p= 4 and non-uniform p.

Discretization Number ofdofs Strain energy
Uniform p = 4 451230 6.31e-03
Non-uniformp 106128 6.01e-03
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Figure 23: Extracted stress intensity factors along crack front.

6 Summary and Concluding Remarks

The present paper introduces anhp-version of the Generalized Finite Element Method (hp-GFEM) for
three-dimensional fracture mechanics problems. Startingfrom arbitrarily coarse meshes, the proposed
GFEM automatically creates strongly graded meshes along crack fronts and assigns suitable high order
GFEM shape functions to nodes according to their geometric positions with respect to the crack front. High
order enrichment functions are easily generated for the continuous and discontinuous parts of the solution
using the partition of unity concept. Hierarchical polynomial enrichment, together with the partition of
unity concept, adds enough flexibility to build non-uniformpolynomial approximations without the need
of transition elements.

The proposedhp-GFEM is able to deliver high order convergence rates in energy norm as well as
in stress intensity factors. The robustness of the method istested for three-dimensional problems with
increasing level of complexity. The proposedhp-GFEM is robust enough to handle planar as well as non-
planar crack surfaces embedded in non-trivial unstructured meshes. In all examples, thehp-GFEM shows
to be robust and able to deliver high convergence rates in thesolution and, consequently, the extracted stress
intensity factors.

Another contribution of this paper is a procedure to handle non-planar three-dimensional crack surfaces.
The procedure includes

• a high fidelity representation of crack surfaces that is completely independent of the volume GFEM mesh.
Also, this technique is flexible enough to represent virtually any crack surface geometry;

• a Lagrangian description of the crack front. This feature isuseful for updating the crack front in crack
growth simulations and for providing base vectors of coordinate systems associated with crack front
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enrichment functions (Cf. Figure4);
• creation of integration sub-elements for computational elements that interact with non-planar crack sur-

faces. The numerical examples demonstrate that the resulting numerical integration is accurate and can
be performed using standard quadrature rules. Moreover, itallows large elements far from the crack front
which are suitable forp-enriched based approximations;

• ease of creation of crack surfaces in pre-existing meshes asillustrated in Section5.4. This feature is
suitable for simulations of industrial problems.

The proposed procedure is also suitable for crack propagation simulations. The representation of the
crack surface does not have to be recomputed from scratch after each crack propagation step. The crack
representation can be modified along its boundary without affecting its interior. This feature provides
consistent representation of the crack surface for crack growth simulations. Details on the application of
this approach to crack propagation problems will be presented elsewhere.
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