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SUMMARY

This paper presents high-order implementations of a generalized finite element method for through-the-
thickness three-dimensional branched cracks. This approach can accurately represent discontinuities such as triple
joints in polycrystalline materials and branched cracks, independently of the background finite element mesh.
Representative problems are investigated to illustrate the accuracy of the method in combination with various
discretizations and refinement strategies. The combination of local refinement at crack fronts and high-order
continuous and discontinuous enrichments proves to be an excellent combination which can deliver convergence
rates close to that of problems with smooth solutions.
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1. INTRODUCTION

Crack branching is a distinctive feature of many failure mechanisms. Problems as diverse as corrosion
assisted cracking [1, 2] and high velocity impact or dynamic crack propagation [3–5] are characterized
by the appearance of branched cracks. In this paper, we present extensions of the GFEM presented
in [6] that are able to handle through-the-thickness three-dimensional branched discontinuities which
are independent of the finite element mesh. The combination of mesh independent discontinuities and
of the proposed high-order GFEM approximations provides a very flexible and robust method that can
deliver accurate solutions and high convergence rates.

The finite element analysis of crack branching problems poses challenging demands already at the
discretization stage. The singularities at crack fronts require strongly refined meshes that must fit the
discontinuity surfaces while keeping the aspect ratio of the elements within acceptable bounds [7–
14]. These requirements are not always met or may be satisfied by using a large number of elements.
Meshing around the branching surface can also be difficult and leads to a large number of elements
when the angle between the branches is small.
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Algorithms such as Delaunay triangulation are heavily applied to generate unstructured meshes [11,
15]. These algorithms maximize the minimum angle in the mesh with the intent of producing a mesh
with equilateral triangles. Unfortunately, complex geometries may cause the generation of an enormous
quantity of elements to satisfy mesh quality constraints at the expenses of increased computational cost.
Another drawback of many Delaunay-based meshing methods is the appearance of sliver elements in
three-dimensional domains [9, 10]. These elements have a detrimental effect on the accuracy of the
finite element solution. Their removal is usually done through a mesh optimization step which adds to
the mesh generation time and requires a certain amount of user intervention.

The work presented in this paper builds upon the generalized FEM for polycrystals recently proposed
by Simone et al. [6]. Here, the displacement field is enriched with high-order hierarchical GFEM
approximations. These hierarchical approximations are built to account for the discontinuous nature
of the displacement field across crack surfaces with a procedure similar to that devised in [16–18]
for a continuous field alone. Our GFEM shape functions are however equivalent to those proposed by
Daux et al. [19] in the case of piece-wise linear approximations in two-dimensions. This equivalence is
discussed in details in [6]. In the case of a single (non-branching) discontinuity and piece-wise linear
approximations, the proposed GFEM shape functions reduce to those proposed in [20]. Theoretical
aspects of our approach are illustrated in Section 2.

At variance with the established enrichment of the displacement field with discontinuous functions
and the use of linear approximations proposed by Moës et al. [20] in the so-called X-FEM,
approximation orders higher than one have been exploited in various forms by Wells and Sluys [21],
Stazi et al. [22], Chessa et al. [23], Mariani and Perego [24], and Laborde et al. [25]. In this work, we
have consistently used high-order hierarchical GFEM approximations for single and multi-branched
cracks. High-order enrichment functions are used with a linear finite element partition of unity.
Therefore, all nodal degrees of freedom are defined at element vertex nodes which facilitates mesh
generation, specially in three-dimensional computations. This is in contrast with the use of high-
order non-hierarchical Lagrangian partition of unity functions with piece-wise constant enrichment
functions [21–23, 25]. This approach leads to nodes on element edges, faces and interior. Hierarchical
approximations are also ideal for the construction of non-uniform polynomial approximations which
can be very effective for some class of problems [26]. Other advantages of hierarchical GFEM, such as
the non-zero structure of the resulting stiffness and mass matrices, are discussed in [16–18]. The issue
of linear dependence of hierarchical GFEM enrichments is also discussed in details in [18].

The combination of the proposed high-order GFEM approximations with non-uniform meshes is
discussed in Section 3. There, we show the results obtained in a convergence study using this type
of discretization for problems with through-the-thickness single and branched cracks. A comparison
of various discretizations and refinement strategies reported in Section 3.1 shows that the use of p-
enrichment on locally refined mesh is the most efficient strategy to achieve accurate solutions and high
convergence rates, even without the use of crack front enrichment functions [25, 27]. This specific
choice has the advantage of preserving a conforming approximation without the necessity to enrich
several layers of elements around the crack front, as otherwise proposed by Laborde et al. [25]. Further,
it enhances the flexibility of the approach as crack front enrichment functions, when known, are difficult
to integrate.
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2. HIGH-ORDER APPROXIMATIONS FOR BRANCHED CRACKS

Branched cracks in two- and three-dimensions can be described with the GFEM for polycrystalline
structures presented in [6]. Here, we adapt that formulation to the case of branched cracks and improve
it using high-order enrichment functions. The formulation is valid for branched cracks with arbitrary
number of branches. However, the illustration of the main ideas is done with the aid of the two-
dimensional case shown in Figure 1. We also assume that crack fronts are located at the boundary
of elements. This approach was originally proposed in [21] and greatly simplifies the computational
implementation. Introductory references on the generalized FEM are, e.g., in [17, 18, 28, 29]. In this
section, we assume the reader has some basic understanding of the method.

R2

R3

R1

Ω

Ωbranch
∈ Ic-f

∈ Ifront

Figure 1. Neighborhood of a branched crack in a two-dimensional domain.

Consider a domain Ω with a branched crack as illustrated in Figure 1. This domain may, in turn, be a
subdomain of a larger domain with several branched cracks. Let Ifront denote a set with the indices of
nodes/finite element partition of unity functions, ϕα , whose supports, ωα , intersect a crack front. Note
that since a finite element is an open set, the intersection of an element with a crack front located at
its boundary is empty. Let Icrack denote the indices of nodes/finite element partition of unity functions
whose supports intersect a crack surface. The set Ic-f contains the indices that belong to Icrack but not
to Ifront, i.e., Ic-f = Icrack −Ifront.

A neighborhood of a branched crack is a domain defined by

Ωbranch =
⋃

α∈Ic-f

ωα (1)

The crack surfaces divide Ωbranch in NR non-overlapping regions denoted by Ri, i = 1, . . . ,NR , i.e.,

Ω̄branch =
NR
⋃

i=1

R̄i, Ri ∩R j = /0 if i 6= j (2)

In the case of the triple joint shown in Figure 1, for example, Ωbranch is divided in three regions. The
derivation of GFEM approximations defined in Ωbranch is analogous to that used for polycrystalline
structures presented in [6].

The elasticity solution u in Ωbranch is of the form

u = û+
NR

∑
i=1

Hiũi, (3)
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where Hi(x) denotes a discontinuous function defined by

Hi(x) =

{

1 if x ∈ Ri

0 otherwise
, (4)

while û and ũi, i = 1, . . . ,NR , are continuous functions defined on Ωbranch and Ri, respectively.
We assume that the crack surfaces are not in contact. In the case of contact, the non-penetration of
crack surfaces can be enforced using, for example, a cohesive formulation with a very stiff cohesive
stiffness in the direction normal to the surfaces. The procedure is analogous to that used in [6] to avoid
penetration of grain boundaries in a polycrystalline structure.

A partition of unity approximation of polynomial degree p, û
hp, of û is given by

û
hp =

Nb

∑
α=1

ϕα(x)ûhp
α (x) =

Nb

∑
α=1

ϕα(x)
DL

∑
j=1

ûα jL jα(x) =
Nb

∑
α=1

DL

∑
j=1

ûα jφ̂ jα(x) (5)

where Nb is the number of nodes in the mesh defining Ωbranch, û
hp
α , α = 1, . . . ,Nb, are local

approximations of û defined on ωα , ûα j and φ̂ jα(x) = ϕα(x)L jα(x), α = 1, . . . ,Nb, j = 1, . . . ,DL

are nodal degrees of freedom and generalized finite element shape functions of degree p, respectively,
and DL is the dimension of a set of polynomial enrichment functions of degree less or equal to p− 1.
Our implementation follows [17, 18] and the set {L jα}DL

j=1 for a node xα = (xα ,yα ,zα) is given by

{

L jα
}DL

j=1 =

{

1,
(x− xα)

hα
,
(y− yα)

hα
,
(z− zα)

hα
,
(x− xα)2

h2
α

,
(y− yα)2

h2
α

, . . .

}

with hα being a scaling factor [17, 18]. These enrichment functions and the corresponding generalized
FE shape functions, φ̂ jα , are identical to those defined in [18] for tetrahedral elements.

Partition of unity approximations of degree p for ũi, i = 1, . . . ,NR , are given by

ũ
hp
i =

Nb

∑
α=1

ϕα(x)ũhp
iα (x) =

Nb

∑
α=1

ϕα(x)
DL

∑
j=1

ũ iα jL jα(x) (6)

where ũ
hp
iα , α = 1, . . . ,Nb, are local approximations of ũi defined on ωα and ũ iα j, α = 1, . . . ,Nb, j =

1, . . . ,DL, are nodal degrees of freedom.
From the above, we have that a partition of unity approximation, u

hp, of u is given by

u
hp(x) =

Nb

∑
α=1

ϕα(x)ûhp
α (x)+

NR

∑
i=1

Hi(x)
Nb

∑
α=1

ϕα(x)ũhp
iα (x)

=
Nb

∑
α=1

ϕα(x)

[

û
hp
α (x)+

NR

∑
i=1

Hi(x)ũhp
iα (x)

]

=
Nb

∑
α=1

ϕα(x)uhp
α (x)

=
Nb

∑
α=1

ϕα(x)

[

DL

∑
j=1

ûα jL jα(x)+
NR

∑
i=1

Hi(x)
DL

∑
j=1

ũ iα jL jα(x)

]

=
Nb

∑
α=1

DL

∑
j=1

ûα jϕα(x)L jα(x)+
Nb

∑
α=1

DL

∑
j=1

NR

∑
i=1

ũ iα jϕα(x)Hi(x)L jα(x)

=
Nb

∑
α=1

DL

∑
j=1

ûα jφ̂ jα(x)+
Nb

∑
α=1

DL

∑
j=1

NR

∑
i=1

ũ iα jφ̃iα j(x)
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where u
hp
α , α = 1, . . . ,Nb, are local approximations of u defined on ωα , φ̃iα j(x) =

ϕα(x)Hi(x)L jα(x), α = 1, . . . ,Nb, j = 1, . . . ,DL, i = 1, . . . ,NR , are generalized FE shape functions
of degree p.

The generalized FE shape functions at a node xα are given by

Φ
p
α =

{

φ̂ jα
}DL

j=1

NR
⋃

i=1

Hi
{

φ̂ jα
}DL

j=1

= ϕα ×{1,L2α , . . . ,LDLα ,

H1,H1L2α , . . . ,H1LDLα ,

H2,H2L2α , . . . ,H2LDLα , . . . ,

HNR
,HNR

L2α , . . . ,HNR
LDLα

}

The enrichment functions Hi(x)L jα(x), j = 1, . . . ,DL, i = 1, . . . ,NR , are denoted high-order step
functions. The numerical examples presented in Section 3 show that these functions can deliver optimal
convergence rates.

Approximations of the same polynomial degree are used above for the continuous, û
hp, and

discontinuous, ũ
hp
i , components of the solution. However, this is not necessary. Hereafter, p and q

are used to denote the polynomial degree of û
hp and ũ

hp
i , respectively. In the numerical examples

analyzed in Section 3, GFEM approximations with 1≤ p,q≤ 4 are used. Below, we list a few examples
of GFEM approximations for branched cracks..

• GFEM(p = 1,q = 1). In this case, the local approximations û
hp
α , ũ

hp
iα , α = 1, . . . ,Nb, i =

1, . . . ,NR , are constant over ωα , i.e.,
{

L jα
}DL

j=1 = {1} and the shape functions at a node xα
are given by

Φ
p=q=1
α = ϕα ×

{

1,H1,H2, . . . ,HNR

}

(7)

which are the same generalized FE shape functions presented in [6], i.e., we recover the simplest
possible case, that of a piecewise linear approximation of u.

• GFEM(p = 2,q = 0). This case corresponds to the generalized FE shape functions introduced in
[17, 18]. The shape functions at a node xα are given by

Φ
p=2,q=0
α = ϕα ×

{

1,
(x− xα)

hα
,
(y− yα)

hα
,
(z− zα)

hα

}

(8)

These shape functions, of course, can not represent the discontinuous components of the solution
ũ

hp
i . In Section 3, we use these functions in combination with meshes fitting the crack surfaces.

These meshes model the crack surfaces explicitly like in the FEM.
• GFEM(p = 2,q = 2). The shape functions at a node xα are given by

Φ
p=q=2
α = ϕα ×

{

1,
(x− xα)

hα
,
(y− yα)

hα
,
(z− zα)

hα
,

H1,H1
(x− xα)

hα
,H1

(y− yα)

hα
,H1

(z− zα)

hα
,

H2,H2
(x− xα)

hα
,H2

(y− yα)

hα
,H2

(z− zα)

hα
, . . . ,

HNR
,HNR

(x− xα)

hα
,HNR

(y− yα)

hα
,HNR

(z− zα)

hα

}

(9)
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• GFEM(p = 2,q = 1). The shape functions at a node xα are given by

Φ
p=2,q=1
α = ϕα ×

{

1,
(x− xα)

hα
,
(y− yα)

hα
,
(z− zα)

hα
,H1,H2, . . . ,HNR

}

(10)

If we have a single (non-branching) discontinuity in the domain and the problem is two-
dimensional, the shape functions are reduced to

Φ
p=2,q=1
α = ϕα ×

{

1,
(x− xα)

hα
,
(y− yα)

hα
,H1

}

(11)

These shape functions are equivalent to those proposed by Stazi et al. [22]. In Section 3, we
compare the performance of these functions with those from GFEM(p = 2,q = 2).

Let us note that the high-order approximations developed above are, of course, applicable to the
GFEM for polycrystals presented in [6].

Another formulation for modeling branching cracks based on the partition of unity framework was
proposed by Daux et al. [19]. They proposed piecewise linear approximations to model branching
cracks in two-dimensions. A detailed comparison between the two approaches can be found in [6].

2.1. Selection of nodal enrichment

In general, several step functions Hi are constant over the support ωα of a given partition of unity
function ϕα and should therefore not be used in actual computations. Linear dependence among the
constant and step functions can also occur. A simple procedure to eliminate these linear dependences
was presented in [6, Sec. 6.2]. In the case of branched cracks, the procedure is essentially the same
with two exceptions: (i) Nodes in the set Ifront are not enriched with discontinuous functions; (ii) In
the computation of the intersection of boundary, ∂Ri, of regions Ri, i = 1, . . . ,NR , with the support
ωα of nodes xα ,α = 1, . . . ,Nb, only the portions of ∂Ri that are on a crack surface are considered.
The algorithm is presented in Figure 2 and illustrated in Figure 3. Figures 18 and 22 illustrate the
application of this algorithm in three dimensions. In these figures, nodes with a solid sphere have
continuous, φ̂ jα(x) = ϕα(x)L jα(x), and discontinuous, φ̃iα j(x) = ϕα(x)Hi(x)L jα(x), GFEM shape
functions. All other nodes have continuous GFEM shape functions only.

If high-order enrichment functions are used, the resulting generalized FE shape functions Φα , α =
1, . . . ,NR , can still be linear dependent. An algorithm for handling this case is described in [18].

2.2. Crack front enrichment

The GFEM shape functions presented in Section 2 do not use near crack front expansions as enrichment
functions. The stress state in the neighborhood of a crack front is not well known in three-dimensions,
and analytical expansions are available only for particular crack geometries [30, 31]. Complex crack
front geometries, curved crack surfaces or the intersection of the crack surface with the boundary, create
complex stress distributions that are, in general, not amenable to closed form expansions. Similarly,
non-linear fracture models generate stress states that are not amenable to analytical expansions in the
neighborhood of a process zone.

Two additional difficulties with near crack front enrichment functions are their numerical integration
and the need to enrich several layers of elements around the crack front in order to achieve optimal
convergence rates [25, 27]. Integration errors may lead to wrong conclusions in a convergence analysis
since they may cancel discretization errors when computing, for example, the strain energy. In this
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Create geometrical representations for regions Ri, i = 1, . . . ,NR . Region Ri can be larger (but not
smaller) than previously defined and illustrated in Figure 1. The only constraint is thatR̄i ∩ R̄ j,
i 6= j, is non-empty only along crack surfaces.
foreach node xα ,α = 1, . . . ,Nb, do

if α ∈ Ifront then
continue;

endif
foreach region Ri, i = 1, . . . ,NR , ∈ Ωbranch do

if ωα ∩∂Ri 6= /0 then
if Intersection is along a crack surface then

Enrich node xα with step function Hi

endif
endif

endfch
if node xα has more than one step function enrichment then

Discard one of them.
endif
Add high-order step functions to the node if q > 1.

endfch

Figure 2. Algorithm to select step functions for nodes in neighborhood Ωbranch of a branched crack.

R2

R3

R1

(b)(a)

R2

R3

R1

R2

front node

R1

R3

Figure 3. Nodal enrichment procedure for a branched crack in a two-dimensional domain: (a) enrichment functions
are added to Ωbranch defined in Figure 1; and (b) surplus enrichment functions are eliminated. Note that nodes on
the crack front (with index in Ifront) are not enriched. The procedure is detailed in the algorithm reported in

Figure 2.
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paper, we follow the classical FEM approach of resolving the non-smooth displacement field near a
crack front by local mesh refinements combined with high-order approximations [32]. This approach
avoids the difficulties and limitations related to near crack front enrichment functions while being able
to deliver high convergence rates as demonstrated in Section 3. The construction of hp discretizations
in the neighborhood of a crack front is not difficult in the generalized FEM since crack surfaces are
allowed to cut elements. The mesh refinement can, therefore, be performed as if there were no cracks
in the domain. Illustrative examples are presented in Section 3.

2.3. Equivalence of approximation spaces

In [6, Sec. 4], we have shown that the discrete spaces spanned by linear FEM shape functions and linear
GFEM functions (p = 1,q = 1) are identical when meshes fitting the crack surfaces are used. GFEM
shape functions (p = 1,q = 1) are given in (7). The same proof can be used to show the equivalence
between the corresponding families of high-order GFEM shape functions. I.e., the following families
of shape functions, when defined on meshes fitting the crack surfaces, are equivalent:

(i) GFEM (p,q = 0) with crack surfaces explicitly modeled like in the FEM. An example of shape
functions from this family is given by (8). In Section 3.1.1, we use the acronym EC (explicit
crack) to identify this family;

(ii) GFEM (p = q). An example of shape functions from this family is given by (9). In Section 3.1.1,
we use the acronym BC (boundary crack) to identify this family.

The discrete spaces spanned by these two families of functions are identical. The corresponding
discretizations have the same number of degrees of freedom and the GFEM solutions computed on
these discretizations are identical.

3. EXAMPLES

To assess the proposed high-order generalized FEM approximation for branched cracks, we performed
a series of benchmark analyses. The quality of our results was measured using the relative error in
energy norm

‖e‖ =

√

Uexact −Uapprox√
Uexact

, (12)

where U is the strain energy. The value of the exact strain energy, Uexact , was estimated using the
procedure described in [33]. The estimation is based on a priori error estimates in energy norm and a
sequence of GFEM solutions generated with p-enrichments. The approach assumes that the discretized
energy converges monotonically. Using a-priori error estimates we get

log Uexact−Up
Uexact−Up−1

log
Uexact−Up−1
Uexact−Up−2

≈
log

Np−1
Np

log
Np−2
Np−1

:= Q, (13)

where Ui are the values of the strain energy for different number of degrees of freedom Ni. The exact
energy, Uexact , is computed by solving the non-linear equation

Uexact −Up

Uexact −Up−1
≈

{

Uexact −Up−1

Uexact −Up−2

}Q

.
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(a) (b)

unit thickness unit thickness

2H

W = H = 1 inch
E = 10.9E6 psi
ν = 0.397

W = H = 2.5 inch
a/W = 0.6
b/a = 1.414
θ = 45◦

E = 2E5 psi
ν = 0.3

2W

θ

2W

a

b

t0

t0

t0

t0

2H

Figure 4. The benchmark tests.

Figure 5. Examples of discretization for through-the-thickness (left) edge crack and (right) triple-joint crack.

The error and the convergence rate in energy norm for a GFEM solution can then be computed using
Uexact .

3.1. Two benchmark tests

The benchmarks used for the convergence analyses are two three-dimensional isotropic plates with
through-the-thickness edge and triple joint cracks under unit tension. Both examples are in small strain
isotropic elasticity and in both cases the specimens are loaded in the vertical direction. Specimen setups
and material properties are reported in Figure 4. An example of the discretizations used in this study is
shown in Figure 5. As described next, we performed a series of analyses with different discretizations
and refinement strategies.

3.1.1. Edge crack For the edge crack test, we considered three families of discretizations:

[HpBranched – December 28, 2006]



10 of 29 C.A. DUARTE, L.G. RENO, A. SIMONE

Figure 6. Edge crack: three-dimensional effect close to the crack front (isosurfaces of the norm ‖u‖ of the
displacement field; ‖u‖ is not constant in the transversal direction around the crack front).

1. Meshes with an explicit crack modeled with double nodes like in the FEM. The generalized
FEM shape functions used with this type of discretization are from the family GFEM(p,q = 0)
defined in Section 2 and introduced in [18]. The acronym EC (explicit crack) is used to identify
a discretization of this type;

2. Meshes with crack surfaces located at element boundaries, like in the previous case, but without
double nodes. The crack is modeled with step functions and generalized FEM shape functions
from the family GFEM(p,q) are used. A discretization of this type is identified by the acronym
BC (boundary crack). As an example, a linear continuous and discontinuous approximation of
the displacement field on a mesh from this family is identified by GFEM(p = 1,q = 1), BC or
simply by p1q1,BC;

3. Discretizations with crack surfaces passing through the elements as shown in Figure 5. The
shape functions GFEM(p,q) are also used with this family. The acronym CC (cutting crack)
identifies a member of this family. A quadratic continuous and discontinuous approximation of
the displacement field on a mesh from this family is identified by GFEM(p = 2,q = 2), CC or
simply by p2q2,CC.

Figure 6 shows the three-dimensional behavior of the solution near the crack front. As we have
used a Poisson’s ratio larger than zero, ‖u‖ is not constant in the transversal direction around the crack
front. In the following, we assume λ = 0.5 as the order of the singularity (smoothness parameter) in the
estimates for the convergence rates of the error norm reported in [33]. The smallest eigenvalue of the
asymptotic expansion of the elasticity solution in the neighborhood of the crack vertices is larger than
0.5 [31]. Far from the vertices, the smallest eigenvalue is equal to 0.5, the classical two-dimensional
case. The singularity of the solution far from the vertices will thus govern the convergence rate. The
value of the exact strain energy for this problem, Uexact = 8.171644×10−7 lb.in, was estimated using
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the procedure described previously.

Homogeneous h-refinement We first studied the effect of homogeneous h-refinement. In this case,
the asymptotic rate of convergence in energy norm with respect to the number of degrees of freedom
is given by β = 1/3min{p,λ}, with p the polynomial order of the approximation and λ a smoothness
parameter. Since the solution is not smooth, the smoothness parameter will govern the rate of
convergence which is given by β = 0.5/3 ≈ 0.166.

A summary of our results is shown in Figures 7 and 8. In all cases, convergence rates in energy
norm asymptotically approach the theoretical rate. There are however some differences in terms of the
error produced by the various approximations. When a crack is placed along element boundaries, the
curves obtained with EC and BC discretizations are indistinguishable – although the shape functions
are different, both approximations span the same approximation spaces. This in agreement with the
analysis presented in Section 2.3. On the other hand, the analyses with meshes cutting crack, CC,
produced a slightly higher error when compared to the case of a crack placed along element boundaries.
A-priori error estimates for the h-version of the generalized or standard finite element method are of
the form [28, 33, 34]

‖u−uh‖ ≤C
1

Nβ ‖u‖
Therefore, the constant C in the inequality above is larger for discretizations from the CC family than
for the BC family. The GFEM shape functions from the BC and CC families are built using the same
procedure. Linear and quadratic functions from these families are given by (7) and (9), respectively.
The only difference between the resulting shape functions is the location of crack surfaces with
respect to the support of the partition of unity functions. In the case of the BC family, the location
coincides with boundary of elements while in the CC family it does not, in general. The support
of a partition of unity function ϕα is the union of the finite elements sharing a vertex node xα . A
function ϕα has discontinuous first derivatives along the boundaries of the elements composing its
support and continuous derivatives elsewhere. Therefore, in the case of the BC family, cracks “cut”
ϕα along surfaces where the function has discontinuous first derivatives. This apparently may lead to
a smaller constant C than when the cut is done elsewhere. Another possible reason for the difference
in performance between the two families, is the location of the crack front with respect to the element
boundaries. In the case of the BC family, crack fronts are located along element edges while in the
case of the CC family they are, in general, located along element faces (cf. Figure 5). This argument
is supported by the fact that the difference in performance between the two families tend to disappear
when non-uniform meshes around the crack front are used. Local mesh refinement around the fronts
tend to create element edges at or very close to the fronts and therefore reduces the difference between
the two discretizations. This effect is shown in Figures 14 and 15 which are analyzed in detail later on.

A lower polynomial degree for the discontinuous components of the solution, i.e., q < p instead of
q = p, produces a consistently higher error compared to the case with p = q in all the analyses. In
particular, we used the interpolation scheme proposed by Stazi et al. [22] for which p = 2 and q = 1.
As shown in Figure 8, although the asymptotic convergence rate is the same, the error is consistently
higher when using this scheme (compare 2 to × or # and ∗ to 4). As a further comparison, shown in
Figure 9, we note that the errors produced by Stazi et al.’s scheme and the linear interpolation scheme
p = q = 1 are comparable for quite large range of degrees of freedom.

Non-Uniform h-refinement Next, we considered the effect of non-uniform h-refinement at the crack
front. It is possible to create sequences of non-uniform meshes such that the rate of convergence
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Figure 7. Edge crack: convergence rates in energy norm for homogeneous h-refinement of meshes from families
EC with p = 1, q = 0, BC and CC with p = q = 1.
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Figure 8. Edge crack: convergence rates in energy norm for homogeneous h-refinement of meshes from families
EC with p = 1, q = 0, BC and CC with p = q = 2 and p = 2, q = 1.
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Figure 9. Edge crack: convergence rates in energy norm for homogeneous h-refinement of meshes from family CC
with p = q = 1 and p = 2, q = 1.

is the same as that for problems with smooth solutions [33]. Therefore, in this case, the rate of
convergence in energy norm is β = 1/3{p} [33]. Thus, β = 1/3 ≈ 0.333 for linear approximations
and β = 2/3 ≈ 0.666 for quadratic approximations. The construction of such a sequence of meshes,
however, requires a-posteriori error indicators. In this section, we investigate an alternative approach
geared towards fracture mechanics problems. Sequences of non-uniform meshes were created as
follows.

(i) Create meshes locally refined around the crack front by successively bisecting all elements with
the crack front at their boundary. The marked-edge algorithm [35, 36] was used to select element
edges for bisection. In all discretizations, the crack fronts are located at the boundary of elements,
as discussed in Section 2 and proposed in [21]. Three levels of refinement at the crack front
are used in the computations: 10, 15 and 17. These refinements are denoted, hereafter, by the
acronyms F10, F15 and F17, respectively. Figure 10 shows mesh (CC,F15). Note that since the
crack surface is allowed to cut the elements, the mesh refinement can be performed as if there
were no cracks in the domain. This greatly facilitates the construction of strongly refined meshes
in the neighborhood of crack fronts. In addition, the aspect ratio of the elements is not affect
by the presence of the crack since their boundary do not have to fit the crack surface. This is in
contrast with the classical FEM.

(ii) Apply global refinements to the non-uniform meshes created as described above.

We performed h-convergence analysis on sequences of non-uniform meshes from all three families
(EC, BC and CC). The results are discussed below.

The effect of the refinement level at the crack front is shown in Figures 11 and 12. In particular,
Figure 11 reports results for meshes with crack surface along element boundaries (BC discretizations)
while Figure 12 reports results for meshes with crack cutting the elements (CC discretizations). Results
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Figure 10. Mesh with strong refinement at the crack front: CC discretization with 15 levels of crack front
refinement (mesh CC,F15).
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Figure 11. Edge crack: convergence rates for global h-refinement applied to locally refined meshes. Discretizations
with crack surface along element boundaries (BC) and p = q = 1 or p = q = 2.
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Figure 12. Edge crack: convergence rates for global h-refinement applied to locally refined meshes. Discretizations
with crack surface cutting elements (CC) and p = q = 1 or p = q = 2.
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Figure 13. Edge crack: convergence rates for global h-refinement applied to locally refined mesh (effect of the
approximation scheme).
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Figure 14. Edge crack: convergence rates for global h-refinement applied to uniform and locally refined meshes.
In both cases, the h-refinement is applied to meshes from families BC and CC with quadratic approximation

(p = q = 2).

for EC discretizations are not reported since they are the same as those for the BC discretizations. In
all cases, global h-refinement is applied to locally refined meshes built as described above. It can be
observed that the pre-asymptotic convergence rates increase with the refinement level at the crack
front and approach those of a smooth problem. The rate of convergence for h-refinement applied
to the discretizations (p1q1,BC,F17) and (p1q1,CC,F17) are 0.309 and 0.298, respectively. The
ratio between these rates and those for a problem with a smooth solution are 0.309/0.333 = 0.93
and 0.298/0.333 = 0.90, respectively. The ratios were computed using only the last two data points
in each curve. This performance is similar to that reported in [25, Sec. 4] using an approach based
on enrichments with singular functions over a fixed area. The rate of convergence for h-refinement
applied to the discretizations (p2q2,BC,F17) and (p2q2,CC,F17) are 0.457 and 0.483, respectively.
While they are, again, smaller than the case of a problem with smooth solution, they are about 2.7 and
2.9 times, respectively, the rate of convergence for h-refinement applied to uniform meshes. Higher
convergence rates can be obtained by further refining the mesh near the crack front. Another possibility
is to use meshes in which the size of the elements decreases faster towards the singularity then in the
case of the mesh shown in Figure 10 [33].

The optimal level of crack front refinement depends on the target error level. Meshes with
high level of crack front refinement, F17 or higher, for example, are more effective for low error
targets. This is shown in Figures 11 and 12, specially for the case of quadratic discretizations. This
behavior is analogous to that observed in the classical finite element method [33]. The quadratic F10
discretizations from both BC and CC families show a significant reduction in convergence rate with
global mesh refinement, indicating that the singularity along the crack front is poorly resolved by this
mesh refinement level. Of course, a-posteriori error indicators [37, 38] could be used to drive the mesh
refinement process instead to a-priori selecting a given level of crack front refinement as done here.
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Refinement Double nodes, EC Crack at element boundaries, BC Crack cutting elements, CC
level p = 1 p = 2 p = q = 1 p = 2, q = 1 p = q = 2 p = q = 1 p = q = 2
10 0.204 0.099 0.204 0.196 0.099 0.219 0.225
15 0.319 0.240 0.319 0.237 0.240 0.304 0.252
17 0.309 0.457 0.309 0.415 0.457 0.298 0.483
∞ 0.333 0.666 0.333 0.666 0.666 0.333 0.666

Table I. Asymptotic convergence rates for h-refinement on locally refined meshes.

Figure 13 shows the effect of a different interpolation order for the continuous and discontinuous
component of the displacement field as proposed by Stazi et al. [22]. We used meshes with the
crack along element boundaries (BC discretizations) with 15 levels of refinement at the crack front.
In this case the p2q1 interpolation scheme performs reasonably well when compared to the case of
homogeneous h-refinement reported in Figure 9. We do however agree with Laborde et al. [25, Sec.
3.4.3] in stressing that the discontinuity of the displacement field along the crack surface must be
represented in a sufficiently accurate way using the FEM basis as partitions of unity. This implies that
the continuous and the discontinuous part of the displacement field must be compatible; in other words,
they must be approximated with the same approximation space.

Figure 14 compares the performance of homogeneous h-refinement applied to uniform and locally
refined meshes. In both cases, the h-refinement is applied to meshes from families BC and CC with
quadratic approximation (p = q = 2). It can be observed that the asymptotic convergence rates for both
families are very close. However, for a given number of degrees of freedom, the discretizations with
cracks at element boundaries (BC) delivers a smaller error than the discretizations with cracks cutting
the elements (CC). This behavior is more pronounced in the pre-asymptotic range [32] of the mesh
refinement applied to uniform meshes. The difference between the BC and CC families is small in the
case of locally refined meshes and essentially disappear with mesh refinement. As previously discussed,
this supports the argument that the difference between the performance of two families might be due
to the location of the crack front with respect to element boundaries. Figure 14 also shows that, for
a given number of degrees of freedom, the graded discretizations deliver an error much smaller than
those from uniform discretizations.

Table I summarizes the convergence rates in energy norm for h-refinement applied to non-uniform
meshes from all discretizations families and different choices of approximation order. The rate
of convergence for uniform h-refinement is only 1/6 for this problem, regardless of the order of
approximation. As the table shows, locally refined meshes can deliver much higher convergence rates.
Discretizations with linear approximations attain rates of convergence that are very close to those for
problems with smooth solutions. Global h-refinements applied to non-uniform meshes F15 or F17, for
example, deliver rates that are almost twice as large as those for uniform mesh refinement. We can also
observe that the convergence rates for quadratic approximations increase significantly with the level of
refinement around the crack front approaching those for problems with smooth solutions.

P-enrichment on locally refined meshes In this section, we investigate the performance of p-
enrichment on non-uniform meshes. Discretizations from the CC, EC and BC families are considered
and polynomial order 1≤ p,q≤ 4. High-order finite element approximations on meshes that can isolate
the singularity can deliver exponential convergence rates [32]. We investigate the performance of the
proposed generalized FEM on meshes with 15 and 17 levels of refinement at the crack front (F15 and
F17 meshes).
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Figure 15. Edge crack: error convergence rates for p-enrichment on locally refined meshes (effect of the
interpolation order).

The convergence rate in the energy norm for p-enrichment applied to h-uniform meshes is, for
problems with non-smooth solutions and with respect to number of degrees of freedom in three
dimensions, β = 2/3λ . For the edge crack problem, the smoothness parameter λ = 0.5 and therefore
β = 0.333. P-enrichment applied to a locally refined mesh, on the other hand, can deliver much higher
convergence rates, depending on how well the mesh can isolate the singularities [33].

We report only some of our results in Figure 15. We show the convergence rate for p-enrichment
applied to meshes with cutting crack CC with 15 and 17 levels of crack front refinement and for p-
enrichment applied to BC discretizations (crack located at element boundaries) with 17 levels of crack
front refinement. The results for mesh with explicit cracks (EC discretizations) are not reported since
since they are exactly the same as those for the BC discretizations. This, as previously discussed, is
expected since EC and BC discretizations lead to the same approximation spaces. The convergence
curves shown in Figure 15 have the shape of an inverted S which is typical for p-enrichment applied to
locally refined meshes [33]. The convergence rates initially increases with the polynomial enrichment
and later on decreases, indicating that the solution is entering the asymptotic range. All convergence
rates shown in Figure 15 are in general at least twice as large as the case of p-enrichment applied
to uniform meshes. The F17 meshes deliver higher convergence rates than the F15, as expected,
since they can better isolate the singularity. However, for a given number of degrees of freedom, the
F15 meshes give a smaller error for the the range of polynomial orders used in the computations.
The situation might reverse for higher polynomial orders. The highest rate shown in the figure is
0.832/0.333 = 2.5 times the rate for p-enrichment applied to uniform meshes. We can also observe
that the performance of the CC and BC discretizations are very close.

A summary of all the results for the edge crack test with CC discretizations is reported in Figure 16.
The performance of h-refinement applied to uniform and locally refined meshes is compared with p-
enrichment applied to locally refined meshes. It can be observed that the optimal strategy in terms of
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Figure 16. Edge crack: summary of convergence rates of relative energy norm error (CC discretizations).

error level for a given number of degrees of freedom, depends on the target error. P-enrichment applied
to locally refined meshes is the most effective strategy for error levels below 30%. Worth noting is the
improvement as the approximation order is increased from two to three on the F17 mesh (curve with
asterisks). If this same mesh (F17 with p = q = 2) is instead globally refined and the approximation
order kept constant (curve with filled circles), the improvement on the solution is less pronounced.
In the first case, the rate of convergence is equal to 0.814 while in the second the rate is 0.483. The
p-extension, in this case, delivers a smaller error using fewer degrees of freedom than the h-extension.

3.1.2. Triple joint crack We have performed a series of analyses on the triple joint crack problem
shown in Figure 4(b). For this problem, we concentrate on p-extensions applied to non-uniform meshes
since the edge crack problem showed that this is the most effective strategy. The same polynomial
order for the continuous and discontinuous shape function is used in all computations. We also include
uniform h-refinement results to have a baseline for comparison. The results are very similar to those
reported previously for the edge crack case. In this example, we considered only discretizations in
which the discontinuity surfaces cut through the finite elements as shown in Figures 5(b) and 17. The
solution on elements interacting with the branched crack surface is approximated with the generalized
FEM shape functions presented in Section 2. The selection of discontinuous enrichment functions at
a node, if any, is done with the aid of the algorithm discussed in 2.1. Figure 18 shows nodes with
discontinuous enrichment functions on uniform and non-uniform meshes. The value of the exact strain
energy for this problem, Uexact = 1.37178× 10−4 lb.in, was estimated using the procedure described
previously.

Homogeneous h-refinements We first employed homogeneous h-refinements for linear (p1q1) and
quadratic (p2q2) approximations. The curves corresponding to these discretizations are indicated as
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Figure 17. Mesh with strong refinement at the crack fronts: CC discretization with 10 levels of crack front
refinement (mesh CC,F10).

“hom. h-ref p1q1” and “hom. h-ref p2q2” in Figure 19, respectively. The results reported in the figure
show that the asymptotic convergence rate in energy norm for h-refinement is very close to 0.1666, like
in the edge crack problem.

P-enrichment on locally refined meshes The performance of p-enrichments on meshes locally
refined at the crack fronts was also investigated. Meshes with 10 and 15 levels of refinement at the
crack fronts, as shown in Figure 17, were employed. The results are shown in Figure 19 together with
those for the uniform mesh refinement. We can observe that, as in the edge crack problem, strong mesh
refinements at the crack fronts are able to isolate the singularities and deliver high convergence rates
in the pre-asymptotic range. The reduction in convergence rate with p-enrichment indicates that the
solution is entering the asymptotic range. This behavior is typical of p-extensions on locally refined
meshes [32]. Stronger refinement at the crack fronts would delay this behavior. The F15 mesh delivers
higher convergence rates than the F10 mesh, as expected. However, for a given number of degrees
of freedom, the F10 mesh delivers a smaller error than the F15 mesh. The behavior is probably the
opposite for lower error levels (note the intersection of the two curves in Figure 19). Like in the edge
crack problem, we can observe that it is not practical to achieve error levels below 10% using uniform
mesh refinement. P-extensions on locally refined meshes are quite effective for this class of problems.
Figure 20 shows the von Mises stress distribution computed on the mesh with 15 levels of crack front
refinement and p = q = 3. The presence of singularities at the crack fronts can be clearly observed.

3.2. Multi-branched crack

The flexibility and generality of the proposed approach can be appreciated by considering a more
challenging problem like the one shown in Figure 21. The (21 in × 21 in × 1 in) three-dimensional
plate with a multi-branched discontinuity is loaded by a unit tension. The plate material obeys linear
elasticity with Young’s modulus equal to 2×105 psi and Poisson’s ratio equal to 0.3. The value of the
exact strain energy, Uexact = 0.382226 lb.in, was estimated using the procedure based on a-priori error
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Figure 18. Nodes with a solid sphere have continuous, φ̂ jα (x) = ϕα (x)L jα (x), and discontinuous, φ̃iα j(x) =
ϕα (x)Hi(x)L jα (x), GFEM shape functions. All other nodes have continuous GFEM shape functions only.

Meshes CC,F0 (left) and CC,F10 (right).
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Figure 19. Triple-joint crack: summary of convergence rates of relative energy norm error (CC discretizations).
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Figure 20. Von Mises stress distribution computed on mesh CC,F15 and p = q = 3.

Figure 21. Multi-branched crack problem (left) with 10 levels of mesh refinement at crack fronts (right).
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Figure 22. Nodes with a solid sphere have continuous, φ̂ jα (x) = ϕα (x)L jα (x), and discontinuous, φ̃iα j(x) =
ϕα (x)Hi(x)L jα (x), GFEM shape functions. All other nodes have continuous GFEM shape functions only. Mesh

CC,F0.

estimates.
Like in the previous problem, we considered only discretizations from the CC family with 5, 10 and

15 levels of mesh refinement at the crack fronts (CC F5, F10 and F15 meshes). The construction of
the local refinements can be done fully automatically using the location of the crack fronts. All the user
needs to provide is the level of refinement used at the crack fronts. Figure 21 shows meshes CC F0
and CC F10. Figure 22 shows the nodes of mesh CC F0 enriched with discontinuous functions. The
algorithm discussed in Section 2.1, was used to select the discontinuous enrichments functions used at
each node.

Figure 23 shows the actual tcl [39] code used to solve the multi-branched crack problem on the
discretization CC F10, p = q = 3. The code includes all steps in the analysis:

1. Loading of file with GFEM model definition. This includes nodes, elements, material and
boundary conditions;

2. Loading of branched cracked geometry;
3. Local refinement of elements around each one of the seven crack fronts, i.e., the creation of mesh

CC F10;
4. Creation of discontinuous enrichment functions based on the branched crack geometry;
5. Assignment of continuous and discontinuous enrichment functions to nodes;
6. Solution of the problem;
7. Computation of strain energy.

No user intervention is required to perform the analysis, regardless of the complexity of the branched
crack surface. This allows the solution of a large number of problems and is ideal, for example, for
parametric studies.
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# read model: Nodes, elements, material, boundary conditions, etc.
readFile complexBranchedCrack.grf phfile

# create a linear analysis object
createAnalysis linear

# read branched crack definition and create a crack manager object
crackManager create crackMgID 2 crackFile "complexBranchedCrack.crf"

# Refine elements that intersect the crack fronts
set nref 10
for {set iref 0} {$iref < $nref} {incr iref} {

crackManager refineProbMesh crackMgID 2 crackFronts
}

# create step functions and assign them to nodes
crackManager process crackMgID 2

# resulting p-order of approximation
set p 3

# Enrich nodes with continuous and discontinuous functions
enrichApprox all iso approxOrder $p

# Assemble left and right hand side
assemble

# solve linear problem
solve

# compute strain energy
work
exit

Figure 23. Actual tcl code used to solve the multi-branched crack problem on the discretization CC F10 p = q = 3.

P-enrichment on locally refined meshes The p-version of the GFEM was used to solve this problem.
Meshes with different levels of refinement at the crack fronts were used. Figure 24 reports the
convergence rates in energy norm. As in the previous examples, the convergence rates increases with
the level of refinement at the fronts. This indicates that the local refinements are able to isolate the
singularities and extend the pre-asymptotic range of the curves. The mesh with ten levels of crack
front refinement (F10) is the most effective for errors levels below 20%. This is similar to the triple-
joint problem. For error levels below 5%, meshes with higher levels of front refinement may be more
effective.
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Figure 24. Multi-branched crack: p-enrichment on locally refined meshes.

4. SUMMARY AND CONCLUDING REMARKS
This paper presents a generalized finite element method for through-the-thickness three-dimensional
branched cracks in which the crack topology is represented independently from the background
finite element mesh. The method is a high-order extension to three-dimensional branched cracks of
the enrichment procedure described in [6] for two-dimensional polycrystalline structures. Although
the numerical examples reported in Section 3 involves through-the-thickness cracks, the formulation
presented in Section 2 is valid for general three-dimensional problems. Further, cohesive or frictional
contact laws [21, 40–52] can be easily incorporated by appropriate modifications of the formulation
reported in [6, Sec. 5.2].

The proposed approach, based on p-enrichment of locally refined meshes, is geared towards
simplicity and generality. Analytical expressions of near-front fields are not used. The approach is
therefore suited to general linear and non-linear analyses and does not require special integration
strategies for singular functions. An alternative approach for single cracks in two-dimensions was
proposed by Laborde et al. [25] and Bechet et al. [27]. In their approach, singular enrichment functions
are used at all finite element nodes within a prescribed distance from a crack tip. The size of the
enrichment zone is kept fixed as the background mesh is refined by enriching additional nodes. This
strategy is restricted to situations in which analytical expressions of near-front fields are available.

A number of important conclusions can be drawn as a result of the numerical analyses. Our findings
demonstrate that crack front enrichment functions are not mandatory to achieving accurate results and
high convergence rates. Instead, the combination of local refinement at crack fronts and high-order
continuous and discontinuous enrichments proves to be an excellent combination which can deliver
convergence rates close to that of problems with smooth solutions, specially for linear approximations
(see Table I). It is worth noting here that local mesh refinement is greatly simplified since element
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boundaries need not to be aligned to crack surfaces. The meshing stage is therefore truly automatic,
with no need for user intervention (see Figure 23).

Another important outcome of our analyses is that the same order of approximation should be used
for the continuous and discontinuous part of the displacement field – a similar remark was made by
Laborde et al. [25, Sec. 3.4.3] with respect to the approximation scheme proposed by Stazi et al. [22].

As a final remark, it bears mentioning that a-posteriori error indicators [37, 38] could be used to
drive the mesh refinement process instead to a-priori selecting a given level of crack front refinement
as done in this work.
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