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SUMMARY

This paper presents a Generalized Finite Element Method (GFEM) based on the solution of interdependent
global (structural) and local (crack) scale problems. The local problems focus on the resolution of fine-scale
features of the solution in the vicinity of 3-D cracks while the global problem addresses the macro-scale structural
behavior. The local solutions are embedded into the solution space for the global problem using the partition of
unity method. The local problems are accurately solved using anhp-GFEMand thus the proposed method does not
rely on analytical solutions. The proposed methodology enables accurate modeling of 3-D cracks on meshes with
elements that are orders of magnitude larger than the process zone along crack fronts. The boundary conditions for
the local problems are provided by the coarse global mesh solution and can be of Dirichlet, Neumann or Cauchy
type. The effect of the type of local boundary condition on the performance of the proposed GFEM is analyzed.
Several three-dimensional fracture mechanics problems aimed at investigating the accuracy of the method and its
computational performance, both in terms of problem size and CPU time are presented.

KEY WORDS: Generalized FEM; Extended FEM; Fracture; Multiscale; Small cracks; Global-Local
analysis.

1. Introduction

The Generalized or Extended FEM (G/XFEM) [3, 4, 8, 19, 50, 52, 63, 66] has been successfully
applied to the simulation of boundary layers [16], propagating fractures [20, 35, 51, 67], acoustic
problems [6, 48], polycrystalline microstructures [1, 62], etc. All of these applications have relied
on closed-form enrichment functions that are known to approximate well the physics of the problem.
However, analytical enrichment functions are in general not able to deliver accurate solutions on coarse
three-dimensional meshes. To overcome this limitation, local mesh refinement must be performed as
in the standard FEM [25, 57]. This creates several of the drawbacks of the FEM with remeshing and
offsets many of the advantages of the G/XFEM. In the case of crack propagation and multiple site
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damage analysis [2], the problem must be solved from scratch after each crack propagation step or for
each crack configuration. Furthermore, the analysis of non-linear or time-dependent fracture problems
may require mapping of solutions between meshes, as in the standard FEM. This may lead to loss
of solution accuracy when the solution spaces are not nested. Even when analytical enrichments are
able to approximate well the solution, as is the case in many 2-D fracture mechanics problems, the
minimum crack size which can be modeled is controlled by the element size in the mesh [7].

In [17, 18, 21, 40] we demonstrate that accurate fracture mechanics solutions can be obtained in
coarse meshes enriched with the so-called global-local enrichment functions. These functions are the
solution of local boundary value problems defined in the neighborhood of cracks. Boundary conditions
for these problems are provided by the coarse-scale global solution. We denote this class of methods
as a GFEM with global-local enrichment functions (GFEMgl). Global-local enrichment functions also
enable the analysis of problems with sharp thermal gradients using coarse meshes, as demonstrated in
[53].

In this paper, we combine the concept of global-local enrichments with thehp-GFEM for the 3D
fractures presented in [57, 58]. As a result, local features like cracks need not be discretized in global
scale meshes. They are instead modeled by the solution of local problems. In addition, cracks that are
smaller than global mesh elements can be discretized using this method. In this paper, we consider
three types of boundary conditions applied to local problems: Dirichlet, Neumann and Cauchy. The
effect of the type of local boundary condition on the performance of the proposed GFEM is analyzed.

From the approximation theory point of view, the proposed method is based on a two-scale
decomposition of the solution—A smooth coarse-scale and a singular fine-scale component. The
smooth component is approximated by a coarse global discretization of the domain. The fine-scale
is locally approximated by thehp-GFEMproposed in [57, 58]. The partition of unity concept is used
to paste the local approximations in the global solution space while still rendering aC0 solution space.
Details are presented in Section3. Numerical examples demonstrate that the proposed method provides
a two-way information transfer between coarse (structural) and fine (crack) scales while not requiring
mesh refinement in structural scale meshes We also demonstrate that the method does not require the
solution of the problem from scratch when analyzing severalcrack configurations in a mechanical
component. This, as shown in Section4, leads to a very efficient method for the class of problems
considered here.

Several other two- or multi-scale approaches for the analysis of fracture mechanics problems have
been proposed in recent years. A key difference among the various methods lies in the approach used to
combine fine- and coarse-scale approximations, i.e., how totransfer information among scales. Among
the recent works, we can mention the method of Guidault et al.[36] based on the LATIN method and
domain decomposition concepts; the multigrid method proposed in [61]; the method of Cloirec et al.
[13] based on Lagrange multipliers; the multiscale projectionmethod of Belytschko et al. [10, 44]; the
concurrent multiscale approach of Liu et al. [43, 46, 47]; thehpFEM method of Krause et al. [27, 41];
the concurrent multi-level method of Gosh et at. [33, 34] based on the Voronoi Cell Finite Element
Method; the multi-resolution approach proposed by Tsukanov and Shapiro [70] based on distance
fields. The proposedGFEMgl is also related to the refined global-local FEM proposed by Mao and Sun
[45] and based on linear combinations of global and local approximations. The main difference with
respect to the proposedGFEMgl is, again, how the fine- and coarse-scale approximations arecombined.

The s-version of the FEM (s-method) proposed by Fish et al. [30–32], the overlay technique of
Belytschko et al. [9] and the combination of the s-method with the XFEM proposed by Lee et al.
[42] can also be used to solve the class of problems considered inthis paper. The s-method consists
of overlaying a coarse finite element mesh with patches of finemeshes in regions where the solution
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exhibits high gradients or singularities [30]. A recent version of the s-method aimed at multiscale
failure simulations, is the reduced order s-method (rs-method) of Fish et al. [28, 54]. Further discussion
of some of these methods and their relations with the proposed GFEMgl are presented in Sections3.3
and3.4.

Following this introduction, Section2 presents a short summary of the Generalized Finite Element
Method. Details on the proposedGFEMgl are presented in Section3. Section4 presents several three-
dimensional fracture mechanics problems aimed at investigating the accuracy of theGFEMgl and its
computational performance both in terms of problem size andCPU time.

2. Generalized FEM: A Summary

The generalized FEM [3, 4, 19, 52, 63] is an instance of the so-called partition of unity method which
has its origins in the works of Babuškaet al. [4, 5, 49] and Duarte and Oden [15, 22–24, 52]. The
extended FEM [8, 50] and several other methods proposed in recent years can alsobe formulated as
special cases of the partition of unity method. In these methods, discretization spaces for a Galerkin
method are defined using the concept of a partition of unity and approximation spaces that are selected
based on a priori knowledge about the solution of a problem. Ashape function,φα i , in the GFEM is
computed from the product of a linear finite element shape function, ϕα , and an enrichment function,
Lα i ,

φα i(xxx) = ϕα(xxx)Lα i(xxx) (no summation onα) (1)

whereα is a node in the finite element mesh. Figure1 illustrates the construction of GFEM shape
functions.

The Lagrangian finite element shape functionsϕα , α = 1, . . . ,N, in a finite element mesh withN
nodes constitute a partition of unity, i.e.,∑N

α=1ϕα(xxx) = 1 for all xxx in a domainΩ covered by the finite
element mesh. This is a key property used in partition of unity methods. Linear combinations of the
GFEM shape functionsφα i, α = 1, . . . ,N, can representexactlyany enrichment functionLα i [15, 23].

Several enrichment functions can be hierarchically added to any nodeα in a finite element mesh.
Thus, if DL is the number of enrichment functions at nodeα , the GFEM approximation,uuuhp, of a
vector fielduuu can be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iϕα(xxx)Lα i(xxx)

=
N

∑
α=1

ϕα(xxx)
DL

∑
i=1

uuuα iLα i(xxx) =
N

∑
α=1

ϕα(xxx)uuuhp
α (xxx)

whereuuuα i , α = 1, . . . ,N, i = 1, . . . ,DL, are nodal degrees of freedom anduuuhp
α (xxx) is an approximation

of uuu defined onωα = {xxx ∈ Ω : ϕα(xxx) 6= 0}, the support of the partition of unity functionϕα . In the
case of a finite element partition of unity, the supportωα (often called cloud) is given by the union
of the finite elements sharing a vertex nodexxxα [19]. The equation above shows that the global GFEM
approximationuuuhp(xxx) is built by pasting together cloud-wise approximationsuuuhp

α ,α = 1, . . . ,N, using
a partition of unity.

The cloud approximationsuuuhp
α , α = 1, . . . ,N, belong to spacesχα(ωα) = span{Liα}DL

i=1 defined on
the supportsωα , α = 1, . . . ,N. A-priori knowledge about the behavior of the functionuuu over the cloud
ωα is used when selecting enrichment or basis functions for a particular spaceχα(ωα). We refer to
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(a) (b)

Figure 1: Construction of a generalized FEM shape function using a polynomial (a) and a non-polynomial
enrichment (b). Here,ϕα are the functions at the top, the enrichment functions,Lα i , are the functions in the
middle, and the generalized FE shape functions,φα i , are the resulting bottom functions.

[12, 19, 20, 35, 51, 57, 58, 66, 67] and the references therein, for details on the selection ofthese
functions for the case 3-D linear elastic fracture mechanics problems like those considered in this
paper.

In [57, 58], we show that available analytical enrichments for 3-D fracture problems enable
modeling of surface discontinuities arbitrarily located within a finite element mesh (across elements).
Nonetheless, a sufficiently fine mesh must be used around the crack front to achieve acceptable
accuracy. Even though the refinement does not have to be as strong as in the FEM, it still creates many
of the problems faced by the FEM when simulating, for example, propagating cracks or performing
a multi-site damage analysis. Mesh refinement around the cracks requires that the problem be solved
from scratch for each crack configuration, leading to high computational costs.

3. Solution of Two-Scale Problems Using Global-Local Enrichments

In [17, 18, 21] we present a procedure to build enrichment functions basedon the solution of local
boundary value problems defined in the neighborhood of cracks. The boundary conditions for these
problems are provided by a GFEM solution computed on coarse global meshes. We denote this class
of methods as a GFEM with global-local enrichment functions(GFEMgl). In [17, 18, 21] cracks are
discretized in the global meshes which prevents, for example, the analysis of small cracks or other
fine-scale features while keeping the global mesh coarse. Inthis section, this limitation is removed
through a two-scale decomposition of the solution of the global problem. The key idea is to combine
the global-local procedure of theGFEMgl with thehp-GFEMpresented in [57, 58]. The latter is used to
discretize the local boundary value problems used in theGFEMgl and thus the proposed methodology
enables modeling of small cracks on coarse, uncracked, global meshes. Details are presented next.

[GFEMgl˙two˙scale – July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 5 of33

3.1. Formulation of Coarse-Scale Global Problem

Consider a domain̄ΩG = ΩG∪∂ ΩG in ℜ3. The boundary is decomposed as∂ ΩG = ∂ Ωu
G∪∂ Ωσ

G with
∂ Ωu

G∩∂ Ωσ
G = /0. The equilibrium equations are given by

∇ ·σσσ = 000 in ΩG, (2)

The constitutive relations are given by the generalized Hooke’s law,σσσ = CCC : εεε, whereCCC is Hooke’s
tensor. The following boundary conditions are prescribed on ∂ ΩG

uuu = ūuu on ∂ Ωu
G σσσ ·nnn = t̄tt on ∂ Ωσ

G, (3)

where nnn is the outward unit normal vector to∂ Ωσ
G and t̄tt and ūuu are prescribed tractions and

displacements, respectively.
Let uuu0

G denote the generalized or standard FEM solution of the problem defined by (2), (3). This is
hereafter denoted as theinitial global problem. The approximationuuu0

G is the solution of the following
problem:

Find uuu0
G ∈ XXX0

G(ΩG) ⊂ H1(ΩG) such that,∀ vvv0
G ∈ XXX0

G(ΩG)

∫

ΩG

σσσ(uuu0
G) : εεε(vvv0

G)dxxx+η
∫

∂Ωu
G

uuu0
G ·vvv0

Gdsss=

∫

∂Ωσ
G

t̄tt ·vvv0
Gdsss+η

∫

∂Ωu
G

ūuu·vvv0
Gdsss (4)

where,XXX0
G(ΩG) is a discretization ofH1(ΩG), a Hilbert space defined onΩG, built with generalized,

or standard, FEM shape functions. In this paper, the GFEM is used and the spaceXXX0
G(ΩG) is given by

XXX0
G(ΩG) =

{

uuuhp =
N

∑
α=1

ϕα(xxx)ûuuhp
α (xxx) : ûuuhp

α (xxx) =
D̂L

∑
i=1

ûuuα i L̂α i(xxx)

}

(5)

whereûuuα i , α = 1, . . . ,N, i = 1, . . . ,D̂L, are nodal degrees of freedom andD̂L is the dimension of a set
of polynomial enrichment functions,L̂α i(xxx), of degree less than or equal top−1. Details can be found,
for example, in Section 3.2 of [57]. SpaceXXX0

G(ΩG) can also be defined using standard polynomial FEM
shape functions since cracks arenot discretized in the initial global problem.

The parameterη in (4) is a penalty parameter. We use the penalty method due to its simplicity and
generality. Other methods to impose Dirichlet boundary conditions can be used as well.

The mesh used to solve problem (4) is typically a coarse quasi-uniform mesh like the one illustrated
in Figure2. This mesh and the solutionuuu0

G are usually available from the design phase of the structure
or mechanical component.

3.2. Formulation of Fine-Scale Problem

The proposed approach involves the solution of a local boundary value problem defined in a
neighborhoodΩL of a crack and subjected to boundary conditions provided by the global solutionuuu0

G
(Cf. Figure2). In this paper, we generalize the formulation introduced in [17, 18, 21] by considering
the cases of Dirichlet, Neumann and Cauchy boundary conditions provided by the global solutionuuu0

G.
In each case, alocal problemis solved onΩL after the global solutionuuu0

G is computed as described
above.

The statement of the principle of virtual work for the local problem is given by
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Pressure

Fixed

Fixed

Global problem
Local problem

Crack
(Shown for illustration only)

Boundary
conditions

Figure 2: Model problem used to illustrate the main ideas of theGFEMgl. The figure shows a crack in a 3-
D bracket. The solution computed on the coarse global mesh provides boundary conditions for the extracted
local domain in a neighborhood of the crack.The crack is shown in the global domain for illustration purposes
only. In the proposedGFEMgl, fine-scale features arenot discretized in the global problem. Instead, global-local
enrichment functions are used.

Find uuuL ∈ XXXhp
L (ΩL) ⊂ H1(ΩL) such that,∀ vvvL ∈ XXXhp

L (ΩL)
∫

ΩL

σσσ(uuuL) : εεε(vvvL)dxxx+η
∫

∂ΩL∩∂Ωu
G

uuuL ·vvvLdsss+κ
∫

∂ΩL\(∂ΩL∩∂ΩG)
uuuL ·vvvLdsss=

∫

∂ΩL∩∂Ωσ
G

t̄tt ·vvvLdsss+η
∫

∂ΩL∩∂Ωu
G

ūuu·vvvLdsss+

∫

∂ΩL\(∂ΩL∩∂ΩG)
(ttt(uuu0

G)+κuuu0
G) ·vvvLdsss (6)

whereXXXhp
L (ΩL) is a discretization ofH1(ΩL) using the GFEM shape functions presented in [57, 58]

XXXhp
L (ΩL) =

{

uuuhp =
NL

∑
α=1

ϕα(xxx)
[

ûuuhp
α (xxx)+H ũuuhp

α (xxx)+ ŭuuhp
α (xxx)

]
}

(7)

The partition of unity functions,ϕα , α = 1, . . . ,NL, are linear Lagrangian shape functions defined
by a finite element discretization ofΩL. The summation limit,NL, is the number of nodes in this
mesh. The cloud-wise functionŝuuuhp

α (xxx), H ũuuhp
α (xxx) andŭuuhp

α (xxx) are approximations of the continuous,
discontinuous and singular components of the solution, respectively. The mesh used inΩL doesnot fit
the crack surface. The crack is modeled instead by these functions. Details can be found in Section 3.2
of [57].

The traction vector,ttt(uuu0
G), that appears in the integral over∂ ΩL\(∂ ΩL ∩ ∂ ΩG) is computed from

the coarse-scale solution using Cauchy’s relation, i.e.,

ttt(uuu0
G) = n̂nn·σσσ(uuu0

G) = n̂nn· (CCC : εεε(uuu0
G)) (8)
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with n̂nn the outward unit normal vector to∂ ΩL. The parametersη andκ are a penalty parameter and a
spring stiffness defined on∂ ΩL ∩∂ Ωu

G and∂ ΩL\(∂ ΩL ∩∂ ΩG), respectively.
We can select the type of boundary conditions provided byuuu0

G depending on the choice of spring
stiffnessκ as follows:

(i) Neumann boundary condition: Setκ = 0. Tractions defined in (8) are prescribed on∂ ΩL\(∂ ΩL∩
∂ ΩG).
Note that problem (6) may be not well-posed if∂ ΩL ∩ ∂ Ωu

G = /0, since, in this case, it is a
pure Neumann problem. The tractions applied on∂ ΩL are in general not equilibrated since they
are computed from the coarse-scale GFEM solution. However,when solving simpleuncracked
global domains subjected to uniaxial loads like in the problem of Section4.2, the coarse-
scale solutionuuu0

G is exact. Thus, the local Neumann problems are well-posed1. An example
is presented in Section4.2.

(ii) Dirichlet boundary condition: Setκ = η ≫ 1. In this case, the solutionuuu0
G of the initial global

problem is used as Dirichlet boundary condition on∂ ΩL\(∂ ΩL∩∂ ΩG). The performance of this
choice of boundary condition is analyzed in [18].

(iii) Cauchy or spring boundary condition: Set 0< κ < η . Cauchy boundary conditions are given by
[68]

ttt(uuu) = κ(δδδ −uuu)

wherettt is the prescribed traction,κ is the stiffness of the springs,δδδ is displacement imposed at
the base of the spring system anduuu is the displacement at the boundary of the body [68]. From
the above we have that

κδδδ = ttt +κuuu

Sincettt anduuu are not known, we use instead values provided by the coarse-scale solutionuuu0
G and

set

κδδδ := ttt(uuu0
G)+κuuu0

G (9)

With this choice, the tractions on∂ ΩL\(∂ ΩL ∩∂ ΩG) are given by

ttt(uuu) = ttt(uuu0
G)+κuuu0

G−κuuu

Thus, the prescribed tractions will be close to the case of Neumann boundary condition discussed
above if uuu0

G is close touuu. However, in this case, the local problem is well-posed evenif the
tractionsttt(uuu0

G) are not equilibrated.
There is a great freedom in selecting the spring constantκ as shown in Section4. If κ is taken as
a large value (compared with the stiffness of the body), the boundary condition degenerates to a
Dirichlet boundary condition. Our numerical experiments show that any value ofκ comparable
to, or larger than the stiffness of the body is acceptable andprovides global-local enrichment
functions with good approximation properties.

1Even whenuuu0
G is the exact solution of (4), a Neumann local problem may be not equilibrated due to roundoff or integration

errors [11]. Our main goal in considering the caseκ = 0 is to compare the performance of different types of boundary conditions
prescribed on∂ΩL\(∂ΩL ∩∂ΩG).
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3.3. Global-Local Enrichment Functions and Enriched Global Problem

The solutionuuuL of the local problem defined above can be used to build generalized FEM shape
functions for the coarse global mesh. Equation (1) is used with the partition of unity function,ϕα ,
provided by the global,coarse, FE mesh and the enrichment function given byuuuL, i.e.,

φφφ α(xxx) = ϕα(xxx)uuuL(xxx) (10)

Hereafter,uuuL is denoted aglobal-local enrichment functionand the global problem enriched with these
functions is denoted anenriched global problem. The formulation of this problem is given by

Find uuuE
G ∈ XXXE

G(ΩG) ⊂ H1(ΩG) such that,∀ vvvE
G ∈ XXXE

G(ΩG)

∫

ΩG

σσσ(uuuE
G) : εεε(vvvE

G)dxxx+η
∫

∂Ωu
G

uuuE
G ·vvvE

Gdsss=

∫

∂Ωσ
G

t̄tt ·vvvE
Gdsss+η

∫

∂Ωu
G

ūuu·vvvE
Gdsss (11)

where,XXXE
G(ΩG) is the spaceXXX0

G(ΩG) augmented with GFEM functions (10), i.e.,

XXXE
G(ΩG) =







uuuhp =
N

∑
α=1

ϕα(xxx)ûuuhp
α (xxx)

︸ ︷︷ ︸

coarse-scale approx.

+ ∑
β∈Igl

ϕβ (xxx)uuugl
β (xxx)

︸ ︷︷ ︸

fine-scale approx.







(12)

whereIgl is the index set of nodes enriched with functionuuuL, ûuuhp
α is defined in (5) and

uuugl
β (xxx) =





uβ1 uL1(xxx)
uβ2 uL2(xxx)
uβ3 uL3(xxx)





where uβ j , β ∈ Igl , j = 1,2,3, are nodal degrees of freedom anduL j (xxx), j = 1,2,3, are Cartesian
components of displacement vectoruuuL. The coarse-scale approximation may also include the cloud-
wise discontinuous functionsH ũuuhp

α (xxx) discussed in Section3.2. These functions are hierarchically
added to the global solution space if the local domainΩL does not contain the entire crack surface, as
in the example of Section4.2.

The enriched global problem is solved on the samecoarseglobal mesh used in the computation
of the initial global problem (4). Global-local enrichments add only three degrees of freedom to each
nodeβ ∈ Igl of the global mesh when solving a 3-D elasticity problem,regardlessof the number
of degrees of freedom of the local problem (several thousands in general). Thus, highly adapted local
discretizations able to capture fine-scale features of the solution can be used at the local problem, since
the level of local mesh refinement/enrichment doesnot impact the size of the global problem. This
contrasts with the FEM, which requires very fine global discretizations in order to capture small-scale
behavior in the global domain. Figure3 illustrates the enrichment of the global coarse mesh with the
solution of a local problem defined in a neighborhood of a crack.

As mentioned in Section3.1, the coarse-scale global problem can be solved using the standard FEM
since no cracks or fine-scale features are modeled in that problem. In this case, the enriched global
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Global−local
enrichments

Figure 3: Enrichment of the coarse global mesh with a local solution. Only three degrees of freedom are added to
nodes with yellow glyphs. The crack is shown in the global domain for illustration purposes only.

spaceXXXE
G(ΩG) is given by

XXXE
G(ΩG) =







uuuhp =
N

∑
α=1

ϕα(xxx) ûuuα

︸ ︷︷ ︸

standard FEM approx.

+ ∑
β∈Igl

ϕβ (xxx)uuugl
β (xxx)

︸ ︷︷ ︸

fine-scale approx.







(13)

whereûuuα , α = 1, . . . ,N, are (standard) nodal degrees of freedom. The finite elementpartition of unity
functions,ϕα , α = 1, . . . ,N, can be linear, quadratic or high-order Lagrangian shape functions. Thus, if
a GFEM code is available for the computation of the global-local enrichment functionuuuL, the proposed
GFEMgl can be implemented in existing FEM codes. The numerical integration of global-local shape
functions (10) must, of course, be properly handled. This is discussed in Section3.5.

Related Methods In addition to the various methods discussed in Section1, the proposedGFEMgl

is also related to the so-called mesh-based handbook approach of Strouboulis et al. [63–65] and the
upscaling technique proposed by Hou and Xu [39]. We refer the reader to Section 3.3 of reference [18]
for a discussion on the relations among these methods.

3.4. Solution of enriched global problem

It is clear from the definition of the enriched global spaceXXXE
G(ΩG) given in (12), that the global-

local GFEM shape functions are hierarchically added to the coarse-scale spaceXXX0
G(ΩG). As a result,

the global stiffness matrix of the initial global problem (4), KKK0
G, is nested in the global matrix of the

enriched problem (11), KKKE
G. Matrix KKKE

G can be partitioned as follows (see also Section A.2 of [18])
[

KKK0
G KKK0,gl

G

KKKgl,0
G KKKgl

G

][
ũuu0

G

uuugl
G

]

=

[
FFF0

G

FFFgl
G

]

(14)

[GFEMgl˙two˙scale – July 1, 2009]



10 of 33 D.-J. KIM, J.P.A. PEREIRA AND C.A. DUARTE

where KKKgl
G and uuugl

G are the global entries and degrees of freedom, respectively, associated with

hierarchical global-local enrichments. Vectoruuugl
G contains the degrees of freedomuβ j , β ∈ Igl , j =

1,2,3, defined in Section3.3. As such, its dimension is small compared with that of vectorũuu0
G. In

the example of Section4.3 (crack case 1 or 2), dim(uuugl
G) = 27 while dim( ũuu0

G) = 115,470. This is in
contrast with the s-method proposed in, e.g., [42] where the number of hierarchical degrees of freedom
is equal to the dimension of the local problem. In the case of the example of Section4.3(crack case 1),
the dimension of the local problem is equal to 23,268.

The hierarchical nature and the small size ofuuugl
G can be explored to efficiently solve the enriched

global system of equations (14). In this paper, the algorithm proposed in Section A.2 of [18] is
employed. In this approach, the global-local degrees of freedom uβ j , β ∈ Igl , j = 1,2,3, are
condensed out using the available factorization of the initial global problem. A similar approach is
used by Hirai et al. [37, 38] in the framework of the global-local FEM [29]. Here, however, the number
of degrees of freedom to be condensed out is much smaller thanin the cases considered by Hirai et al.
[37, 38]. Other approaches that could be used to efficiently solve the enriched global problem include
the iterative methods of Rank et al. [27, 41], Düster [26], and of Whitcomb [72].

Substructuring [29] can also be used to solve the class of problems considered inthis paper and this
approach was combined with the XFEM in [73, 74]. Like in theGFEMgl, the condensed substructure
adds only a few degrees of freedom (dofs) to the global systemof equations. However, those dofs are
not hierarchical with respect to the global, uncracked, discretization. Therefore, the problem must, in
general, be solved from scratch for each crack location/configuration. It has also been reported in the
literature that substructuring may lead to ill-conditioned systems when the difference in element sizes
in the global and local meshes is large [36].

3.5. Numerical integration

In the proposedGFEMgl, the elements enriched with global-local enrichment functions can be
integrated efficiently and accurately. This is possible since the local meshes are nested in the global
mesh. Figure4 illustrates the numerical integration procedure adopted in this paper. It is basically a
combination of the approaches proposed in Section A.3 of [18] and Section 4.2 of [57]. The orange line
in the figure represents a crack surface cutting elements in the mesh. A yellow square indicates a node of
the global mesh enriched with global-local enrichment functions. The numerical integration over global
computational elements connected to these nodes is performed with the aid of local problem elements
nested in the global elements. These elements are denoted aslocal computational elements. They are
used to define quadrature points and weights as illustrated in Figure4(b). Standard quadrature rules
are used at local elements not cut by the crack surface or enriched with singular functions. Otherwise,
the local elements are subdivided in the so-called integration elements as discussed, for example, in
Section 4.2 of [57]. Special quadrature rules, such as those proposed in [55], may be used at local
elements enriched with singular functions.

The implementation of the above scheme involves the following mappings:

• from master coordinates of a local computational element tomaster coordinates of a global
computational element;

• from master coordinates of a local integration element to master coordinates of a global
computational element;

• from master coordinates of a local integration element to master coordinates of a local
computational element.
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The master coordinates in the first two cases are used in the computation of the global partition of
unity ϕα in (10), while the third mapping is required to retrieve the local solution uuuL. In all cases,
the mapping is performed by first computing the global physical coordinatesxxx of an integration point
in the original element followed by the mapping ofxxx to the master coordinates of a global or local
computational element. No search of the element containingxxx is required thanks to the nesting of
meshes as described above. The inverse mapping ofxxx to the master coordinates of a global or local
computational element can be done in a closed-form in the case of tetrahedral and triangular elements.
Thus, the numerical overhead involved is small as demonstrated in [18].

The integration order of local computational or integration elements nested in global computational
elements is taken as the maximum of the integration orders ofits polynomial enrichment functionŝLα i

in (5) and global-local enrichment functionsuuuL in (10) plus one. The integration order is increased by
one since the global partition of unity is a linear finite element shape function. This strategy provides
a systematic way of accurately and efficiently integrating GFEM shape functions with global-local
enrichments. Further details on the procedure can be found in [18] and [57].

Figure 4: Numerical integration scheme in the global elements enriched with local solutions. Red crosses
represent quadrature points. Elements without crosses usetheir descendants to define quadrature points. (a) Global
computational elements and nodes enriched with global-local functions. (b) Local computational elements used
for computation of global-local functions and numerical integration over global elements. (c) Integration elements
used in elements cut by crack surface or enriched with singular functions. They are indicated with dashed lines in
the figure.

4. Numerical Examples

In this section, we investigate the accuracy, robustness and computational efficiency of the proposed
GFEMgl. TheGFEMgl solutions of three-dimensional fracture mechanics problems are compared with
those available in the literature and with solutions provided by thehp-GFEMpresented in [57, 58]. We
also present results for the global-local FEM (GL-FEM)–the solution of the local problem defined in
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(6). Strictly speaking, problem (6) is a global-local generalized FEM sinceuuuL is computed with thehp-
GFEM and not a standard FEM. However, both global-local methods suffer from the same limitations,
and it is reasonable to assume that the conclusions drawn here are also valid for the global-local FEM.

In all examples, coarse, uncracked, global meshes are used–no cracks are defined in the initial global
problems.

A single local problem is defined for each crack in the domain.The local problem meshes are
automatically constructed from the union of global clouds that intersect the crack fronts. Details are
presented in Section A.1 of [18].

The accuracy ofGFEMgl solutions are evaluated in terms of the strain energy norm and stress
intensity factor extracted using the Cut-off Function Method (CFM) [56, 69]. In order to quantify
the error of the stress intensity factor (SIF) extracted along a crack front, we use a normalized discrete
L2-norm of the difference between the computed SIF and the reference solution defined by

er(Ki) :=
‖ei‖L2

‖K̂i‖L2
=

√
√
√
√

Next

∑
j=1

(

K j
i − K̂ j

i

)2

√
√
√
√

Next

∑
j=1

(

K̂ j
i

)2

(15)

whereNext is the number of extraction points along the crack front,K̂ j
i andK j

i are the reference and
computed stress intensity factor values for modei at the crack front pointj, respectively.

4.1. Small Surface Crack

As a first example to demonstrate the effectiveness of the proposedGFEMgl, we analyze a small half-
penny surface-breaking crack as illustrated in Figure5. This problem has been analyzed by several
researchers [59, 60, 71] using the finite element method, and thus reliable reference solutions for the
mode I stress intensity factor,KI , along the crack front are available. The following geometrical and
material parameters are adopted: In-plane dimensions 2b = 2.0, 2h = 2.0; domain thicknesst = 1.0;
crack radiusr = 0.2; Young’s modulusE = 1.0, Poisson’s ratioν = 0.25. The domain is loaded by a
unity bending momentM as illustrated in Figure5.

The global domain is discretized with a uniform coarse mesh of 6 × (10× 11× 4) tetrahedral
elements as shown in Figure6. This is quite a coarse mesh with element sizes almost equal to the crack
radius. The coarse global problem is solved to provide boundary conditions to the local problem. A
local problem is created by extracting elements from the coarse global mesh around the surface crack.
The elements intersecting the crack front are bisected until an acceptable level of mesh refinement is
achieved. Figure7(a) shows the local mesh. The ratio of element size to characteristic crack length
(Le/r) along the crack front is 0.0295. Discontinuous and singular analytical enrichment functions
presented in [57] are automatically assigned to local nodes in order to modelthe crack. The von Mises
stress in the local domain is shown in Figure7(b). The local solution is next used as enrichment
functions in the coarse global problem as illustrated in Figure 8. Cubic polynomial shape functions
are used in both global and local problems.

As discussed in Section3.2, we can use Dirichlet, Cauchy/Spring or Neumann boundary conditions
at the local boundary∂ ΩL\(∂ ΩL ∩ ∂ ΩG). In fact, Dirichlet and Neumann boundary conditions are
special cases of Cauchy boundary conditions, depending on the choice of the spring stiffness. Thus,
we perform a sensitivity analysis to investigate the effectof the spring stiffness on the quality of the
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Figure 5: Domain with a small surface crack and loaded by a momentM. The resultant moment is applied using
linearly varying tractions prescribed at faces of elementsas shown in Figure6.

Figure 6: Coarse global mesh used to provide boundary conditions for local problem. The crack is not discretized
in the global domain. The distributed tractions used to apply a bending moment at the top and bottom surfaces of
the domain are also shown.

solution of the enriched global problem (11). Figure9 plots the relative errors of the enriched global
solution in energy norm for several spring stiffness values. The reference strain energy value is provided
by thehp-GFEM presented in [57]. The hp-GFEM discretization is obtained by locally refining the
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(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local
problem.

Figure 7: Local problem used to compute a global-local enrichment function.

Figure 8: Hierarchical enrichment of the coarse global mesh with global-local functions. Yellow glyphs represent
global nodes enriched with local solutions.

global mesh and enriching the global nodes with high-order shape functions as described in [57]. The
crack is, in this case, discretized in the global domain. Therelative errors of theGFEMgl with Dirichlet
and Neumann boundary conditions at∂ ΩL\(∂ ΩL∩∂ ΩG) are also shown in the plot. It can be observed
that the relative error of the spring boundary condition case is smaller than in the cases of Dirichlet and
Neumann boundary conditions over the range of spring stiffness used in the plot. The figure shows a
very smooth behavior and a low sensitivity of the global error with respect to the spring stiffnessκ .

Selection of Spring Stiffness In this example, Neumann boundary conditions (κ = 0) can be used
in the local problem since the solution of the uncracked global domain is exact and the tractions
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Figure 9: Sensitivity analysis to the stiffness of spring boundary conditions.

computed from it can equilibrate any local domain. However,this is not the case in general. Very
small spring stiffness should also be avoided since this maybe numerically equivalent to Neumann
boundary conditions. Based on our numerical experience, the spring stiffnessκ is selected using the
following expression

κ =
E

n
√

V0J
(16)

whereE is the Young’s modulus,n is the number of spacial dimensions of the problem,V0 is the
volume of the master element used (tetrahedrons in this example), andJ is the Jacobian of the global
element across the local boundary where the spring boundarycondition is imposed. The quantityn

√
V0J

represents the characteristic length of the global finite element across the local boundary where the
spring boundary condition is imposed. In this problem, the Jacobian and material properties of all
global elements are constant and the spring stiffness givenby (16) is κ = 8.7358. From Figure9, we
can observe that much smaller values could also be used. Thisspring stiffness leads to a relative error in
energy norm equal to 0.007807, while for the Dirichlet boundary condition case the error is 0.010246.

Quality of Extracted Stress Intensity factors Mode I stress intensity factor,KI , extracted along the
crack front is normalized using

K̄I =
KI

ty

√
πr
Q

(17)

whereQ is equal to 2.464 for a circular crack,ty = 3M/bt2 is the maximum bending stress andr is the
radius of the crack. Dimensionsb andt are indicated in Figure5. The reference values for̄KI are taken
from Walters et al. [71] and used to computeer(K̄I ) in (15).

Figure10 showsK̄I computed with three methods–theGL-FEM, theGFEMgl and thehp-GFEM.
The global-local FEM (GL-FEM) corresponds to SIF computed from the solution of the local problem
shown in Figure7 and subjected to spring boundary conditions provided by theinitial global problem.
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The spring stiffness is given by (16). This approach provides a poor approximation ofK̄I along the
crack front and the relative errorer(K̄I ) is 0.18531. The GFEM with global-local enrichment functions
(GFEMgl) corresponds to the case in which the local solution computed with theGL-FEM is used as
enrichment function for the coarse global mesh shown in Figure 6. The relative errorer(K̄I ) of the
GFEMgl SIF is 0.01233, which is about 15 times smaller than the one obtained by theGL-FEM. We
also showhp-GFEM results in the figure. The relative errorer(K̄I ) of thehp-GFEMSIF is 0.00395.
While this result is quite accurate, thehp-GFEMrequires refinement of the global mesh. The reference
solution provided by Walters et al. [71] is also shown in the plot.
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Figure 10: Normalized mode I stress intensity factor for theGL-FEM and theGFEMgl with spring boundary
condition in local problems and thehp-GFEM.
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4.2. Inclined Penny Shaped Crack

The second problem is an inclined circular crack in a cube as illustrated Figure11. The slope of the
crack with respect to the globaly-axis isγ = π/4. A tensile traction of magnitudeσ is applied in the
y-direction at the top and bottom surfaces of the domain. The following parameters are assumed in this
problem: Cube dimension 2L = 4.0; crack radiusa = 1.0; vertical tractionσ = 1.0; Young’s modulus
E = 1.0; Poisson’s ratioν = 0.3.

Y

X

γ

σ

Right view

2L

X

Y

Top view

a

Z

X

Z

Figure 11: Inclined circular crack in a cube subjected to uniform tensile tractions. The crack is shown for
illustration purposes only. It is not discretized in the initial global problem. The triangulation of the crack surface
is also shown.

In this example, the stress intensity factors for all three modes are non-zero. We analyze the
performance of the proposedGFEMgl for this class of problems. The performance of the three types
of boundary conditions applied at the local boundary∂ ΩL\(∂ ΩL ∩∂ ΩG) is also investigated.

TheGFEMgl solution is computed following the same steps described in the previous section. The
global domain is discretized with a uniform coarse mesh of 6× (10×10×10) tetrahedral elements as
shown in Figure12. The crack isnot discretized in the initial global domain. A single local problem
is created along the circular crack front as shown in Figures12 and13. We can observe thatthe local
domain does not contain the entire crack surface. The mesh and crack sizes were selected such that
this would be the case. The mesh is locally refined around the crack front as shown in Figure13(a).
The ratio of element size to characteristic crack length (Le/a) along the crack front is 0.0280. The von
Mises stress in the local domain is shown in Figure13(b). Figure14 illustrates the enrichment of the
coarse global mesh with the solution of the local problem. Cubic polynomial shape functions are used
in both global and local problems.

In contrast with the problem of Section4.1, the boundary of the local domain intersects the crack
surface. While we could, of course, have used a larger local domain and avoid this situation, we are
interested in the performance of the three types of boundaryconditions applied at∂ ΩL\(∂ ΩL ∩∂ ΩG)
under this situation. Note also that in this example∂ ΩL ∩ ∂ ΩG = /0. Figure 15 shows the local
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Figure 12: Coarse global mesh used to provide boundary conditions for the local problem. No crack is discretized
in the global domain.

(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local
problem.

Figure 13: Local problem created along the circular crack front. The solution of the local problem is used as
enrichment functions for the coarse global mesh.

deformed configurations for each type of boundary condition. We can observe in Figure15(a) that
the crack closes at the boundary of the local problem when Dirichlet boundary conditions are applied
at ∂ ΩL\(∂ ΩL ∩ ∂ ΩG). This is expected since the crack was not defined in the initial global problem
and thus the Dirichlet boundary condition used at∂ ΩL\(∂ ΩL ∩ ∂ ΩG) is a continuous function. This
behavior is not observed in Figures15(b)and15(c)which correspond to spring and Neumann boundary
conditions, respectively. Since Neumann boundary conditions provided by the initial global problem
are in general not equilibrated, spring boundary conditionis the most robust option. A quantitative
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Figure 14: Enrichment of the global mesh with global-local functions.Yellow glyphs represent the global nodes
enriched with these functions.

comparison among the three types of boundary conditions is presented below.

Selection of Spring Stiffness Figure16plots the relative error in energy norm of the enriched global
solution for several spring stiffness values. The reference value for the strain energy is provided by
using thehp-GFEM. Like in the problem analyzed in Section4.1, the relative error of the spring
boundary condition case is smaller than in the cases of Dirichlet and Neumann boundary conditions
over a large range of spring stiffness values. The spring stiffness computed using (16) is κ = 7.2112.
While this is not the optimal value and much smaller values could also be used, it delivers more accurate
results than Dirichlet and Neumann boundary conditions. Wecan also observe that in spite of the crack
closing behavior caused by the Dirichlet boundary condition (Cf. Figure15(a)), it is able to deliver
accurate results.

Quality of Extracted Stress Intensity factors Figure17shows the mode I, II and III stress intensity
factor distributions extracted along the crack front. The SIFs are extracted from solutions computed
by three methods–theGL-FEM, GFEMgl andhp-GFEM. Spring boundary conditions with stiffness
given by (16) are used in the global-local FEM. The local domain is shown in Figure13. ThisGL-FEM
solution is used as enrichment for theGFEMgl. The SIFs extracted from thehp-GFEM solution are
taken as reference values. The relative differenceser(KI ), er(KII ) ander(KIII ) between theGFEMgl and
hp-GFEMSIFs are 0.01420, 0.01748 and 0.02435, while those between theGL-FEM andhp-GFEM
SIFs are 0.47515, 0.43925 and 0.33831, respectively. The errors in all three mode SIFs computed with
theGFEMgl are one order of magnitude smaller than those with theGL-FEM. This, again, demonstrates
the accuracy and robustness of the proposedGFEMgl.
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(a) Dirichlet boundary condition. (b) Spring boundary condition.

(c) Neumann boundary condition.

Figure 15: Section of local domain showing deformed shapes corresponding to three types of boundary conditions
on ∂ ΩL\(∂ ΩL ∩∂ ΩG). All the figures are drawn to the same scale.
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Figure 16: Sensitivity analysis to the stiffness of spring boundary conditions.
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Figure 17: Stress intensity factors extracted fromGL-FEM, GFEMgl andhp-GFEMsolutions. Spring boundary
conditions are used in the local problem.
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4.3. Complex Domain with Multiple Crack Configurations

In this section, we analyze the three-dimensional bracket shown in Figure18 with the goal of
demonstrating the computational efficiency of the proposedGFEMgl. The geometry of the domain
and loads create several regions with stress singularitieswhere cracks are likely to nucleate and grow.
Three crack cases are considered as illustrated in the figure. In the proposedGFEMgl, the initial global
problem needs to be solved only once and the same global coarse mesh can be used for any crack
location. This feature of the method leads to substantial computational savings as demonstrated below.
In contrast, the problem must be solved from scratch for eachcrack case when using, e.g., the finite
element method. This type of analysis is frequently performed in the industry in order to find the critical
crack location in a complex component [14]. The geometry and location of the cracks considered here
are defined in Figure21. The Young’s modulus and Poisson’s ratio used in this example areE = 105

andν = 0.33, respectively. The bracket is loaded by a unity pressure applied at the horizontal opening
and it is fixed at the vertical openings.

Figure 18: Boundary conditions and mesh for a three dimensional bracket. The three crack cases considered are
shown in the figure but only one crack is analyzed at a time.

The coarse global problem is solvedonly oncewithout any crack discretization and local problems
are created around each crack as shown in Figure19. The local meshes are refined around the crack
fronts as in the previous sections. Spring boundary conditions provided by the global problem are used
in all cases. The spring stiffness is, again, selected using(16). The von Mises stress distribution for the
local problems are displayed in Figure20. The coarse global mesh is enrichedwith one local solution
at a time, as illustrated in Figure21. The enriched global problems are then solved using the scheme
discussed in Section3.4. TheGFEMgl solution for each crack location considered is shown in Figure
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22.

Figure 19: The solution of the initial global problem provides boundary conditions for local problems created
around each crack surface. No crack is discretized in the global domain and thus it needs to be solvedonly once.

(a) Crack 1 (Quarter circle). (b) Crack 2 (Quarter circle). (c) Crack 3 (Half circle).

Figure 20: The von Mises stress distribution for the local problems. Spring boundary conditions provided by the
same initial global solution are used in all cases.
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(a)

(b)

(c)

Figure 21: Enrichment of the coarse global mesh with the local solutionof each crack case considered.
The geometry of each crack is as follows: (a) Crack 1 (Quartercircle): Radiusr = 4, center= (80,50,50);
(φ = 0, r = 4) = (80,50,46); (φ = π/2, r = 4) = (76,50,50); (b) Crack 2 (Quarter circle): Radiusr = 4, center
= (80,50,−50); (φ = 0, r = 4) = (76,50,−50); (φ = π/2, r = 4) = (80,50,−46); (c) Crack 3 (Half circle): Radius
r = 8, center=(80,50,0); (φ = 0, r = 8) = (80,50,−8); (φ = π/2, r = 8)= (72,50,0) (φ = π, r = 8) = (80,50,8).
Where(φ , r) are polar coordinates along the crack front and(φ , r) = (X,Y,Z) means the Cartesian coordinates of
point (φ , r) located along the crack front.
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(a) Crack 1. (b) Crack 2. (c) Crack 3.

Figure 22: GFEMgl solution for each crack location considered.

Computational Performance To evaluate the computational efficiency of the proposedGFEMgl, we
compare its computational cost with that of thehp-GFEM. In the latter, like in the classical FEM, the
problem must be solved from scratch for each crack configuration. This leads to high computational
costs when a large number of crack configurations must be analyzed as is the case of crack growth
simulations or multiple site damage (MSD) analysis. In contrast, in theGFEMgl, the factorized stiffness
matrix of the uncracked global problem can be used to computethe solution of enriched global
problems at a low computational cost.

TablesI andII list the CPU time required to solve the three crack cases using thehp-GFEMand the
GFEMgl, respectively. The number of degrees of freedom used by eachmethod is also listed. Several
observations can be made from the result in the tables.

First, the size of the enriched global problem in theGFEMgl does not depend on that of the local
problem. Furthermore, only a small number of degrees of freedom are added to the enriched global
problem: 27, 27 and 39 for the first, second and third crack case, respectively. In contrast, the crack
discretization and mesh refinement required by thehp-GFEM increase the size of the global problem
substantially.

Second, the cost to compute the enriched global solutions corresponds to only between 4 and 6%
of the CPU time spent in the initial global problem (298.7s). As a results, the total CPU time for
the GFEMgl is much smaller than that required by thehp-GFEM. The difference in performance
between the two methods grows with the number of crack configurations considered. This is clearly
demonstrated in Figure23, which shows the total CPU time versus the number of crack configurations
for theGFEMgl andhp-GFEM. If the solution of the uncracked global problem is available from the
design phase of the component, the total CPU time for theGFEMgl is 152.7ssince it involves only the
solution of the local and enriched global problems. Otherwise, the CPU time for theGFEMgl is 451.4s.
In either case, theGFEMgl is considerably more efficient than thehp-GFEM.

Quality of Extracted Stress Intensity factors Figure24 shows mode I, II and III stress intensity
factors extracted along the front of Crack 3. Both thehp-GFEM andGFEMgl solutions are shown.
The SIFs extracted from theGFEMgl solution are in good agreement with those from thehp-GFEM
solution. The relative differenceser(KI ), er(KII ) and er(KIII ) between theGFEMgl and hp-GFEM
SIFs are 0.02454, 0.04902 and 0.03275, respectively. This demonstrates that theGFEMgl can deliver
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Table I: CPU time spent on the factorization of the stiffness matrix of each crack case using thehp-GFEM.

Crack Number of degrees of freedomCPU time (sec) Strain energy
1 139,098 346.7 2.3638
2 136,698 335.6 2.3634
3 157,626 459.9 2.3752

Total 1,142.2

Table II: CPU time spent on the factorization of the initial and local problems and on the solution of the enriched
global problems. If the solution of the initial (uncracked)global problem is not available, the total CPU time of
theGFEMgl to solve the three crack cases is 451.4 instead of 152.7.

Number of degrees of freedom CPU time (sec)
Crack ID Initial Local Enriched Initial Local Enriched Total Strain energy

1 23,268 115,497 24.1 12.6 36.6 2.3633
2 115,470 21,108 115,497 298.7 17.3 12.6 29.9 2.3631
3 39,426 115,509 69.3 16.9 86.2 2.3735

Total 298.7 110.7 42.0 152.7
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Figure 23: Total CPU time required for a different number of crack configurations in theGFEMgl andhp-GFEM
analyses. The cost of solving the uncracked global problem was included in the the CPU time of theGFEMgl.

accurate stress intensity factors at a lower computationalcost than thehp-GFEM.
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Figure 24: Mode I, II and III stress intensity factors extracted fromhp-GFEMandGFEMgl solutions for Crack 3.
Spring boundary conditions are used in the local problem.

5. Conclusions

The examples presented in Section4 show that stress intensity factors extracted from the proposed
GFEMgl solutions are up to one order of magnitude more accurate thanthose extracted from the local
solutions. The latter case is equivalent to the global-local FEM (GL-FEM), broadly used in the industry.
The numerical examples also demonstrate that the accuracy of theGFEMgl is comparable with that of
thehp-GFEMproposed in [57] while not requiring the refinement of global meshes. This enables, for
example, the use of meshes available from the design phase ofa structure to perform fracture mechanics
analyses.

The computational cost in terms of CPU time of the proposedGFEMgl is comparable with that of
the GL-FEM. The only additional cost of the former is the solution of theenriched global problem.
This, as demonstrated in Section4.3, is small when compared with the solution of the initial global
problem.

In the proposedGFEMgl, the initial global problem needs to be solved only once and the same global
coarse mesh can be used for any crack configuration. This feature of the method leads to substantial
computational savings when several crack configurations are considered in the same structure. In
contrast, the global problem must be solved from scratch foreach crack configuration when using,
e.g., the finite element method. Similar conclusions are expected in the case of crack propagation
simulations. We are currently investigating this case.

The hp-GFEM is as accurate and computationally efficient as the standardFEM due to the use of
singular crack front enrichment functions. Thus, it is reasonable to assume that the above conclusions
regarding accuracy and computational efficiency of theGFEMgl and hp-GFEM also applies to the
standard FEM.

Another contribution of this paper is a study of the accuracyof the GFEMgl when Dirichlet,
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Cauchy/spring or Neumann boundary conditions provided by the initial global problem are used at
the local boundary∂ ΩL\(∂ ΩL ∩ ∂ ΩG). Our numerical experiments show that any value of the spring
stiffness comparable to, or larger than the stiffness of thebody is acceptable and provides global-local
enrichment functions with good approximation properties.This type of boundary condition leads, in
general, to more accurate enriched global solutions than Dirichlet boundary conditions while being
more robust than Neumann boundary conditions.
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