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SUMMARY

This paper presents a Generalized Finite Element Metho®EgFased on the solution of interdependent
global (structural) and local (crack) scale problems. Tdeal problems focus on the resolution of fine-scale
features of the solution in the vicinity of 3-D cracks whitetglobal problem addresses the macro-scale structural
behavior. The local solutions are embedded into the saolgpace for the global problem using the partition of
unity method. The local problems are accurately solvedg.sinp-GFEMand thus the proposed method does not
rely on analytical solutions. The proposed methodologypkssaaccurate modeling of 3-D cracks on meshes with
elements that are orders of magnitude larger than the gaoe® along crack fronts. The boundary conditions for
the local problems are provided by the coarse global meshisoland can be of Dirichlet, Neumann or Cauchy
type. The effect of the type of local boundary condition oe gierformance of the proposed GFEM is analyzed.
Several three-dimensional fracture mechanics problemsdat investigating the accuracy of the method and its
computational performance, both in terms of problem sizE@RU time are presented.

KEY WORDS: Generalized FEM; Extended FEM; Fracture; Mgahig; Small cracks; Global-Local
analysis.

1. Introduction

The Generalized or Extended FEM (G/XFEM), 4, 8, 19, 50, 52, 63, 66] has been successfully
applied to the simulation of boundary layerss], propagating fractures?p, 35, 51, 67], acoustic
problems §, 48], polycrystalline microstructuresl| 67], etc. All of these applications have relied
on closed-form enrichment functions that are known to axiprate well the physics of the problem.
However, analytical enrichment functions are in generahibte to deliver accurate solutions on coarse
three-dimensional meshes. To overcome this limitatiocallonesh refinement must be performed as
in the standard FEMZ5, 57]. This creates several of the drawbacks of the FEM with rdnmgsand
offsets many of the advantages of the G/XFEM. In the caseafkcpropagation and multiple site
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damage analysi<’], the problem must be solved from scratch after each crampgwyation step or for
each crack configuration. Furthermore, the analysis oflim@ar or time-dependent fracture problems
may require mapping of solutions between meshes, as in émelatd FEM. This may lead to loss
of solution accuracy when the solution spaces are not neStesh when analytical enrichments are
able to approximate well the solution, as is the case in maByfiacture mechanics problems, the
minimum crack size which can be modeled is controlled by tbment size in the mesh]

In [17, 18, 21, 40] we demonstrate that accurate fracture mechanics sotutian be obtained in
coarse meshes enriched with the so-called global-locadlenent functions. These functions are the
solution of local boundary value problems defined in the meighood of cracks. Boundary conditions
for these problems are provided by the coarse-scale gloh#ian. We denote this class of methods
as a GFEM with global-local enrichment functioREM?). Global-local enrichment functions also
enable the analysis of problems with sharp thermal grasliesing coarse meshes, as demonstrated in
[53].

In this paper, we combine the concept of global-local emniehts with thehp-GFEM for the 3D
fractures presented iv ], 58]. As a result, local features like cracks need not be diszerétin global
scale meshes. They are instead modeled by the solutionaifgogblems. In addition, cracks that are
smaller than global mesh elements can be discretized ulisgniethod. In this paper, we consider
three types of boundary conditions applied to local prolsteBirichlet, Neumann and Cauchy. The
effect of the type of local boundary condition on the perfanoe of the proposed GFEM is analyzed.

From the approximation theory point of view, the proposedhoé is based on a two-scale
decomposition of the solution—A smooth coarse-scale anthgukr fine-scale component. The
smooth component is approximated by a coarse global dizatien of the domain. The fine-scale
is locally approximated by thibp-GFEM proposed in§7, 58]. The partition of unity concept is used
to paste the local approximations in the global solutiorcepahile still rendering &£° solution space.
Details are presented in Secti®rNumerical examples demonstrate that the proposed metbuitlps
a two-way information transfer between coarse (structunadi fine (crack) scales while not requiring
mesh refinement in structural scale meshes We also demienisted the method does not require the
solution of the problem from scratch when analyzing severatk configurations in a mechanical
component. This, as shown in Sectidnleads to a very efficient method for the class of problems
considered here.

Several other two- or multi-scale approaches for the amabfsfracture mechanics problems have
been proposed in recent years. A key difference among ti@gamethods lies in the approach used to
combine fine- and coarse-scale approximations, i.e., hoxansfer information among scales. Among
the recent works, we can mention the method of Guidault ¢88).based on the LATIN method and
domain decomposition concepts; the multigrid method pseddn [1]; the method of Cloirec et al.
[13] based on Lagrange multipliers; the multiscale projectithod of Belytschko et all]), 44]; the
concurrent multiscale approach of Liu et al3[ 46, 47]; the hp FEM method of Krause et al2}, 41];
the concurrent multi-level method of Gosh et &t3,[34] based on the Voronoi Cell Finite Element
Method; the multi-resolution approach proposed by Tsukaared Shapiro 0] based on distance
fields. The proposeGFEMY! is also related to the refined global-local FEM proposed by kttad Sun
[45] and based on linear combinations of global and local apprations. The main difference with
respect to the propos@FEM?' is, again, how the fine- and coarse-scale approximatiorsoangined.

The s-version of the FEM (s-method) proposed by Fish et3ak-37], the overlay technique of
Belytschko et al. §] and the combination of the s-method with the XFEM proposgd.ee et al.
[47] can also be used to solve the class of problems considerhisipaper. The s-method consists
of overlaying a coarse finite element mesh with patches ofrfiashes in regions where the solution
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exhibits high gradients or singularities(]. A recent version of the s-method aimed at multiscale
failure simulations, is the reduced order s-method (rdagwtof Fish et al. 8, 54]. Further discussion
of some of these methods and their relations with the prap6$&EM?' are presented in SectioBs3
and3.4.

Following this introduction, Sectiof presents a short summary of the Generalized Finite Element
Method. Details on the propos@FEM? are presented in Secti@ Sectiord presents several three-
dimensional fracture mechanics problems aimed at inwatittigj the accuracy of th6 FEM?' and its
computational performance both in terms of problem sizeGRd time.

2. Generalized FEM: A Summary

The generalized FEM3| 4, 19, 52, 63 is an instance of the so-called partition of unity methodalih
has its origins in the works of BaBkaet al. [4, 5, 49 and Duarte and Odenl}, 2224, 57]. The
extended FEM§, 50] and several other methods proposed in recent years cabealimulated as
special cases of the partition of unity method. In these outhdiscretization spaces for a Galerkin
method are defined using the concept of a partition of unityapproximation spaces that are selected
based on a priori knowledge about the solution of a problersh&pe functiongyi, in the GFEM is
computed from the product of a linear finite element shapetfan, ¢, and an enrichment function,
Lai,

i (X) = ¢ (X)Lgi(X)  (NnO summation o) 1)

wherea is a node in the finite element mesh. Figdrdlustrates the construction of GFEM shape
functions.

The Lagrangian finite element shape functigns a = 1,...,N, in a finite element mesh witN
nodes constitute a partition of unity, i.gﬂzl $a(X) =1 for all X in a domainQ covered by the finite
element mesh. This is a key property used in partition ofyjuméthods. Linear combinations of the
GFEM shape functiongyi, o = 1,...,N, can represergxactlyany enrichment functiohg; [15, 23].

Several enrichment functions can be hierarchically addeghy nodea in a finite element mesh.
Thus, if D_ is the number of enrichment functions at naslethe GFEM approximationy™, of a
vector fieldu can be written as

N Dp N Dp
zuzlum%l zllzual¢a )Lgi(X)

DL

= 2 da (X Zuale i U'&p

whereugi, a =1,...,N, i=1,...,D, are nodal degrees of freedom alﬁﬂ’(x) is an approximation
of u defined onw, = {x € Q: §4(X) # 0}, the support of the partition of unity functiapy. In the
case of a finite element partition of unity, the suppmgt (often called cloud) is given by the union
of the finite elements sharing a vertex noge[19). The equation above shows that the global GFEM
approximationu™?(x) is built by pasting together cloud-wise approximatimlﬂg, a=1,....N, using
a partition of unity.

The cloud apprommaﬂomap, a=1,...,N, belong to spaceg, (wy) = sparﬂ[Lio,}iDzLl defined on
the supportsu,, a =1,...,N. A-priori knowledge about the behavior of the functiwover the cloud
wy is used when selecting enrichment or basis functions forréicpar spaceq (wq ). We refer to

u"P(x)
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Figure 1: Construction of a generalized FEM shape function using grnmohial (a) and a non-polynomial
enrichment (b). Hereg, are the functions at the top, the enrichment functidng, are the functions in the
middle, and the generalized FE shape functiggs, are the resulting bottom functions.

[12, 19, 20, 35, 51, 57, 58, 66, 67] and the references therein, for details on the selectioiede
functions for the case 3-D linear elastic fracture mechapioblems like those considered in this
paper.

In [57, 58], we show that available analytical enrichments for 3-Dcfuae problems enable
modeling of surface discontinuities arbitrarily locateithin a finite element mesh (across elements).
Nonetheless, a sufficiently fine mesh must be used aroundréuk éront to achieve acceptable
accuracy. Even though the refinement does not have to beoag sts in the FEM, it still creates many
of the problems faced by the FEM when simulating, for examptepagating cracks or performing
a multi-site damage analysis. Mesh refinement around tlfeksr@quires that the problem be solved
from scratch for each crack configuration, leading to higimpotational costs.

3. Solution of Two-Scale Problems Using Global-Local Enricments

In [17, 18, 21] we present a procedure to build enrichment functions basethe solution of local
boundary value problems defined in the neighborhood of sratke boundary conditions for these
problems are provided by a GFEM solution computed on codod®mpmeshes. We denote this class
of methods as a GFEM with global-local enrichment functi®@SEM®'). In [17, 18, 21] cracks are
discretized in the global meshes which prevents, for exanthe analysis of small cracks or other
fine-scale features while keeping the global mesh coarsthidrsection, this limitation is removed
through a two-scale decomposition of the solution of thégl@roblem. The key idea is to combine
the global-local procedure of t@FEM? with thehp-GFEMpresented in7, 56]. The latter is used to
discretize the local boundary value problems used irGREM?' and thus the proposed methodology
enables modeling of small cracks on coarse, uncrackedabfobshes. Details are presented next.
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3.1. Formulation of Coarse-Scale Global Problem

Consider a domaifEG = Qg UdQg in O3. The boundary is decomposed2@¢ = 0Q¢ U0QZ with
0Q&N0QZ = 0. The equilibrium equations are given by

0.06=0 inQg, 2

The constitutive relations are given by the generalizedkdsdaw,o = C : €, whereC is Hooke’s
tensor. The following boundary conditions are prescribedQg

u=uondQf o-n=t ondQg, 3)

where n is the outward unit normal vector tdQZ andt and u are prescribed tractions and
displacements, respectively.

Let ug denote the generalized or standard FEM solution of the prolalefined by2), (3). This is
hereafter denoted as thatial global problem The approximatiom?3 is the solution of the following
problem:

Findu2 € X%(Qg) € HY(Qg) such thaty v& € X2(Qg)

o(ud): e(V&)dx+ / u°-v°ds:/ t-V2ds+ u-vads 4
(ug) : €(vg) naQ%GG sag Ve ’759% G (4)

Qe
where,X%(Qg) is a discretization oH!(Qg), a Hilbert space defined ddg, built with generalized,
or standard, FEM shape functions. In this paper, the GFEMasl and the spaOé%(QG) is given by

X&(Qc) = {“hp: % $a(NURP(X) : OEP(X) = _%gaiﬁai(x)} (5)

a=1 i=

wherellqi, o =1,...,N, i=1,...,D., are nodal degrees of freedom dbdis the dimension of a set
of polynomial enrichment function&g; (x), of degree less than or equalge- 1. Details can be found,
for example, in Section 3.2 ob[]. SpaceX?(Qg) can also be defined using standard polynomial FEM
shape functions since cracks a@ discretized in the initial global problem.

The parameten in (4) is a penalty parameter. We use the penalty method due tndisity and
generality. Other methods to impose Dirichlet boundaryditions can be used as well.

The mesh used to solve proble#) {s typically a coarse quasi-uniform mesh like the one fhated
in Figure2. This mesh and the soluticug are usually available from the design phase of the structure
or mechanical component.

3.2. Formulation of Fine-Scale Problem

The proposed approach involves the solution of a local bagndalue problem defined in a
neighborhood of a crack and subjected to boundary conditions providedbytobal solutioru?3
(Cf. Figure?2). In this paper, we generalize the formulation introduaeili/, 18, 21] by considering
the cases of Dirichlet, Neumann and Cauchy boundary camgiprovided by the global soluti(ug.

In each case, bbcal problemis solved onQ, after the global solutiormg is computed as described
above.

The statement of the principle of virtual work for the locabplem is given by
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Local problem
Global problem

Boundary
conditions

Figure 2: Model problem used to illustrate the main ideas of GEEMI'. The figure shows a crack in a 3-
D bracket. The solution computed on the coarse global mesVidas boundary conditions for the extracted
local domain in a neighborhood of the cradlhe crack is shown in the global domain for illustration posgs
only. In the propose@GFEMY, fine-scale features aret discretized in the global problem. Instead, global-local
enrichment functions are used.

Findu, € XP(QL) c HY(Qy) such thaty v € X"P(Qy)

o(u): e(v)dx+n uL-des+K/ u_-vids=
QL dQLﬁﬁQg QL \(0QLNIQg)

/ t-vids+n u-v ds+ (t(ud) +kul) v ds (6)
dQLﬁng 0de§2g 2QL\(0QLNIQGg)

whereXEp(QL) is a discretization oH*(Q, ) using the GFEM shape functions presentedsif) p]
h ht h h h
X[P(QU) = S U= S ga(x) |06P(X) + 2 BE(X) + BEP(X (7)
a=1

The partition of unity functions¢,, a = 1,....N_, are linear Lagrangian shape functions defined
by a finite element discretization &,. The summation limitN,, is the number of nodes in this
mesh. The cloud-wise functiod’(x), #h"(x) andifi’(x) are approximations of the continuous,
discontinuous and singular components of the solutiopeaes/ely. The mesh used @, doesnot fit
the crack surface. The crack is modeled instead by theséiduscDetails can be found in Section 3.2
of [57].

The traction vectort(u%), that appears in the integral ovéf \(dQL N 9dQg) is computed from
the coarse-scale solution using Cauchy’s relation, i.e.,

t(ug) =h-o(ug)=h-(C: &(ug)) ®)
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with f the outward unit normal vector @®Q, . The parameterg andk are a penalty parameter and a
spring stiffness defined a?Q N9Q¢ andd Q. \(dQL N IQG), respectively.

We can select the type of boundary conditions provideah@yjepending on the choice of spring
stiffnessk as follows:

(i) Neumann boundary condition: Set= 0. Tractions defined irB) are prescribed 0dQ, \ (dQLN

0Q¢).
Note that problem@&) may be not well-posed i#Q, NJdQK = 0, since, in this case, it is a
pure Neumann problem. The tractions applied@n are in general not equilibrated since they
are computed from the coarse-scale GFEM solution. Howexegn solving simpleincracked
global domains subjected to uniaxial loads like in the peablof Section4.2, the coarse-
scale solutioru?3 is exact. Thus, the local Neumann problems are well-posed example
is presented in Sectioh2

(i) Dirichlet boundary condition: Set = n > 1. In this case, the solution@S of the initial global
problem is used as Dirichlet boundary conditionaf®, \ (0Q; NdQg). The performance of this
choice of boundary condition is analyzed irt].

(iiiy Cauchy or spring boundary condition: SekOk < n. Cauchy boundary conditions are given by
(69

t(u)=k(d—u)

wheret is the prescribed tractiom;, is the stiffness of the spring8,is displacement imposed at
the base of the spring system amds the displacement at the boundary of the ba@ly].[From
the above we have that

kKd =t+Ku

Sincet andu are not known, we use instead values provided by the coa&ie-solutioru% and
set

K& :=t(ud) +kud 9)
With this choice, the tractions afQ, \ (0Q. N dQg) are given by
t(u) =t(u2) +kud —ku

Thus, the prescribed tractions will be close to the case aftNen boundary condition discussed
above ifu, is close tou. However, in this case, the local problem is well-posed &fi¢he
tractionst(ul) are not equilibrated.

There is a great freedom in selecting the spring congtastshown in Sectiod. If K is taken as

a large value (compared with the stiffness of the body), thendary condition degenerates to a
Dirichlet boundary condition. Our numerical experimeritew that any value ok comparable
to, or larger than the stiffness of the body is acceptable@ndides global-local enrichment
functions with good approximation properties.

1Even Whem?3 is the exact solution of4), a Neumann local problem may be not equilibrated due todoffiror integration
errors [L1]. Our main goal in considering the case= 0 is to compare the performance of different types of boundanditions
prescribed o@Q \ (0QL NIQG).
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3.3. Global-Local Enrichment Functions and Enriched Globa Problem

The solutionu, of the local problem defined above can be used to build géredaFEM shape
functions for the coarse global mesh. Equati@hi§ used with the partition of unity functior,
provided by the globakoarse FE mesh and the enrichment function givenupyi.e.,

@u(X) = da(X)uL(X) (10)

Hereaftery, is denoted global-local enrichment functioand the global problem enriched with these
functions is denoted aenriched global problemirhe formulation of this problem is given by

Findu§ € X§(Qg) € HY(Qg) such thaty v§ € X§(Qc)
o(ug): g(vE)dx / uE-vEds:/ t-vEds / u-vEds 11
/QG (ug) : &(vg)dx+n o 16 VG aag VG +n o VG (11)

where X§(Qg) is the spac&?(Qgs) augmented with GFEM function4(), i.e.,

N
XE(Qe) = UP =S ¢a(NUPX)+ T dp(0uF (%) (12)
a=1 ﬁejm

coarse-scale approx.  fina_scale approx.

where.#y is the index set of nodes enriched with functign a{}p is defined in §) and

| Ups UL1(X)
uj(x) = | Upz u2(X)
Ugs Ui3(X)

whereug;, B € Sy, j =1,2,3, are nodal degrees of freedom amgl(x), j = 1,2,3, are Cartesian
components of displacement vectgr. The coarse-scale approximation may also include the eloud
wise discontinuous function%ﬂ[}p(x) discussed in SectioB.2 These functions are hierarchically
added to the global solution space if the local domaindoes not contain the entire crack surface, as
in the example of Sectioh.2

The enriched global problem is solved on the saioarseglobal mesh used in the computation
of the initial global problem4). Global-local enrichments add only three degrees of seetb each
nodef < % of the global mesh when solving a 3-D elasticity probleegardlessof the number
of degrees of freedom of the local problem (several thousandeneral). Thus, highly adapted local
discretizations able to capture fine-scale features ofdghgien can be used at the local problem, since
the level of local mesh refinement/enrichment doesimpact the size of the global problem. This
contrasts with the FEM, which requires very fine global ditizations in order to capture small-scale
behavior in the global domain. Figugeallustrates the enrichment of the global coarse mesh wigh th
solution of a local problem defined in a neighborhood of alcrac

As mentioned in Sectio8.1, the coarse-scale global problem can be solved using thdatFEM
since no cracks or fine-scale features are modeled in thatgmmo In this case, the enriched global
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Figure 3: Enrichment of the coarse global mesh with a local solutianly@hree degrees of freedom are added to
nodes with yellow glyphs. The crack is shown in the global donfor illustration purposes only.

spaceX§(Qg) is given by

N

XE(Qe)= U™ =Y $a(Xla + 5 Pp(xul(X) (13)
a=1 BeAy

standard FEM approX.  fine_scale approx.

wherel,, a =1,...,N, are (standard) nodal degrees of freedom. The finite elepaetition of unity
functions,¢,, a =1,...,N, can be linear, quadratic or high-order Lagrangian shapetifons. Thus, if
a GFEM code is available for the computation of the globakl@nrichment functiony, the proposed
GFEMY can be implemented in existing FEM codes. The numericafjiat@®n of global-local shape
functions 0) must, of course, be properly handled. This is discusse@@i@ 3.5.

Related Methods In addition to the various methods discussed in Sectiche propose@FEM?!
is also related to the so-called mesh-based handbook appobeStrouboulis et al.§3-65] and the
upscaling technique proposed by Hou and X&]]We refer the reader to Section 3.3 of referencd [
for a discussion on the relations among these methods.

3.4. Solution of enriched global problem

It is clear from the definition of the enriched global spa(é(Qg) given in (12), that the global-
local GFEM shape functions are hierarchically added to tase-scale spad(Qg). As a result,
the global stiffness matrix of the initial global probled), (K2, is nested in the global matrix of the
enriched problem1(1), K(E;. Matrix KE can be partitioned as follows (see also Section A.2L&J)[
Keo K’ [Q%I |- FOGl] 14)
kg «f Jlud "L
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where K?B' and g%' are the global entries and degrees of freedom, respectigsiociated with
hierarchical global-local enrichments. Vec@g' contains the degrees of freedam;, B € 7y, j =
1,2,3, defined in Sectiod.3. As such, its dimension is small compared with that of ve@ér In

the example of Sectiod.3 (crack case 1 or 2), di(rg%') = 27 while dim(@2) = 115 470. This is in
contrast with the s-method proposed in, e 4f7] ivhere the number of hierarchical degrees of freedom
is equal to the dimension of the local problem. In the casbh®gxample of Sectioh.3(crack case 1),
the dimension of the local problem is equal ta 238.

The hierarchical nature and the small sizel_xﬁ can be explored to efficiently solve the enriched
global system of equations4). In this paper, the algorithm proposed in Section A.2 of][is
employed. In this approach, the global-local degrees ofdoen ug;, B € Sy, j = 1,2,3, are
condensed out using the available factorization of theainglobal problem. A similar approach is
used by Hirai et al.37, 39 in the framework of the global-local FEM’P]. Here, however, the number
of degrees of freedom to be condensed out is much smalleirtiba cases considered by Hirai et al.
[37, 3¢]. Other approaches that could be used to efficiently solgestiriched global problem include
the iterative methods of Rank et al.7 41], Duster p6], and of Whitcomb 2.

Substructuring{9] can also be used to solve the class of problems considetaipaper and this
approach was combined with the XFEM ing 74]. Like in the GFEMY', the condensed substructure
adds only a few degrees of freedom (dofs) to the global sysfeaquations. However, those dofs are
not hierarchical with respect to the global, uncracked;reiszation. Therefore, the problem must, in
general, be solved from scratch for each crack locatioffigaration. It has also been reported in the
literature that substructuring may lead to ill-conditidreystems when the difference in element sizes
in the global and local meshes is largs]

3.5. Numerical integration

In the proposedGFEMY, the elements enriched with global-local enrichment fiamst can be
integrated efficiently and accurately. This is possiblesithe local meshes are nested in the global
mesh. Figuret illustrates the numerical integration procedure adoptetthis paper. It is basically a
combination of the approaches proposed in Section A.3&fdnd Section 4.2 of{7]. The orange line
in the figure represents a crack surface cutting elemertigimesh. A yellow square indicates a node of
the global mesh enriched with global-local enrichment fioms. The numerical integration over global
computational elements connected to these nodes is perdonith the aid of local problem elements
nested in the global elements. These elements are denokeckhsomputational elements. They are
used to define quadrature points and weights as illustrat&dgure4(b). Standard quadrature rules
are used at local elements not cut by the crack surface arhetriwith singular functions. Otherwise,
the local elements are subdivided in the so-called intemratlements as discussed, for example, in
Section 4.2 of $7]. Special quadrature rules, such as those proposetSin fhay be used at local
elements enriched with singular functions.

The implementation of the above scheme involves the foligwnappings:

e from master coordinates of a local computational elemenhaster coordinates of a global
computational element;

e from master coordinates of a local integration element testeracoordinates of a global
computational element;

e from master coordinates of a local integration element tastaracoordinates of a local
computational element.
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The master coordinates in the first two cases are used in theutation of the global partition of
unity ¢4 in (10), while the third mapping is required to retrieve the localution u,. In all cases,
the mapping is performed by first computing the global phglstoordinatex of an integration point
in the original element followed by the mapping»to the master coordinates of a global or local
computational element. No search of the element contairirgyrequired thanks to the nesting of
meshes as described above. The inverse mappixgmthe master coordinates of a global or local
computational element can be done in a closed-form in the efigtrahedral and triangular elements.
Thus, the numerical overhead involved is small as demadestia [1].

The integration order of local computational or integrat@ements nested in global computational
elements is taken as the maximum of the integration ordets pélynomial enrichment functioris;
in (5) and global-local enrichment functioms in (10) plus one. The integration order is increased by
one since the global partition of unity is a linear finite e@rshape function. This strategy provides
a systematic way of accurately and efficiently integratingE® shape functions with global-local
enrichments. Further details on the procedure can be faufictj and [57].

-
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Figure 4: Numerical integration scheme in the global elements eadcWith local solutions. Red crosses
represent quadrature points. Elements without crossebeiselescendants to define quadrature points. (a) Global
computational elements and nodes enriched with globalHmctions. (b) Local computational elements used
for computation of global-local functions and numericaégration over global elements. (c) Integration elements
used in elements cut by crack surface or enriched with samduhctions. They are indicated with dashed lines in
the figure.

4. Numerical Examples

In this section, we investigate the accuracy, robustnedamputational efficiency of the proposed
GFEMY. TheGFEM® solutions of three-dimensional fracture mechanics problare compared with
those available in the literature and with solutions predithy thehp-GFEMpresented ing7, 58]. We
also present results for the global-local FEGILEFEM)—the solution of the local problem defined in
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(6). Strictly speaking, problen®j is a global-local generalized FEM sinagis computed with thép-
GFEM and not a standard FEM. However, both global-local methaffersfrom the same limitations,
and it is reasonable to assume that the conclusions drawraherlso valid for the global-local FEM.

In all examples, coarse, uncracked, global meshes arensedacks are defined in the initial global
problems

A single local problem is defined for each crack in the domaime local problem meshes are
automatically constructed from the union of global cloudisttintersect the crack fronts. Details are
presented in Section A.1 of §].

The accuracy ofGFEMY solutions are evaluated in terms of the strain energy norchsaress
intensity factor extracted using the Cut-off Function Meth(CFM) [56, 69). In order to quantify
the error of the stress intensity factor (SIF) extractedigla crack front, we use a normalized discrete
L2-norm of the difference between the computed SIF and theenede solution defined by

(15)

whereNgy; is the number of extraction points along the crack frdﬁ#t,and Kij are the reference and
computed stress intensity factor values for mbdethe crack front poinj, respectively.

4.1. Small Surface Crack

As a first example to demonstrate the effectiveness of theoseniGFEMY', we analyze a small half-
penny surface-breaking crack as illustrated in Figoir&his problem has been analyzed by several
researchersop, 60, 71] using the finite element method, and thus reliable refexresututions for the
mode | stress intensity factdf;, along the crack front are available. The following geoicatrand
material parameters are adopted: In-plane dimensibns 20, 2h = 2.0; domain thickness = 1.0;
crack radiug = 0.2; Young’s modulu€ = 1.0, Poisson’s rativ = 0.25. The domain is loaded by a
unity bending momen¥ as illustrated in Figuré.

The global domain is discretized with a uniform coarse mesb 8 (10 x 11 x 4) tetrahedral
elements as shown in FiguBeThis is quite a coarse mesh with element sizes almost eqjttad crack
radius. The coarse global problem is solved to provide bapndonditions to the local problem. A
local problem is created by extracting elements from thessoglobal mesh around the surface crack.
The elements intersecting the crack front are bisectedl amticceptable level of mesh refinement is
achieved. Figuré(a) shows the local mesh. The ratio of element size to charatitedrack length
(Le/r) along the crack front is.0295. Discontinuous and singular analytical enrichmentfions
presented in{7/] are automatically assigned to local nodes in order to mtigetrack. The von Mises
stress in the local domain is shown in Figuféb). The local solution is next used as enrichment
functions in the coarse global problem as illustrated inuFég. Cubic polynomial shape functions
are used in both global and local problems.

As discussed in Sectidh2, we can use Dirichlet, Cauchy/Spring or Neumann boundangitions
at the local boundargQ\(dQL N dQg). In fact, Dirichlet and Neumann boundary conditions are
special cases of Cauchy boundary conditions, dependingeonhoice of the spring stiffness. Thus,
we perform a sensitivity analysis to investigate the eftddhe spring stiffness on the quality of the
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Figure 5: Domain with a small surface crack and loaded by a morventhe resultant moment is applied using
linearly varying tractions prescribed at faces of elemastshown in Figuré.
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Figure 6: Coarse global mesh used to provide boundary condition®éaid problem. The crack is not discretized
in the global domain. The distributed tractions used toypdending moment at the top and bottom surfaces of
the domain are also shown.

solution of the enriched global problerhlj. Figure9 plots the relative errors of the enriched global
solution in energy norm for several spring stiffness valiiée reference strain energy value is provided
by thehp-GFEM presented in§7]. The hp-GFEM discretization is obtained by locally refining the
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(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local

problem.

Figure 7: Local problem used to compute a global-local enrichmenttion.
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Figure 8: Hierarchical enrichment of the coarse global mesh with glldbcal functions. Yellow glyphs represent
global nodes enriched with local solutions.

global mesh and enriching the global nodes with high-ortiape functions as described ii/]. The
crack is, in this case, discretized in the global domain. fEtetive errors of th€FEM? with Dirichlet
and Neumann boundary conditiong&, \ (9Q_ N dQg) are also shown in the plot. It can be observed
that the relative error of the spring boundary conditioredasmaller than in the cases of Dirichlet and
Neumann boundary conditions over the range of spring ssfrused in the plot. The figure shows a
very smooth behavior and a low sensitivity of the global ewith respect to the spring stiffnegs

Selection of Spring Stiffness In this example, Neumann boundary conditiors={ 0) can be used
in the local problem since the solution of the uncracked glalomain is exact and the tractions
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Figure 9: Sensitivity analysis to the stiffness of spring boundanmyditions.

computed from it can equilibrate any local domain. Howetleis is not the case in general. Very
small spring stiffness should also be avoided since this beaypumerically equivalent to Neumann
boundary conditions. Based on our numerical experieneespiing stiffnes is selected using the

following expression
E

K=~ ~ (16)
whereE is the Young’s modulusn is the number of spacial dimensions of the probl&nijs the
volume of the master element used (tetrahedrons in this ghednandJ is the Jacobian of the global
element across the local boundary where the spring bourdadition is imposed. The quantityVoJ
represents the characteristic length of the global finigeneint across the local boundary where the
spring boundary condition is imposed. In this problem, theobian and material properties of all
global elements are constant and the spring stiffness diygh6) is k = 8.7358. From Figur®, we
can observe that much smaller values could also be usedsfitiigy stiffness leads to a relative error in
energy norm equal to 0.007807, while for the Dirichlet baanyccondition case the error is 0.010246.

Quality of Extracted Stress Intensity factors Mode | stress intensity factdk, extracted along the

crack front is normalized using

K= (17)

whereQ is equal to 2464 for a circular cracky = 3M/bt? is the maximum bending stress anis the
radius of the crack. Dimensiofisandt are indicated in Figuré. The reference values f& are taken
from Walters et al. [1] and used to comput@ (K ) in (15).

Figure 10 showsK; computed with three methods—tf& -FEM, the GFEM? and thehp-GFEM
The global-local FEMGL-FEM) corresponds to SIF computed from the solution of the looalblgm
shown in Figurer and subjected to spring boundary conditions provided byriitial global problem.
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The spring stiffness is given byL§). This approach provides a poor approximatiorkpfalong the
crack front and the relative erref(K|) is 0.18531. The GFEM with global-local enrichment functions
(GFEMY) corresponds to the case in which the local solution contpwith the GL-FEM is used as
enrichment function for the coarse global mesh shown in féigu The relative erro€’ (K;) of the
GFEMY SIF is 001233, which is about 15 times smaller than the one obtaigetidbGL-FEM. We
also showhp-GFEMresults in the figure. The relative errér(K,) of the hp-GFEM SIF is Q00395.
While this result is quite accurate, thp-GFEMrequires refinement of the global mesh. The reference
solution provided by Walters et al/ ] is also shown in the plot.

1.2
1.0{~
0.8
Ny
e}
9]
N
= 06[-
£
2 —— Walters et al. (2005
0.4~ A—A hp-GFEM
0 GreM’
0.2l G-© GL-FEM
Y ; : : ;
%.O 0.2 0.4 0.6 0.8 1.0

29/ T

Figure 10: Normalized mode | stress intensity factor for #B&-FEM and theGFEMZ' with spring boundary
condition in local problems and thg-GFEM
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4.2. Inclined Penny Shaped Crack

The second problem is an inclined circular crack in a cubdlastriated Figurell The slope of the
crack with respect to the globgaxis isy = 11/4. A tensile traction of magnitude is applied in the
y-direction at the top and bottom surfaces of the domain. ©heviing parameters are assumed in this
problem: Cube dimension 2= 4.0; crack radius = 1.0; vertical tractiono = 1.0; Young’s modulus

E = 1.0; Poisson'’s rativ = 0.3.

Right view

2L

Top view

Figure 11: Inclined circular crack in a cube subjected to uniform tensiactions. The crack is shown for
illustration purposes only. It is not discretized in thetiadiglobal problem. The triangulation of the crack surface
is also shown.

In this example, the stress intensity factors for all threedes are non-zero. We analyze the
performance of the propos&FEMY for this class of problems. The performance of the threestype
of boundary conditions applied at the local bound@€y \ (dQ. NdQg) is also investigated.

The GFEMY solution is computed following the same steps describetérptevious section. The
global domain is discretized with a uniform coarse meshof(60x 10 x 10) tetrahedral elements as
shown in Figurel2. The crack isnot discretized in the initial global domain. A single local ptem
is created along the circular crack front as shown in Fig@ieand13. We can observe thahe local
domain does not contain the entire crack surfatke mesh and crack sizes were selected such that
this would be the case. The mesh is locally refined aroundrdekdront as shown in Figurg3(a)
The ratio of element size to characteristic crack lengthg) along the crack front is.0280. The von
Mises stress in the local domain is shown in Figlig¢b). Figure14 illustrates the enrichment of the
coarse global mesh with the solution of the local problembi€polynomial shape functions are used
in both global and local problems.

In contrast with the problem of Sectighl, the boundary of the local domain intersects the crack
surface. While we could, of course, have used a larger lomalagh and avoid this situation, we are
interested in the performance of the three types of boundamgitions applied adQ, \ (dQL N I9Qg)
under this situation. Note also that in this exampl@, N Qs = 0. Figure 15 shows the local
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Figure 12: Coarse global mesh used to provide boundary conditionsiéliocal problem. No crack is discretized
in the global domain.
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(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local
problem.

Figure 13: Local problem created along the circular crack front. Thieitan of the local problem is used as
enrichment functions for the coarse global mesh.

deformed configurations for each type of boundary conditid’e can observe in Figurg5(a) that

the crack closes at the boundary of the local problem wheicldét boundary conditions are applied
atdQ\(0QLNdQg). This is expected since the crack was not defined in the ligikidoal problem
and thus the Dirichlet boundary condition used& \ (dQ. N dQg) is a continuous function. This
behavior is not observed in FigurgS(b)and15(c)which correspond to spring and Neumann boundary
conditions, respectively. Since Neumann boundary camtstprovided by the initial global problem
are in general not equilibrated, spring boundary conditsothe most robust option. A quantitative
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Figure 14: Enrichment of the global mesh with global-local functiowsllow glyphs represent the global nodes
enriched with these functions.

comparison among the three types of boundary conditionesepted below.

Selection of Spring Stiffness Figure16 plots the relative error in energy norm of the enriched globa
solution for several spring stiffness values. The refegevadue for the strain energy is provided by
using thehp-GFEM Like in the problem analyzed in Secti@hl, the relative error of the spring
boundary condition case is smaller than in the cases oflidti@and Neumann boundary conditions
over a large range of spring stiffness values. The spriffipatis computed using.6) is k = 7.2112.
While this is not the optimal value and much smaller valuasatalso be used, it delivers more accurate
results than Dirichlet and Neumann boundary conditionscsVealso observe that in spite of the crack
closing behavior caused by the Dirichlet boundary condifiéf. Figure15(a), it is able to deliver
accurate results.

Quality of Extracted Stress Intensity factors Figurel7 shows the mode I, Il and Il stress intensity
factor distributions extracted along the crack front. ThEsSare extracted from solutions computed
by three methods—théL-FEM, GFEM? andhp-GFEM Spring boundary conditions with stiffness
given by (16) are used in the global-local FEM. The local domain is shawRigurel3. ThisGL-FEM
solution is used as enrichment for tBEM?'. The SIFs extracted from the-GFEM solution are
taken as reference values. The relative differeet@s ), € (K ) ande’ (K ) between th& FEMY and
hp-GFEMSIFs are 0.01420, 0.01748 and 0.02435, while those betvmedblt-FEM andhp-GFEM
SIFs are 0.47515, 0.43925 and 0.33831, respectively. Thesen all three mode SIFs computed with
theGFEMY' are one order of magnitude smaller than those witt@hé=EM. This, again, demonstrates
the accuracy and robustness of the propd3B&EMY'.
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(a) Dirichlet boundary condition. (b) Spring boundary condition.

.

0>
"A’h

(c) Neumann boundary condition.

Figure 15: Section of local domain showing deformed shapes correspgialthree types of boundary conditions
ondQ\(0QLNIdQg). All the figures are drawn to the same scale.
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Figure 16: Sensitivity analysis to the stiffness of spring boundamditions.
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Figure 17: Stress intensity factors extracted fré@h.-FEM, GFEM? andhp-GFEM solutions. Spring boundary
conditions are used in the local problem.
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4.3. Complex Domain with Multiple Crack Configurations

In this section, we analyze the three-dimensional bracketva in Figure18 with the goal of
demonstrating the computational efficiency of the propdS&&EMY. The geometry of the domain
and loads create several regions with stress singulawtiese cracks are likely to nucleate and grow.
Three crack cases are considered as illustrated in the figuitee propose@GFEM?, the initial globall
problem needs to be solved only once and the same globaleco@sh can be used for any crack
location. This feature of the method leads to substanti@prdational savings as demonstrated below.
In contrast, the problem must be solved from scratch for eaatk case when using, e.g., the finite
element method. This type of analysis is frequently per&atin the industry in order to find the critical
crack location in a complex component]. The geometry and location of the cracks considered here
are defined in Figur@1 The Young’s modulus and Poisson’s ratio used in this exara@E = 10°
andv = 0.33, respectively. The bracket is loaded by a unity pressupéead at the horizontal opening
and it is fixed at the vertical openings.

Pressure

Possible Crack Locations

Figure 18: Boundary conditions and mesh for a three dimensional btatke three crack cases considered are
shown in the figure but only one crack is analyzed at a time.

The coarse global problem is solvedly oncewithout any crack discretization and local problems
are created around each crack as shown in Fig@Qrdhe local meshes are refined around the crack
fronts as in the previous sections. Spring boundary camditprovided by the global problem are used
in all cases. The spring stiffness is, again, selected {&#B)g The von Mises stress distribution for the
local problems are displayed in Figu2é. The coarse global mesh is enricheith one local solution
at a time as illustrated in Figur@1. The enriched global problems are then solved using thensehe
discussed in SectioB.4 The GFEM? solution for each crack location considered is shown in fégu
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22.

Figure 19: The solution of the initial global problem provides boundaonditions for local problems created
around each crack surface. No crack is discretized in theafjbomain and thus it needs to be solesdly once

(a) Crack 1 (Quarter circle). (b) Crack 2 (Quarter circle). (c) Crack 3 (Half circle).

Figure 20: The von Mises stress distribution for the local problemsirgpboundary conditions provided by the
same initial global solution are used in all cases.

[GFEMgI two scale — July 1, 2009]



24 0f33 D.-J. KIM, J.P.A. PEREIRA AND C.A. DUARTE

(b)

©

Figure 21: Enrichment of the coarse global mesh with the local solutdéreach crack case considered.
The geometry of each crack is as follows: (a) Crack 1 (Quaritete): Radiusr = 4, center= (80,50,50);
(p=0,r =4)=(80,50,46); (¢ = m/2,r = 4) = (76,50,50); (b) Crack 2 (Quarter circle): Radius= 4, center

= (80,50, —50); (¢p=0,r =4) = (76,50,—50); (p=11/2,r =4) = (80,50, —46); (c) Crack 3 (Half circle): Radius

r =8, center=(80,50,0); (9=0,r =8) = (80,50,—8); (p=1/2,r =8) = (72,50,0) (p = 1I,r = 8) = (80,50, 8).
Where(g,r) are polar coordinates along the crack front &pd) = (X,Y,Z) means the Cartesian coordinates of
point (¢, r) located along the crack front.
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(a) Crack 1. (b) Crack 2. (c) Crack 3.

Figure 22: GFEM?' solution for each crack location considered.

Computational Performance To evaluate the computational efficiency of the propdSE&MY, we
compare its computational cost with that of thg GFEM In the latter, like in the classical FEM, the
problem must be solved from scratch for each crack configuraThis leads to high computational
costs when a large number of crack configurations must bgzethlas is the case of crack growth
simulations or multiple site damage (MSD) analysis. In castt in theGFEMY', the factorized stiffness
matrix of the uncracked global problem can be used to comhéesolution of enriched global
problems at a low computational cost.

Tablesl andll list the CPU time required to solve the three crack casegubehp-GFEMand the
GFEMY', respectively. The number of degrees of freedom used by matihod is also listed. Several
observations can be made from the result in the tables.

First, the size of the enriched global problem in ®EEM?' does not depend on that of the local
problem. Furthermore, only a small number of degrees oflfseeare added to the enriched global
problem: 27, 27 and 39 for the first, second and third crack,ca&spectively. In contrast, the crack
discretization and mesh refinement required byttheSFEMincrease the size of the global problem
substantially.

Second, the cost to compute the enriched global solutiomesmmonds to only between 4 and 6%
of the CPU time spent in the initial global problem (2B§. As a results, the total CPU time for
the GFEM?' is much smaller than that required by thp-GFEM The difference in performance
between the two methods grows with the number of crack cordiguns considered. This is clearly
demonstrated in Figur23, which shows the total CPU time versus the number of crackigamations
for the GFEM?' andhp-GFEM |f the solution of the uncracked global problem is avaiatsbm the
design phase of the component, the total CPU time fo@REM? is 1527s since it involves only the
solution of the local and enriched global problems. Othsewihe CPU time for th@ FEM?' is 4514s.

In either case, th&FEMY' is considerably more efficient than thp-GFEM

Quality of Extracted Stress Intensity factors Figure 24 shows mode I, Il and Il stress intensity
factors extracted along the front of Crack 3. Both tpeGFEM and GFEM?' solutions are shown.
The SIFs extracted from th@FEM?' solution are in good agreement with those from tipeGFEM
solution. The relative differenceg (K ), € (K;;) and € (K, ) between theGFEMY and hp-GFEM
SIFs are 002454, 004902 and M3275, respectively. This demonstrates that@EM' can deliver
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Table I: CPU time spent on the factorization of the stiffness matfizach crack case using the-GFEM

Crack | Number of degrees of freedolmCPU time (sec)| Strain energy
1 139,098 346.7 2.3638
2 136,698 335.6 2.3634
3 157,626 459.9 2.3752
Total 1,142.2

Table Il: CPU time spent on the factorization of the initial and locallgems and on the solution of the enriched
global problems. If the solution of the initial (uncrackeglpbal problem is not available, the total CPU time of
the GFEMY' to solve the three crack cases is 46ihstead of 157.

Number of degrees of freedofn

CPU time (sec)

Crack ID | Initial Local | Enriched | Initial | Local | Enriched| Total | Strain energy
1 23,268 | 115,497 24.1 12.6 36.6 2.3633
2 115,470| 21,108 | 115,497 | 298.7 | 17.3 12.6 29.9 2.3631
3 39,426| 115,509 69.3 16.9 86.2 2.3735

Total 298.7 | 110.7 42.0 152.7
1200
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Figure 23: Total CPU time required for a different number of crack comfagions in theGFEM' andhp-GFEM
analyses. The cost of solving the uncracked global problemincluded in the the CPU time of tGFEMZ!.

accurate stress intensity factors at a lower computatioretithan thédp-GFEM
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Figure 24: Mode |, Il and |1l stress intensity factors extracted fropGFEMandGFEM?! solutions for Crack 3.
Spring boundary conditions are used in the local problem.

5. Conclusions

The examples presented in Sectibshow that stress intensity factors extracted from the wego
GFEM? solutions are up to one order of magnitude more accuratethivse extracted from the local
solutions. The latter case is equivalent to the global{iIBEM (GL-FEM), broadly used in the industry.
The numerical examples also demonstrate that the accuf#iog GFEMY is comparable with that of
thehp-GFEMproposed in§7] while not requiring the refinement of global meshes. Thisldes, for
example, the use of meshes available from the design phasroicture to perform fracture mechanics
analyses.

The computational cost in terms of CPU time of the propdS&&EM?' is comparable with that of
the GL-FEM. The only additional cost of the former is the solution of #r@iched global problem.
This, as demonstrated in SectidrB, is small when compared with the solution of the initial gibb
problem.

In the propose@FEM?, the initial global problem needs to be solved only once aedame global
coarse mesh can be used for any crack configuration. Thigréeaf the method leads to substantial
computational savings when several crack configuratioascansidered in the same structure. In
contrast, the global problem must be solved from scratcleémh crack configuration when using,
e.g., the finite element method. Similar conclusions aresetgal in the case of crack propagation
simulations. We are currently investigating this case.

The hp-GFEMi s as accurate and computationally efficient as the starfelakd due to the use of
singular crack front enrichment functions. Thus, it is mrable to assume that the above conclusions
regarding accuracy and computational efficiency of @&EM? and hp-GFEM also applies to the
standard FEM.

Another contribution of this paper is a study of the accuratythe GFEMY' when Dirichlet,
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Cauchy/spring or Neumann boundary conditions providedhigyinitial global problem are used at
the local boundargQ, \ (dQ. N JdQg). Our numerical experiments show that any value of the spring
stiffness comparable to, or larger than the stiffness obtigty is acceptable and provides global-local
enrichment functions with good approximation propertigsis type of boundary condition leads, in
general, to more accurate enriched global solutions thaictet boundary conditions while being
more robust than Neumann boundary conditions.

Acknowledgments: The authors gratefully acknowledge the contributions ef Midwest Structural
Sciences Center (MSSC) at the University of Illinois at Ur@@hampaign. The Center is supported
by the U.S. Air Force Research Laboratory Air Vehicles Dioeate under contract number FA8650-
06-2-3620. The support from the U.S. Air Force Research tatboy Air Vehicles Directorate under
contract number USAF-0060-50-0001 is also gratefully askadged.

REFERENCES

[1] A.M. Aragon, C.A. Duarte, and Ph.H. Geubelle. Genegrlifinite element enrichment functions
for discontinuous gradient field$nternational Journal for Numerical Methods in Engineegjn
2009. Submitted for publicatiori.

[2] 1. BabuSka and B. Andersson. The splitting method as a tool for plelidamage analysiSIAM
Journal on Scientific Computing6:1114-1145, 2002

[3] I. Babuska and J.M. Melenk. The partition of unity finite element hoet. Technical Report
BN-1185, Inst. for Phys. Sc. and Tech., University of MangaJune 19951, 3

[4] 1. BabuSka and J.M. Melenk. The partition of unity finite element inoet. International Journal
for Numerical Methods in Engineering0:727—758, 19971, 3

[5] I. Babuska, G. Caloz, and J.E. Osborn. Special finite element mettooé class of second order
elliptic problems with rough coefficientSIAM Journal on Numerical Analysi81(4):745-981,
1994.3

[6] I. Babuska, F. Ihlenburg, E. Paik, and S. Sauter. A generalizecfelément method for solving
the Helmholtz equation in two dimensions with minimal pttn. Computer Methods in Applied
Mechanics and Engineering28(3-4):325-360, 1994.

[7] J. Bellec and J. Dolbow. A note on enrichment functions fieodelling crack nucleation.
Communications in Numerical Methods in Engineering:921-932, 20032

[8] T. Belytschko and T. Black. Elastic crack growth in fineéeements with minimal remeshing.
International Journal for Numerical Methods in Engineagjd5:601-620, 19991, 3

[9] T. Belytschko, J. Fish, and A. Bayliss. The spectral taseon finite elements for problems with
high gradientsComputer Methods in Applied Mechanics and Engineet@ig71-89, 19902

[10] T. Belytschko, S. Loehnert, and J.-H. Song. Multiscadgregating discontinuities: A method
for circumventing loss of material stabilitylnternational Journal for Numerical Methods in
Engineering 73:869-894, 20072

[GFEMgI two scale — July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 29 68

[11] P.Bochev and R.B. Lehoucg. On the finite element satubicthe pure Neumann probler8IAM
Review47(1):50-66, 20057

[12] D.L. Chopp and N. Sukumar. Fatigue crack propagatiomaftiple coplanar cracks with the
coupled extended finite element/fast marching methbdernational Journal of Engineering
Science41:845-869, 2003%

[13] M. Cloirec, N. Ma2s, G. Marckmann, and P. Cartraud. Two-scale analysis aksrasing
the extended finite element method. In D.R.J. Owen, E. Oraxd, B. Suarez, editors,
VIII International Conference on Computational Plastcifundamentals and Application —
COMPLAS 2005pages 483-485, Barcelona, Spain, 2005. CIMRE.

[14] A.Th. Diamantoudis and G.N. Labeas. Stress intenaityoirs of semi-elliptical surface cracks in
pressure vessels by global-local finite element methogol&pgineering Fracture Mechanics
72:1299-1312, 20032

[15] C.A. Duarte. The hp Cloud Methad PhD dissertation, The University of Texas at Austin,
December 1996. Austin, TX, USA

[16] C.A. Duarte and |. Balika. Mesh-independent directiomaenrichment using the generalized
finite element method.International Journal for Numerical Methods in Engineegirb5(12):
1477-1492, 2002. http://dx.doi.org/10.1002/nme.5b7.

[17] C.A.Duarte and |. Bahika. A global-local approach for the construction of enmelmt functions
for the generalized fem and its application to propagatimgd-dimensional cracks. In V.M.A.
Leitao, C.J.S. Alves, and C.A. Duarte, editoEECCOMAS Thematic Conference on Meshless
Methods Lisbon, Portugal, 11-14 July 2005. 8 pages4, 5

[18] C.A.Duarte and D.-J. Kim. Analysis and applicationg@feneralized finite element method with
global-local enrichment functionsgComputer Methods in Applied Mechanics and Engineering
197(6-8):487-504, 2008. http://dx.doi.org/10.1016Mac2007.08.0172, 4,5, 7, 9, 10, 11, 12

[19] C.A.Duarte, |. Babgka, and J.T. Oden. Generalized finite element methodsrfee thmensional
structural mechanics problemS8omputers and Structurgg7:215-232, 20001, 3, 4

[20] C.A. Duarte, O.N. Hamzeh, T.J. Liszka, and W.W. Twolpyd A generalized finite
element method for the simulation of three-dimensional agyic crack propagation.
Computer Methods in Applied Mechanics and Engineerih§0(15-17):2227-2262, 2001.
http://dx.doi.org/10.1016/S0045-7825(00)00233t44

[21] C.A. Duarte, D.-J. Kim, and |. BalBka. Chapter: A global-local approach for the construation
enrichment functions for the generalized fem and its apfiba to three-dimensional cracks.
In V.M.A. Leitdo, C.J.S. Alves, and C.A. Duarte, editofglvances in Meshfree Techniques
volume 5 ofComputational Methods in Applied SciencElse Netherlands, 2007. Springer. ISBN
978-1-4020-6094-62, 4, 5

[22] C.A.M. Duarte and J.T. Oden. Hp clouds—A meshless ntetbsolve boundary-value problems.
Technical Report 95-05, TICAM, The University of Texas atsfin, May 1995.3

[23] C.A.M. Duarte and J.T. OdenHp clouds—Anhp meshless methodNumerical Methods for
Partial Differential Equations12:673—705, 19963

[GFEMgI two scale — July 1, 2009]



30 0f33 D.-J. KIM, J.P.A. PEREIRA AND C.A. DUARTE

[24] C.A.M. Duarte and J.T. Oden. Ahp adaptive method using cloudsComputer Methods in
Applied Mechanics and Engineerint39:237—-262, 19963

[25] M. Duflot and S. Bordas. XFEM and mesh adaptation: A nagmeiof convenience. IRighth
World Congress on Computational Mechanidgenice, Italy, July 20081

[26] A. Duster. High order finite elements for three-dimensional, thindedlnonlinear continua
Shaker Verlag, Aachen, Germany, 2002.

[27] A. Duster, A. Niggl, and E. Rank. Applying the hp-d version of feen to locally enhance
dimensionally reduced model€omputer Methods in Applied Mechanics and Engineerl®g:
3524-3533, 20072, 10

[28] R. Fan and J. Fish. The rs-method for material failureuations. International Journal for
Numerical Methods in Engineering3(11):1607-1623, 2008. doi: 10.1002/nme.2134.

[29] C.A. Felippa. Introduction to finite element method2Q04. Course Notes. Department
of Aerospace Engineeing Sciences, University of Colorado Baulder. Available at
http://www.colorado.edu/engineering/Aerospace/CAS8fses.d/IFEM.d10

[30] J. Fish. The s-version of the finite element methodmputers and Structurg43:539-547, 1992,
2,3

[31] J. Fish and R. Guttal. The s-version of finite elementhuodtfor laminated composites.
International Journal for Numerical Methods in Enginedgjr39:3641-3662, 1996.

[32] J. Fish and A. Nath. Adaptive and hierarchical modeglliof fatigue crack propagation.
International Journal for Numerical Methods in Engineegjr36:2825-2836, 1992

[33] S.Ghosh, K. Lee, and P. Raghavan. A multi-level comgpartal model for multi-scale analysis in
composite and porous materialsiternational Journal of Solids and Structureg8:2335-2385,
2001.2

[34] S. Ghosh, J. Bai, and P. Raghavan. Concurrent mukitlevodel for damage evolution in
microstructurally debonding compositédechanics of Materials39(3):241-266, 20072

[35] A. Gravouil, N. Mas, and T. Belytschko. Non-planar 3d crack growth by theralad finite
element and level sets — Part II: Level set updateernational Journal for Numerical Methods
in Engineering 53(11):2569-2586, 2002, 4

[36] P.-A. Guidault, O. Allix, L. Champaney, and C. Cornuau multiscale extended finite element
method for crack propagatiofComputer Methods in Applied Mechanics and Engineerd®y:
381-399, 20082, 10

[37] 1. Hirai, B.P. Wang, and W.D. Pilkey. An efficient zoongimethod for finite element analysis.
International Journal for Numerical Methods in Engineegir20:1671-1683, 1984L0

[38] I. Hirai, Y. Uchiyama, Y. Mizuta, and W.D. Pilkey. An egazooming methodFinite Elements
in Analysis and Desigrnl:61-69, 198510

[39] T.Y. Hou and X.-H. Wu. A multiscale finite element methfmat elliptic problems in composite
materials and porous medidournal of Computational Physic$34:169-189, 19970

[GFEMgI two scale — July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 3188

[40] D.-J.Kim, C.A. Duarte, and J.P. Pereira. Analysis ¢émacting cracks using the generalized finite
element method with global-local enrichment functio®SME Journal of Applied Mechanics
75(5), 2008. 051107 (12 pages) http://dx.doi.org/10.11.29362402

[41] R. Krause and E. Rank. Multiscale computations with mbimation of the h- and p-versions
of the finite-element methodComputer Methods in Applied Mechanics and Engineerir@®:
3959-3983, 20032, 10

[42] S.-H. Lee, J.-H. Song, Y.-C. Yoon, G. Zi, and T. Belytsch Combined extended and
superimposed finite element method for cracksternational Journal for Numerical Methods
in Engineering59(1119-1136), 2004. DOI: 10.1002/nme.9@810

[43] W.K. Liu and C. McVeigh. Predictive multiscale theorgrfdesign of heterogenous materials.
Computational Mechani¢#2(2):147-170, 2008. DOI: 10.1007/s00466-007-0178-8.

[44] S. Loehnert and T. Belytschko. A multiscale projectiamethod for macro/microcrack
simulations. International Journal for Numerical Methods in Engineeg;riv1(12):1466-1482,
2007.2

[45] K.M. Mao and C.T. Sun. A refined global-local finite elem@nalysis methodInternational
Journal for Numerical Methods in Engineering2:29-43, 19912

[46] C. McVeigh and W.K. Liu. Linking microstructure and perties through a predictive
multiresolution continuumComputer Methods in Applied Mechanics and Engineer®y (41—
42):3268-3290, 200&

[47] C. McVeigh, F. Vernerey, W.K. Liu, and L.C. Brinson. Miksolution analysis for material
design. Computer Methods in Applied Mechanics and Engineerit@b(37-40):5053-5076,
2006.2

[48] J.M. Melenk.On Generalized Finite Element Method®D thesis, The University of Maryland,
1995.1

[49] J.M. Melenk and I. Babtka. The partition of unity finite element method: Basic tiyeand
applications.Computer Methods in Applied Mechanics and Engineeri39:289-314, 19963

[50] N. Moés, J. Dolbow, and T. Belytschko. A finite element method f@ck growth without
remeshing. International Journal for Numerical Methods in Engineagjm6:131-150, 1999.
13

[51] N. Moés, A. Gravouil, and T. Belytschko. Non-planar 3D crack glowy the extended finite
element and level sets — Part I: Mechanical motigernational Journal for Numerical Methods
in Engineering 53(11):2549-2568, 2002, 4

[52] J.T. Oden, C.A. Duarte, and O.C. Zienkiewicz. A new dédasechp finite element method.
Computer Methods in Applied Mechanics and Engineerda:117-126, 1998L, 3

[53] P. O'Hara, C.A. Duarte, T. Eason, and D.-J. Kim. Gerieedl finite element
analysis of three-dimensional heat transfer problems bétiing sharp thermal gradients.
Computer Methods in Applied Mechanics and Engineerib§8(21-26):1857-1871, 2009.
http://dx.doi.org/10.1016/j.cma.2008.12.024.

[GFEMgI two scale — July 1, 2009]



32 0f33 D.-J. KIM, J.P.A. PEREIRA AND C.A. DUARTE

[54] C. Oskay and J. Fish. On calibration and validation géedeformation-based multiscale models
for failure analysis of heterogeneous syste@emputational Mechani¢c#2(2):181-195, 2008.
3

[55] K. Park, J.P. Pereira, C.A. Duarte, and G.H. Paulino.tegration of singular enrichment
functions in the generalized/extended finite element neetion three-dimensional problems.
International Journal for Numerical Methods in Engineagin78(10):1220-1257, 2009.
http://dx.doi.org/10.1002/nme.25300

[56] J.P. Pereira and C.A. Duarte. Extraction of stresqsitg factors from generalized finite element
solutions.Engineering Analysis with Boundary Elemert9:397-413, 200512

[57] J.P. Pereira, C.A. Duarte, D. Guoy, and X. Jiatip-Generalized FEM and crack surface
representation for non-planar 3-D crackdnternational Journal for Numerical Methods in
Engineering 77(5):601-633, 2009. http://dx.doi.org/10.1002/nM& 1, 2, 4, 5, 6, 10, 11,
12,13, 14, 27

[58] J.P. Pereira, C.A. Duarte, X. Jiao, and D. Guoy. Geimdlfinite element method enrichment
functions for curved singularities in 3D fracture mechampooblemsComputational Mechanig¢s
44(1):73-92, 2009. http://dx.doi.org/10.1007/s00468-0356-1.2, 4, 6, 11

[59] J.C. Raju, I.S. Newman Jr. Stress-intensity factorsafavide range of semi-elliptical surface
cracks in finite-thickness plateEngineering Fracture Mechanic41:817-829, 197912

[60] J.C. Raju, I.S. Newman Jr. Three dimensional finiterelat analysis of finite-thickness fracture
specimens. Report TN D-8414, NASA - Langley Research Cgrtenpton, VA, May 1977. pp.
1-40.12

[61] J. Rannou, A. Gravouil, and M.C Baietto-Dubourg. A Iboaultigrid X-FEM strategy for 3-D
crack propagation.International Journal for Numerical Methods in Engineegjr2009. DOI:
10.1002/nme.24272

[62] A. Simone, C.A. Duarte, and E. van der Giessen. A geize@lfinite element method for
polycrystals with discontinuous grain boundariégernational Journal for Numerical Methods
in Engineering 67(8):1122-1145, 2006. http://dx.doi.org/10.1002/rir668. 1

[63] T. Strouboulis, K. Copps, and |. Bakka. The generalized finite element methd@omputer
Methods in Applied Mechanics and Engineerit§0:4081-4193, 2001, 3,9

[64] T. Strouboulis, L. Zhang, and |. Babka. Generalized finite element method using mesh-based
handbooks: Application to problems in domains with manylgoComputer Methods in Applied
Mechanics and Engineering92:3109-3161, 2003.

[65] T. Strouboulis, L. Zhang, and |. Babka. p-version of the generalized FEM using mesh-
based handbooks with applications to multiscale probldntsrnational Journal for Numerical
Methods in Engineering0:1639-1672, 2002

[66] N. Sukumar, N. M@s, B. Moran, and T. Belytschko. Extended finite element owetbr three-
dimensional crack modellinginternational Journal for Numerical Methods in Enginedg;j8
(11):1549-1570, 2004, 4

[GFEMgI two scale — July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 3388

[67] N. Sukumar, D.L. Chopp, and B. Moran. Extended finitemedat method and fast marching
method for three-dimensional fatigue crack propagatiéngineering Fracture Mechanic§0:
29-48, 20031, 4

[68] B. Szabo and I. Bal@ika. Finite Element AnalysisJohn Wiley and Sons, New York, 1991.

[69] B. A. Szabo and |. Balika. Computation of the amplitude of stress singular teonsrficks and
reentrant corners. In T.A. Cruse, editBracture Mechanics: Nineteenth Symposium, ASTM STP
969 pages 101-124, Southwest Research Institute, San Anfoxjd 988. 12

[70] I. Tsukanov and V. Shapiro. Adaptive multiresolutioefinement with distance fields.
International Journal for Numerical Methods in Engineegin7/2:1355-1386, 2007. DOI:
10.1002/nme.20872

[71] M. C. Walters, G. H. Paulino, and R. H. Dodds Jr. Stressrisity factors for surface cracks in
functionally graded materials under mode-I thermomedt@hdading.International Journal of
Solids and Structureg1:1081-1118, 2004L2, 15, 16

[72] J.D. Whitcomb. Iterative global/local finite elememadysis. Computers and StructuredO:
1027-1031, 199110

[73] E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.-F. Remaelad F. Lani. A substructured FE-
shell/XFE-3D method for crack analysis in thin-walled stures. International Journal for
Numerical Methods in Engineering2:757-779, 200710

[74] E.Wyart, M. Duflot, D. Coulon, P. Martiny, T. PardoenfKJRemacle, and F. Lani. Substructuring
FE-XFE approaches applied to three-dimensional crackgmaion. Journal of Computational
and Applied Mathemati¢®007. doi: 10.1016/j.cam.2006.03.066)

[GFEMgI two scale — July 1, 2009]



	Two-Scale Generalized FEM for 3-D Fractures
	Introduction
	Generalized FEM: A Summary
	Solution of Two-Scale Problems Using Global-Local Enrichments
	Formulation of Coarse-Scale Global Problem
	Formulation of Fine-Scale Problem
	Global-Local Enrichment Functions and Enriched Global Problem
	Solution of enriched global problem
	Numerical integration

	Numerical Examples
	Small Surface Crack
	Inclined Penny Shaped Crack
	Complex Domain with Multiple Crack Configurations 

	Conclusions


