
A Generalized Finite Element Method for the Simulationof Three-Dimensional Dynami Crak PropagationC. A. Duarte�, O. N. Hamzeh, T. J. Liszka and W. W. TworzydloCOMCO, In., 7800 Shoal Creek Blvd. Suite 290E Austin, Texas, 78757, USA* Corresponding author, e-mail: armando�altair.omTo appear in \Computer Methods in Applied Mehanis and Engineering".AbstratThis paper is aimed at presenting a partition of unity method for the simulation ofthree-dimensional dynami rak propagation. The method is a variation of the partitionof unity �nite element method and hp-loud method. In the ontext of rak simulation,this method allows for modeling of arbitrary dynami rak propagation without anyremeshing of the domain.In the proposed method, the approximation spaes are onstruted using a Partitionof Unity (PU) and loal enrihment funtions. The PU is provided by a ombinationof Shepard and �nite element partitions of unity. This ombination of PUs allows theinlusion of arbitrary rak geometry in a model without any modi�ation of the initialdisretization. It also avoids the problems assoiated with the integration of moving leastsquares or onventional Shepard partitions of unity used in several meshless methods.The loal enrihment funtions an be polynomials or ustomized funtions. Thesefuntions an eÆiently approximate the singular �elds around rak fronts. The rakpropagation is modeled by modifying the partition of unity along the rak surfae anddoes not require ontinuous remeshings or mappings of solutions between onseutivemeshes as the rak propagates.In ontrast with the boundary element method, the proposed method an be appliedto any lass of problems solvable by the lassial �nite element method. In addition,the proposed method an be implemented into most �nite element data bases. Severalnumerial examples demonstrating the main features and omputational eÆieny of theproposed method for dynami rak propagation are presented.1 IntrodutionThis paper is aimed at presenting a partition of unity method tailored for three-dimensionalrak simulations. The importane and diÆulty of suh simulations is reeted by the num-1



ber of approahes that have been proposed over the past deades. Most of the tehniquesproposed so far are restrited to stationary raks or to raks propagating in two-dimensionalmanifolds. A survey of methods available an be found in [23, 34℄. In addition, many of thetehniques aimed at modeling three-dimensional rak propagation are restrited to planarrak on�gurations [9℄ or require onsiderable intervention of the analyst during the simula-tion proess. Among the most versatile and promising tehniques for simulation of arbitraryrak propagation in three-dimensions are: (i) The boundary element method (BEM) is a veryappealing approah to solve this lass of problems beause it leads to a redued dimensionality.Examples of BEMs for three-dimensional rak propagation an be found in [20, 21, 26, 47℄.The main drawbaks of this approah are those inherent to the BEM. Namely, they are dif-�ult to be extended to non-linear problems and an be quite omputationally expensive;(ii) Finite element methods with loal remeshing around the rak front [8, 30, 43℄, while ver-satile, are quite omplex and an not be implemented in most existing �nite element datastrutures. The ontinuous remeshing and projetions between suessive meshes are also adrawbak of this approah; (iii) The element free Galerkin method [4{6, 22, 23, 39℄, the hploud method [15{17,35, 37℄, the reproduing kernel partile method [27℄ are examples of theso-alled meshless methods. Krysl and Belytshko [22, 23℄ have reently shown that the highexibility of these methods an be exploited to model arbitrary rak propagation in three-dimensional spaes. Nonetheless the high exibility of these methods omes at a substantialomputational ost. Moreover, they an not be implemented into existing �nite element datastrutures.This paper presents a partition of unity (PU) method aimed at modeling rak propa-gation in a three-dimensional spae. This method uses the same partition of unity frameworkused in hp-loud [15,16℄, partition of unity �nite element (PUFEM) [2,31℄ and generalized �niteelement method (GFEM) [12,41℄. The key di�erene between these methods and the methodpresented here is in the hoie of the partition of unity. Here, the partition of unity is providedby a ombination of Shepard [24, 40℄ and �nite element partitions of unity. This partition ofunity allows the inlusion of arbitrary rak geometry in a model without any modi�ation ofthe initial disretization. We all this partition of unity a �nite element-Shepard partition ofunity. This hoie of partition of unity also avoids the problem of integration assoiated withthe use of moving least squares or onventional Shepard partitions of unity whih are usedin several meshless methods [6, 28, 33℄. Although the partition of unity used in the methodproposed in this paper di�ers from that used in the GFEM presented in [12, 41℄, we believethat it is appropriate to refer to method developed here as a generalized �nite element method(GFEM). This is justi�ed by the fundamental similarities of the two methods and beause themethod presented here an also be interpreted as a variation or generalization of the lassial�nite element method. Therefore we refer to the partition of unity method proposed here asthe generalized �nite element method (GFEM).This paper is organized as follows. In Setion 2, the formulation of generalized �niteelement approximations is presented. This inludes the de�nition of the FE-Shepard partitionof unity used over raked elements, the de�nition of generalized �nite element (GFE) shape2



funtions and modeling of the rak front using ustomized funtions. Setions 3 and 4 desribethe rak mehanis and physis used in the study. In Setion 5, the omputational engineused to represent the rak surfae and the boundary of the domain and their interation isbriey desribed. Several numerial examples are presented in Setion 6. Finally, in Setion7, major onlusions of this study are given.2 Formulation of Generalized Finite Element Approxi-mations for 3D Crak ModelingWe begin this setion by reviewing the onept of a partition of unity (PU).Let 
 be an open domain in IRn; n = 1; 2; 3 and TN an open overing of 
 onsistingof N supports !� (often alled louds) with enters at x�; � = 1; : : : ; N , i.e.,TN = f!�gN�=1 �
 � N[�=1!�;where the over bar indiates losure of a set.The basi building bloks of any partition of unity approximation are a set of funtions'� de�ned on the supports !�; � = 1; : : : ; N , and having the following property'� 2 Cs0(!�); s � 0; 1 � � � NX� '�(x) = 1 8 x 2 
The �rst property implies that the funtions '�; � = 1; : : : ; N , are non-zero only over thesupports !�; � = 1; : : : ; N . The funtions '� are alled a partition of unity subordinate to theopen overing TN . Examples of partitions of unity are Lagrangian �nite elements, moving leastsquares and Shepard funtions [16, 24℄. In the urrent work, two types of PU's are utilized:Finite element PU and a version modi�ed for raked elements.2.1 Finite Element Partition of UnityThe ase of a �nite element partition of unity (FE PU) over non-raked elements is brieydisussed in this setion. The ase of elements interseting the rak surfae is disussed inSetions 2.3 and 2.7.In the ase of a FE PU, the support (loud) ! is simply the union of the �nite elementssharing a vertex node x (see, for example, [31,36℄ and Fig. 1). The partition of unity funtion3
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Figure 1: Clouds !�, !� and ! for a �nite element mesh with a rak. Polynomials ofdi�ering degree p�, p� and p an be assoiated with nodes at x�, x� and x so as to produenon-uniform p approximations.' is equal to the usual global �nite element shape funtion N assoiated with a vertex nodex. Let � be a �nite element with nodes x�; � 2 I� where I� is an index set and letx = (x; y; z) 2 �� . In this work, we restrit ourselves to the ase of linear Lagrangian FE PUand perform p-enrihments using the tehnique presented in Setion 2.4. Let N� be linearshape funtions assoiated with nodes x�; � 2 I� . Then, from the de�nition of N�, thereexist onstants ax�; ay�; az�; � 2 I� , suh that 8 x 2 �� ,X�2I� N�(x) = 1 (1)X�2I� ax�N�(x) = x (2)X�2I� ay�N�(x) = y (3)X�2I� az�N�(x) = z (4)These basi properties of the �nite element partition of unity are used in subsequent setions.
4



2.2 Shepard Partition of unityThe onstrution of a partition of unity using the so-alled Shepard formula [25,40℄ is reviewedin this setion.Let W� : IRn ! IR denote a weighting funtion with ompat support !� that belongsto the spae Cs0(!�); s � 0. Suppose that suh weighting funtion is built at every loud!�; � = 1; : : : ; N . Then the partition of unity funtions '� assoiated with the louds !�,� = 1; : : : ; N , is de�ned by'�(x) = W�(x)P�W�(x) � 2 f j W(x) 6= 0g (5)whih are known as Shepard funtions [25, 40℄.Consider now the ase in whih the weighting funtions W� are taken as the globallinear �nite element shape funtions N� assoiated with node x�; � = 1; : : : ; N . Let � be a�nite element with nodes x�; � 2 I� where I� is an index set. The only non-zero partition ofunity funtions at x 2 �� are given by'�(x) = N�(x)P2I� N(x) = N�(x)1 = N�(x) � 2 I�sine the �nite element shape funtions form a partition of unity. Therefore, it is not neessaryto use the Shepard formula to build the partition of unity when the weighting funtions aretaken as global �nite element shape funtions. However, as demonstrated next, the aboveformula is the key to build a partition of unity when the �nite element � is severed by a rak.2.3 Constrution of a Disontinuous Partition of UnityIn this setion, a tehnique to modify a �nite element partition of unity over elements ut bya rak surfae is desribed. The PU is modi�ed suh that a disontinuity in the displaement�eld aross the rak surfae is reated. The PU is modi�ed only for elements ut by therak. Elsewhere, a �nite element partition of unity, as desribed in Setion 2.1, is used. Thetehnique allows for elements to be arbitrarily ut by the rak surfae without any meshmodi�ation. Over raked elements, the PU is built using the Shepard formula (5) and �niteelement shape funtions as weighting funtions in ombination with the visibility riteria [5,6℄.This partition of unity is denoted by FE-Shepard PU. The tehnique is �rst presented in ageneral setting followed by several illustrative examples in a two-dimensional manifold.Let � be a �nite element with nodes x�; � 2 I� , where I� is an index set. LetN�; � 2 I� , denote a linear �nite element shape funtions for element � . In the visibilityriteria, the rak surfae is onsidered opaque. At a given point x 2 � , a weighting funtion5



N� used in (5) is taken as non-zero if and only if the segment [x� x�℄ onneting x and x�does not interset the rak surfae. This riteria was originally introdued by Belytshkoet al. [5, 6℄ to model raks in the element free Galerkin method and has sine been used inseveral other meshless methods.Let Ivis� (x) � I� denote the index set for all weighting funtions that are non-zero atpoint x 2 � aording to the visibility riteria, that isIvis� (x) = f 2 I� j [x� x ℄ \ rak surfae = ;g (6)Note that this set may be di�erent for eah point inside an element.The FE-Shepard partition of unity for an element � with nodes x�; � 2 I� is de�nedby '�(x) = 8<: N�(x)P2Ivis� (x)N(x) if � 2 Ivis� (x)0 if � 62 Ivis� (x) (7)The de�nition above is valid for any type of �nite elements and in any dimension. Thedisontinuity in the FE-Shepard PU is reated by the fat that two points loated at oppositesides of the rak surfae use di�erent sets of weighting funtions to build the PU. The indexset Ivis� is distint at these points although they may be geometrially very lose to eah other.Several illustrative examples are given below using the disretization depited in Fig. 2.For elements that do not interset the rak surfae, the FE-Shepard PU is providedby linear �nite element shape funtions. For example, at any point x 2 �1 shown in Fig. 2 wehave Ivis�1 (x) = I�1 = f1; 2; 5; 6gTherefore, the PU is given by'1(x) = N1; '2(x) = N2; '5(x) = N5; '6(x) = N6The FE-Shepard formula (7) an also be used to build the PU but, in this ase, theresults are trivial.'�(x) = N�(x)N1(x) +N2(x) +N5(x) +N6(x) = N�(x) � = 1; 2; 5; 6Consider now the ase of the element �2 shown in Fig. 2. At point y 2 �2, aording tothe visibility riteria, the only non-zero weighting funtions are N6 and N7, sine the segments[y � x10℄ and [y � x11℄ interset the rak surfae. That isIvis�2 (y) = f6; 7g6



1 2 3 4

5 7 8
y

z

r

s

τ

τ

1

3
τ2 τ

6

12

 4

x

Crack

13 14

9 10 t τ6 11

Figure 2: Example of element partition disretization ut by a rakThe partition of unity at y 2 �2 is then given by'6(y) = N6(y)N6(y) +N7(y) '7(y) = N7(y)N6(y) +N7(y) '10(y) = 0 '11(y) = 0Note that '6(y) + '7(y) = N6(y) +N7(y)N6(y) +N7(y) = 1Therefore, the funtions '6 and '7, as de�ned above, onstitute a partition of unity.At point z 2 �2 Ivis�2 (z) = f10; 11gand the partition of unity is given by'10(z) = N10(z)N10(z) +N11(z) '11(z) = N11(z)N10(z) +N11(z) '6(z) = 0 '7(z) = 0Therefore, the FE-Shepard partition of unity as de�ned above is disontinuous aross the raksurfae. 7



As another example, onsider the ase of the element �3 with nodes x5;x6;x9 and x10as depited in Fig. 2. At point r 2 �3Ivis�3 (r) = f5; 6; 9gand the partition of unity is given by'5(r) = N5(r)N5(r) +N6(r) +N9(r) '6(r) = N6(r)N5(r) +N6(r) +N9(r)'9(r) = N9(r)N5(r) +N6(r) +N9(r) '10(r) = 0At point s 2 �3 Ivis�3 (s) = f10gand the partition of unity is given by'10(s) = N10(s)N10(s) = 1 '5(s) = '6(s) = '9(s) = 0Let us now show that the FE-Shepard PU is ontinuous at the boundary betweenraked and non-raked elements.Let �1 and �2 be a raked and a non-raked element, respetively. Let t 2 ��1 \ ��2.Suppose that the elements share a fae in three-dimensions or an edge in two-dimensions. LetI�1\�2 denote the index set of the nodes along this ommon fae/edge. Note thatIvis�1 (t) � I�1\�2sine �2 is not raked (whih implies that the rak does not interset the fae/edge ��1 \ ��2).In addition,N�(t) = 0 if � 2 (I�2 � I�1\�2) or � 2 (Ivis�1 (t)� I�1\�2) 8 t 2 ��1 \ ��2sine the only non-zero FE shape funtions along a fae/edge are those assoiated with nodeson the fae/edge. Therefore, the fae/edge shape funtions must form a PU. Then, for any� 2 I�1\�2 , '�j�1(t) = N�(t)P2Ivis�1 (t)N(t) = N�(t)P2I�1\�2 N(t) = N�(t)'�j�2(t) = N�(t)Consider, as an example, the point t loated at the boundary between elements �2 and�6, shown in Fig. 2. In this ase, I�2\�6 = f10; 11g = Ivis�2 (t)8



Consider the PU funtion '10 assoiated with node x10. If this funtion is omputed fromelement �2 we have '10j�2(t) = N10(t)N10(t) +N11(t) = N10(t)If the funtion '10 is omputed from element �6 we have'10j�6(t) = N10(t)N10(t) +N11(t) +N13(t) +N14(t) = N10(t)Therefore '10j�2(t) = '10j�6(t) and the funtion '10 is ontinuous at t.The FE-Shepard PU de�ned in (7) allows arbitrary ut of the �nite element mesh by therak surfae. Therefore, from the view point of modeling rak propagation, this tehniqueenjoys all the exibility of the so-alled meshless methods. The omputational ost of FE-Shepard PU over raked elements is only marginally higher than usual �nite element shapefuntions. For non-raked elements this PU degenerates to the usual FE PU. In ontrast,the omputational ost of moving least squares funtions, whih are used in several meshlessmethods, is orders of magnitude higher than usual �nite element shape funtions, espeiallyin three dimensional settings (see [17℄ for a omparison).The FE-Shepard PU funtions (7) are, in general, rational polynomials whih are non-zero only over part of a raked element. Therefore speial are must be taken to numeriallyintegrate these funtions over raked elements. In our urrent implementation, higher orderSimpson rule is used for raked elements. More eÆient approahes, however, an be used.One possibility is to use an integration mesh over raked elements that follows the rakboundaries. This mesh an easily be generated sine it is used only for integration/visualizationpurposes and does not have to onform with neighboring elements. In the ase of non-rakedelements, standard Gaussian quadrature an be used.All the omputations an be arried out at the element level as in standard �niteelement odes. And, importantly, the numerial integration of FE and FE-Shepard PU anbe done very eÆiently sine the intersetions of these funtions oinide with the integrationdomains. This is in lear ontrast with meshless methods based on moving least squaresfuntions where the integration of the sti�ness and mass matries is omputationally expensive.Linear ombination of FE-Shepard funtions an not, in general, reprodue linear poly-nomials. That is, properties (2), (3) and (4) do not hold for the partition of unity assoiatedwith elements interseting the rak surfae. In Setion 2.4, we present a tehnique to hierar-hially add shape funtions to raked elements suh that the resulting GFEM approximationan reprodue linear or higher order polynomials.
9



2.3.1 FE-Shepard PU for Elements at the Crak FrontLet us onsider more losely the ase of elements that ontain the rak front. The sametehnique desribed above to build the FE-Shepard PU an be used at these elements. Con-sider, for example, point y in element � with nodes x5;x6;x8 and x9 as depited in Fig. 3.Aording to (7), the PU is given by'5(y) = N5(y)N5(y) +N6(y) '6(y) = N6(y)N5(y) +N6(y) '8(y) = 0 '9(y) = 0
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Figure 3: Constrution of a FE-Shepard PU for an element at the rak front using thevisibility riteria.Consider now point z 2 � , at the other side of the rak surfae. Here, the partitionof unity is given by'8(z) = N8(z)N8(z) +N9(z) '9(z) = N9(z)N8(z) +N9(z) '5(z) = 0 '6(z) = 0The PU is therefore disontinuous along the rak surfae.Consider now points r and s 2 � as depited in Fig. 4. Equation (7) gives'8(s) = N8(s)N5(z) +N6(z) +N8(z) +N9(z) = N8(s) 6= 010



while '8(r) = 0sine the segment [r�x8℄ intersets the rak surfae. Therefore, the visibility riteria leads tospurious lines/surfaes of disontinuities inside the elements at the rak front. This problemis intrinsi to the visibility riteria and it appears in all meshless methods that use it to modelrak surfaes [4, 15, 38℄. In spite of this drawbak, the visibility riteria is the favorite teh-nique to model raks in the ontext of meshless methods, probably beause of its exibilityand relative ease of implementation in any dimension. Also, numerial experiments demon-strate that in spite of the spurious disontinuities introdued, the visibility riteria allows theomputation of aurate stress intensity fators (see Setion 6 and [5, 22, 23℄).Another tehnique to model the rak front is presented in Setion 2.7. This tehniqueis based on the wrap-around algorithm [15,17℄ and the use of ustomized funtions. In ontrastto the visibility riteria, the wrap-around riteria does not introdue spurious disontinuities.
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Figure 4: Spurious disontinuity on a FE-Shepard PU reated by the visibility riteria.2.4 Generalized Finite Element Shape Funtions: The Family FpNThe onstrution of the so-alled generalized �nite element or loud shape funtions is basedon the following observation: 11



Let fLigi2I denote a set of funtions whih an approximate well, in an appropriatenorm k:kE, the solution u of a boundary value problem posed on a domain 
. Therefore, thereexists uhp 2 spanfLig given by uhp =Xi2I uiLi;where I denotes an index set, suh thatkuhp � ukE < �; � << 1Now onsider the following set of so-alled loud or generalized �nite element (GFE)shape funtions, de�ned as ��i := '�Li; � = 1; : : : ; N; i 2 Iwhere '�; � = 1; : : : ; N onstitute a partition of unity (of any type) subordinate to an openovering TN of 
. Then, it is not diÆult to show that linear ombinations of these shapefuntions an also approximate well the funtion uX� Xi ui��i = X� Xi ui'�Li =X� '�Xi uiLi= X� '�uhp = uhpX� '� = uhp (8)Note that:(i) The shape funtions ��i ; � = 1; : : : ; N; i 2 I, are non-zero only over the support of thefuntion '�, i.e., the loud !�.(ii) Linear ombination of generalized �nite element (GFE) shape funtions an reproduethe approximation uhp to the funtion u.(iii) The funtions Li; i 2 I, an be hosen with great freedom. The most straightforwardhoie is polynomial funtions sine they an approximate well smooth funtions. How-ever, for many lasses of problems inluding the ase of frature mehanis problems,there are better hoies. This ase is disussed in detail in Setion 2.5.In this setion, generalized �nite element shape funtions are de�ned in an n-dimensionalsetting using the idea outlined above.Let the funtions '�; � = 1; : : : ; N , denote a FE or FE-Shepard partition of unitysubordinate to the open overing TN = f!�gN�=1 of a domain 
 � IRn; n = 1; 2; 3. Here, N isthe number of vertex nodes in the �nite element mesh. The loud !� is the union of the �niteelements sharing the vertex node x�, regardless if the element is raked or not (Cf. Fig. 1).12



Let ��(!�) = spanfLi�gi2I(�) denote loal spaes de�ned on !�; � = 1; : : : ; N , whereI(�); � = 1; : : : ; N , are index sets and Li� denote loal approximation funtions de�ned overthe loud !�. Possible hoies for these funtions are disussed below.The generalized �nite element (known also as loud) shape funtions of degree p arede�ned by FpN = f��i = '�Li� j � = 1; : : : ; N; i 2 I(�)g (9)Let I denote the index set of the nodes x� that belong to raked elements. For this set ofnodes, we enfore that Pp(!�) � ��(!�) p � 1 � 2 Iwhere Pp denotes the spae of polynomials of degree less than or equal to p. For all othernodes, it is only required thatPp�1(!�) � ��(!�) p � 1 � 62 IThe above requirements guarantee that linear ombination of the GFE shape funtionsover any element (raked or not) an reprodue polynomials of degree p. The proof followsthe same arguments used in (8) and is presented in details in [12℄.The GFE shape funtions an then be used in ombination with, e.g., a Galerkinmethod to solve any lass of boundary value problem solvable by the �nite element method.We all this approah the generalized �nite element method (GFEM). The implementationof the method is essentially the same as in standard �nite element odes, the main di�erenebeing the de�nition of the shape funtions given in (9). The FE and FE-Shepard partitions ofunity avoid the problem of integration assoiated with moving least squares PU built on irlesor spheres. This type of PU is used in several meshless methods. Here, the integrations anbe eÆiently performed with the aid of the so-alled master elements sine the intersetionsof the global GFE shape funtions oinide with the integration domains. Therefore, theGFEM an use existing infrastruture and algorithms for the lassial �nite element method.In the ontext of rak modeling, the GFEM allows arbitrary ut of the �nite element meshby the rak surfae while being omputationally eÆient. The omputational ost of GFEshape funtions over raked elements is only marginally higher than usual �nite elementshape funtions. For non-raked elements the omputational ost of GFE shape funtions isbasially the same as �nite element shape funtions of the same polynomial order.There is onsiderable freedom in the hoie of the loal spaes ��. The most obvioushoie for a basis of �� is polynomial funtions whih an approximate well smooth funtions.In this ase, the GFEM over non-raked elements is essentially idential to the lassial FEM.Some important di�erenes do exist though [11, 12℄. There are many situations in whih thesolution of a boundary value problem is not a smooth funtion. In these situations, the use ofpolynomials to build the approximation spae, as in the FEM, may be far from optimal andmay lead to poor approximations of the solution u unless arefully designed meshes are used.13



In the GFEM, we an use any a-priori knowledge about the solution to make better hoiesfor the loal spaes ��. This is the ase of frature mehanis problems. The onstrution ofthese so-alled ustomized GFE shape funtions over raked elements is disussed in detailin the next setion.2.5 Customized GFE Shape Funtions for a Crak in 3DThe onstrution of ustomized GFE shape funtions for a rak in a three-dimensional spaeis summarized in this setion. This is a speial ase of the formulation presented by Duarteet al. [12℄ whih deals with a onvex edge of arbitrary angle.Consider a rak embedded in a three-dimensional body as depited in Fig. 5. Botha loal Cartesian oordinate system (�; �; �) and a ylindrial oordinate system (r; �; � 0) areassoiated with the rak at origin (Ox; Oy; Oz).The displaement �eld u(r; �; � 0) in the neighborhood of a straight rak front far fromits ends an be written as [44, 45℄u(r; �; � 0) = 8><>: u�(r; �)u�(r; �)u�(r; �) 9>=>; = 1Xj=1 2664A(1)j 8>><>>: u(1)�ju(1)�j0 9>>=>>;+ A(2)j 8>><>>: u(2)�ju(2)�j0 9>>=>>;+ A(3)j 8><>: 00u(3)�j 9>=>;3775 (10)where (r; �; � 0) are the ilyndrial oordinates relative to the system shown in Fig. 5, u�(r; �),u�(r; �) and u�(r; �) are Cartesian omponents of u in the ��, �� and �� diretions, respe-tively.
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Figure 5: Coordinate systems assoiated with an edge in 3D spae.Assuming that the rak boundary is tration-free and negleting body fores, the14



funtions u(1)�j , u(1)�j , u(2)�j , u(2)�j are given by [44, 45℄u(1)�j (r; �) = r�j2G n[��Q(1)j (�j + 1)℄ os�j� � �j os (�j � 2)�ou(2)�j (r; �) = r�j2G n[��Q(2)j (�j + 1)℄ sin�j� � �j sin (�j � 2)�ou(1)�j (r; �) = r�j2G n[� +Q(1)j (�j + 1)℄ sin�j� + �j sin (�j � 2)�ou(2)�j (r; �) = �r�j2G n[�+Q(2)j (�j + 1)℄ os�j� + �j os (�j � 2)�owhere the eigenvalues �j are �1 = 1=2; �j = (j + 1)=2; j � 2. The material onstant� = 3� 4� and G = E=2(1 + �), where E is Young's modulus and � is Poisson's ratio.The parameters Q(1)j and Q(2)j are given byQ(1)j = ( �1 j = 3; 5; 7; : : :��j j = 1; 2; 4; 6; : : : Q(2)j = ( �1 j = 1; 2; 4; 6; : : :��j j = 3; 5; 7; : : :where �j = (�j � 1)=(�j + 1).Assuming that the rak boundary is tration-free, body fores are negligible, and rakfront is straight, the funtions u(3)�j are given by [44℄u(3)�j = 8>><>>: r�(3)j2G sin�(3)j � j = 1; 3; 5; : : :r�(3)j2G os�(3)j � j = 2; 4; 6; : : :where �(3)j = j=2; j � 1.Prior to employing the above funtions to build ustomized generalized �nite elementshape funtions, they �rst have to be transformed to the physial oordinates x = (x; y; z).The transformation method is desribed in [12℄.Let u(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 (11)denote the result of suh transformation applied to u(1)�1 ; u(1)�1 ; u(3)�1 ; u(2)�1 ; u(2)�1 ; u(3)�2 , respetively.The onstrution of ustomized GFE shape funtions using singular funtions thenfollows the same approah as in the ase of polynomial type shape funtions. Here, thesingular funtions from (11) take the role of the basis funtions Li� de�ned in Setion 2.4 andare multiplied by the partition of unity funtions '� assoiated with nodes near a rak front.The ustomized GFE shape funtions used in the omputations of Setion 6 are built as'� � fu(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 g (12)15



Here, � is the index of a �nite element vertex node near a rak front in 3D. Note thatnot neessarily the same set of singular funtions is used at all enrihed nodes. As disussedin Setion 5, the rak front is modeled as a pieewise linear objet. Therefore the orientationof the loal oordinate systems used to build the ustomized funtions (see Fig. 5) hangesalong the rak front.The ustomized funtions u(1)xj ; u(1)yj ; u(3)zj ; u(2)xj ; u(2)yj de�ned above are presented hereas a simple illustrative example and, as suh, they are limited to the speial ase of pieewiselinear rak fronts. It also assumes that the rak surfae near the rak front is at. Moregeneral types of ustomized funtions, built analytially as above or perhaps numerially, anbe used without any hange to the de�nition of the ustomized GFE shape funtions. TheGFEM does not require the availability of ustomized funtions to be able to model a rak.As shown in Setion 2.3, the rak an be modeled through proper onstrution of the partitionof unity. Nonetheless, if ustomized funtions are available, they an onsiderably improvethe auray of the method and, as shown in the next setion, they an also be used to modelthe rak front without the spurious disontinuities reated by the visibility riteria.The enrihment of the elements near the rak front with singular funtions bringsup the issue of numerial integration. In this investigation, our main goal is to analyze thee�etiveness of this type of enrihment and, for simpliity, we use a high order quadraturerule in the elements with singular funtions. We adopt the Simpson rule with 10 points ineah diretion for the ase of hexahedral elements. Integration of the singular funtions an,of ourse, be implemented in a muh more eÆient way. Adaptive integration shemes, suhas the one proposed in [42℄, an be used.2.6 Examples of GFE Shape FuntionsIn this setion, GFE shape funtions for raked and non-raked elements are presentedusing the de�nition (9). The issue of linear dependene of these funtions and how to solvethe resulting system of equations is disussed in [12, 41℄.Let � � IR3 be a �nite element with nodes x�; � 2 I� where I� is an index set. Thease of elements in one- or two-dimensional spaes is analogous.2.6.1 Quadrati GFE shape funtions for a non-raked elementQuadrati GFE shape funtions for a non-raked element � are given bySp=2� := '� � f1; x� x�h� ; y � y�h� ; z � z�h� g � 2 I� (13)where '� is a standard linear Lagrangian FE PU, x� = (x�; y�; z�) are the oordinates ofnode � and h� is the diameter of the largest �nite element sharing the node �. Details are16



desribed in [12℄. It an be shown that the shape funtions de�ned above are omplete ofdegree two [12℄.2.6.2 Linear GFE shape funtions for a raked elementHere, we onsider the ase in whih an element � with nodes x� 2 I� is fully or partiallysevered by the rak surfae. The partition of unity over this element is given by the FE-Shepard formula (7). Linear ombination of these funtions an not, in general, reproduelinear polynomials although in many ases, depending on how the rak surfae is loatedwithin the element, some linear monomials an still be reprodued. For simpliity, and takinginto aount that the number of raked elements is muh smaller than the total numberof elements, we prefer to assume that the PU over raked elements an reprodue only aonstant. Therefore, the PU has to be enrihed with linear polynomials in order to guaranteethat the GFE shape funtions over raked elements are omplete of degree one.Sp=1� := '� � f1; x� x�h� ; y � y�h� ; z � z�h� g � 2 I� (14)The only di�erene between (13) and the above is in the de�nition of the partition of unity'�.2.6.3 Linear GFE shape funtions for a raked element enrihed with us-tomized shape funtionsCustomized GFE shape funtions as those de�ned in (12) an be added to the shape funtionsof elements ontaining the rak front. A linear raked element enrihed with funtions (12)has the following shape funtionsSp=1;�� := '� � f1; x� x�h� ; y � y�h� ; z � z�h� ; u(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 g � 2 I� (15)2.7 Crak Front Modeling Using Wrap-Around Approah and Cus-tomized FuntionsIn this setion, another tehnique to model the rak at elements interseting the rak frontis presented. The tehnique is based on the wrap-around algorithm [15, 17℄ and the use ofustomized funtions like those de�ned in Setion 2.5. In ontrast with the tehnique basedon the visibility riteria, the wrap-around riteria does not introdue spurious disontinuities.From the de�nition of the GFE shape funtions given in (9) it is observed that if thefuntions Li� are disontinuous, the resulting GFE shape funtions are also disontinuous.17



The rak an therefore be modeled by simply multiplying a standard FE PU (or any otherPU) by appropriate ustomized funtions that an aurately represent the displaement �eldnear the rak (not only at the rak front). This approah has been suessfully used byDuarte and Oden [17,35,37℄ in two dimensions. It is also essentially the same tehnique usedin [42℄ to model holes and inlusions in elasti plates. More reently, Belytshko et al. [3,10,32℄have applied this approah to propagating raks in two dimensions. They have also proposedseveral variations for the funtions Li� inluding disontinuous step funtions and near raktip assimptoti �elds. Suppose now that suh ustomized funtions are available at least nearthe rak front. Then, ustomized GFE shape funtions an be used for elements near therak front and the de�nition of the FE-Shepard PU given in (7) an be modi�ed suh thatno spurious disontinuity is reated.The FE-Shepard PU is de�ned as follows in the ase of wrap-around (WA) algorithm.First, all nodes belonging to elements that interset the rak front are marked as wrap-aroundnodes. Then, instead of the index set de�ned in (6), the following is used at a point x belongingto �nite element �Iwa� (x) = f 2 I� j [x� x ℄ \ rak surfae = ; or x is a wrap-around nodeg (16)The FE-Shepard partition of unity for an element � with nodes x�; � 2 I� is then de�ned as'�(x) = 8<: N�(x)P2Iwa� (x)N(x) if � 2 Iwa� (x)0 if � 62 Iwa� (x) (17)For elements at the rak front it is as if the rak does not exist sine all nodes of theelement are marked as WA nodes then,Iwa� (x) = I� 8 x 2 �In this ase, the rak front is modeled by ustomized shape funtions as those de�ned in (12).In addition to rendering a disontinuous �eld at the rak front, these GFE shape funtionsallow aurate approximation of the solution without any mesh modi�ations. For elementsthat have a neighboring element at the rak front, the rak is modeled by a ombination ofthe visibility algorithm and the ustomized shape funtions. But in this ase ase, no spuriousdisontinuities are reated. In the ase of other raked elements, the rak is modeled solelyby the visibility algorithm. Here again, no spurious disontinuities are reated.As an example onsider the element � depited in Fig. 6. At point r 2 � , we haveIwa� (r) = I� = f5; 6; 8; 9gIn the same �gure, at point t 2 �� we haveIwa�� (t) = I�� = f4; 5; 7; 8gWhile for point z 2 �� , Iwa�� (z) = f5; 8g18
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where K lM is the lth stress intensity fator assoiated with mode M at vertex y. The innerprodut ( ; )y is de�ned as:(u; v)y = NsplXa=1 0� mXj=1 mXi=1 ui(xa)D�1ij vj(xa)1AWa(y);and (see Figure 8)u = fu1; u2; : : : ; umg; v = fv1; v2; : : : ; vmg are any two vetors in IRm,�h(x) is the disretized stress vetor at point x,�(x) := PIIIM=IPlmaxl=1 hK lMFlM (x)i is the asymptoti stress vetor,FlM(x) = f lM(r)glM(�) are the asymptoti funtions,y is the position vetor of a vertex on the rak front,xa is the position vetor of a sampling point,Nspl is the number of sampling points in a domain entered at y,D�1 2 IRm � IRm is the inverse of an auxiliary matrix D. Appropriate hoies for D arethe material sti�ness matrix or the identity matrix, andWa(y) 2 IR(
) is a weighting funtion assoiated with sampling point xa and is given byWa(y) = 1ky � xakpIRm where p is typially 3-6.Stress intensity fators K lM are found by minimizing the least-squares funtional:�J�K lM = 0 M = I � III l = 1; 1 : : : ; lmaxThis leads to the following system of equations:IIIXM=I qmaxXq=1 KqM(FqM ;FlM 0)y = (�h;FlM 0)y M 0 = I � III l = 1; : : : ; lmaxIf only the �rst terms (l = 1) of the three modes are used, the three orresponding K'sare found by solving:264 (F1I ;F1I)y (F1I ;F1II)y (F1I ;F1III)y(F1II ;F1I)y (F1II ;F1II)y (F1II ;F1III)y(F1III ;F1I)y (F1III ;F1II)y (F1III ;F1III)y 3758><>: K1IK1IIK1III 9>=>; = 8><>: (�h;F1I)y(�h;F1II)y(�h;F1III)y 9>=>;21
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Figure 8: Domain used for the Least Squares Fit method.The domain used for the Least Squares Fit method is a ylinder entered at the vertexwith its axis along the tangent of the rak front at that vertex. The dimensions of the ylinderand the number of sampling points in the r; �, and z diretions are input data. In addition,one an hoose the type of the D matrix and the weight p.4 Crak Evolution ModelsThe Stress Intensity Fators (SIF's) alulated above are used to determine whether the rakwill advane or not, and the amount and diretion of propagation, if any. The front is thenadvaned to its new position, the rak surfae is extended, and the numerial model is updatedaordingly.Crak propagation quantities are alulated based on some physial models. Crakphysis, however, are not well known, espeially so for three dimensional problems. Therefore,frature models usually make extensive use of plane strain physis models. In this work, twophysial models have been used.4.1 The Freund Model [18,22,39℄In this model, diretion of rak growth in the plane normal to the rak front is given by:� = 2 tan�18><>:14 0B� KIKII � sign(KII)vuut� KIKII�2 + 81CA9>=>; (18)22



for KII 6= 0, and � = 0 for KII = 0. In the equation above, � is measured with respet tothe forward vetor n1. Vetor n1 is the rak front forward normal vetor; it lies along theintersetion of the planes normal and tangent to the front at the vertex (see Figure 9).
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Figure 9: Loal unit vetors at rak vertex.It was assumed that mode III does not a�et rak diretion; it only a�ets rak speed.The term sign(KII) in equation (18) above is to guarantee a positive stress intensity fatoralong the diretion given by �. It also orresponds to the diretion normal to the maximumhoop stress.The urrent energy release rate of a stationary rak is alulated at every vertex as:G(0) = K2I;equivE� + K2III2� ;where KI;equiv = KI os3(�=2)� 32KII os(�=2) sin �;� is the shear modulus, and E� is the e�etive Young's modulus. For plane strain, E� is givenby: E� = E1� �2 ;where E is Young's modulus and � is Poisson's ratio. Crak will propagate at a vertex if:G(0) > Grit; (19)where Grit is the ritial energy release rate given by:Grit = K2ID( _a)E� � K̂2IDE�23



and KID is the dynami frature toughness in a pure mode I rak (in general a funtion ofrak speed, _a); it is approximated by the onstant value K̂ID whih is given as a materialproperty.The speed at whih the rak will propagate at a vertex ( _a) is then alulated by solvingfor the roots of the quadrati equation:	�2 � (	 + 1)�+ �� 1� = 0where � = G(0)=Grit � 1, 	 = R=lim > 1, and � = _a=R � 1. lim is the limiting rakspeed (< R) given as an input quantity. R is Rayleigh wave speed given as a root of:4�1�2 � (1 + �22)2 = 0;where,�21 = 1� �Rd �2 (d � dilatational wave speed = q�+1��1q�� in plane strain),�22 = 1� �Rs �2 (s � shear wave speed = q�� in plane strain), and� � Kosolov onstant = 3� 4� (for plane strain).In the above, � is the shear modulus and � is the mass density.4.2 Presribed Veloity ModelIn this model, the propagation angle is alulated using equation (18) above, and the prop-agation riteria is given by equation (19). The rak speed, however, is alulated aordingto a pre-de�ned funtion. This funtion is given as an input data. The funtion is usually apieewise linear funtion of time that an take into aount for instane the initial time neededfor stress waves to reah the rak front.5 Representation of the Crak SurfaeThe representation of the rak surfae in the proposed method is ompletely independent ofthe mesh used. In our present implementation, the rak surfae is represented as a set of attriangles as shown in, for example, Figs. 11(a), 13(b), 27. The rak front is represented bystraight line segments onneting the nodes of the triangles along the front. This model ofthe rak surfae is the same used by [23℄. The representation of the outer skin of the body isalso required by the \rak geometri engine",i.e., the part of the ode that handles the rakrepresentation. Figures 11(a) and 27 show examples of the representation of the other skin24



of a body. They are as simple as possible and an be omposed of several types of geometrientities. The geometri engine handles queries about intersetion of segments with the raksurfae, distane of a point from the rak surfae, orientation of normal and tangent vetorsalong the rak surfae, et. The geometri engine also updates the rak surfae after eahrak advanement. It automatially re�nes the triangles at the rak front in order to ensurea geometrially preise representation of the rak surfae. This an easily be implementedsine the triangulation of the rak surfae does not have to onstitute a valid �nite elementmesh. The geometri engine uses the representation of the outer skin of the body in order tohandle surfae breaking raks and raks interseting the boundary.6 Numerial ExamplesThe generalized �nite element method (GFEM) presented previously is used in this setion tosolve several illustrative examples. In all examples, the stress intensity fators are omputedusing the least squares �t method presented in 3.6.1 Single Crak with Mode I Solution Under Stati LoadingThe edge-raked panel illustrated in Fig. 10(a) is analyzed in this setion using the GFEM.The following parameters are assumed in the omputations: h = b = 1.0, a = 0.5, distributedtrations � = 1:0 and uniform thikness t = 0.1. The material is assumed to be linearly elastiwith E = 1000:0 and � = 0:3.The domain is disretized using the hexahedral mesh shown in Fig. 10(b). There are961 elements in the mesh. A state of plane strain is modeled by onstraining the displaementin the z-diretion at z = 0 and z = t. The representation of the rak surfae is shown in Fig.11(a). It is omposed of four triangles and two edge elements (used to identify the rak front).These triangles are used only for the geometri representation of the rak surfae. There areno degrees of freedom assoiated with them. The stress intensity fators reported for thisproblem are omputed at x = (0:5; 1:0; 0:05) whih is a point at the rak front loated at themiddle plane of the body. The geometri de�nition of the outer skin of the domain (shownon Fig. 11(a)) is also given as input data for the rak geometri engine. The base vetorsof the oordinate system assoiated with singular funtions used at the rak front are alsodisplayed in Fig. 11(a). The base vetors and orresponding singular funtions are omputedompletely automatially using the geometri engine. This funtionality is speially importantduring dynami rak propagation simulations or when the geometri of the domain or raksurfae are not so trivial as in this example.Figure 11(b) shows a loser look at the disretization near the rak front. It an beobserved that the rak surfae does not respet the element boundaries{It an arbitrarily ut25
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P-Levels: 1 2 3 4 5 6 7 8(b) Zoom at the rak front.Figure 11: Crak representation.this approah are shown in Table 2. In both ases, p enrihment is done using the familyof funtions FpN de�ned in Setion 2.4. The notation p = 1 + px; 1 + py; 1 + pz = 1 +(px; py; pz) is used to denote the polynomial order of the approximation over non-rakedelements. The \1's" indiating the linear order of the funtions de�ning the partition ofunity (linear hexahedral �nite element shape funtions in this ase) and px; py; pz denotethe degrees of the polynomial basis funtions Li� in the x; y; z diretions, respetively. Thefuntions Li� are de�ned in Setion 2.4. If only the partition of unity is used, we havep = 1 + 0; 1 + 0; 1 + 0 = 1 + 0. A quadrati approximation in the plane XY and linear inthe z-diretion is denoted by p = 1 + 1; 1 + 1; 1 + 0 = 1+ (1; 1; 0). For raked elements, thepolynomial degree of the approximation is denoted by p = 0+px; 0+py; 0+pz = 0+(px; py; pz).The \0's" indiating that, in general, the funtions de�ning the partition of unity over rakedelements an only represent a onstant funtion. A quadrati approximation in the plane XYand linear in the z-diretion over raked elements (fully or partially raked) is denoted byp = 0 + 2; 0 + 2; 0 + 1 = 0+ (2; 2; 1).The stress intensity fators are omputed using the least squares �t method presentedin Setion 3. The following parameters are used in all omputations presented in this setion:� Dimensions of the extration domain: d = (0:4; 1:0; 0:05). Whih represents a ylinder27



of radius 0.4 and length 0.05.� Number of integration points in the r; � and z diretions: n = (10; 20; 1), respetively.� Type of weighting matrix D: identity matrix� Power of the weighting funtions: 6.It was observed from numerial experiments on this and other examples that the hoieof the matrix D (material or identity) does not have tangible e�ets on the alulated valuesof the stress intensity fators. In addition, di�erent values for the power of the weightingfuntion were tested. A value in the range of [3-6℄ was observed to be suÆient.As a referene, the value ofKI omputed by Tada et al. [46℄ using a boundary tehniqueis used. The value KTadaI = 3:54259 reported in [46℄ has an error smaller than 0.5%.The disretizations Vis-1, Vis-3 and Vis-5 do not use singular funtions at the rakfront while the disretizations Vis-2, Vis-4 and Vis-6 do. All 'Vis' disretizations use thevisibility approah to build the PU over raked elements as desribed in Setion 2.3. It anbe observed from Table 1 that the use of singular funtions gives a notieable improvement onthe omputed stress intensity fators while the inrease in the number of degrees of freedom isonly marginal (less than one perent in the ase of the disretization Vis-5). In ontrast, thep-enrihment of the raked elements (disretizations Vis-1 and Vis-3) gives little improvementon the omputed KI . Nonetheless, the enrihment does improve the omputed strain energyby about 3%. This behavior indiates that the tehnique used to ompute the stress intensityfator is not optimal sine, optimally, the omputed stress intensity fators must onverge atthe same rate as the omputed strain energy [44, 45℄.The disretizations WA-1, WA-2 and WA-3 use singular funtions in ombination withthe wrap-around tehnique to build the PU over raked elements as desribed in Setion2.7. Comparing the results for the disretizations Vis-2 with WA-1 or Vis-4 with WA-2, itan be observed that, for the same number of degrees of freedom, the wrap-around approahgives better results for the stress intensity fators than the visibility approah. This is inspite of the fat that the disretizations using wrap-around have a smaller strain energy thanthe orresponding disretizations using visibility. This an be explained by the fat that thevisibility approah reates spurious disontinuities in the displaement �eld near the rak frontwhih results in a less sti� disretization ompared with the wrap-around approah (whihdoes not reates suh spurious disontinuities). It an be observed that the disretization WA-2 gives a better value for KI than the disretization WA-3 in spite of the fat that the latergives a larger value for the strain energy than the latter. This, again, points to limitations ofthe tehnique used to ompute the stress intensity fator.
28



Table 1: GFEM using the partition of unity de�ned in Setion 2.3. The stress intensity fatoris omputed at (0:5; 1:0; 0:05). In the table, \Disr" stands for disretization, \Sing Fn" standsfor singular funtions at the rak front, \Neq" stands for number of equations and \U" standsfor strain energy.Disret. p = 1+ p = 0+ Sing Fn Neq U � 104 KI KI=KTadaIVis-1 (0,0,0) (1,1,1) No 6,756 2.27136 3.2387 0.91422Vis-2 (0,0,0) (1,1,1) Yes 6,900 2.32941 3.3741 0.95244Vis-3 (0,0,0) (2,2,1) No 7,776 2.33848 3.2495 0.91727Vis-4 (0,0,0) (2,2,1) Yes 7,920 2.36701 3.3938 0.95800Vis-5 (1,1,0) (2,2,1) No 19,656 2.38643 3.4339 0.96932Vis-6 (1,1,0) (2,2,1) Yes 19,800 2.42281 3.4584 0.97623Table 2: GFEM using the partition of unity de�ned in Setion 2.7. The stress intensity fatoris omputed at (0:5; 1:0; 0:05).Disret. p = 1+ p = 0+ Sing Fn Neq U � 104 KI KI=KTadaIWA-1 (0,0,0) (1,1,1) Yes 6,900 2.22465 3.3886 0.95653WA-2 (0,0,0) (2,2,1) Yes 7,920 2.25596 3.4228 0.96618WA-3 (1,1,0) (2,2,1) Yes 19,800 2.29396 3.3431 0.943696.2 An Inlined Crak ProblemAs another test problem, we onsider the raked panel shown in Fig. 12(a). This problem wasanalyzed by Szab�o and Babu�ska [44℄ using the p-version of the �nite element method and byOden and Duarte [35℄ using the hp Cloud method. In both referenes, plane stress onditionand unit thikness are used. Here, the plane stress ondition is approximated by using a smallthikness, t = 0:1, for the domain ompared to the other dimensions. In addition, we assumeYoung's modulus E = 1, Poisson's ratio � = 0:3, distributed tration � = 1:0 and w = 1 (seeFig. 12(a)). These same values are used in referenes [44℄ and [35℄. We adopt as a referene,the values of KI , KII and strain energy, U, omputed by Oden and Duarte [35℄. They are,respetively, KRefI = 1:508284KRefII = �0:729706URef = 0:170402These values agree very well with those omputed by Szab�o and Babu�ska [44℄ (less than 0.1%di�erene). The value of the URef was saled to take into aount the di�erene in thiknessused here (t = 0:1) and adopted by Oden and Duarte [35℄ (t = 1:0).The disretization of the domain using 765 hexahedral elements is shown on Fig. 12(b).29
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(a) Problem de�nition. (b) GFEM disretization.Figure 12: Mixed-mode rak problem.The inlined rak is also shown in the �gure. Figure 13(a) shows a loser look near the rak.It an be observed that the rak surfae uts the elements in the mesh in a quite arbitrarymanner. In fat, the meshing of the domain is done as if there is no rak at all. The onlyonsideration used during the meshing of the domain was to use a more re�ned mesh near theloation of the rak front. The rak representation is reated and passed to the geometriengine as input data. The geometri engine uses no information whatsoever about the mesh.Nodes in the mesh that are too lose to the rak surfae are then automatially moved a smalldistane away from the rak surfae (this an be observed in Fig. 13(a) near the rak front).30



This is required beause an approximation node must be loated at one or another side of therak surfae. The representation of the rak surfae used here is topologially idential tothe one used in the previous example (see Fig. 11(a)). Figure 13(b) shows a loser look at themesh and rak surfae near the rak front. The nodes arrying singular degrees of freedomare represented by diamond-shaped dots. The singular funtions used at these nodes are thosepresented at Setion 2.5. As in the previous example, whenever they are used, only the nodesof the elements that ontain the rak front are enrihed with these singular shape funtions.
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P-Levels: 1 2 3 4 5 6 7 8(b) Three-dimensional view of the rak front.Figure 13: Crak representation.The notation used to desribe the various disretizations (Vis-i, i=1,6 and WA-j, j=1,3)is the same as in the previous example. The stress intensity fators are omputed at a pointin the rak front loated at the middle surfae of the body. The following parameters areused for extrating the stress intensity fators using the least squares method:� Dimensions of the extration domain: d = (0:2; 1:0; 0:05). Whih represents a ylinderof radius 0.4 and length 0.05.� Number of integration points in the r; � and z diretions: n = (10; 40; 1), respetively.� Type of weighting matrix D: identity matrix� Power of the weighting funtions: 6. 31



(a) Displaement in the vertial diretion. (b) Von Mises stress �eld.Figure 14: Displaement and stress omputed using the disretization WA-3.Figure 14(a) shows a ontour plot of the displaement in the vertial diretion near therak omputed using the disretization WA-3. The disontinuity in the displaement �eldonstruted using the tehnique presented in Setion 2.7 is learly observed. Figure 14(b)shows a ontour plot for the von Mises stress omputed with this disretization and Fig. 15(a)shows a loser look near the rak front. The omputed stresses are all raw stresses omputedat arbitrary points inside eah element. Figure 15(b) shows the same quantity omputed usingthe disretization Vis-5. It an be observed that the stress �eld is quite disturbed near therak front. This is aused by the spurious disontinuities reated by the visibility approahnear the rak front. 32



(a) Stress omputed with disretization WA-3. (b) Stress omputed with disretization Vis-5.Figure 15: Zoom at the rak front showing von Mises stress.A summary of the results is presented on Tables 3 and 4. Table 3 shows the omputedstrain energy for the various disretizations using the PU as de�ned in Setion 2.3 (visibilityapproah with or without singular funtions). It an be observed that the p-enrihment of theapproximation has a more signi�ant e�et on the strain energy values than the addition ofsingular funtions at the rak front. Nonetheless, as in the previous example, the addition ofsingular funtions improves onsiderably the omputed stress intensity fators. In the ase ofthe disretization Vis-3, for example, the enrihment with singular funtions adds only 1.8%more degrees of freedom while the error on the omputed value of KI dereases from 14.0%to only 3.5% and the error on the omputed KII dereases from 10.8% to only 1.4%. That is,the error on the omputed KI and KII derease by 75.0% and 87,0%, respetively.The results for the disretizations that use the wrap-around approah (Setion 2.7) arepresented in Table 4. The disretization WA-3 has a relative error in energy, (URef�U)=URef ,of only 0.02% whih orresponds to a relative error in the energy norm of only 1.41%. This sameproblem was also solved using the lassial hp �nite element method with the hp adaptationdriven by error indiators based on the element residual method (see, for example, [1℄). Theresults obtained after seven adaptive yles are shown on Table 5. The relative error in energyand in the energy norm for this disretization are 0.3% and 5.5%, respetively. Note thatthis disretization has more degrees of freedom (18585) than the disretization WA-3 (16632)but an error in the energy norm almost four times bigger. The reason for this is that theGFEM disretization an apture the singular �eld near the rak front more eÆiently by33



using ustomized singular funtions.Table 3: GFEM using visibility to build the PU over raked elements. In the table, \Disr"stands for disretization, \Sing Fn" stands for singular funtions at the rak front, \Neq"stands for number of equations and \U" stands for strain energy.Disr p = 1+ p = 0+ Sing Fn Neq U=URef KI=KRefI KII=KRefIIVis-1 (0,0,0) (1,1,1) No 5874 0.9271 0.7286 0.8052Vis-2 (0,0,0) (1,1,1) Yes 6018 0.9310 0.8391 0.9447Vis-3 (0,0,0) (2,2,1) No 7764 0.9651 0.8595 0.8921Vis-4 (0,0,0) (2,2,1) Yes 7908 0.9686 0.9647 0.9864Vis-5 (1,1,0) (2,2,1) No 16488 1.0044 0.9881 1.0076Vis-6 (1,1,0) (2,2,1) Yes 16632 1.0068 1.1002 1.0589Table 4: GFEM using wrap-around and visibility to build the PU over raked elements.Disr p = 1+ p = 0+ Sing Fn Neq U=URef KI=KRefI KII=KRefIIWA-1 (0,0,0) (1,1,1) Yes 6018 0.9271 0.8735 0.8782WA-2 (0,0,0) (2,2,1) Yes 7908 0.9635 0.9722 0.9472WA-3 (1,1,0) (2,2,1) Yes 16632 0.9998 1.0800 0.9979Table 5: Results using the hp �nite element method and seven adaptive yles.Disr Neq U U=URef KI KII KI=KRefI KII=KRefIIhp FEM 18585 0.16988 0.9969 1.4680 -0.7041 0.9733 0.96496.3 Plate Under Impat LoadIn this setion, we investigate the performane of the GFEM in modeling propagating raksin a body subjeted to impat loads. The test problem is illustrated on Fig. 16. This problemwas analyzed by Lu et al. [29℄, Krysl and Belytshko [22℄, Organ [39℄ and Belytshko andTabbara [7℄ using the element free Galerkin method, by Gallego and Dominguez [19℄ using aboundary element method, among others. A state of plane strain and the following parametersare adopted� Dimensions: b = 10:0, h = 2:0, a = 5:0 and uniform thikness t = 0:1,� Loading: �(t) = �̂ H(t) = 63750:0 H(t); t � 0. Here, H(t) is the Heaviside stepfuntion. 34



� Material Properties: Linear elasti material with E = 2:0�1011, � = 0:3 and � = 7833:0.� Time Step: �t = 10�5.A state of plane strain is modeled by onstraining the displaement in the z-diretionat z = 0 and z = t. Two uniform hexahedral meshes are used. The �rst one has 125, 49and 1 element in the x-, y- and z-diretions, respetively. This same mesh was used in theomputations of Krysl and Belytshko [22℄. We denote this as the �ne mesh. The seond meshhas 65, 25 and 1 element in the x-, y- and z-diretions, respetively. This mesh is denoted asthe oarse mesh. The representation of the rak surfae and of the outer skin of the bodyare shown in Figs. 17(a) and 17(b). It is omposed of �ve triangles and four edge elements.There are �ve vertex nodes uniformly spaed at the rak front. The stress intensity fatorsreported for this problem are omputed at x = (5:0; 2:0; 0:05) and is loated at the middleplane of the body. This vertex node is denoted vertex 3 hereafter.The stress intensity fators are omputed using the least squares �t method. Thefollowing parameters are used in all omputations presented in this setion:� Dimensions of the extration domain: d = (1:0; 1:0; 0:05). Whih represents a ylinderof radius 1.0 and length 0.05.� Number of integration points in the r; � and z diretions: n = (5; 30; 1), respetively.� Type of D matrix equal material matrix� Power of the weighting funtion: 3.Four GFEM disretizations are used (the notation used for p and p is de�ned inSetion 6.1) :� Disretization 1:{ Fine mesh (125� 49� 1 elements),{ Degree of approximation over non raked elements p = 1+ 0.{ Degree of approximation over raked elements p = 0+ 1.{ Crak modeled using a FE-Shepard partition of unity and visibility approah asde�ned in Setion 2.3. No singular funtions are used.� Disretization 2: Same as Disretization 1 exept that here the rak is modeled usingthe wrap-around approah and singular funtions as de�ned in Setion 2.7.� Disretization 3: Same as Disretization 1 but using the oarse mesh (65 � 25 � 1elements) instead. 35



� Disretization 4: Same as Disretization 3 but here the degree of approximation overraked elements is p = 0+ (2; 2; 1).
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σFigure 16: Model problem used to analyze the performane of the GFEM in modeling propa-gating raks in a body subjeted to impat loads.

X

Y

Z(a) Crak surfae and outer skin of the body. X

Y

Z

P-Levels: 1 2 3 4 5 6 7 8(b) Three-dimensional view of the rak front.Figure 17: Crak representation.36



6.3.1 Referene SolutionThe GFEM results are ompared to the analyti solution for a semi-in�nite rak in the planeproposed by Freund [18℄. The problem solved by Freund is represented in Fig. 18. Thetwo-dimensional domain has a straight semi-in�nite rak, is in a state of plane strain and isloaded by uniformly distributed trations applied at time t = 0. The mode-I stress intensityfator, as a funtion of time and rak speed C is given by [18℄.KI(t; C) = 4�̂H(t� t̂)k(C)1� � s(1� 2�)(t� t̂)Cd�where,� �̂ is the magnitude of the tensile trations,� Cd is the pressure wave speed in the body whih is given byCd = vuut�(�+ 1)�(�� 1)where � = E2(1+�) and � = 3 � 4� (for plane strain state). For the material propertiesgiven previously, we get Cd = 5862:7.� t̂ is the time the elasti wave hits the rak. For the problem represented in Fig. 16 andCd = 5862:7 t̂ = 0:000341� k(C) is saling fator that takes into aount that the rak front is advaning withspeed C and is given by k(C) = 1:0� C=CR1:0� 0:5 � C=CRwhere CR is the Rayleigh wave speed. For this test problem, with the material propertiesgiven above, CR = 3030 (see Setion 4).Due to symmetries, KII = 0. The magnitude of the energy release rate is given byG(C; t) = �1� CCR�G(C = 0; t)where G(C = 0; t) = K2I (C = 0; t)E�and, for plane strain, E� = E1� �237



It should be noted that due to the �nite dimensions of the domain modeled here therewill be waves reeted by the boundary. This reeted waves will eventually reah the rakfront and a omparison of the numerial solution with the above referene solution will nolonger be valid. The �rst reeted wave to reah the rak is a pressure wave after travelingfrom a loaded edge to the opposite edge and then bak to the rak front [22℄. This happensat �t = 3hCd = 65862:7 = 0:00102A more detailed disussion on the wave patterns that reah the rak front an be foundin [22℄.
(t)σ

(t)σ

C(t)

Crack

Figure 18: De�nition of referene problem.6.3.2 Stationary CrakAs a �rst test, we onsider the ase of a stationary rak. Disretizations 1 and 2 as desribedabove are used. The omputed mode-I and mode-II stress intensity fators and the energyrelease rateG are plotted on Figs. 19 and 20, respetively. It an be observed a good agreementbetween the omputed and referene values for t < �t. The �nite dimensions of the extrationdomain for the stress intensity fators and of the support of the shape funtions are responsiblefor the non-zero values omputed before the pressure wave hits the rak front (at t = t̂). Itan also be observed that both disretizations give basially idential results.
38
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Figure 19: Time history for mode-I and mode-II stress intensity fators KI and KII usingDisretizations 1 and 2. Stationary rak.
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Figure 20: Time history for the energy release rate G using Disretizations 1 and 2. StationaryCrak. 39



6.3.3 Moving Crak with Presribed SpeedHere, the rak speed is given byC(t) = H(t� 0:00044)CR3 = H(t� 0:00044)1010:0and the diretion of the rak advanement is given by (18). Disretization 1 (�ne mesh)and 3 (oarse mesh) are used. Figures 21 and 22 show the time history for KI , KII and G,respetively. While the omputed values present some osillation, they are in good agreementwith the referene solution before t = t̂ (when reeted waves hits the rak surfae). Organ[39℄, Krysl and Belytshko [22℄ and Belytshko and Tabbara [7℄ also reported osillations ontheir results obtained with the element free Galerkin method. It an be observed that theGFEM solution was able to apture very well the slop of the referene solution. Figure 23shows the rak surfae at time t = 0:00168s.
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Figure 21: Time history for KI and KII omputed with Disretizations 1 and 3. The rakadvanement diretion is omputed using (18).The e�et of p enrihment of the raked elements is investigated by using Disretization4. The results for this disretization are shown on Figs. 24 and 25. It an be observed thethe p enrihment of the raked elements inreases the amplitude of the osillations of theomputed quantities. Figure 26 is idential to Fig. 25 but here the ti marks of the x-axis areplaed exatly at the times when the rak front rossed the boundary between two elements.It an be observed that the peaks in the osillations our just before those instants. Note40
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ZFigure 23: Crak surfae at t = 0:00168s. Moving rak with advanement diretion given by(18).that as the rak rosses the boundary between two elements it passes lose to the nodes. Thissame phenomena was observed by Organ [39℄ using the element free Galerkin method.41



-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

St
re

ss
 I

nt
en

si
ty

 F
ac

to
rs

Time (sec)

Time History, Plane Strain Model

K_I (C=0) Analytic (inf. domain)
K_I (C=1010) Analytic (inf. domain)

Discr. 4: K_I (C=1010) vertex  3
Discr. 3: K_I (C=1010) vertex  3
Discr. 4: K_II (C=1010) vertex 3
Discr. 3: K_II (C=1010) vertex 3
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Figure 27: Welded T-setion beam with a rak. The initial rak surfae is represented using14 at triangles. The representation of the outer skin of the body is also shown. The raksurfae and the outer skin of the body are used by the geometri engine as desribed in Setion5.
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= 200� 1010). The Freund propagation model is used to advane the rak (see setion 4.1).The dynami frature properties and parameters used to propagate the rak are as follows:� Least squares �t extration domain: Cylinder of radius 0.5 and length 0.25.� Number of integration points in the r; � and z diretions: n = (5; 10; 3), respetively.� D is the material matrix.� Power for the weighting funtion = 3.� Dynami frature toughness in a pure mode I, K̂ID = 75000.� Crak speed limit = 1212.The ouple is applied as two equal and opposite impat fores at the two orners of the edgeross setion with a value of 5� 106 eah.The initial rak surfae de�nition is shown in Figure 27. Note that the web is notin ontat with the ange, but rather a small gap exists between the two. The domain isdisretized for GFEM as shown in Figure 28. Note that the grid is made �ner around therak area. Linear approximation is used over all the domain.A transient dynami analysis is performed on the model desribed above. Newmarkmethod is used to marh the solution over time. Figures 29, 30, and 31 represent the raksurfae at times 0.0015, 0.0020, and 0.0030 respetively. A solution for this problem is notavailable in the literature. Presentation of this example serves the purpose of demonstratingthe apabilities and potential of the proposed methodology to solve three dimensional rakpropagation problems in geometrially ompliated domains.7 ConlusionsA partition of unity method for the simulation of three-dimensional dynami rak propagationis proposed in this paper. The disontinuity in the displaement �eld aross the rak surfae ismodeled by using a disontinuous Shepard partition of unity to build the shape funtions. ThePU is omputed using Shepard formula, the visibility or wrap-around riteria and FE shapefuntions as weighting funtions. This so-alled FE-Shepard partition of unity has severalpowerful properties. It allows arbitrary ut of the �nite element mesh by the rak surfae.In fat, the �nite element mesh generation an be done as if there is no rak at all in thedomain. The rak surfae representation is independently reated of the �nite element meshand passed to the geometri engine whih provides basi funtionality like distane from apoint to the rak surfae, intersetion of segments with the rak surfae, et. This high level45
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Figure 29: Crak surfae of welded T-setion example at time 0.0015.

x

y

z

Figure 30: Crak surfae of welded T-setion example at time 0.0020.47
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Figure 31: Crak surfae of welded T-setion example at time 0.0030.The present method an aommodate very general physis to predit rak diretionand speed of propagation sine it imposes no restrition on the geometry of the rak surfae(s).Most importantly, the implementation of the proposed method is quite straightforward. Itis essentially the same as in standard �nite element odes, the main di�erene being thede�nition of the shape funtions. The proposed method an be implemented into most legay�nite element data bases.Aknowledgements The support of the OÆe of Naval Researh to this projet under grantSBIR-ONR-N00014-96-C-0329 is gratefully aknowledged.
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