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omTo appear in \Computer Methods in Applied Me
hani
s and Engineering".Abstra
tThis paper is aimed at presenting a partition of unity method for the simulation ofthree-dimensional dynami
 
ra
k propagation. The method is a variation of the partitionof unity �nite element method and hp-
loud method. In the 
ontext of 
ra
k simulation,this method allows for modeling of arbitrary dynami
 
ra
k propagation without anyremeshing of the domain.In the proposed method, the approximation spa
es are 
onstru
ted using a Partitionof Unity (PU) and lo
al enri
hment fun
tions. The PU is provided by a 
ombinationof Shepard and �nite element partitions of unity. This 
ombination of PUs allows thein
lusion of arbitrary 
ra
k geometry in a model without any modi�
ation of the initialdis
retization. It also avoids the problems asso
iated with the integration of moving leastsquares or 
onventional Shepard partitions of unity used in several meshless methods.The lo
al enri
hment fun
tions 
an be polynomials or 
ustomized fun
tions. Thesefun
tions 
an eÆ
iently approximate the singular �elds around 
ra
k fronts. The 
ra
kpropagation is modeled by modifying the partition of unity along the 
ra
k surfa
e anddoes not require 
ontinuous remeshings or mappings of solutions between 
onse
utivemeshes as the 
ra
k propagates.In 
ontrast with the boundary element method, the proposed method 
an be appliedto any 
lass of problems solvable by the 
lassi
al �nite element method. In addition,the proposed method 
an be implemented into most �nite element data bases. Severalnumeri
al examples demonstrating the main features and 
omputational eÆ
ien
y of theproposed method for dynami
 
ra
k propagation are presented.1 Introdu
tionThis paper is aimed at presenting a partition of unity method tailored for three-dimensional
ra
k simulations. The importan
e and diÆ
ulty of su
h simulations is re
e
ted by the num-1



ber of approa
hes that have been proposed over the past de
ades. Most of the te
hniquesproposed so far are restri
ted to stationary 
ra
ks or to 
ra
ks propagating in two-dimensionalmanifolds. A survey of methods available 
an be found in [23, 34℄. In addition, many of thete
hniques aimed at modeling three-dimensional 
ra
k propagation are restri
ted to planar
ra
k 
on�gurations [9℄ or require 
onsiderable intervention of the analyst during the simula-tion pro
ess. Among the most versatile and promising te
hniques for simulation of arbitrary
ra
k propagation in three-dimensions are: (i) The boundary element method (BEM) is a veryappealing approa
h to solve this 
lass of problems be
ause it leads to a redu
ed dimensionality.Examples of BEMs for three-dimensional 
ra
k propagation 
an be found in [20, 21, 26, 47℄.The main drawba
ks of this approa
h are those inherent to the BEM. Namely, they are dif-�
ult to be extended to non-linear problems and 
an be quite 
omputationally expensive;(ii) Finite element methods with lo
al remeshing around the 
ra
k front [8, 30, 43℄, while ver-satile, are quite 
omplex and 
an not be implemented in most existing �nite element datastru
tures. The 
ontinuous remeshing and proje
tions between su

essive meshes are also adrawba
k of this approa
h; (iii) The element free Galerkin method [4{6, 22, 23, 39℄, the hp
loud method [15{17,35, 37℄, the reprodu
ing kernel parti
le method [27℄ are examples of theso-
alled meshless methods. Krysl and Belyts
hko [22, 23℄ have re
ently shown that the high
exibility of these methods 
an be exploited to model arbitrary 
ra
k propagation in three-dimensional spa
es. Nonetheless the high 
exibility of these methods 
omes at a substantial
omputational 
ost. Moreover, they 
an not be implemented into existing �nite element datastru
tures.This paper presents a partition of unity (PU) method aimed at modeling 
ra
k propa-gation in a three-dimensional spa
e. This method uses the same partition of unity frameworkused in hp-
loud [15,16℄, partition of unity �nite element (PUFEM) [2,31℄ and generalized �niteelement method (GFEM) [12,41℄. The key di�eren
e between these methods and the methodpresented here is in the 
hoi
e of the partition of unity. Here, the partition of unity is providedby a 
ombination of Shepard [24, 40℄ and �nite element partitions of unity. This partition ofunity allows the in
lusion of arbitrary 
ra
k geometry in a model without any modi�
ation ofthe initial dis
retization. We 
all this partition of unity a �nite element-Shepard partition ofunity. This 
hoi
e of partition of unity also avoids the problem of integration asso
iated withthe use of moving least squares or 
onventional Shepard partitions of unity whi
h are usedin several meshless methods [6, 28, 33℄. Although the partition of unity used in the methodproposed in this paper di�ers from that used in the GFEM presented in [12, 41℄, we believethat it is appropriate to refer to method developed here as a generalized �nite element method(GFEM). This is justi�ed by the fundamental similarities of the two methods and be
ause themethod presented here 
an also be interpreted as a variation or generalization of the 
lassi
al�nite element method. Therefore we refer to the partition of unity method proposed here asthe generalized �nite element method (GFEM).This paper is organized as follows. In Se
tion 2, the formulation of generalized �niteelement approximations is presented. This in
ludes the de�nition of the FE-Shepard partitionof unity used over 
ra
ked elements, the de�nition of generalized �nite element (GFE) shape2



fun
tions and modeling of the 
ra
k front using 
ustomized fun
tions. Se
tions 3 and 4 des
ribethe 
ra
k me
hani
s and physi
s used in the study. In Se
tion 5, the 
omputational engineused to represent the 
ra
k surfa
e and the boundary of the domain and their intera
tion isbrie
y des
ribed. Several numeri
al examples are presented in Se
tion 6. Finally, in Se
tion7, major 
on
lusions of this study are given.2 Formulation of Generalized Finite Element Approxi-mations for 3D Cra
k ModelingWe begin this se
tion by reviewing the 
on
ept of a partition of unity (PU).Let 
 be an open domain in IRn; n = 1; 2; 3 and TN an open 
overing of 
 
onsistingof N supports !� (often 
alled 
louds) with 
enters at x�; � = 1; : : : ; N , i.e.,TN = f!�gN�=1 �
 � N[�=1!�;where the over bar indi
ates 
losure of a set.The basi
 building blo
ks of any partition of unity approximation are a set of fun
tions'� de�ned on the supports !�; � = 1; : : : ; N , and having the following property'� 2 Cs0(!�); s � 0; 1 � � � NX� '�(x) = 1 8 x 2 
The �rst property implies that the fun
tions '�; � = 1; : : : ; N , are non-zero only over thesupports !�; � = 1; : : : ; N . The fun
tions '� are 
alled a partition of unity subordinate to theopen 
overing TN . Examples of partitions of unity are Lagrangian �nite elements, moving leastsquares and Shepard fun
tions [16, 24℄. In the 
urrent work, two types of PU's are utilized:Finite element PU and a version modi�ed for 
ra
ked elements.2.1 Finite Element Partition of UnityThe 
ase of a �nite element partition of unity (FE PU) over non-
ra
ked elements is brie
ydis
ussed in this se
tion. The 
ase of elements interse
ting the 
ra
k surfa
e is dis
ussed inSe
tions 2.3 and 2.7.In the 
ase of a FE PU, the support (
loud) !
 is simply the union of the �nite elementssharing a vertex node x
 (see, for example, [31,36℄ and Fig. 1). The partition of unity fun
tion3
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Figure 1: Clouds !�, !� and !
 for a �nite element mesh with a 
ra
k. Polynomials ofdi�ering degree p�, p� and p
 
an be asso
iated with nodes at x�, x� and x
 so as to produ
enon-uniform p approximations.'
 is equal to the usual global �nite element shape fun
tion N
 asso
iated with a vertex nodex
. Let � be a �nite element with nodes x�; � 2 I� where I� is an index set and letx = (x; y; z) 2 �� . In this work, we restri
t ourselves to the 
ase of linear Lagrangian FE PUand perform p-enri
hments using the te
hnique presented in Se
tion 2.4. Let N� be linearshape fun
tions asso
iated with nodes x�; � 2 I� . Then, from the de�nition of N�, thereexist 
onstants ax�; ay�; az�; � 2 I� , su
h that 8 x 2 �� ,X�2I� N�(x) = 1 (1)X�2I� ax�N�(x) = x (2)X�2I� ay�N�(x) = y (3)X�2I� az�N�(x) = z (4)These basi
 properties of the �nite element partition of unity are used in subsequent se
tions.
4



2.2 Shepard Partition of unityThe 
onstru
tion of a partition of unity using the so-
alled Shepard formula [25,40℄ is reviewedin this se
tion.Let W� : IRn ! IR denote a weighting fun
tion with 
ompa
t support !� that belongsto the spa
e Cs0(!�); s � 0. Suppose that su
h weighting fun
tion is built at every 
loud!�; � = 1; : : : ; N . Then the partition of unity fun
tions '� asso
iated with the 
louds !�,� = 1; : : : ; N , is de�ned by'�(x) = W�(x)P�W�(x) � 2 f
 j W
(x) 6= 0g (5)whi
h are known as Shepard fun
tions [25, 40℄.Consider now the 
ase in whi
h the weighting fun
tions W� are taken as the globallinear �nite element shape fun
tions N� asso
iated with node x�; � = 1; : : : ; N . Let � be a�nite element with nodes x�; � 2 I� where I� is an index set. The only non-zero partition ofunity fun
tions at x 2 �� are given by'�(x) = N�(x)P
2I� N
(x) = N�(x)1 = N�(x) � 2 I�sin
e the �nite element shape fun
tions form a partition of unity. Therefore, it is not ne
essaryto use the Shepard formula to build the partition of unity when the weighting fun
tions aretaken as global �nite element shape fun
tions. However, as demonstrated next, the aboveformula is the key to build a partition of unity when the �nite element � is severed by a 
ra
k.2.3 Constru
tion of a Dis
ontinuous Partition of UnityIn this se
tion, a te
hnique to modify a �nite element partition of unity over elements 
ut bya 
ra
k surfa
e is des
ribed. The PU is modi�ed su
h that a dis
ontinuity in the displa
ement�eld a
ross the 
ra
k surfa
e is 
reated. The PU is modi�ed only for elements 
ut by the
ra
k. Elsewhere, a �nite element partition of unity, as des
ribed in Se
tion 2.1, is used. Thete
hnique allows for elements to be arbitrarily 
ut by the 
ra
k surfa
e without any meshmodi�
ation. Over 
ra
ked elements, the PU is built using the Shepard formula (5) and �niteelement shape fun
tions as weighting fun
tions in 
ombination with the visibility 
riteria [5,6℄.This partition of unity is denoted by FE-Shepard PU. The te
hnique is �rst presented in ageneral setting followed by several illustrative examples in a two-dimensional manifold.Let � be a �nite element with nodes x�; � 2 I� , where I� is an index set. LetN�; � 2 I� , denote a linear �nite element shape fun
tions for element � . In the visibility
riteria, the 
ra
k surfa
e is 
onsidered opaque. At a given point x 2 � , a weighting fun
tion5



N� used in (5) is taken as non-zero if and only if the segment [x� x�℄ 
onne
ting x and x�does not interse
t the 
ra
k surfa
e. This 
riteria was originally introdu
ed by Belyts
hkoet al. [5, 6℄ to model 
ra
ks in the element free Galerkin method and has sin
e been used inseveral other meshless methods.Let Ivis� (x) � I� denote the index set for all weighting fun
tions that are non-zero atpoint x 2 � a

ording to the visibility 
riteria, that isIvis� (x) = f
 2 I� j [x� x
 ℄ \ 
ra
k surfa
e = ;g (6)Note that this set may be di�erent for ea
h point inside an element.The FE-Shepard partition of unity for an element � with nodes x�; � 2 I� is de�nedby '�(x) = 8<: N�(x)P
2Ivis� (x)N
(x) if � 2 Ivis� (x)0 if � 62 Ivis� (x) (7)The de�nition above is valid for any type of �nite elements and in any dimension. Thedis
ontinuity in the FE-Shepard PU is 
reated by the fa
t that two points lo
ated at oppositesides of the 
ra
k surfa
e use di�erent sets of weighting fun
tions to build the PU. The indexset Ivis� is distin
t at these points although they may be geometri
ally very 
lose to ea
h other.Several illustrative examples are given below using the dis
retization depi
ted in Fig. 2.For elements that do not interse
t the 
ra
k surfa
e, the FE-Shepard PU is providedby linear �nite element shape fun
tions. For example, at any point x 2 �1 shown in Fig. 2 wehave Ivis�1 (x) = I�1 = f1; 2; 5; 6gTherefore, the PU is given by'1(x) = N1; '2(x) = N2; '5(x) = N5; '6(x) = N6The FE-Shepard formula (7) 
an also be used to build the PU but, in this 
ase, theresults are trivial.'�(x) = N�(x)N1(x) +N2(x) +N5(x) +N6(x) = N�(x) � = 1; 2; 5; 6Consider now the 
ase of the element �2 shown in Fig. 2. At point y 2 �2, a

ording tothe visibility 
riteria, the only non-zero weighting fun
tions are N6 and N7, sin
e the segments[y � x10℄ and [y � x11℄ interse
t the 
ra
k surfa
e. That isIvis�2 (y) = f6; 7g6
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Figure 2: Example of element partition dis
retization 
ut by a 
ra
kThe partition of unity at y 2 �2 is then given by'6(y) = N6(y)N6(y) +N7(y) '7(y) = N7(y)N6(y) +N7(y) '10(y) = 0 '11(y) = 0Note that '6(y) + '7(y) = N6(y) +N7(y)N6(y) +N7(y) = 1Therefore, the fun
tions '6 and '7, as de�ned above, 
onstitute a partition of unity.At point z 2 �2 Ivis�2 (z) = f10; 11gand the partition of unity is given by'10(z) = N10(z)N10(z) +N11(z) '11(z) = N11(z)N10(z) +N11(z) '6(z) = 0 '7(z) = 0Therefore, the FE-Shepard partition of unity as de�ned above is dis
ontinuous a
ross the 
ra
ksurfa
e. 7



As another example, 
onsider the 
ase of the element �3 with nodes x5;x6;x9 and x10as depi
ted in Fig. 2. At point r 2 �3Ivis�3 (r) = f5; 6; 9gand the partition of unity is given by'5(r) = N5(r)N5(r) +N6(r) +N9(r) '6(r) = N6(r)N5(r) +N6(r) +N9(r)'9(r) = N9(r)N5(r) +N6(r) +N9(r) '10(r) = 0At point s 2 �3 Ivis�3 (s) = f10gand the partition of unity is given by'10(s) = N10(s)N10(s) = 1 '5(s) = '6(s) = '9(s) = 0Let us now show that the FE-Shepard PU is 
ontinuous at the boundary between
ra
ked and non-
ra
ked elements.Let �1 and �2 be a 
ra
ked and a non-
ra
ked element, respe
tively. Let t 2 ��1 \ ��2.Suppose that the elements share a fa
e in three-dimensions or an edge in two-dimensions. LetI�1\�2 denote the index set of the nodes along this 
ommon fa
e/edge. Note thatIvis�1 (t) � I�1\�2sin
e �2 is not 
ra
ked (whi
h implies that the 
ra
k does not interse
t the fa
e/edge ��1 \ ��2).In addition,N�(t) = 0 if � 2 (I�2 � I�1\�2) or � 2 (Ivis�1 (t)� I�1\�2) 8 t 2 ��1 \ ��2sin
e the only non-zero FE shape fun
tions along a fa
e/edge are those asso
iated with nodeson the fa
e/edge. Therefore, the fa
e/edge shape fun
tions must form a PU. Then, for any� 2 I�1\�2 , '�j�1(t) = N�(t)P
2Ivis�1 (t)N
(t) = N�(t)P
2I�1\�2 N
(t) = N�(t)'�j�2(t) = N�(t)Consider, as an example, the point t lo
ated at the boundary between elements �2 and�6, shown in Fig. 2. In this 
ase, I�2\�6 = f10; 11g = Ivis�2 (t)8



Consider the PU fun
tion '10 asso
iated with node x10. If this fun
tion is 
omputed fromelement �2 we have '10j�2(t) = N10(t)N10(t) +N11(t) = N10(t)If the fun
tion '10 is 
omputed from element �6 we have'10j�6(t) = N10(t)N10(t) +N11(t) +N13(t) +N14(t) = N10(t)Therefore '10j�2(t) = '10j�6(t) and the fun
tion '10 is 
ontinuous at t.The FE-Shepard PU de�ned in (7) allows arbitrary 
ut of the �nite element mesh by the
ra
k surfa
e. Therefore, from the view point of modeling 
ra
k propagation, this te
hniqueenjoys all the 
exibility of the so-
alled meshless methods. The 
omputational 
ost of FE-Shepard PU over 
ra
ked elements is only marginally higher than usual �nite element shapefun
tions. For non-
ra
ked elements this PU degenerates to the usual FE PU. In 
ontrast,the 
omputational 
ost of moving least squares fun
tions, whi
h are used in several meshlessmethods, is orders of magnitude higher than usual �nite element shape fun
tions, espe
iallyin three dimensional settings (see [17℄ for a 
omparison).The FE-Shepard PU fun
tions (7) are, in general, rational polynomials whi
h are non-zero only over part of a 
ra
ked element. Therefore spe
ial 
are must be taken to numeri
allyintegrate these fun
tions over 
ra
ked elements. In our 
urrent implementation, higher orderSimpson rule is used for 
ra
ked elements. More eÆ
ient approa
hes, however, 
an be used.One possibility is to use an integration mesh over 
ra
ked elements that follows the 
ra
kboundaries. This mesh 
an easily be generated sin
e it is used only for integration/visualizationpurposes and does not have to 
onform with neighboring elements. In the 
ase of non-
ra
kedelements, standard Gaussian quadrature 
an be used.All the 
omputations 
an be 
arried out at the element level as in standard �niteelement 
odes. And, importantly, the numeri
al integration of FE and FE-Shepard PU 
anbe done very eÆ
iently sin
e the interse
tions of these fun
tions 
oin
ide with the integrationdomains. This is in 
lear 
ontrast with meshless methods based on moving least squaresfun
tions where the integration of the sti�ness and mass matri
es is 
omputationally expensive.Linear 
ombination of FE-Shepard fun
tions 
an not, in general, reprodu
e linear poly-nomials. That is, properties (2), (3) and (4) do not hold for the partition of unity asso
iatedwith elements interse
ting the 
ra
k surfa
e. In Se
tion 2.4, we present a te
hnique to hierar-
hi
ally add shape fun
tions to 
ra
ked elements su
h that the resulting GFEM approximation
an reprodu
e linear or higher order polynomials.
9



2.3.1 FE-Shepard PU for Elements at the Cra
k FrontLet us 
onsider more 
losely the 
ase of elements that 
ontain the 
ra
k front. The samete
hnique des
ribed above to build the FE-Shepard PU 
an be used at these elements. Con-sider, for example, point y in element � with nodes x5;x6;x8 and x9 as depi
ted in Fig. 3.A

ording to (7), the PU is given by'5(y) = N5(y)N5(y) +N6(y) '6(y) = N6(y)N5(y) +N6(y) '8(y) = 0 '9(y) = 0
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Crack

Figure 3: Constru
tion of a FE-Shepard PU for an element at the 
ra
k front using thevisibility 
riteria.Consider now point z 2 � , at the other side of the 
ra
k surfa
e. Here, the partitionof unity is given by'8(z) = N8(z)N8(z) +N9(z) '9(z) = N9(z)N8(z) +N9(z) '5(z) = 0 '6(z) = 0The PU is therefore dis
ontinuous along the 
ra
k surfa
e.Consider now points r and s 2 � as depi
ted in Fig. 4. Equation (7) gives'8(s) = N8(s)N5(z) +N6(z) +N8(z) +N9(z) = N8(s) 6= 010



while '8(r) = 0sin
e the segment [r�x8℄ interse
ts the 
ra
k surfa
e. Therefore, the visibility 
riteria leads tospurious lines/surfa
es of dis
ontinuities inside the elements at the 
ra
k front. This problemis intrinsi
 to the visibility 
riteria and it appears in all meshless methods that use it to model
ra
k surfa
es [4, 15, 38℄. In spite of this drawba
k, the visibility 
riteria is the favorite te
h-nique to model 
ra
ks in the 
ontext of meshless methods, probably be
ause of its 
exibilityand relative ease of implementation in any dimension. Also, numeri
al experiments demon-strate that in spite of the spurious dis
ontinuities introdu
ed, the visibility 
riteria allows the
omputation of a

urate stress intensity fa
tors (see Se
tion 6 and [5, 22, 23℄).Another te
hnique to model the 
ra
k front is presented in Se
tion 2.7. This te
hniqueis based on the wrap-around algorithm [15,17℄ and the use of 
ustomized fun
tions. In 
ontrastto the visibility 
riteria, the wrap-around 
riteria does not introdu
e spurious dis
ontinuities.
ϕ8

Spurious
Discontinuity
on 

1 2 3

4 5 6

7 8 9

τ r

s

Crack

Figure 4: Spurious dis
ontinuity on a FE-Shepard PU 
reated by the visibility 
riteria.2.4 Generalized Finite Element Shape Fun
tions: The Family FpNThe 
onstru
tion of the so-
alled generalized �nite element or 
loud shape fun
tions is basedon the following observation: 11



Let fLigi2I denote a set of fun
tions whi
h 
an approximate well, in an appropriatenorm k:kE, the solution u of a boundary value problem posed on a domain 
. Therefore, thereexists uhp 2 spanfLig given by uhp =Xi2I uiLi;where I denotes an index set, su
h thatkuhp � ukE < �; � << 1Now 
onsider the following set of so-
alled 
loud or generalized �nite element (GFE)shape fun
tions, de�ned as ��i := '�Li; � = 1; : : : ; N; i 2 Iwhere '�; � = 1; : : : ; N 
onstitute a partition of unity (of any type) subordinate to an open
overing TN of 
. Then, it is not diÆ
ult to show that linear 
ombinations of these shapefun
tions 
an also approximate well the fun
tion uX� Xi ui��i = X� Xi ui'�Li =X� '�Xi uiLi= X� '�uhp = uhpX� '� = uhp (8)Note that:(i) The shape fun
tions ��i ; � = 1; : : : ; N; i 2 I, are non-zero only over the support of thefun
tion '�, i.e., the 
loud !�.(ii) Linear 
ombination of generalized �nite element (GFE) shape fun
tions 
an reprodu
ethe approximation uhp to the fun
tion u.(iii) The fun
tions Li; i 2 I, 
an be 
hosen with great freedom. The most straightforward
hoi
e is polynomial fun
tions sin
e they 
an approximate well smooth fun
tions. How-ever, for many 
lasses of problems in
luding the 
ase of fra
ture me
hani
s problems,there are better 
hoi
es. This 
ase is dis
ussed in detail in Se
tion 2.5.In this se
tion, generalized �nite element shape fun
tions are de�ned in an n-dimensionalsetting using the idea outlined above.Let the fun
tions '�; � = 1; : : : ; N , denote a FE or FE-Shepard partition of unitysubordinate to the open 
overing TN = f!�gN�=1 of a domain 
 � IRn; n = 1; 2; 3. Here, N isthe number of vertex nodes in the �nite element mesh. The 
loud !� is the union of the �niteelements sharing the vertex node x�, regardless if the element is 
ra
ked or not (Cf. Fig. 1).12



Let ��(!�) = spanfLi�gi2I(�) denote lo
al spa
es de�ned on !�; � = 1; : : : ; N , whereI(�); � = 1; : : : ; N , are index sets and Li� denote lo
al approximation fun
tions de�ned overthe 
loud !�. Possible 
hoi
es for these fun
tions are dis
ussed below.The generalized �nite element (known also as 
loud) shape fun
tions of degree p arede�ned by FpN = f��i = '�Li� j � = 1; : : : ; N; i 2 I(�)g (9)Let I
 denote the index set of the nodes x� that belong to 
ra
ked elements. For this set ofnodes, we enfor
e that Pp(!�) � ��(!�) p � 1 � 2 I
where Pp denotes the spa
e of polynomials of degree less than or equal to p. For all othernodes, it is only required thatPp�1(!�) � ��(!�) p � 1 � 62 I
The above requirements guarantee that linear 
ombination of the GFE shape fun
tionsover any element (
ra
ked or not) 
an reprodu
e polynomials of degree p. The proof followsthe same arguments used in (8) and is presented in details in [12℄.The GFE shape fun
tions 
an then be used in 
ombination with, e.g., a Galerkinmethod to solve any 
lass of boundary value problem solvable by the �nite element method.We 
all this approa
h the generalized �nite element method (GFEM). The implementationof the method is essentially the same as in standard �nite element 
odes, the main di�eren
ebeing the de�nition of the shape fun
tions given in (9). The FE and FE-Shepard partitions ofunity avoid the problem of integration asso
iated with moving least squares PU built on 
ir
lesor spheres. This type of PU is used in several meshless methods. Here, the integrations 
anbe eÆ
iently performed with the aid of the so-
alled master elements sin
e the interse
tionsof the global GFE shape fun
tions 
oin
ide with the integration domains. Therefore, theGFEM 
an use existing infrastru
ture and algorithms for the 
lassi
al �nite element method.In the 
ontext of 
ra
k modeling, the GFEM allows arbitrary 
ut of the �nite element meshby the 
ra
k surfa
e while being 
omputationally eÆ
ient. The 
omputational 
ost of GFEshape fun
tions over 
ra
ked elements is only marginally higher than usual �nite elementshape fun
tions. For non-
ra
ked elements the 
omputational 
ost of GFE shape fun
tions isbasi
ally the same as �nite element shape fun
tions of the same polynomial order.There is 
onsiderable freedom in the 
hoi
e of the lo
al spa
es ��. The most obvious
hoi
e for a basis of �� is polynomial fun
tions whi
h 
an approximate well smooth fun
tions.In this 
ase, the GFEM over non-
ra
ked elements is essentially identi
al to the 
lassi
al FEM.Some important di�eren
es do exist though [11, 12℄. There are many situations in whi
h thesolution of a boundary value problem is not a smooth fun
tion. In these situations, the use ofpolynomials to build the approximation spa
e, as in the FEM, may be far from optimal andmay lead to poor approximations of the solution u unless 
arefully designed meshes are used.13



In the GFEM, we 
an use any a-priori knowledge about the solution to make better 
hoi
esfor the lo
al spa
es ��. This is the 
ase of fra
ture me
hani
s problems. The 
onstru
tion ofthese so-
alled 
ustomized GFE shape fun
tions over 
ra
ked elements is dis
ussed in detailin the next se
tion.2.5 Customized GFE Shape Fun
tions for a Cra
k in 3DThe 
onstru
tion of 
ustomized GFE shape fun
tions for a 
ra
k in a three-dimensional spa
eis summarized in this se
tion. This is a spe
ial 
ase of the formulation presented by Duarteet al. [12℄ whi
h deals with a 
onvex edge of arbitrary angle.Consider a 
ra
k embedded in a three-dimensional body as depi
ted in Fig. 5. Botha lo
al Cartesian 
oordinate system (�; �; �) and a 
ylindri
al 
oordinate system (r; �; � 0) areasso
iated with the 
ra
k at origin (Ox; Oy; Oz).The displa
ement �eld u(r; �; � 0) in the neighborhood of a straight 
ra
k front far fromits ends 
an be written as [44, 45℄u(r; �; � 0) = 8><>: u�(r; �)u�(r; �)u�(r; �) 9>=>; = 1Xj=1 2664A(1)j 8>><>>: u(1)�ju(1)�j0 9>>=>>;+ A(2)j 8>><>>: u(2)�ju(2)�j0 9>>=>>;+ A(3)j 8><>: 00u(3)�j 9>=>;3775 (10)where (r; �; � 0) are the 
ilyndri
al 
oordinates relative to the system shown in Fig. 5, u�(r; �),u�(r; �) and u�(r; �) are Cartesian 
omponents of u in the ��, �� and �� dire
tions, respe
-tively.
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Figure 5: Coordinate systems asso
iated with an edge in 3D spa
e.Assuming that the 
ra
k boundary is tra
tion-free and negle
ting body for
es, the14



fun
tions u(1)�j , u(1)�j , u(2)�j , u(2)�j are given by [44, 45℄u(1)�j (r; �) = r�j2G n[��Q(1)j (�j + 1)℄ 
os�j� � �j 
os (�j � 2)�ou(2)�j (r; �) = r�j2G n[��Q(2)j (�j + 1)℄ sin�j� � �j sin (�j � 2)�ou(1)�j (r; �) = r�j2G n[� +Q(1)j (�j + 1)℄ sin�j� + �j sin (�j � 2)�ou(2)�j (r; �) = �r�j2G n[�+Q(2)j (�j + 1)℄ 
os�j� + �j 
os (�j � 2)�owhere the eigenvalues �j are �1 = 1=2; �j = (j + 1)=2; j � 2. The material 
onstant� = 3� 4� and G = E=2(1 + �), where E is Young's modulus and � is Poisson's ratio.The parameters Q(1)j and Q(2)j are given byQ(1)j = ( �1 j = 3; 5; 7; : : :��j j = 1; 2; 4; 6; : : : Q(2)j = ( �1 j = 1; 2; 4; 6; : : :��j j = 3; 5; 7; : : :where �j = (�j � 1)=(�j + 1).Assuming that the 
ra
k boundary is tra
tion-free, body for
es are negligible, and 
ra
kfront is straight, the fun
tions u(3)�j are given by [44℄u(3)�j = 8>><>>: r�(3)j2G sin�(3)j � j = 1; 3; 5; : : :r�(3)j2G 
os�(3)j � j = 2; 4; 6; : : :where �(3)j = j=2; j � 1.Prior to employing the above fun
tions to build 
ustomized generalized �nite elementshape fun
tions, they �rst have to be transformed to the physi
al 
oordinates x = (x; y; z).The transformation method is des
ribed in [12℄.Let u(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 (11)denote the result of su
h transformation applied to u(1)�1 ; u(1)�1 ; u(3)�1 ; u(2)�1 ; u(2)�1 ; u(3)�2 , respe
tively.The 
onstru
tion of 
ustomized GFE shape fun
tions using singular fun
tions thenfollows the same approa
h as in the 
ase of polynomial type shape fun
tions. Here, thesingular fun
tions from (11) take the role of the basis fun
tions Li� de�ned in Se
tion 2.4 andare multiplied by the partition of unity fun
tions '� asso
iated with nodes near a 
ra
k front.The 
ustomized GFE shape fun
tions used in the 
omputations of Se
tion 6 are built as'� � fu(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 g (12)15



Here, � is the index of a �nite element vertex node near a 
ra
k front in 3D. Note thatnot ne
essarily the same set of singular fun
tions is used at all enri
hed nodes. As dis
ussedin Se
tion 5, the 
ra
k front is modeled as a pie
ewise linear obje
t. Therefore the orientationof the lo
al 
oordinate systems used to build the 
ustomized fun
tions (see Fig. 5) 
hangesalong the 
ra
k front.The 
ustomized fun
tions u(1)xj ; u(1)yj ; u(3)zj ; u(2)xj ; u(2)yj de�ned above are presented hereas a simple illustrative example and, as su
h, they are limited to the spe
ial 
ase of pie
ewiselinear 
ra
k fronts. It also assumes that the 
ra
k surfa
e near the 
ra
k front is 
at. Moregeneral types of 
ustomized fun
tions, built analyti
ally as above or perhaps numeri
ally, 
anbe used without any 
hange to the de�nition of the 
ustomized GFE shape fun
tions. TheGFEM does not require the availability of 
ustomized fun
tions to be able to model a 
ra
k.As shown in Se
tion 2.3, the 
ra
k 
an be modeled through proper 
onstru
tion of the partitionof unity. Nonetheless, if 
ustomized fun
tions are available, they 
an 
onsiderably improvethe a

ura
y of the method and, as shown in the next se
tion, they 
an also be used to modelthe 
ra
k front without the spurious dis
ontinuities 
reated by the visibility 
riteria.The enri
hment of the elements near the 
ra
k front with singular fun
tions bringsup the issue of numeri
al integration. In this investigation, our main goal is to analyze thee�e
tiveness of this type of enri
hment and, for simpli
ity, we use a high order quadraturerule in the elements with singular fun
tions. We adopt the Simpson rule with 10 points inea
h dire
tion for the 
ase of hexahedral elements. Integration of the singular fun
tions 
an,of 
ourse, be implemented in a mu
h more eÆ
ient way. Adaptive integration s
hemes, su
has the one proposed in [42℄, 
an be used.2.6 Examples of GFE Shape Fun
tionsIn this se
tion, GFE shape fun
tions for 
ra
ked and non-
ra
ked elements are presentedusing the de�nition (9). The issue of linear dependen
e of these fun
tions and how to solvethe resulting system of equations is dis
ussed in [12, 41℄.Let � � IR3 be a �nite element with nodes x�; � 2 I� where I� is an index set. The
ase of elements in one- or two-dimensional spa
es is analogous.2.6.1 Quadrati
 GFE shape fun
tions for a non-
ra
ked elementQuadrati
 GFE shape fun
tions for a non-
ra
ked element � are given bySp=2� := '� � f1; x� x�h� ; y � y�h� ; z � z�h� g � 2 I� (13)where '� is a standard linear Lagrangian FE PU, x� = (x�; y�; z�) are the 
oordinates ofnode � and h� is the diameter of the largest �nite element sharing the node �. Details are16



des
ribed in [12℄. It 
an be shown that the shape fun
tions de�ned above are 
omplete ofdegree two [12℄.2.6.2 Linear GFE shape fun
tions for a 
ra
ked elementHere, we 
onsider the 
ase in whi
h an element �
 with nodes x� 2 I�
 is fully or partiallysevered by the 
ra
k surfa
e. The partition of unity over this element is given by the FE-Shepard formula (7). Linear 
ombination of these fun
tions 
an not, in general, reprodu
elinear polynomials although in many 
ases, depending on how the 
ra
k surfa
e is lo
atedwithin the element, some linear monomials 
an still be reprodu
ed. For simpli
ity, and takinginto a

ount that the number of 
ra
ked elements is mu
h smaller than the total numberof elements, we prefer to assume that the PU over 
ra
ked elements 
an reprodu
e only a
onstant. Therefore, the PU has to be enri
hed with linear polynomials in order to guaranteethat the GFE shape fun
tions over 
ra
ked elements are 
omplete of degree one.Sp=1�
 := '� � f1; x� x�h� ; y � y�h� ; z � z�h� g � 2 I�
 (14)The only di�eren
e between (13) and the above is in the de�nition of the partition of unity'�.2.6.3 Linear GFE shape fun
tions for a 
ra
ked element enri
hed with 
us-tomized shape fun
tionsCustomized GFE shape fun
tions as those de�ned in (12) 
an be added to the shape fun
tionsof elements 
ontaining the 
ra
k front. A linear 
ra
ked element enri
hed with fun
tions (12)has the following shape fun
tionsSp=1;��
 := '� � f1; x� x�h� ; y � y�h� ; z � z�h� ; u(1)x1 ; u(1)y1 ; u(3)z1 ; u(2)x1 ; u(2)y1 ; u(3)z2 g � 2 I� (15)2.7 Cra
k Front Modeling Using Wrap-Around Approa
h and Cus-tomized Fun
tionsIn this se
tion, another te
hnique to model the 
ra
k at elements interse
ting the 
ra
k frontis presented. The te
hnique is based on the wrap-around algorithm [15, 17℄ and the use of
ustomized fun
tions like those de�ned in Se
tion 2.5. In 
ontrast with the te
hnique basedon the visibility 
riteria, the wrap-around 
riteria does not introdu
e spurious dis
ontinuities.From the de�nition of the GFE shape fun
tions given in (9) it is observed that if thefun
tions Li� are dis
ontinuous, the resulting GFE shape fun
tions are also dis
ontinuous.17



The 
ra
k 
an therefore be modeled by simply multiplying a standard FE PU (or any otherPU) by appropriate 
ustomized fun
tions that 
an a

urately represent the displa
ement �eldnear the 
ra
k (not only at the 
ra
k front). This approa
h has been su

essfully used byDuarte and Oden [17,35,37℄ in two dimensions. It is also essentially the same te
hnique usedin [42℄ to model holes and in
lusions in elasti
 plates. More re
ently, Belyts
hko et al. [3,10,32℄have applied this approa
h to propagating 
ra
ks in two dimensions. They have also proposedseveral variations for the fun
tions Li� in
luding dis
ontinuous step fun
tions and near 
ra
ktip assimptoti
 �elds. Suppose now that su
h 
ustomized fun
tions are available at least nearthe 
ra
k front. Then, 
ustomized GFE shape fun
tions 
an be used for elements near the
ra
k front and the de�nition of the FE-Shepard PU given in (7) 
an be modi�ed su
h thatno spurious dis
ontinuity is 
reated.The FE-Shepard PU is de�ned as follows in the 
ase of wrap-around (WA) algorithm.First, all nodes belonging to elements that interse
t the 
ra
k front are marked as wrap-aroundnodes. Then, instead of the index set de�ned in (6), the following is used at a point x belongingto �nite element �Iwa� (x) = f
 2 I� j [x� x
 ℄ \ 
ra
k surfa
e = ; or x
 is a wrap-around nodeg (16)The FE-Shepard partition of unity for an element � with nodes x�; � 2 I� is then de�ned as'�(x) = 8<: N�(x)P
2Iwa� (x)N
(x) if � 2 Iwa� (x)0 if � 62 Iwa� (x) (17)For elements at the 
ra
k front it is as if the 
ra
k does not exist sin
e all nodes of theelement are marked as WA nodes then,Iwa� (x) = I� 8 x 2 �In this 
ase, the 
ra
k front is modeled by 
ustomized shape fun
tions as those de�ned in (12).In addition to rendering a dis
ontinuous �eld at the 
ra
k front, these GFE shape fun
tionsallow a

urate approximation of the solution without any mesh modi�
ations. For elementsthat have a neighboring element at the 
ra
k front, the 
ra
k is modeled by a 
ombination ofthe visibility algorithm and the 
ustomized shape fun
tions. But in this 
ase 
ase, no spuriousdis
ontinuities are 
reated. In the 
ase of other 
ra
ked elements, the 
ra
k is modeled solelyby the visibility algorithm. Here again, no spurious dis
ontinuities are 
reated.As an example 
onsider the element � depi
ted in Fig. 6. At point r 2 � , we haveIwa� (r) = I� = f5; 6; 8; 9gIn the same �gure, at point t 2 �� we haveIwa�� (t) = I�� = f4; 5; 7; 8gWhile for point z 2 �� , Iwa�� (z) = f5; 8g18
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"Wrap-around" nodeFigure 6: Modeling the 
ra
k front using the wrap-around algorithm.3 Extra
tion of Stress Intensity Fa
tors:The Least Squares Fit MethodOn
e the solution is obtained at some time step, the amount and dire
tion of 
ra
k propagationover the next time in
rement 
an be predi
ted. The 
ra
k front is represented as a series ofstraight line segments 
onne
ted at verti
es. The stress intensity fa
tors (SIF's) are 
al
ulatedat the vertex points along the 
ra
k front. Figure 7 represents 
ow
hart of the 
omputerprogram PHLEX
ra
kTM used for this study with the fra
ture dynami
s pro
ess implementedin it. The Least Squares Fit method is used for the 
al
ulations of SIF's. In this method,the SIF's are obtained by minimizing the errors among the dis
retized stresses 
al
ulated fromthe solution and their asymptoti
 values. The method has produ
ed a

urate results in �niteelement settings. In this work, it has been extended to be used with the three-dimensionaldynami
 GFE model used.De�ne the least-squares fun
tional as:J(K lM(y)) := (�h � �;�h � �)y M = I � III and l = 1; : : : ; lmax19
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where K lM is the lth stress intensity fa
tor asso
iated with mode M at vertex y. The innerprodu
t ( ; )y is de�ned as:(u; v)y = NsplXa=1 0� mXj=1 mXi=1 ui(xa)D�1ij vj(xa)1AWa(y);and (see Figure 8)u = fu1; u2; : : : ; umg; v = fv1; v2; : : : ; vmg are any two ve
tors in IRm,�h(x) is the dis
retized stress ve
tor at point x,�(x) := PIIIM=IPlmaxl=1 hK lMFlM (x)i is the asymptoti
 stress ve
tor,FlM(x) = f lM(r)glM(�) are the asymptoti
 fun
tions,y is the position ve
tor of a vertex on the 
ra
k front,xa is the position ve
tor of a sampling point,Nspl is the number of sampling points in a domain 
entered at y,D�1 2 IRm � IRm is the inverse of an auxiliary matrix D. Appropriate 
hoi
es for D arethe material sti�ness matrix or the identity matrix, andWa(y) 2 IR(
) is a weighting fun
tion asso
iated with sampling point xa and is given byWa(y) = 1ky � xakpIRm where p is typi
ally 3-6.Stress intensity fa
tors K lM are found by minimizing the least-squares fun
tional:�J�K lM = 0 M = I � III l = 1; 1 : : : ; lmaxThis leads to the following system of equations:IIIXM=I qmaxXq=1 KqM(FqM ;FlM 0)y = (�h;FlM 0)y M 0 = I � III l = 1; : : : ; lmaxIf only the �rst terms (l = 1) of the three modes are used, the three 
orresponding K'sare found by solving:264 (F1I ;F1I)y (F1I ;F1II)y (F1I ;F1III)y(F1II ;F1I)y (F1II ;F1II)y (F1II ;F1III)y(F1III ;F1I)y (F1III ;F1II)y (F1III ;F1III)y 3758><>: K1IK1IIK1III 9>=>; = 8><>: (�h;F1I)y(�h;F1II)y(�h;F1III)y 9>=>;21
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Figure 8: Domain used for the Least Squares Fit method.The domain used for the Least Squares Fit method is a 
ylinder 
entered at the vertexwith its axis along the tangent of the 
ra
k front at that vertex. The dimensions of the 
ylinderand the number of sampling points in the r; �, and z dire
tions are input data. In addition,one 
an 
hoose the type of the D matrix and the weight p.4 Cra
k Evolution ModelsThe Stress Intensity Fa
tors (SIF's) 
al
ulated above are used to determine whether the 
ra
kwill advan
e or not, and the amount and dire
tion of propagation, if any. The front is thenadvan
ed to its new position, the 
ra
k surfa
e is extended, and the numeri
al model is updateda

ordingly.Cra
k propagation quantities are 
al
ulated based on some physi
al models. Cra
kphysi
s, however, are not well known, espe
ially so for three dimensional problems. Therefore,fra
ture models usually make extensive use of plane strain physi
s models. In this work, twophysi
al models have been used.4.1 The Freund Model [18,22,39℄In this model, dire
tion of 
ra
k growth in the plane normal to the 
ra
k front is given by:� = 2 tan�18><>:14 0B� KIKII � sign(KII)vuut� KIKII�2 + 81CA9>=>; (18)22



for KII 6= 0, and � = 0 for KII = 0. In the equation above, � is measured with respe
t tothe forward ve
tor n1. Ve
tor n1 is the 
ra
k front forward normal ve
tor; it lies along theinterse
tion of the planes normal and tangent to the front at the vertex (see Figure 9).
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Figure 9: Lo
al unit ve
tors at 
ra
k vertex.It was assumed that mode III does not a�e
t 
ra
k dire
tion; it only a�e
ts 
ra
k speed.The term sign(KII) in equation (18) above is to guarantee a positive stress intensity fa
toralong the dire
tion given by �. It also 
orresponds to the dire
tion normal to the maximumhoop stress.The 
urrent energy release rate of a stationary 
ra
k is 
al
ulated at every vertex as:G(0) = K2I;equivE� + K2III2� ;where KI;equiv = KI 
os3(�=2)� 32KII 
os(�=2) sin �;� is the shear modulus, and E� is the e�e
tive Young's modulus. For plane strain, E� is givenby: E� = E1� �2 ;where E is Young's modulus and � is Poisson's ratio. Cra
k will propagate at a vertex if:G(0) > G
rit; (19)where G
rit is the 
riti
al energy release rate given by:G
rit = K2ID( _a)E� � K̂2IDE�23



and KID is the dynami
 fra
ture toughness in a pure mode I 
ra
k (in general a fun
tion of
ra
k speed, _a); it is approximated by the 
onstant value K̂ID whi
h is given as a materialproperty.The speed at whi
h the 
ra
k will propagate at a vertex ( _a) is then 
al
ulated by solvingfor the roots of the quadrati
 equation:	�2 � (	 + 1)�+ �� 1� = 0where � = G(0)=G
rit � 1, 	 = 
R=
lim > 1, and � = _a=
R � 1. 
lim is the limiting 
ra
kspeed (< 
R) given as an input quantity. 
R is Rayleigh wave speed given as a root of:4�1�2 � (1 + �22)2 = 0;where,�21 = 1� �
R
d �2 (
d � dilatational wave speed = q�+1��1q�� in plane strain),�22 = 1� �
R
s �2 (
s � shear wave speed = q�� in plane strain), and� � Kosolov 
onstant = 3� 4� (for plane strain).In the above, � is the shear modulus and � is the mass density.4.2 Pres
ribed Velo
ity ModelIn this model, the propagation angle is 
al
ulated using equation (18) above, and the prop-agation 
riteria is given by equation (19). The 
ra
k speed, however, is 
al
ulated a

ordingto a pre-de�ned fun
tion. This fun
tion is given as an input data. The fun
tion is usually apie
ewise linear fun
tion of time that 
an take into a

ount for instan
e the initial time neededfor stress waves to rea
h the 
ra
k front.5 Representation of the Cra
k Surfa
eThe representation of the 
ra
k surfa
e in the proposed method is 
ompletely independent ofthe mesh used. In our present implementation, the 
ra
k surfa
e is represented as a set of 
attriangles as shown in, for example, Figs. 11(a), 13(b), 27. The 
ra
k front is represented bystraight line segments 
onne
ting the nodes of the triangles along the front. This model ofthe 
ra
k surfa
e is the same used by [23℄. The representation of the outer skin of the body isalso required by the \
ra
k geometri
 engine",i.e., the part of the 
ode that handles the 
ra
krepresentation. Figures 11(a) and 27 show examples of the representation of the other skin24



of a body. They are as simple as possible and 
an be 
omposed of several types of geometri
entities. The geometri
 engine handles queries about interse
tion of segments with the 
ra
ksurfa
e, distan
e of a point from the 
ra
k surfa
e, orientation of normal and tangent ve
torsalong the 
ra
k surfa
e, et
. The geometri
 engine also updates the 
ra
k surfa
e after ea
h
ra
k advan
ement. It automati
ally re�nes the triangles at the 
ra
k front in order to ensurea geometri
ally pre
ise representation of the 
ra
k surfa
e. This 
an easily be implementedsin
e the triangulation of the 
ra
k surfa
e does not have to 
onstitute a valid �nite elementmesh. The geometri
 engine uses the representation of the outer skin of the body in order tohandle surfa
e breaking 
ra
ks and 
ra
ks interse
ting the boundary.6 Numeri
al ExamplesThe generalized �nite element method (GFEM) presented previously is used in this se
tion tosolve several illustrative examples. In all examples, the stress intensity fa
tors are 
omputedusing the least squares �t method presented in 3.6.1 Single Cra
k with Mode I Solution Under Stati
 LoadingThe edge-
ra
ked panel illustrated in Fig. 10(a) is analyzed in this se
tion using the GFEM.The following parameters are assumed in the 
omputations: h = b = 1.0, a = 0.5, distributedtra
tions � = 1:0 and uniform thi
kness t = 0.1. The material is assumed to be linearly elasti
with E = 1000:0 and � = 0:3.The domain is dis
retized using the hexahedral mesh shown in Fig. 10(b). There are961 elements in the mesh. A state of plane strain is modeled by 
onstraining the displa
ementin the z-dire
tion at z = 0 and z = t. The representation of the 
ra
k surfa
e is shown in Fig.11(a). It is 
omposed of four triangles and two edge elements (used to identify the 
ra
k front).These triangles are used only for the geometri
 representation of the 
ra
k surfa
e. There areno degrees of freedom asso
iated with them. The stress intensity fa
tors reported for thisproblem are 
omputed at x = (0:5; 1:0; 0:05) whi
h is a point at the 
ra
k front lo
ated at themiddle plane of the body. The geometri
 de�nition of the outer skin of the domain (shownon Fig. 11(a)) is also given as input data for the 
ra
k geometri
 engine. The base ve
torsof the 
oordinate system asso
iated with singular fun
tions used at the 
ra
k front are alsodisplayed in Fig. 11(a). The base ve
tors and 
orresponding singular fun
tions are 
omputed
ompletely automati
ally using the geometri
 engine. This fun
tionality is spe
ially importantduring dynami
 
ra
k propagation simulations or when the geometri
 of the domain or 
ra
ksurfa
e are not so trivial as in this example.Figure 11(b) shows a 
loser look at the dis
retization near the 
ra
k front. It 
an beobserved that the 
ra
k surfa
e does not respe
t the element boundaries{It 
an arbitrarily 
ut25
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(a) (b)Figure 10: Single edge-noth test spe
imen and GFEM dis
retization.the elements in the mesh. The nodes 
arrying singular degrees of freedom are representedby diamond-shaped dots. The singular fun
tions used at these nodes are those presentedin Se
tion 2.5. Whenever they are used, only the nodes of the elements that 
ontain the
ra
k front are enri
hed with these singular shape fun
tions (in this example, there is onlyone element at the 
ra
k front). The enri
hment of the elements at the 
ra
k front withappropriate singular fun
tions is done automati
ally using the geometri
 engine to 
onstru
tappropriate 
oordinate systems at the 
ra
k front.The 
omputed values of KI and of the strain energy, U , for several dis
retizations areshown on Tables 1 and 2. In the tables, Neq denotes the number of equations asso
iatedwith a parti
ular dis
retization. The 
ra
k is modeled using a FE-Shepard partition of unityas de�ned in Se
tion 2.3 or 2.7. In the �rst 
ase, the dis
ontinuity in the displa
ement�eld is modeled using the visibility algorithm in 
ombination or not with singular fun
tions.The results using this approa
h are shown in Table 1. In the se
ond 
ase, the wrap-aroundapproa
h in 
ombination with singular fun
tions at the 
ra
k front is used. The results using26



X
Y

Z(a) Triangularization of the 
ra
k surfa
e and rep-resentation of the outer skin of the body. X

Y

Z

P-Levels: 1 2 3 4 5 6 7 8(b) Zoom at the 
ra
k front.Figure 11: Cra
k representation.this approa
h are shown in Table 2. In both 
ases, p enri
hment is done using the familyof fun
tions FpN de�ned in Se
tion 2.4. The notation p = 1 + px; 1 + py; 1 + pz = 1 +(px; py; pz) is used to denote the polynomial order of the approximation over non-
ra
kedelements. The \1's" indi
ating the linear order of the fun
tions de�ning the partition ofunity (linear hexahedral �nite element shape fun
tions in this 
ase) and px; py; pz denotethe degrees of the polynomial basis fun
tions Li� in the x; y; z dire
tions, respe
tively. Thefun
tions Li� are de�ned in Se
tion 2.4. If only the partition of unity is used, we havep = 1 + 0; 1 + 0; 1 + 0 = 1 + 0. A quadrati
 approximation in the plane XY and linear inthe z-dire
tion is denoted by p = 1 + 1; 1 + 1; 1 + 0 = 1+ (1; 1; 0). For 
ra
ked elements, thepolynomial degree of the approximation is denoted by p
 = 0+px; 0+py; 0+pz = 0+(px; py; pz).The \0's" indi
ating that, in general, the fun
tions de�ning the partition of unity over 
ra
kedelements 
an only represent a 
onstant fun
tion. A quadrati
 approximation in the plane XYand linear in the z-dire
tion over 
ra
ked elements (fully or partially 
ra
ked) is denoted byp
 = 0 + 2; 0 + 2; 0 + 1 = 0+ (2; 2; 1).The stress intensity fa
tors are 
omputed using the least squares �t method presentedin Se
tion 3. The following parameters are used in all 
omputations presented in this se
tion:� Dimensions of the extra
tion domain: d = (0:4; 1:0; 0:05). Whi
h represents a 
ylinder27



of radius 0.4 and length 0.05.� Number of integration points in the r; � and z dire
tions: n = (10; 20; 1), respe
tively.� Type of weighting matrix D: identity matrix� Power of the weighting fun
tions: 6.It was observed from numeri
al experiments on this and other examples that the 
hoi
eof the matrix D (material or identity) does not have tangible e�e
ts on the 
al
ulated valuesof the stress intensity fa
tors. In addition, di�erent values for the power of the weightingfun
tion were tested. A value in the range of [3-6℄ was observed to be suÆ
ient.As a referen
e, the value ofKI 
omputed by Tada et al. [46℄ using a boundary te
hniqueis used. The value KTadaI = 3:54259 reported in [46℄ has an error smaller than 0.5%.The dis
retizations Vis-1, Vis-3 and Vis-5 do not use singular fun
tions at the 
ra
kfront while the dis
retizations Vis-2, Vis-4 and Vis-6 do. All 'Vis' dis
retizations use thevisibility approa
h to build the PU over 
ra
ked elements as des
ribed in Se
tion 2.3. It 
anbe observed from Table 1 that the use of singular fun
tions gives a noti
eable improvement onthe 
omputed stress intensity fa
tors while the in
rease in the number of degrees of freedom isonly marginal (less than one per
ent in the 
ase of the dis
retization Vis-5). In 
ontrast, thep-enri
hment of the 
ra
ked elements (dis
retizations Vis-1 and Vis-3) gives little improvementon the 
omputed KI . Nonetheless, the enri
hment does improve the 
omputed strain energyby about 3%. This behavior indi
ates that the te
hnique used to 
ompute the stress intensityfa
tor is not optimal sin
e, optimally, the 
omputed stress intensity fa
tors must 
onverge atthe same rate as the 
omputed strain energy [44, 45℄.The dis
retizations WA-1, WA-2 and WA-3 use singular fun
tions in 
ombination withthe wrap-around te
hnique to build the PU over 
ra
ked elements as des
ribed in Se
tion2.7. Comparing the results for the dis
retizations Vis-2 with WA-1 or Vis-4 with WA-2, it
an be observed that, for the same number of degrees of freedom, the wrap-around approa
hgives better results for the stress intensity fa
tors than the visibility approa
h. This is inspite of the fa
t that the dis
retizations using wrap-around have a smaller strain energy thanthe 
orresponding dis
retizations using visibility. This 
an be explained by the fa
t that thevisibility approa
h 
reates spurious dis
ontinuities in the displa
ement �eld near the 
ra
k frontwhi
h results in a less sti� dis
retization 
ompared with the wrap-around approa
h (whi
hdoes not 
reates su
h spurious dis
ontinuities). It 
an be observed that the dis
retization WA-2 gives a better value for KI than the dis
retization WA-3 in spite of the fa
t that the latergives a larger value for the strain energy than the latter. This, again, points to limitations ofthe te
hnique used to 
ompute the stress intensity fa
tor.
28



Table 1: GFEM using the partition of unity de�ned in Se
tion 2.3. The stress intensity fa
toris 
omputed at (0:5; 1:0; 0:05). In the table, \Dis
r" stands for dis
retization, \Sing Fn" standsfor singular fun
tions at the 
ra
k front, \Neq" stands for number of equations and \U" standsfor strain energy.Dis
ret. p = 1+ p
 = 0+ Sing Fn Neq U � 104 KI KI=KTadaIVis-1 (0,0,0) (1,1,1) No 6,756 2.27136 3.2387 0.91422Vis-2 (0,0,0) (1,1,1) Yes 6,900 2.32941 3.3741 0.95244Vis-3 (0,0,0) (2,2,1) No 7,776 2.33848 3.2495 0.91727Vis-4 (0,0,0) (2,2,1) Yes 7,920 2.36701 3.3938 0.95800Vis-5 (1,1,0) (2,2,1) No 19,656 2.38643 3.4339 0.96932Vis-6 (1,1,0) (2,2,1) Yes 19,800 2.42281 3.4584 0.97623Table 2: GFEM using the partition of unity de�ned in Se
tion 2.7. The stress intensity fa
toris 
omputed at (0:5; 1:0; 0:05).Dis
ret. p = 1+ p
 = 0+ Sing Fn Neq U � 104 KI KI=KTadaIWA-1 (0,0,0) (1,1,1) Yes 6,900 2.22465 3.3886 0.95653WA-2 (0,0,0) (2,2,1) Yes 7,920 2.25596 3.4228 0.96618WA-3 (1,1,0) (2,2,1) Yes 19,800 2.29396 3.3431 0.943696.2 An In
lined Cra
k ProblemAs another test problem, we 
onsider the 
ra
ked panel shown in Fig. 12(a). This problem wasanalyzed by Szab�o and Babu�ska [44℄ using the p-version of the �nite element method and byOden and Duarte [35℄ using the hp Cloud method. In both referen
es, plane stress 
onditionand unit thi
kness are used. Here, the plane stress 
ondition is approximated by using a smallthi
kness, t = 0:1, for the domain 
ompared to the other dimensions. In addition, we assumeYoung's modulus E = 1, Poisson's ratio � = 0:3, distributed tra
tion � = 1:0 and w = 1 (seeFig. 12(a)). These same values are used in referen
es [44℄ and [35℄. We adopt as a referen
e,the values of KI , KII and strain energy, U, 
omputed by Oden and Duarte [35℄. They are,respe
tively, KRefI = 1:508284KRefII = �0:729706URef = 0:170402These values agree very well with those 
omputed by Szab�o and Babu�ska [44℄ (less than 0.1%di�eren
e). The value of the URef was s
aled to take into a

ount the di�eren
e in thi
knessused here (t = 0:1) and adopted by Oden and Duarte [35℄ (t = 1:0).The dis
retization of the domain using 765 hexahedral elements is shown on Fig. 12(b).29



w

w
2

45

3w
2

w

O

σ

σ

(a) Problem de�nition. (b) GFEM dis
retization.Figure 12: Mixed-mode 
ra
k problem.The in
lined 
ra
k is also shown in the �gure. Figure 13(a) shows a 
loser look near the 
ra
k.It 
an be observed that the 
ra
k surfa
e 
uts the elements in the mesh in a quite arbitrarymanner. In fa
t, the meshing of the domain is done as if there is no 
ra
k at all. The only
onsideration used during the meshing of the domain was to use a more re�ned mesh near thelo
ation of the 
ra
k front. The 
ra
k representation is 
reated and passed to the geometri
engine as input data. The geometri
 engine uses no information whatsoever about the mesh.Nodes in the mesh that are too 
lose to the 
ra
k surfa
e are then automati
ally moved a smalldistan
e away from the 
ra
k surfa
e (this 
an be observed in Fig. 13(a) near the 
ra
k front).30



This is required be
ause an approximation node must be lo
ated at one or another side of the
ra
k surfa
e. The representation of the 
ra
k surfa
e used here is topologi
ally identi
al tothe one used in the previous example (see Fig. 11(a)). Figure 13(b) shows a 
loser look at themesh and 
ra
k surfa
e near the 
ra
k front. The nodes 
arrying singular degrees of freedomare represented by diamond-shaped dots. The singular fun
tions used at these nodes are thosepresented at Se
tion 2.5. As in the previous example, whenever they are used, only the nodesof the elements that 
ontain the 
ra
k front are enri
hed with these singular shape fun
tions.

X

Y

Z(a) Zoom showing the elements 
ut by the
ra
k surfa
e. X

Y

Z

P-Levels: 1 2 3 4 5 6 7 8(b) Three-dimensional view of the 
ra
k front.Figure 13: Cra
k representation.The notation used to des
ribe the various dis
retizations (Vis-i, i=1,6 and WA-j, j=1,3)is the same as in the previous example. The stress intensity fa
tors are 
omputed at a pointin the 
ra
k front lo
ated at the middle surfa
e of the body. The following parameters areused for extra
ting the stress intensity fa
tors using the least squares method:� Dimensions of the extra
tion domain: d = (0:2; 1:0; 0:05). Whi
h represents a 
ylinderof radius 0.4 and length 0.05.� Number of integration points in the r; � and z dire
tions: n = (10; 40; 1), respe
tively.� Type of weighting matrix D: identity matrix� Power of the weighting fun
tions: 6. 31



(a) Displa
ement in the verti
al dire
tion. (b) Von Mises stress �eld.Figure 14: Displa
ement and stress 
omputed using the dis
retization WA-3.Figure 14(a) shows a 
ontour plot of the displa
ement in the verti
al dire
tion near the
ra
k 
omputed using the dis
retization WA-3. The dis
ontinuity in the displa
ement �eld
onstru
ted using the te
hnique presented in Se
tion 2.7 is 
learly observed. Figure 14(b)shows a 
ontour plot for the von Mises stress 
omputed with this dis
retization and Fig. 15(a)shows a 
loser look near the 
ra
k front. The 
omputed stresses are all raw stresses 
omputedat arbitrary points inside ea
h element. Figure 15(b) shows the same quantity 
omputed usingthe dis
retization Vis-5. It 
an be observed that the stress �eld is quite disturbed near the
ra
k front. This is 
aused by the spurious dis
ontinuities 
reated by the visibility approa
hnear the 
ra
k front. 32



(a) Stress 
omputed with dis
retization WA-3. (b) Stress 
omputed with dis
retization Vis-5.Figure 15: Zoom at the 
ra
k front showing von Mises stress.A summary of the results is presented on Tables 3 and 4. Table 3 shows the 
omputedstrain energy for the various dis
retizations using the PU as de�ned in Se
tion 2.3 (visibilityapproa
h with or without singular fun
tions). It 
an be observed that the p-enri
hment of theapproximation has a more signi�
ant e�e
t on the strain energy values than the addition ofsingular fun
tions at the 
ra
k front. Nonetheless, as in the previous example, the addition ofsingular fun
tions improves 
onsiderably the 
omputed stress intensity fa
tors. In the 
ase ofthe dis
retization Vis-3, for example, the enri
hment with singular fun
tions adds only 1.8%more degrees of freedom while the error on the 
omputed value of KI de
reases from 14.0%to only 3.5% and the error on the 
omputed KII de
reases from 10.8% to only 1.4%. That is,the error on the 
omputed KI and KII de
rease by 75.0% and 87,0%, respe
tively.The results for the dis
retizations that use the wrap-around approa
h (Se
tion 2.7) arepresented in Table 4. The dis
retization WA-3 has a relative error in energy, (URef�U)=URef ,of only 0.02% whi
h 
orresponds to a relative error in the energy norm of only 1.41%. This sameproblem was also solved using the 
lassi
al hp �nite element method with the hp adaptationdriven by error indi
ators based on the element residual method (see, for example, [1℄). Theresults obtained after seven adaptive 
y
les are shown on Table 5. The relative error in energyand in the energy norm for this dis
retization are 0.3% and 5.5%, respe
tively. Note thatthis dis
retization has more degrees of freedom (18585) than the dis
retization WA-3 (16632)but an error in the energy norm almost four times bigger. The reason for this is that theGFEM dis
retization 
an 
apture the singular �eld near the 
ra
k front more eÆ
iently by33



using 
ustomized singular fun
tions.Table 3: GFEM using visibility to build the PU over 
ra
ked elements. In the table, \Dis
r"stands for dis
retization, \Sing Fn" stands for singular fun
tions at the 
ra
k front, \Neq"stands for number of equations and \U" stands for strain energy.Dis
r p = 1+ p
 = 0+ Sing Fn Neq U=URef KI=KRefI KII=KRefIIVis-1 (0,0,0) (1,1,1) No 5874 0.9271 0.7286 0.8052Vis-2 (0,0,0) (1,1,1) Yes 6018 0.9310 0.8391 0.9447Vis-3 (0,0,0) (2,2,1) No 7764 0.9651 0.8595 0.8921Vis-4 (0,0,0) (2,2,1) Yes 7908 0.9686 0.9647 0.9864Vis-5 (1,1,0) (2,2,1) No 16488 1.0044 0.9881 1.0076Vis-6 (1,1,0) (2,2,1) Yes 16632 1.0068 1.1002 1.0589Table 4: GFEM using wrap-around and visibility to build the PU over 
ra
ked elements.Dis
r p = 1+ p
 = 0+ Sing Fn Neq U=URef KI=KRefI KII=KRefIIWA-1 (0,0,0) (1,1,1) Yes 6018 0.9271 0.8735 0.8782WA-2 (0,0,0) (2,2,1) Yes 7908 0.9635 0.9722 0.9472WA-3 (1,1,0) (2,2,1) Yes 16632 0.9998 1.0800 0.9979Table 5: Results using the hp �nite element method and seven adaptive 
y
les.Dis
r Neq U U=URef KI KII KI=KRefI KII=KRefIIhp FEM 18585 0.16988 0.9969 1.4680 -0.7041 0.9733 0.96496.3 Plate Under Impa
t LoadIn this se
tion, we investigate the performan
e of the GFEM in modeling propagating 
ra
ksin a body subje
ted to impa
t loads. The test problem is illustrated on Fig. 16. This problemwas analyzed by Lu et al. [29℄, Krysl and Belyts
hko [22℄, Organ [39℄ and Belyts
hko andTabbara [7℄ using the element free Galerkin method, by Gallego and Dominguez [19℄ using aboundary element method, among others. A state of plane strain and the following parametersare adopted� Dimensions: b = 10:0, h = 2:0, a = 5:0 and uniform thi
kness t = 0:1,� Loading: �(t) = �̂ H(t) = 63750:0 H(t); t � 0. Here, H(t) is the Heaviside stepfun
tion. 34



� Material Properties: Linear elasti
 material with E = 2:0�1011, � = 0:3 and � = 7833:0.� Time Step: �t = 10�5.A state of plane strain is modeled by 
onstraining the displa
ement in the z-dire
tionat z = 0 and z = t. Two uniform hexahedral meshes are used. The �rst one has 125, 49and 1 element in the x-, y- and z-dire
tions, respe
tively. This same mesh was used in the
omputations of Krysl and Belyts
hko [22℄. We denote this as the �ne mesh. The se
ond meshhas 65, 25 and 1 element in the x-, y- and z-dire
tions, respe
tively. This mesh is denoted asthe 
oarse mesh. The representation of the 
ra
k surfa
e and of the outer skin of the bodyare shown in Figs. 17(a) and 17(b). It is 
omposed of �ve triangles and four edge elements.There are �ve vertex nodes uniformly spa
ed at the 
ra
k front. The stress intensity fa
torsreported for this problem are 
omputed at x = (5:0; 2:0; 0:05) and is lo
ated at the middleplane of the body. This vertex node is denoted vertex 3 hereafter.The stress intensity fa
tors are 
omputed using the least squares �t method. Thefollowing parameters are used in all 
omputations presented in this se
tion:� Dimensions of the extra
tion domain: d = (1:0; 1:0; 0:05). Whi
h represents a 
ylinderof radius 1.0 and length 0.05.� Number of integration points in the r; � and z dire
tions: n = (5; 30; 1), respe
tively.� Type of D matrix equal material matrix� Power of the weighting fun
tion: 3.Four GFEM dis
retizations are used (the notation used for p and p
 is de�ned inSe
tion 6.1) :� Dis
retization 1:{ Fine mesh (125� 49� 1 elements),{ Degree of approximation over non 
ra
ked elements p = 1+ 0.{ Degree of approximation over 
ra
ked elements p
 = 0+ 1.{ Cra
k modeled using a FE-Shepard partition of unity and visibility approa
h asde�ned in Se
tion 2.3. No singular fun
tions are used.� Dis
retization 2: Same as Dis
retization 1 ex
ept that here the 
ra
k is modeled usingthe wrap-around approa
h and singular fun
tions as de�ned in Se
tion 2.7.� Dis
retization 3: Same as Dis
retization 1 but using the 
oarse mesh (65 � 25 � 1elements) instead. 35



� Dis
retization 4: Same as Dis
retization 3 but here the degree of approximation over
ra
ked elements is p
 = 0+ (2; 2; 1).
a

h

h
b

σ

σFigure 16: Model problem used to analyze the performan
e of the GFEM in modeling propa-gating 
ra
ks in a body subje
ted to impa
t loads.

X

Y

Z(a) Cra
k surfa
e and outer skin of the body. X

Y

Z

P-Levels: 1 2 3 4 5 6 7 8(b) Three-dimensional view of the 
ra
k front.Figure 17: Cra
k representation.36



6.3.1 Referen
e SolutionThe GFEM results are 
ompared to the analyti
 solution for a semi-in�nite 
ra
k in the planeproposed by Freund [18℄. The problem solved by Freund is represented in Fig. 18. Thetwo-dimensional domain has a straight semi-in�nite 
ra
k, is in a state of plane strain and isloaded by uniformly distributed tra
tions applied at time t = 0. The mode-I stress intensityfa
tor, as a fun
tion of time and 
ra
k speed C is given by [18℄.KI(t; C) = 4�̂H(t� t̂)k(C)1� � s(1� 2�)(t� t̂)Cd�where,� �̂ is the magnitude of the tensile tra
tions,� Cd is the pressure wave speed in the body whi
h is given byCd = vuut�(�+ 1)�(�� 1)where � = E2(1+�) and � = 3 � 4� (for plane strain state). For the material propertiesgiven previously, we get Cd = 5862:7.� t̂ is the time the elasti
 wave hits the 
ra
k. For the problem represented in Fig. 16 andCd = 5862:7 t̂ = 0:000341� k(C) is s
aling fa
tor that takes into a

ount that the 
ra
k front is advan
ing withspeed C and is given by k(C) = 1:0� C=CR1:0� 0:5 � C=CRwhere CR is the Rayleigh wave speed. For this test problem, with the material propertiesgiven above, CR = 3030 (see Se
tion 4).Due to symmetries, KII = 0. The magnitude of the energy release rate is given byG(C; t) = �1� CCR�G(C = 0; t)where G(C = 0; t) = K2I (C = 0; t)E�and, for plane strain, E� = E1� �237



It should be noted that due to the �nite dimensions of the domain modeled here therewill be waves re
e
ted by the boundary. This re
e
ted waves will eventually rea
h the 
ra
kfront and a 
omparison of the numeri
al solution with the above referen
e solution will nolonger be valid. The �rst re
e
ted wave to rea
h the 
ra
k is a pressure wave after travelingfrom a loaded edge to the opposite edge and then ba
k to the 
ra
k front [22℄. This happensat �t = 3hCd = 65862:7 = 0:00102A more detailed dis
ussion on the wave patterns that rea
h the 
ra
k front 
an be foundin [22℄.
(t)σ

(t)σ

C(t)

Crack

Figure 18: De�nition of referen
e problem.6.3.2 Stationary Cra
kAs a �rst test, we 
onsider the 
ase of a stationary 
ra
k. Dis
retizations 1 and 2 as des
ribedabove are used. The 
omputed mode-I and mode-II stress intensity fa
tors and the energyrelease rateG are plotted on Figs. 19 and 20, respe
tively. It 
an be observed a good agreementbetween the 
omputed and referen
e values for t < �t. The �nite dimensions of the extra
tiondomain for the stress intensity fa
tors and of the support of the shape fun
tions are responsiblefor the non-zero values 
omputed before the pressure wave hits the 
ra
k front (at t = t̂). It
an also be observed that both dis
retizations give basi
ally identi
al results.
38
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6.3.3 Moving Cra
k with Pres
ribed SpeedHere, the 
ra
k speed is given byC(t) = H(t� 0:00044)CR3 = H(t� 0:00044)1010:0and the dire
tion of the 
ra
k advan
ement is given by (18). Dis
retization 1 (�ne mesh)and 3 (
oarse mesh) are used. Figures 21 and 22 show the time history for KI , KII and G,respe
tively. While the 
omputed values present some os
illation, they are in good agreementwith the referen
e solution before t = t̂ (when re
e
ted waves hits the 
ra
k surfa
e). Organ[39℄, Krysl and Belyts
hko [22℄ and Belyts
hko and Tabbara [7℄ also reported os
illations ontheir results obtained with the element free Galerkin method. It 
an be observed that theGFEM solution was able to 
apture very well the slop of the referen
e solution. Figure 23shows the 
ra
k surfa
e at time t = 0:00168s.
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Figure 21: Time history for KI and KII 
omputed with Dis
retizations 1 and 3. The 
ra
kadvan
ement dire
tion is 
omputed using (18).The e�e
t of p enri
hment of the 
ra
ked elements is investigated by using Dis
retization4. The results for this dis
retization are shown on Figs. 24 and 25. It 
an be observed thethe p enri
hment of the 
ra
ked elements in
reases the amplitude of the os
illations of the
omputed quantities. Figure 26 is identi
al to Fig. 25 but here the ti
 marks of the x-axis arepla
ed exa
tly at the times when the 
ra
k front 
rossed the boundary between two elements.It 
an be observed that the peaks in the os
illations o

ur just before those instants. Note40
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ZFigure 23: Cra
k surfa
e at t = 0:00168s. Moving 
ra
k with advan
ement dire
tion given by(18).that as the 
ra
k 
rosses the boundary between two elements it passes 
lose to the nodes. Thissame phenomena was observed by Organ [39℄ using the element free Galerkin method.41
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oarse mesh and p
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retiza-tions 3 and 4). The ti
 marks of the x-axis are pla
ed exa
tly when the 
ra
k front 
rossesthe boundary between two elements.6.4 Welded T-Joint with a Cra
kIn this se
tion we present a truly 3D example on using GFEM for 
ra
k propagation. Theexample, as shown in Figure 27, is a beam with welded 
ross-se
tion (T-se
tion). An initialhalf-penny 
ra
k is pla
ed longitudinally between the weld and the web as shown in the �gure.The 
ra
k propagates due to an impa
t 
ouple loading applied at time=0 at the end of thebeam. Dynami
 waves travel through the body. On
e they rea
h the 
ra
k area, stressesin
rease sharply so that 
ra
k is propagated. It is assumed that both domain and loading aresymmetri
 with respe
t to the other end of the beam and, therefore, only half of the domainis analyzed.Both the web and the 
ange are made of the same linear elasti
 material with thefollowing properties:� Young's modulus = 200� 109.� Poisson's ratio = 0.3.� Mass density = 7833.The weld material is assumed to be ten times sti�er than the latter (i.e., Young's modulus43
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Figure 27: Welded T-se
tion beam with a 
ra
k. The initial 
ra
k surfa
e is represented using14 
at triangles. The representation of the outer skin of the body is also shown. The 
ra
ksurfa
e and the outer skin of the body are used by the geometri
 engine as des
ribed in Se
tion5.
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= 200� 1010). The Freund propagation model is used to advan
e the 
ra
k (see se
tion 4.1).The dynami
 fra
ture properties and parameters used to propagate the 
ra
k are as follows:� Least squares �t extra
tion domain: Cylinder of radius 0.5 and length 0.25.� Number of integration points in the r; � and z dire
tions: n = (5; 10; 3), respe
tively.� D is the material matrix.� Power for the weighting fun
tion = 3.� Dynami
 fra
ture toughness in a pure mode I, K̂ID = 75000.� Cra
k speed limit = 1212.The 
ouple is applied as two equal and opposite impa
t for
es at the two 
orners of the edge
ross se
tion with a value of 5� 106 ea
h.The initial 
ra
k surfa
e de�nition is shown in Figure 27. Note that the web is notin 
onta
t with the 
ange, but rather a small gap exists between the two. The domain isdis
retized for GFEM as shown in Figure 28. Note that the grid is made �ner around the
ra
k area. Linear approximation is used over all the domain.A transient dynami
 analysis is performed on the model des
ribed above. Newmarkmethod is used to mar
h the solution over time. Figures 29, 30, and 31 represent the 
ra
ksurfa
e at times 0.0015, 0.0020, and 0.0030 respe
tively. A solution for this problem is notavailable in the literature. Presentation of this example serves the purpose of demonstratingthe 
apabilities and potential of the proposed methodology to solve three dimensional 
ra
kpropagation problems in geometri
ally 
ompli
ated domains.7 Con
lusionsA partition of unity method for the simulation of three-dimensional dynami
 
ra
k propagationis proposed in this paper. The dis
ontinuity in the displa
ement �eld a
ross the 
ra
k surfa
e ismodeled by using a dis
ontinuous Shepard partition of unity to build the shape fun
tions. ThePU is 
omputed using Shepard formula, the visibility or wrap-around 
riteria and FE shapefun
tions as weighting fun
tions. This so-
alled FE-Shepard partition of unity has severalpowerful properties. It allows arbitrary 
ut of the �nite element mesh by the 
ra
k surfa
e.In fa
t, the �nite element mesh generation 
an be done as if there is no 
ra
k at all in thedomain. The 
ra
k surfa
e representation is independently 
reated of the �nite element meshand passed to the geometri
 engine whi
h provides basi
 fun
tionality like distan
e from apoint to the 
ra
k surfa
e, interse
tion of segments with the 
ra
k surfa
e, et
. This high level45



X

Y

ZFigure 28: GFEM dis
retization for welded T-se
tion beam.of modeling 
exibility avoids the 
ontinuous remeshing of the domain during the simulationof propagating 
ra
ks as done in standard �nite element methods. The examples presented inSe
tion 6 illustrate this feature.The 
omputational 
ost of the FE-Shepard PU over 
ra
ked elements is only marginallyhigher than usual �nite element shape fun
tions and mu
h smaller than, for example, movingleast square fun
tions. The numeri
al integration of the shape fun
tions 
an also be done aseÆ
iently as in the �nite element method sin
e the interse
tions of these fun
tions 
oin
idewith the integration domains.The FE-Shepard partition of unity degenerates to a standard �nite element PU alongthe boundary between 
ra
ked and non-
ra
ked elements and over non-
ra
ked elements.Therefore, it is not ne
essary to use any spe
ial transition element.Customized shape fun
tions that 
an reprodu
e, for example, the asymptoti
 expansionof the elasti
ity solution near the 
ra
k front 
an easily and naturally be 
onstru
ted usingthe partition of unity framework. The examples presented in Se
tion 6 demonstrate thee�e
tiveness of using 
ustomized fun
tions near the 
ra
k front.46
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Figure 29: Cra
k surfa
e of welded T-se
tion example at time 0.0015.
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y

z

Figure 30: Cra
k surfa
e of welded T-se
tion example at time 0.0020.47
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Figure 31: Cra
k surfa
e of welded T-se
tion example at time 0.0030.The present method 
an a

ommodate very general physi
s to predi
t 
ra
k dire
tionand speed of propagation sin
e it imposes no restri
tion on the geometry of the 
ra
k surfa
e(s).Most importantly, the implementation of the proposed method is quite straightforward. Itis essentially the same as in standard �nite element 
odes, the main di�eren
e being thede�nition of the shape fun
tions. The proposed method 
an be implemented into most lega
y�nite element data bases.A
knowledgements The support of the OÆ
e of Naval Resear
h to this proje
t under grantSBIR-ONR-N00014-96-C-0329 is gratefully a
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