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Abstract

This paper is aimed at presenting a partition of unity method for the simulation of
three-dimensional dynamic crack propagation. The method is a variation of the partition
of unity finite element method and hp-cloud method. In the context of crack simulation,
this method allows for modeling of arbitrary dynamic crack propagation without any
remeshing of the domain.

In the proposed method, the approximation spaces are constructed using a Partition
of Unity (PU) and local enrichment functions. The PU is provided by a combination
of Shepard and finite element partitions of unity. This combination of PUs allows the
inclusion of arbitrary crack geometry in a model without any modification of the initial
discretization. It also avoids the problems associated with the integration of moving least
squares or conventional Shepard partitions of unity used in several meshless methods.
The local enrichment functions can be polynomials or customized functions. These
functions can efficiently approximate the singular fields around crack fronts. The crack
propagation is modeled by modifying the partition of unity along the crack surface and
does not require continuous remeshings or mappings of solutions between consecutive
meshes as the crack propagates.

In contrast with the boundary element method, the proposed method can be applied
to any class of problems solvable by the classical finite element method. In addition,
the proposed method can be implemented into most finite element data bases. Several
numerical examples demonstrating the main features and computational efficiency of the
proposed method for dynamic crack propagation are presented.

1 Introduction

This paper is aimed at presenting a partition of unity method tailored for three-dimensional
crack simulations. The importance and difficulty of such simulations is reflected by the num-



ber of approaches that have been proposed over the past decades. Most of the techniques
proposed so far are restricted to stationary cracks or to cracks propagating in two-dimensional
manifolds. A survey of methods available can be found in [23,34]. In addition, many of the
techniques aimed at modeling three-dimensional crack propagation are restricted to planar
crack configurations [9] or require considerable intervention of the analyst during the simula-
tion process. Among the most versatile and promising techniques for simulation of arbitrary
crack propagation in three-dimensions are: (i) The boundary element method (BEM) is a very
appealing approach to solve this class of problems because it leads to a reduced dimensionality.
Examples of BEMs for three-dimensional crack propagation can be found in [20,21, 26, 47].
The main drawbacks of this approach are those inherent to the BEM. Namely, they are dif-
ficult to be extended to non-linear problems and can be quite computationally expensive;
(ii) Finite element methods with local remeshing around the crack front [8, 30, 43], while ver-
satile, are quite complex and can not be implemented in most existing finite element data
structures. The continuous remeshing and projections between successive meshes are also a
drawback of this approach; (iii) The element free Galerkin method [4-6,22, 23, 39], the hp
cloud method [15-17,35,37], the reproducing kernel particle method [27] are examples of the
so-called meshless methods. Krysl and Belytschko [22,23] have recently shown that the high
flexibility of these methods can be exploited to model arbitrary crack propagation in three-
dimensional spaces. Nonetheless the high flexibility of these methods comes at a substantial
computational cost. Moreover, they can not be implemented into existing finite element data
structures.

This paper presents a partition of unity (PU) method aimed at modeling crack propa-
gation in a three-dimensional space. This method uses the same partition of unity framework
used in hp-cloud [15,16], partition of unity finite element (PUFEM) [2,31] and generalized finite
element method (GFEM) [12,41]. The key difference between these methods and the method
presented here is in the choice of the partition of unity. Here, the partition of unity is provided
by a combination of Shepard [24,40] and finite element partitions of unity. This partition of
unity allows the inclusion of arbitrary crack geometry in a model without any modification of
the initial discretization. We call this partition of unity a finite element-Shepard partition of
unity. This choice of partition of unity also avoids the problem of integration associated with
the use of moving least squares or conventional Shepard partitions of unity which are used
in several meshless methods [6,28,33]. Although the partition of unity used in the method
proposed in this paper differs from that used in the GFEM presented in [12,41], we believe
that it is appropriate to refer to method developed here as a generalized finite element method
(GFEM). This is justified by the fundamental similarities of the two methods and because the
method presented here can also be interpreted as a variation or generalization of the classical
finite element method. Therefore we refer to the partition of unity method proposed here as
the generalized finite element method (GFEM).

This paper is organized as follows. In Section 2, the formulation of generalized finite
element approximations is presented. This includes the definition of the FE-Shepard partition
of unity used over cracked elements, the definition of generalized finite element (GFE) shape



functions and modeling of the crack front using customized functions. Sections 3 and 4 describe
the crack mechanics and physics used in the study. In Section 5, the computational engine
used to represent the crack surface and the boundary of the domain and their interaction is
briefly described. Several numerical examples are presented in Section 6. Finally, in Section
7, major conclusions of this study are given.

2 Formulation of Generalized Finite Element Approxi-
mations for 3D Crack Modeling

We begin this section by reviewing the concept of a partition of unity (PU).

Let © be an open domain in R", n = 1,2,3 and Ty an open covering of {2 consisting
of N supports w, (often called clouds) with centers at ¢,, o« =1,..., N, i.e.,

N
TN = {wa}ivzl Q C U Wa,

a=1

where the over bar indicates closure of a set.

The basic building blocks of any partition of unity approximation are a set of functions
o defined on the supports w,, @ =1,..., N, and having the following property

Soaeog(wa)aszoa ]-SQSN

> walx) =1 Ve

[0
The first property implies that the functions ¢,, a = 1,..., N, are non-zero only over the
supports ws, o =1,...,N. The functions ¢, are called a partition of unity subordinate to the

open covering Ty. Examples of partitions of unity are Lagrangian finite elements, moving least
squares and Shepard functions [16,24]. In the current work, two types of PU’s are utilized:
Finite element PU and a version modified for cracked elements.

2.1 Finite Element Partition of Unity

The case of a finite element partition of unity (FE PU) over non-cracked elements is briefly
discussed in this section. The case of elements intersecting the crack surface is discussed in
Sections 2.3 and 2.7.

In the case of a FE PU, the support (cloud) w, is simply the union of the finite elements
sharing a vertex node x., (see, for example, [31,36] and Fig. 1). The partition of unity function
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Figure 1: Clouds w,, ws and w, for a finite element mesh with a crack. Polynomials of
differing degree p,, ps and p, can be associated with nodes at x,, g and x, so as to produce
non-uniform p approximations.

¢4 is equal to the usual global finite element shape function NV, associated with a vertex node
T,

Let 7 be a finite element with nodes g, S € Z, where Z; is an index set and let
x = (z,y,2) € 7. In this work, we restrict ourselves to the case of linear Lagrangian FE PU
and perform p-enrichments using the technique presented in Section 2.4. Let Nj be linear
shape functions associated with nodes x5, 3 € Z,. Then, from the definition of Ng, there
exist constants af,a}, a3, B € Z;, such that V « € 7,

> Ng(z) = 1 (1)

ﬁel—r

> ajNg(x) = = (2)

BeL-
> apNs(@) = y (3)

ﬁel—r

> azNs(z) = =z (4)

BEL-

These basic properties of the finite element partition of unity are used in subsequent sections.



2.2 Shepard Partition of unity

The construction of a partition of unity using the so-called Shepard formula [25,40] is reviewed
in this section.

Let W, : R" — R denote a weighting function with compact support w, that belongs
to the space C§(w,), s > 0. Suppose that such weighting function is built at every cloud
We, @ = 1,...,N. Then the partition of unity functions ¢, associated with the clouds w,,
a=1,...,N,is defined by

W ()

o) = Y5 Ws(z)

pe{y | Wy(z)# 0} (5)

which are known as Shepard functions [25,40].

Consider now the case in which the weighting functions W, are taken as the global
linear finite element shape functions N, associated with node x,, « =1,...,N. Let 7 be a
finite element with nodes &g, # € Z, where Z; is an index set. The only non-zero partition of
unity functions at & € 7 are given by

__ Ng(=) _ Np(=)
305(13) - nyelf N,y(:E) - 61

:NB(:E) Bel,

since the finite element shape functions form a partition of unity. Therefore, it is not necessary
to use the Shepard formula to build the partition of unity when the weighting functions are
taken as global finite element shape functions. However, as demonstrated next, the above
formula is the key to build a partition of unity when the finite element 7 is severed by a crack.

2.3 Construction of a Discontinuous Partition of Unity

In this section, a technique to modify a finite element partition of unity over elements cut by
a crack surface is described. The PU is modified such that a discontinuity in the displacement
field across the crack surface is created. The PU is modified only for elements cut by the
crack. Elsewhere, a finite element partition of unity, as described in Section 2.1, is used. The
technique allows for elements to be arbitrarily cut by the crack surface without any mesh
modification. Over cracked elements, the PU is built using the Shepard formula (5) and finite
element shape functions as weighting functions in combination with the visibility criteria [5,6].
This partition of unity is denoted by FE-Shepard PU. The technique is first presented in a
general setting followed by several illustrative examples in a two-dimensional manifold.

Let 7 be a finite element with nodes xg, 3 € Z,, where Z, is an index set. Let
Ng, 8 € Z,, denote a linear finite element shape functions for element 7. In the visibility
criteria, the crack surface is considered opaque. At a given point & € 7, a weighting function



N, used in (5) is taken as non-zero if and only if the segment [z — x,] connecting = and x,
does not intersect the crack surface. This criteria was originally introduced by Belytschko
et al. [5,6] to model cracks in the element free Galerkin method and has since been used in
several other meshless methods.

Let 2" (x) C Z, denote the index set for all weighting functions that are non-zero at
point & € 7 according to the visibility criteria, that is

7" (x) = {y € I, | [® — x,] N crack surface = ()} (6)

Note that this set may be different for each point inside an element.

The FE-Shepard partition of unity for an element 7 with nodes x3, 3 € Z, is defined
by

VETYIS ()

7
0 ifB¢ IV (x) ™

Nﬁ(m) if ﬂ c Ivis(m)
pp(x) = { N () !

The definition above is valid for any type of finite elements and in any dimension. The
discontinuity in the FE-Shepard PU is created by the fact that two points located at opposite
sides of the crack surface use different sets of weighting functions to build the PU. The index
set 7% is distinct at these points although they may be geometrically very close to each other.
Several illustrative examples are given below using the discretization depicted in Fig. 2.

For elements that do not intersect the crack surface, the FE-Shepard PU is provided
by linear finite element shape functions. For example, at any point @ € 7 shown in Fig. 2 we
have ‘

I (x) =1, = {1,2,5,6}

Therefore, the PU is given by

e1(z) = N, pa(x) = No, ps(xz) = Ns, we(z) = Ng

The FE-Shepard formula (7) can also be used to build the PU but, in this case, the
results are trivial.
. Ny ()

Yao(x) = No(z) «a=1,2,56

Consider now the case of the element 75 shown in Fig. 2. At point y € 75, according to
the visibility criteria, the only non-zero weighting functions are Ng and N7, since the segments
[y — x10] and [y — 1] intersect the crack surface. That is

7 (y) = {6,7}
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Figure 2: Example of element partition discretization cut by a crack
The partition of unity at y € 7, is then given by
No(y) Nz(y)
vs(Y) = p1(y) = v10(y) = u(y) =0
S R B AR ey B )
Note that

_ Ns(y) + No(y) _
Ns(y) + Nq(y)

Therefore, the functions ¢g and @7, as defined above, constitute a partition of unity.

v6(y) + w1(y)

At point z € 1 ‘
T3 () = {10, 11}

and the partition of unity is given by

_ ng(Z)
Nlo(Z) + Nll(Z)

_ Nll(Z)
ng(Z) + Nll(Z)

v10(2) p11(2) ve(2) =0  r(2)=0

Therefore, the FE-Shepard partition of unity as defined above is discontinuous across the crack
surface.



As another example, consider the case of the element 73 with nodes x5, g, 9 and
as depicted in Fig. 2. At point r € 13

I:;S(T) = {5,6,9}
and the partition of unity is given by
Ns(r)
N5(T‘) + Ng(’f‘) + Ng(’l")
_ Ny(7)
N5(T‘) + Nﬁ(’f‘) + Ng(’l")

_ Ne(r)
N5(’I") + Nﬁ(’l") + Ng(’f')

ps(r) = w6 (T)

809(7‘) 8010(7‘) =

At point s € 73 ‘
77%(s) = {10}

and the partition of unity is given by
_ NIO(S)
NIO(S)

10(s) =1 ¢5(8) = v6(8) = wo(s) =0

Let us now show that the FE-Shepard PU is continuous at the boundary between
cracked and non-cracked elements.

Let 7 and 75 be a cracked and a non-cracked element, respectively. Let t € 71 N 7.
Suppose that the elements share a face in three-dimensions or an edge in two-dimensions. Let
Z, nr denote the index set of the nodes along this common face/edge. Note that

I:-)fs (t) ) Iﬂﬂm
since 7 is not cracked (which implies that the crack does not intersect the face/edge 71 N 7y).

In addition,
No(t)=0 if a€(Z,;, —Inn) or a € (I(Et)—In,) VEIERNT

since the only non-zero FE shape functions along a face/edge are those associated with nodes
on the face/edge. Therefore, the face/edge shape functions must form a PU. Then, for any
/8 S Iﬁﬁ’rw ( ) ( )
Nj(t Nj(t
Z'yGI”iis(t) 7( ) Z'yeleQ 7( )

pln (8) = Np(t)

Consider, as an example, the point ¢ located at the boundary between elements 75 and
Te, shown in Fig. 2. In this case,

IT2Q7'6 = {101 11} = I:;s(t)

8



Consider the PU function ¢ associated with node @xqy. If this function is computed from
element 7, we have

__ N
N Nlo(t) +N11(t) N

If the function ¢y is computed from element 75 we have

ng (t)

©10]r ()

_ ng (t)
~ Nig(t) + Nii(t) + Nis(t) + Nig(t)

©107 () = Nio(2)

Therefore ¢19|m2(t) = v10l(t) and the function ;g is continuous at ¢.

The FE-Shepard PU defined in (7) allows arbitrary cut of the finite element mesh by the
crack surface. Therefore, from the view point of modeling crack propagation, this technique
enjoys all the flexibility of the so-called meshless methods. The computational cost of FE-
Shepard PU over cracked elements is only marginally higher than usual finite element shape
functions. For non-cracked elements this PU degenerates to the usual FE PU. In contrast,
the computational cost of moving least squares functions, which are used in several meshless
methods, is orders of magnitude higher than usual finite element shape functions, especially
in three dimensional settings (see [17] for a comparison).

The FE-Shepard PU functions (7) are, in general, rational polynomials which are non-
zero only over part of a cracked element. Therefore special care must be taken to numerically
integrate these functions over cracked elements. In our current implementation, higher order
Simpson rule is used for cracked elements. More efficient approaches, however, can be used.
One possibility is to use an integration mesh over cracked elements that follows the crack
boundaries. This mesh can easily be generated since it is used only for integration /visualization
purposes and does not have to conform with neighboring elements. In the case of non-cracked
elements, standard Gaussian quadrature can be used.

All the computations can be carried out at the element level as in standard finite
element codes. And, importantly, the numerical integration of FE and FE-Shepard PU can
be done very efficiently since the intersections of these functions coincide with the integration
domains. This is in clear contrast with meshless methods based on moving least squares
functions where the integration of the stiffness and mass matrices is computationally expensive.

Linear combination of FE-Shepard functions can not, in general, reproduce linear poly-
nomials. That is, properties (2), (3) and (4) do not hold for the partition of unity associated
with elements intersecting the crack surface. In Section 2.4, we present a technique to hierar-
chically add shape functions to cracked elements such that the resulting GFEM approximation
can reproduce linear or higher order polynomials.



2.3.1 FE-Shepard PU for Elements at the Crack Front

Let us consider more closely the case of elements that contain the crack front. The same
technique described above to build the FE-Shepard PU can be used at these elements. Con-
sider, for example, point y in element 7 with nodes x5, ¢, s and xg as depicted in Fig. 3.
According to (7), the PU is given by

Ns(y) Ns(y)

/Crack
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Figure 3: Construction of a FE-Shepard PU for an element at the crack front using the
visibility criteria.
Consider now point z € 7, at the other side of the crack surface. Here, the partition

of unity is given by

Ng(2) No(2)
ws(z) = Na(z) + No(2) o(z) = Ns(2z) 4+ No(2)

The PU is therefore discontinuous along the crack surface.

Consider now points r and s € 7 as depicted in Fig. 4. Equation (7) gives

_ Ns(s)
N5(Z) + NG(Z) + Ng(Z) + Ng(Z)

vs(s) = Ng(s) #0

10



while
©s (’f‘) =0

since the segment [r —xg] intersects the crack surface. Therefore, the visibility criteria leads to
spurious lines/surfaces of discontinuities inside the elements at the crack front. This problem
is intrinsic to the visibility criteria and it appears in all meshless methods that use it to model
crack surfaces [4,15,38]. In spite of this drawback, the visibility criteria is the favorite tech-
nique to model cracks in the context of meshless methods, probably because of its flexibility
and relative ease of implementation in any dimension. Also, numerical experiments demon-
strate that in spite of the spurious discontinuities introduced, the visibility criteria allows the
computation of accurate stress intensity factors (see Section 6 and [5,22,23]).

Another technique to model the crack front is presented in Section 2.7. This technique
is based on the wrap-around algorithm [15,17] and the use of customized functions. In contrast
to the visibility criteria, the wrap-around criteria does not introduce spurious discontinuities.

Spurious
Crack Discontinuity
8
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N
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Figure 4: Spurious discontinuity on a FE-Shepard PU created by the visibility criteria.

2.4 Generalized Finite Element Shape Functions: The Family F%

The construction of the so-called generalized finite element or cloud shape functions is based
on the following observation:

11



Let {L;}ic7 denote a set of functions which can approximate well, in an appropriate
norm ||.|| ;, the solution u of a boundary value problem posed on a domain €. Therefore, there

exists up, € span{L;} given by
Unp = > u; Ly,
i€T

where Z denotes an index set, such that

|upp — ullp <€, € <<1

Now consider the following set of so-called cloud or generalized finite element (GFE)
shape functions, defined as
o5 1= pa L, a=1,...,N, 1 €T
where ¢,, a =1,..., N constitute a partition of unity (of any type) subordinate to an open

covering Ty of €. Then, it is not difficult to show that linear combinations of these shape
functions can also approximate well the function u

ZZU@? = ZZUiQOaLi ZthaZuiLi

= Z Pallpp = Upp Z Pa = Upp (8)
a o

Note that:

(i) The shape functions ¢%, a =1,..., N, i € Z, are non-zero only over the support of the
function ¢,, i.e., the cloud w,.

(ii) Linear combination of generalized finite element (GFE) shape functions can reproduce
the approximation uy, to the function u.

(iii) The functions L;, i € Z, can be chosen with great freedom. The most straightforward
choice is polynomial functions since they can approximate well smooth functions. How-
ever, for many classes of problems including the case of fracture mechanics problems,
there are better choices. This case is discussed in detail in Section 2.5.

In this section, generalized finite element shape functions are defined in an n-dimensional
setting using the idea outlined above.

Let the functions ¢,, o = 1,..., N, denote a FE or FE-Shepard partition of unity
subordinate to the open covering Ty = {w,}2_, of a domain Q C R", n = 1,2,3. Here, N is
the number of vertex nodes in the finite element mesh. The cloud w,, is the union of the finite
elements sharing the vertex node x,, regardless if the element is cracked or not (Cf. Fig. 1).

12



Let Xa(wa) = span{Li, }icz(a) denote local spaces defined on w,, a =1,..., N, where
Z(a),a=1,..., N, are index sets and L;, denote local approximation functions defined over
the cloud w,. Possible choices for these functions are discussed below.

The generalized finite element (known also as cloud) shape functions of degree p are
defined by
Fr ={¢¢ = aLin | a=1,...,N, i € I(a)} (9)

Let Z. denote the index set of the nodes x, that belong to cracked elements. For this set of
nodes, we enforce that
Pp(wa) C Xalwa) p>1 a€l,

where P, denotes the space of polynomials of degree less than or equal to p. For all other
nodes, it is only required that

Pp—l(wa) C Xa(wa) p=>1 ad .

The above requirements guarantee that linear combination of the GFE shape functions
over any element (cracked or not) can reproduce polynomials of degree p. The proof follows
the same arguments used in (8) and is presented in details in [12].

The GFE shape functions can then be used in combination with, e.g., a Galerkin
method to solve any class of boundary value problem solvable by the finite element method.
We call this approach the generalized finite element method (GFEM). The implementation
of the method is essentially the same as in standard finite element codes, the main difference
being the definition of the shape functions given in (9). The FE and FE-Shepard partitions of
unity avoid the problem of integration associated with moving least squares PU built on circles
or spheres. This type of PU is used in several meshless methods. Here, the integrations can
be efficiently performed with the aid of the so-called master elements since the intersections
of the global GFE shape functions coincide with the integration domains. Therefore, the
GFEM can use existing infrastructure and algorithms for the classical finite element method.
In the context of crack modeling, the GFEM allows arbitrary cut of the finite element mesh
by the crack surface while being computationally efficient. The computational cost of GFE
shape functions over cracked elements is only marginally higher than usual finite element
shape functions. For non-cracked elements the computational cost of GFE shape functions is
basically the same as finite element shape functions of the same polynomial order.

There is considerable freedom in the choice of the local spaces x,. The most obvious
choice for a basis of x, is polynomial functions which can approximate well smooth functions.
In this case, the GFEM over non-cracked elements is essentially identical to the classical FEM.
Some important differences do exist though [11,12]. There are many situations in which the
solution of a boundary value problem is not a smooth function. In these situations, the use of
polynomials to build the approximation space, as in the FEM, may be far from optimal and
may lead to poor approximations of the solution u unless carefully designed meshes are used.

13



In the GFEM, we can use any a-priori knowledge about the solution to make better choices
for the local spaces x,. This is the case of fracture mechanics problems. The construction of
these so-called customized GFE shape functions over cracked elements is discussed in detail
in the next section.

2.5 Customized GFE Shape Functions for a Crack in 3D

The construction of customized GFE shape functions for a crack in a three-dimensional space
is summarized in this section. This is a special case of the formulation presented by Duarte
et al. [12] which deals with a convex edge of arbitrary angle.

Consider a crack embedded in a three-dimensional body as depicted in Fig. 5. Both
a local Cartesian coordinate system (&, 7, () and a cylindrical coordinate system (r, 0, (') are
associated with the crack at origin (O, O, O,).

The displacement field w(r, 6, (') in the neighborhood of a straight crack front far from
its ends can be written as [44,45]

ue(r, 0) SN N, ufj (2) uf] (3)
U(T, 9, CI) = uﬂ (T7 0) - Z Aj un? + Aj UTIQJ) + Aj 03 (10)
UC(T, 9) J=1 0 0 Ué])

where (7,0, (') are the cilyndrical coordinates relative to the system shown in Fig. 5, ug(r,0),
Uy (r, ) and uc(r,0) are Cartesian components of w in the {—, n— and (— directions, respec-
tively.

na
Crack Front
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Figure 5: Coordinate systems associated with an edge in 3D space.

Assuming that the crack boundary is traction-free and neglecting body forces, the

14



W w4 are given by [44, 45]

functions ug/, u, /', ug, uy;

ul(r,0) = ;; {Is = Q" (N + 1) cos \,0 — A, cos (), — 2)6}
ug-)(r, 0) = % {[KJ — Qg-Q)()\j +1)]sin A;0 — A;sin (A; — 2) 9}
u,%)(r, 9) = % {[H + Q;l)()\j 1)]sin \;0 + A, sin (A; — 2 9}
u,%)(r, 6) = —g—z {[H + Q;Q)()\j + 1)Jcos A;0 + A, cos (A; — 2)0}

where the eigenvalues \; are Ay = 1/2, \; = (j+1)/2, j > 2. The material constant
k=3—4v and G = F/2(1 4+ v), where E is Young’s modulus and v is Poisson’s ratio.

The parameters le) and QgQ) are given by

~1 j=3,5,7,... ~1 j=1,2,4,6,...

where A; = (A, —1)/(A; +1).

Assuming that the crack boundary is traction-free, body forces are negligible, and crack

front is straight, the functions ug) are given by [44]

2@
o | SesinY =135
Ugj = A(3)

G cos)\ i j=2,4,6,...

where A = j/2, j > 1.

Prior to employing the above functions to build customized generalized finite element
shape functions, they first have to be transformed to the physical coordinates ¢ = (z,y, 2).
The transformation method is described in [12].

Let
o o 6 2 2 6 (11)

Ugy s uyla Uyrs Ugys uyla Uz

denote the result of such transformation applied to uéll), u,gll), ug), ug), u,(721), ug), respectively.

The construction of customized GFE shape functions using singular functions then
follows the same approach as in the case of polynomial type shape functions. Here, the
singular functions from (11) take the role of the basis functions L;, defined in Section 2.4 and
are multiplied by the partition of unity functions ¢, associated with nodes near a crack front.
The customized GFE shape functions used in the computations of Section 6 are built as

) 1) 3 (2 (2 (3
Pa X {u(xl)aug(/l): Ugl): U;l)a Ug(;l)au,(zQ)} (12)

15



Here, « is the index of a finite element vertex node near a crack front in 3D. Note that
not necessarily the same set of singular functions is used at all enriched nodes. As discussed
in Section 5, the crack front is modeled as a piecewise linear object. Therefore the orientation
of the local coordinate systems used to build the customized functions (see Fig. 5) changes
along the crack front.

The customized functions u%), u;?, ug?;-), ufj), ug) defined above are presented here

as a simple illustrative example and, as such, they are limited to the special case of piecewise
linear crack fronts. It also assumes that the crack surface near the crack front is flat. More
general types of customized functions, built analytically as above or perhaps numerically, can
be used without any change to the definition of the customized GFE shape functions. The
GFEM does not require the availability of customized functions to be able to model a crack.
As shown in Section 2.3, the crack can be modeled through proper construction of the partition
of unity. Nonetheless, if customized functions are available, they can considerably improve
the accuracy of the method and, as shown in the next section, they can also be used to model
the crack front without the spurious discontinuities created by the visibility criteria.

The enrichment of the elements near the crack front with singular functions brings
up the issue of numerical integration. In this investigation, our main goal is to analyze the
effectiveness of this type of enrichment and, for simplicity, we use a high order quadrature
rule in the elements with singular functions. We adopt the Simpson rule with 10 points in
each direction for the case of hexahedral elements. Integration of the singular functions can,
of course, be implemented in a much more efficient way. Adaptive integration schemes, such
as the one proposed in [42], can be used.

2.6 Examples of GFE Shape Functions

In this section, GFE shape functions for cracked and non-cracked elements are presented
using the definition (9). The issue of linear dependence of these functions and how to solve
the resulting system of equations is discussed in [12,41].

Let 7 C R? be a finite element with nodes xg, # € I, where Z; is an index set. The
case of elements in one- or two-dimensional spaces is analogous.

2.6.1 Quadratic GFE shape functions for a non-cracked element

Quadratic GFE shape functions for a non-cracked element 7 are given by

55’:2;:%x{1,x;xﬁ,y;yﬁ,zg%} BeT, (13)
B B B

where ¢4 is a standard linear Lagrangian FE PU, xs = (xg,ys, 25) are the coordinates of
node 3 and hg is the diameter of the largest finite element sharing the node 3. Details are
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described in [12]. Tt can be shown that the shape functions defined above are complete of
degree two [12].

2.6.2 Linear GFE shape functions for a cracked element

Here, we consider the case in which an element 7. with nodes x5 € Z,, is fully or partially
severed by the crack surface. The partition of unity over this element is given by the FE-
Shepard formula (7). Linear combination of these functions can not, in general, reproduce
linear polynomials although in many cases, depending on how the crack surface is located
within the element, some linear monomials can still be reproduced. For simplicity, and taking
into account that the number of cracked elements is much smaller than the total number
of elements, we prefer to assume that the PU over cracked elements can reproduce only a
constant. Therefore, the PU has to be enriched with linear polynomials in order to guarantee
that the GFE shape functions over cracked elements are complete of degree one.

Siti= gy x {1, 2 L P2y et (14)
‘ hsg — hs g
The only difference between (13) and the above is in the definition of the partition of unity
s

2.6.3 Linear GFE shape functions for a cracked element enriched with cus-
tomized shape functions

Customized GFE shape functions as those defined in (12) can be added to the shape functions
of elements containing the crack front. A linear cracked element enriched with functions (12)
has the following shape functions

St = x {1, 2 I ) ) ) ) BeZ, (15)
B B 8

2.7 Crack Front Modeling Using Wrap-Around Approach and Cus-
tomized Functions

In this section, another technique to model the crack at elements intersecting the crack front
is presented. The technique is based on the wrap-around algorithm [15,17] and the use of
customized functions like those defined in Section 2.5. In contrast with the technique based
on the visibility criteria, the wrap-around criteria does not introduce spurious discontinuities.

From the definition of the GFE shape functions given in (9) it is observed that if the
functions L;, are discontinuous, the resulting GFE shape functions are also discontinuous.
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The crack can therefore be modeled by simply multiplying a standard FE PU (or any other
PU) by appropriate customized functions that can accurately represent the displacement field
near the crack (not only at the crack front). This approach has been successfully used by
Duarte and Oden [17,35,37] in two dimensions. It is also essentially the same technique used
in [42] to model holes and inclusions in elastic plates. More recently, Belytschko et al. [3,10,32]
have applied this approach to propagating cracks in two dimensions. They have also proposed
several variations for the functions L;, including discontinuous step functions and near crack
tip assimptotic fields. Suppose now that such customized functions are available at least near
the crack front. Then, customized GFE shape functions can be used for elements near the
crack front and the definition of the FE-Shepard PU given in (7) can be modified such that
no spurious discontinuity is created.

The FE-Shepard PU is defined as follows in the case of wrap-around (WA) algorithm.
First, all nodes belonging to elements that intersect the crack front are marked as wrap-around
nodes. Then, instead of the index set defined in (6), the following is used at a point « belonging
to finite element 7

I'(x) = {y € I, | [x — x,] N crack surface = () or @, is a wrap-around node} (16)

The FE-Shepard partition of unity for an element 7 with nodes x5, 3 € Z; is then defined as

N3 () : wa
{ Sy eI (@)

yeTwa (L)

(17)
0 if g¢ Iy ()

ps(x) =

For elements at the crack front it is as if the crack does not exist since all nodes of the
element are marked as WA nodes then,

T (z) =7, Vzer

In this case, the crack front is modeled by customized shape functions as those defined in (12).
In addition to rendering a discontinuous field at the crack front, these GFE shape functions
allow accurate approximation of the solution without any mesh modifications. For elements
that have a neighboring element at the crack front, the crack is modeled by a combination of
the visibility algorithm and the customized shape functions. But in this case case, no spurious
discontinuities are created. In the case of other cracked elements, the crack is modeled solely
by the visibility algorithm. Here again, no spurious discontinuities are created.

As an example consider the element 7 depicted in Fig. 6. At point r € 7, we have
i (r) =17, = {5,6,8,9}
In the same figure, at point ¢ € 7 we have
¥ (t) =1 = {4,5,7,8}

While for point z € T,
1"(z) = {5.8}
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Figure 6: Modeling the crack front using the wrap-around algorithm.

3 Extraction of Stress Intensity Factors:
The Least Squares Fit Method

Once the solution is obtained at some time step, the amount and direction of crack propagation
over the next time increment can be predicted. The crack front is represented as a series of
straight line segments connected at vertices. The stress intensity factors (SIF’s) are calculated
at the vertex points along the crack front. Figure 7 represents flowchart of the computer
program PHLEXcrack”™ used for this study with the fracture dynamics process implemented
in it.

The Least Squares Fit method is used for the calculations of SIF’s. In this method,
the STF’s are obtained by minimizing the errors among the discretized stresses calculated from
the solution and their asymptotic values. The method has produced accurate results in finite
element settings. In this work, it has been extended to be used with the three-dimensional
dynamic GFE model used.

Define the least-squares functional as:

J(K(y) = (0" —o,0"—0)y M=I—TIIT and 1=1,..., I
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Figure 7: Flowchart of PHLEXcrack™™
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where K, is the /th stress intensity factor associated with mode M at vertex y. The inner
product (, )y is defined as:

Nspl m m
(U,’U)y = Z ( Uz‘(%)@?”g‘(%)) Wa(y)a
a=1 \j=11:i=1
and (see Figure 8)
w={uy, ug, ..., Up}, v ={v1,09,..., 05} are any two vectors in R,

o' (x) is the discretized stress vector at point x,

o(x) = YL Slma [KﬁwFlM(m)] is the asymptotic stress vector,
F! (x) = fi,;(r)gh, () are the asymptotic functions,

y is the position vector of a vertex on the crack front,

x, is the position vector of a sampling point,

Ny is the number of sampling points in a domain centered at y,

D™ € R™ x R™ is the inverse of an auxiliary matrix D. Appropriate choices for D are
the material stiffness matrix or the identity matrix, and

W,(y) € R(Q) is a weighting function associated with sampling point x, and is given by
1

Wel¥) = [yl

where p is typically 3-6.

Stress intensity factors K, are found by minimizing the least-squares functional:

a_J:() M=1-1II l:1,1---,lmax
oK,

This leads to the following system of equations:

IIT qmax

S N KL (FY Fhy)y = (0" Fhy)y M =1-111 1=1,...lhu

M=I ¢=1

If only the first terms (I = 1) of the three modes are used, the three corresponding K'’s
are found by solving:

(FLE),  (FLFh),  (FLFh), ][ K) (0" F]),
(FIH, FI1)y (Flna Fflf)y (Flua FIIII)y KIII = (O'h ; Flu)y
(FIII:FI)Y (FHDFH)Y (FIII:FIII)Y Ky (0' :FIII)Y
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Figure 8: Domain used for the Least Squares Fit method.

The domain used for the Least Squares Fit method is a cylinder centered at the vertex
with its axis along the tangent of the crack front at that vertex. The dimensions of the cylinder
and the number of sampling points in the r, 0, and z directions are input data. In addition,
one can choose the type of the D matrix and the weight p.

4 Crack Evolution Models

The Stress Intensity Factors (SIF’s) calculated above are used to determine whether the crack
will advance or not, and the amount and direction of propagation, if any. The front is then
advanced to its new position, the crack surface is extended, and the numerical model is updated
accordingly.

Crack propagation quantities are calculated based on some physical models. Crack
physics, however, are not well known, especially so for three dimensional problems. Therefore,
fracture models usually make extensive use of plane strain physics models. In this work, two
physical models have been used.

4.1 The Freund Model [18,22, 39]

In this model, direction of crack growth in the plane normal to the crack front is given by:

1 [ K Kr\?
0= 2tan 31 | - = sign(Kn) (K—III) +8 (18)
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for K;;7 # 0, and # = 0 for K;; = 0. In the equation above, # is measured with respect to
the forward vector n;. Vector n; is the crack front forward normal vector; it lies along the
intersection of the planes normal and tangent to the front at the vertex (see Figure 9).

n1 forward vector

n, crack surface normal

t  tangent vector

Figure 9: Local unit vectors at crack vertex.

It was assumed that mode III does not affect crack direction; it only affects crack speed.
The term sign(K/;) in equation (18) above is to guarantee a positive stress intensity factor
along the direction given by #. It also corresponds to the direction normal to the maximum
hoop stress.

The current energy release rate of a stationary crack is calculated at every vertex as:

K} uiv K2
Gl = =hee 4 S0,

where ;
KI,equi'u = KI COSS(G/Q) - 5[([[ COS(@/Q) sin 9,

1 is the shear modulus, and E* is the effective Young’s modulus. For plane strain, £* is given
by:
E

Br= 2
1—v?’

where F is Young’s modulus and v is Poisson’s ratio. Crack will propagate at a vertex if:
G(0) > Gepit, (19)
where G, is the critical energy release rate given by:

Kipli) _ K3,
Ex Ex

Gcrit =
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and K;p is the dynamic fracture toughness in a pure mode I crack (in general a function of
crack speed, a); it is approximated by the constant value K;p which is given as a material

property.

The speed at which the crack will propagate at a vertex (a) is then calculated by solving
for the roots of the quadratic equation:
-1

Ve — (U + e+ —— =0

where I' = G(0)/Geiy > 1, ¥ = cg/cym > 1, and € = a/cg < 1. ¢y is the limiting crack
speed (< cg) given as an input quantity. cg is Rayleigh wave speed given as a root of:

46152 — (14 B3)* =0,
where,

2
f2=1-— (C—R) (cq = dilatational wave speed = \/Z—Jj}\/g in plane strain),

Cd
2
B =1-— (CC—R) (cs = shear wave speed = \/g in plane strain), and
k = Kosolov constant = 3 — 4v (for plane strain).

In the above, u is the shear modulus and p is the mass density.

4.2 Prescribed Velocity Model

In this model, the propagation angle is calculated using equation (18) above, and the prop-
agation criteria is given by equation (19). The crack speed, however, is calculated according
to a pre-defined function. This function is given as an input data. The function is usually a
piecewise linear function of time that can take into account for instance the initial time needed
for stress waves to reach the crack front.

5 Representation of the Crack Surface

The representation of the crack surface in the proposed method is completely independent of
the mesh used. In our present implementation, the crack surface is represented as a set of flat
triangles as shown in, for example, Figs. 11(a), 13(b), 27. The crack front is represented by
straight line segments connecting the nodes of the triangles along the front. This model of
the crack surface is the same used by [23]. The representation of the outer skin of the body is
also required by the “crack geometric engine” i.e., the part of the code that handles the crack
representation. Figures 11(a) and 27 show examples of the representation of the other skin
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of a body. They are as simple as possible and can be composed of several types of geometric
entities. The geometric engine handles queries about intersection of segments with the crack
surface, distance of a point from the crack surface, orientation of normal and tangent vectors
along the crack surface, etc. The geometric engine also updates the crack surface after each
crack advancement. It automatically refines the triangles at the crack front in order to ensure
a geometrically precise representation of the crack surface. This can easily be implemented
since the triangulation of the crack surface does not have to constitute a valid finite element
mesh. The geometric engine uses the representation of the outer skin of the body in order to
handle surface breaking cracks and cracks intersecting the boundary.

6 Numerical Examples

The generalized finite element method (GFEM) presented previously is used in this section to
solve several illustrative examples. In all examples, the stress intensity factors are computed
using the least squares fit method presented in 3.

6.1 Single Crack with Mode I Solution Under Static Loading

The edge-cracked panel illustrated in Fig. 10(a) is analyzed in this section using the GFEM.
The following parameters are assumed in the computations: h = b = 1.0, a = 0.5, distributed
tractions o = 1.0 and uniform thickness t = 0.1. The material is assumed to be linearly elastic
with £ = 1000.0 and v = 0.3.

The domain is discretized using the hexahedral mesh shown in Fig. 10(b). There are
961 elements in the mesh. A state of plane strain is modeled by constraining the displacement
in the z-direction at z = 0 and z = ¢t. The representation of the crack surface is shown in Fig.
11(a). It is composed of four triangles and two edge elements (used to identify the crack front).
These triangles are used only for the geometric representation of the crack surface. There are
no degrees of freedom associated with them. The stress intensity factors reported for this
problem are computed at & = (0.5, 1.0,0.05) which is a point at the crack front located at the
middle plane of the body. The geometric definition of the outer skin of the domain (shown
on Fig. 11(a)) is also given as input data for the crack geometric engine. The base vectors
of the coordinate system associated with singular functions used at the crack front are also
displayed in Fig. 11(a). The base vectors and corresponding singular functions are computed
completely automatically using the geometric engine. This functionality is specially important
during dynamic crack propagation simulations or when the geometric of the domain or crack
surface are not so trivial as in this example.

Figure 11(b) shows a closer look at the discretization near the crack front. It can be
observed that the crack surface does not respect the element boundaries—It can arbitrarily cut
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(a) (b)

Figure 10: Single edge-noth test specimen and GFEM discretization.

the elements in the mesh. The nodes carrying singular degrees of freedom are represented
by diamond-shaped dots. The singular functions used at these nodes are those presented
in Section 2.5. Whenever they are used, only the nodes of the elements that contain the
crack front are enriched with these singular shape functions (in this example, there is only
one element at the crack front). The enrichment of the elements at the crack front with
appropriate singular functions is done automatically using the geometric engine to construct
appropriate coordinate systems at the crack front.

The computed values of K; and of the strain energy, U, for several discretizations are
shown on Tables 1 and 2. In the tables, Neq denotes the number of equations associated
with a particular discretization. The crack is modeled using a FE-Shepard partition of unity
as defined in Section 2.3 or 2.7. In the first case, the discontinuity in the displacement
field is modeled using the visibility algorithm in combination or not with singular functions.
The results using this approach are shown in Table 1. In the second case, the wrap-around
approach in combination with singular functions at the crack front is used. The results using
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Figure 11: Crack representation.

this approach are shown in Table 2. In both cases, p enrichment is done using the family
of functions Fj defined in Section 2.4. The notation p = 1+ py, 1+ py, 1 +p, = 1+
(Pzs Dy, p2) is used to denote the polynomial order of the approximation over non-cracked
elements. The “1’s” indicating the linear order of the functions defining the partition of
unity (linear hexahedral finite element shape functions in this case) and p,,p,.p, denote
the degrees of the polynomial basis functions L;, in the z,y, z directions, respectively. The
functions L;, are defined in Section 2.4. If only the partition of unity is used, we have
p=1+0,140,14+0=1+0. A quadratic approximation in the plane XY and linear in
the z-direction is denoted by p=1+1,1+1,1+0 =1+ (1,1,0). For cracked elements, the
polynomial degree of the approximation is denoted by p. = 0+ps, 0+py, 0+p, = 0+(py, Dy, P2).
The “0’s” indicating that, in general, the functions defining the partition of unity over cracked
elements can only represent a constant function. A quadratic approximation in the plane XV
and linear in the z-direction over cracked elements (fully or partially cracked) is denoted by
Pe=0+20+20+1=0+(2,2,1).

The stress intensity factors are computed using the least squares fit method presented
in Section 3. The following parameters are used in all computations presented in this section:

e Dimensions of the extraction domain: d = (0.4,1.0,0.05). Which represents a cylinder

27



of radius 0.4 and length 0.05.
e Number of integration points in the r, 6 and z directions: n = (10, 20, 1), respectively.
e Type of weighting matrix D: identity matrix

e Power of the weighting functions: 6.

It was observed from numerical experiments on this and other examples that the choice
of the matrix D (material or identity) does not have tangible effects on the calculated values
of the stress intensity factors. In addition, different values for the power of the weighting
function were tested. A value in the range of [3-6] was observed to be sufficient.

As a reference, the value of K; computed by Tada et al. [46] using a boundary technique
is used. The value K79 = 3.54259 reported in [46] has an error smaller than 0.5%.

The discretizations Vis-1, Vis-3 and Vis-5 do not use singular functions at the crack
front while the discretizations Vis-2, Vis-4 and Vis-6 do. All "Vis’ discretizations use the
visibility approach to build the PU over cracked elements as described in Section 2.3. It can
be observed from Table 1 that the use of singular functions gives a noticeable improvement on
the computed stress intensity factors while the increase in the number of degrees of freedom is
only marginal (less than one percent in the case of the discretization Vis-5). In contrast, the
p-enrichment of the cracked elements (discretizations Vis-1 and Vis-3) gives little improvement
on the computed K;. Nonetheless, the enrichment does improve the computed strain energy
by about 3%. This behavior indicates that the technique used to compute the stress intensity
factor is not optimal since, optimally, the computed stress intensity factors must converge at
the same rate as the computed strain energy [44,45].

The discretizations WA-1, WA-2 and WA-3 use singular functions in combination with
the wrap-around technique to build the PU over cracked elements as described in Section
2.7. Comparing the results for the discretizations Vis-2 with WA-1 or Vis-4 with WA-2, it
can be observed that, for the same number of degrees of freedom, the wrap-around approach
gives better results for the stress intensity factors than the visibility approach. This is in
spite of the fact that the discretizations using wrap-around have a smaller strain energy than
the corresponding discretizations using visibility. This can be explained by the fact that the
visibility approach creates spurious discontinuities in the displacement field near the crack front
which results in a less stiff discretization compared with the wrap-around approach (which
does not creates such spurious discontinuities). It can be observed that the discretization WA-
2 gives a better value for K; than the discretization WA-3 in spite of the fact that the later
gives a larger value for the strain energy than the latter. This, again, points to limitations of
the technique used to compute the stress intensity factor.
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Table 1: GFEM using the partition of unity defined in Section 2.3. The stress intensity factor
is computed at (0.5,1.0,0.05). In the table, “Discr” stands for discretization, “Sing Fn” stands
for singular functions at the crack front, “Neq” stands for number of equations and “U” stands
for strain energy.

Discret. | p=1+ | p. =0+ | Sing Fn | Neq |Ux 10| K; | K;/K}la
Vis1 | (0,0,0) | (L11) | No | 6,756 | 2.27136 | 3.2387 | 0.91422
Vis2 | (0,0,0) | (1,1,1) | Yes | 6,900 | 2.32941 | 3.3741 | 0.95244
Vis-3 (0,0,0) (2,2,1) No 7,776 | 2.33848 | 3.2495 | 0.91727
Vis-4 (0,0,0) (2,2,1) Yes 7,920 | 2.36701 | 3.3938 | 0.95800
Vis-s | (1,L0) | (221) | No | 19,656 | 2.38643 | 3.4339 | 0.96932
Vis6 | (1,1,0) | (2.2,1) | Yes | 19,800 | 2.42281 | 3.4584 | 0.97623

Table 2: GFEM using the partition of unity defined in Section 2.7. The stress intensity factor
is computed at (0.5,1.0,0.05).

Discret. | p=1+ | p. =0+ | Sing Fn | Neq |U x 10| K; | K;/K}la
WAL | (0,0,0) | (L11) | Yes | 6,900 | 2.22465 | 3.3886 | 0.95653
WA2 | (0,0,0) | (221) | Yes | 7.920 | 2.25596 | 3.4228 | 0.96618
WA-3 | (1,1,0) | (221) | Yes | 19,800 | 2.20396 | 3.3431 | 0.94369

6.2 An Inclined Crack Problem

As another test problem, we consider the cracked panel shown in Fig. 12(a). This problem was
analyzed by Szab6 and Babuska [44] using the p-version of the finite element method and by
Oden and Duarte [35] using the hp Cloud method. In both references, plane stress condition
and unit thickness are used. Here, the plane stress condition is approximated by using a small
thickness, t = 0.1, for the domain compared to the other dimensions. In addition, we assume
Young’s modulus E = 1, Poisson’s ratio v = 0.3, distributed traction o = 1.0 and w =1 (see
Fig. 12(a)). These same values are used in references [44] and [35]. We adopt as a reference,
the values of K;, K7 and strain energy, U, computed by Oden and Duarte [35]. They are,
respectively,
K7 =1.508284

Kiel = —0.729706
Uftel = 0.170402

These values agree very well with those computed by Szabé and Babuska [44] (less than 0.1%
difference). The value of the U®¢/ was scaled to take into account the difference in thickness
used here (t = 0.1) and adopted by Oden and Duarte [35] (¢ = 1.0).

The discretization of the domain using 765 hexahedral elements is shown on Fig. 12(b).
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(a) Problem definition. (b) GFEM discretization.

Figure 12: Mixed-mode crack problem.

The inclined crack is also shown in the figure. Figure 13(a) shows a closer look near the crack.
It can be observed that the crack surface cuts the elements in the mesh in a quite arbitrary
manner. In fact, the meshing of the domain is done as if there is no crack at all. The only
consideration used during the meshing of the domain was to use a more refined mesh near the
location of the crack front. The crack representation is created and passed to the geometric
engine as input data. The geometric engine uses no information whatsoever about the mesh.
Nodes in the mesh that are too close to the crack surface are then automatically moved a small
distance away from the crack surface (this can be observed in Fig. 13(a) near the crack front).
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This is required because an approximation node must be located at one or another side of the
crack surface. The representation of the crack surface used here is topologically identical to
the one used in the previous example (see Fig. 11(a)). Figure 13(b) shows a closer look at the
mesh and crack surface near the crack front. The nodes carrying singular degrees of freedom
are represented by diamond-shaped dots. The singular functions used at these nodes are those
presented at Section 2.5. As in the previous example, whenever they are used, only the nodes
of the elements that contain the crack front are enriched with these singular shape functions.

(a) Zoom showing the elements cut by the (b) Three-dimensional view of the crack front.
crack surface.

Figure 13: Crack representation.

The notation used to describe the various discretizations (Vis-i, i=1,6 and WA-j, j=1,3)
is the same as in the previous example. The stress intensity factors are computed at a point
in the crack front located at the middle surface of the body. The following parameters are
used for extracting the stress intensity factors using the least squares method:

e Dimensions of the extraction domain: d = (0.2,1.0,0.05). Which represents a cylinder
of radius 0.4 and length 0.05.

e Number of integration points in the r, 6 and z directions: n = (10,40, 1), respectively.
e Type of weighting matrix D: identity matrix

e Power of the weighting functions: 6.
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(a) Displacement in the vertical direction. (b) Von Mises stress field.

Figure 14: Displacement and stress computed using the discretization WA-3.

Figure 14(a) shows a contour plot of the displacement in the vertical direction near the
crack computed using the discretization WA-3. The discontinuity in the displacement field
constructed using the technique presented in Section 2.7 is clearly observed. Figure 14(b)
shows a contour plot for the von Mises stress computed with this discretization and Fig. 15(a)
shows a closer look near the crack front. The computed stresses are all raw stresses computed
at arbitrary points inside each element. Figure 15(b) shows the same quantity computed using
the discretization Vis-5. It can be observed that the stress field is quite disturbed near the
crack front. This is caused by the spurious discontinuities created by the visibility approach
near the crack front.
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(a) Stress computed with discretization WA-3. (b) Stress computed with discretization Vis-5.
Figure 15: Zoom at the crack front showing von Mises stress.

A summary of the results is presented on Tables 3 and 4. Table 3 shows the computed
strain energy for the various discretizations using the PU as defined in Section 2.3 (visibility
approach with or without singular functions). It can be observed that the p-enrichment of the
approximation has a more significant effect on the strain energy values than the addition of
singular functions at the crack front. Nonetheless, as in the previous example, the addition of
singular functions improves considerably the computed stress intensity factors. In the case of
the discretization Vis-3, for example, the enrichment with singular functions adds only 1.8%
more degrees of freedom while the error on the computed value of K decreases from 14.0%
to only 3.5% and the error on the computed K;; decreases from 10.8% to only 1.4%. That is,
the error on the computed K; and K;; decrease by 75.0% and 87,0%, respectively.

The results for the discretizations that use the wrap-around approach (Section 2.7) are
presented in Table 4. The discretization WA-3 has a relative error in energy, (UR¢/ —U) /U%eT
of only 0.02% which corresponds to a relative error in the energy norm of only 1.41%. This same
problem was also solved using the classical hp finite element method with the hp adaptation
driven by error indicators based on the element residual method (see, for example, [1]). The
results obtained after seven adaptive cycles are shown on Table 5. The relative error in energy
and in the energy norm for this discretization are 0.3% and 5.5%, respectively. Note that
this discretization has more degrees of freedom (18585) than the discretization WA-3 (16632)
but an error in the energy norm almost four times bigger. The reason for this is that the
GFEM discretization can capture the singular field near the crack front more efficiently by
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using customized singular functions.

Table 3: GFEM using visibility to build the PU over cracked elements. In the table, “Discr”
stands for discretization, “Sing Fn” stands for singular functions at the crack front, “Neq”
stands for number of equations and “U” stands for strain energy.

Discr | p=1+ | p. =0+ | Sing Fn | Neq | U/UR | K;/KF | K /KT
Vis-1 | (0,0,0) | (1,1,1) No | 5874 | 0.9271 | 0.7286 0.8052
Vis-2 | (0,0,0) | (1,1,1) Yes | 6018 | 0.9310 | 0.8391 0.9447
Vis-3 | (0,0,0) | (2,2,1) No | 7764 | 0.9651 | 0.8595 0.8921
Vis-4 | (0,0,0) | (2,2,1) Yes | 7908 | 0.9686 | 0.9647 0.9864
Vis-5 | (1,1,0) | (2,2,1) No | 16488 | 1.0044 | 0.9881 1.0076
Vis-6 | (1,1,0) | (2,2,1) Yes | 16632 | 1.0068 | 1.1002 1.0589

Table 4: GFEM using wrap-around and visibility to build the PU over cracked elements.

Discr | p=1+ | p. =0+ | Sing Fn | Neq | U/UR | K;/K[ | K; /KT
WA-1 | (0,0,0) | (1,1,1) Yes | 6018 | 0.9271 | 0.8735 0.8782
WA-2 | (0,0,0) | (2,2,1) Yes | 7908 | 0.9635 | 0.9722 0.9472
WA-3 | (1,1,0) | (2.2,1) Yes | 16632 | 0.9998 | 1.0800 0.9979

Table 5: Results using the hp finite element method and seven adaptive cycles.

Discr Neq U |U/UM | K, K | Ki/KF | Ky /KR
hp FEM | 18585 | 0.16988 | 0.9969 | 1.4680 | -0.7041 | 0.9733 0.9649

6.3 Plate Under Impact Load

In this section, we investigate the performance of the GFEM in modeling propagating cracks
in a body subjected to impact loads. The test problem is illustrated on Fig. 16. This problem
was analyzed by Lu et al. [29], Krysl and Belytschko [22], Organ [39] and Belytschko and
Tabbara [7] using the element free Galerkin method, by Gallego and Dominguez [19] using a
boundary element method, among others. A state of plane strain and the following parameters
are adopted

e Dimensions: b = 10.0, h = 2.0, a = 5.0 and uniform thickness ¢t = 0.1,

e Loading: o(t) = ¢ H(t) = 63750.0 H(t), t > 0. Here, H(t) is the Heaviside step
function.
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e Material Properties: Linear elastic material with £ = 2.0x 10!, v = 0.3 and p = 7833.0.

e Time Step: At =107,

A state of plane strain is modeled by constraining the displacement in the z-direction
at z = 0 and z = t. Two uniform hexahedral meshes are used. The first one has 125, 49
and 1 element in the x-, y- and z-directions, respectively. This same mesh was used in the
computations of Krysl and Belytschko [22]. We denote this as the fine mesh. The second mesh
has 65, 25 and 1 element in the x-, y- and z-directions, respectively. This mesh is denoted as
the coarse mesh. The representation of the crack surface and of the outer skin of the body
are shown in Figs. 17(a) and 17(b). It is composed of five triangles and four edge elements.
There are five vertex nodes uniformly spaced at the crack front. The stress intensity factors
reported for this problem are computed at = (5.0,2.0,0.05) and is located at the middle
plane of the body. This vertex node is denoted vertex 3 hereafter.

The stress intensity factors are computed using the least squares fit method. The
following parameters are used in all computations presented in this section:

e Dimensions of the extraction domain: d = (1.0,1.0,0.05). Which represents a cylinder
of radius 1.0 and length 0.05.

e Number of integration points in the r, 6 and z directions: n = (5,30, 1), respectively.
e Type of D matrix equal material matrix

e Power of the weighting function: 3.

Four GFEM discretizations are used (the notation used for p and p. is defined in
Section 6.1) :
e Discretization 1:

— Fine mesh (125 x 49 x 1 elements),

— Degree of approximation over non cracked elements p = 1 + 0.

Degree of approximation over cracked elements p, = 0 + 1.

Crack modeled using a FE-Shepard partition of unity and visibility approach as
defined in Section 2.3. No singular functions are used.

e Discretization 2: Same as Discretization 1 except that here the crack is modeled using
the wrap-around approach and singular functions as defined in Section 2.7.

e Discretization 3: Same as Discretization 1 but using the coarse mesh (65 x 25 x 1
elements) instead.
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e Discretization 4: Same as Discretization 3 but here the degree of approximation over
cracked elements is p, = 0 + (2,2, 1).

EEEEEEEEEEEEEN
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o

Figure 16: Model problem used to analyze the performance of the GFEM in modeling propa-
gating cracks in a body subjected to impact loads.
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(a) Crack surface and outer skin of the body. (b) Three-dimensional view of the crack front.

Figure 17: Crack representation.
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6.3.1 Reference Solution

The GFEM results are compared to the analytic solution for a semi-infinite crack in the plane
proposed by Freund [18]. The problem solved by Freund is represented in Fig. 18. The
two-dimensional domain has a straight semi-infinite crack, is in a state of plane strain and is
loaded by uniformly distributed tractions applied at time t = 0. The mode-I stress intensity
factor, as a function of time and crack speed C' is given by [18].

AGH (t — £)k(C) \/(1 —2w)(t - 1)Cy

1—v

K[(t, C) ==

™

where,

0 is the magnitude of the tensile tractions,

Cy is the pressure wave speed in the body which is given by

pu(k +1)

Co= N -1

where p = ﬁ and k = 3 — 4v (for plane strain state). For the material properties

given previously, we get Cy; = 5862.7.

e {is the time the elastic wave hits the crack. For the problem represented in Fig. 16 and
Cq = 5862.7
t =0.000341

e k(C) is scaling factor that takes into account that the crack front is advancing with
speed C and is given by

_10-C/CR

1.0-05%C/Cg

where Cy is the Rayleigh wave speed. For this test problem, with the material properties

given above, Cr = 3030 (see Section 4).

k(C)

Due to symmetries, K;; = 0. The magnitude of the energy release rate is given by

C
G(C, 1) = (1 _ —) G(C = 0,1)
Cr
where K(C = 0.1)
=0,7
GC=0,t)=—"—— "7
( J ) E*
and, for plane strain,
E* = B
12
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It should be noted that due to the finite dimensions of the domain modeled here there
will be waves reflected by the boundary. This reflected waves will eventually reach the crack
front and a comparison of the numerical solution with the above reference solution will no
longer be valid. The first reflected wave to reach the crack is a pressure wave after traveling
from a loaded edge to the opposite edge and then back to the crack front [22]. This happens
at

g O
-~ Cy  5862.7
A more detailed discussion on the wave patterns that reach the crack front can be found

in [22].

= (.00102

Figure 18: Definition of reference problem.

6.3.2 Stationary Crack

As a first test, we consider the case of a stationary crack. Discretizations 1 and 2 as described
above are used. The computed mode-I and mode-II stress intensity factors and the energy
release rate GG are plotted on Figs. 19 and 20, respectively. It can be observed a good agreement
between the computed and reference values for ¢ < ¢. The finite dimensions of the extraction
domain for the stress intensity factors and of the support of the shape functions are responsible
for the non-zero values computed before the pressure wave hits the crack front (at ¢ = #). It
can also be observed that both discretizations give basically identical results.
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Figure 19: Time history for mode-I and mode-II stress intensity factors K; and Kj; using
Discretizations 1 and 2. Stationary crack.
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Figure 20: Time history for the energy release rate GG using Discretizations 1 and 2. Stationary
Crack.
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6.3.3 Moving Crack with Prescribed Speed
Here, the crack speed is given by
Cr
C(t)=H(t— 0.00044)? = H(t — 0.00044)1010.0

and the direction of the crack advancement is given by (18). Discretization 1 (fine mesh)
and 3 (coarse mesh) are used. Figures 21 and 22 show the time history for K;, K;; and G,
respectively. While the computed values present some oscillation, they are in good agreement
with the reference solution before ¢+ = £ (when reflected waves hits the crack surface). Organ
[39], Krysl and Belytschko [22] and Belytschko and Tabbara [7] also reported oscillations on
their results obtained with the element free Galerkin method. It can be observed that the
GFEM solution was able to capture very well the slop of the reference solution. Figure 23
shows the crack surface at time ¢t = 0.00168s.

Time History, Plane Strain Model

400000 ;
350000 [ K_| (C=0) Analytic (inf. domain) —]
K_I (C=1010) Analytic (inf. domain) ------ -
Discr.:3: K_| (C=1010) vertex 3 ----- B
300000 - Discr.:1: K_I (C=1010) vertex 3
Discr. 3: K_Il (C+1010) vertex 3 ------i~
Discr.1: K_Il (C+1010) vertex 3
» 250000
=]
8
> 200000
B
g
£ 150000
@ 100000 o
!..' 4
50000 /
0 k. -
-50000

0 00002 00004 00006 00008 0001 00012 00014 0.0016
Time (sec)
Figure 21: Time history for K; and K;; computed with Discretizations 1 and 3. The crack
advancement direction is computed using (18).

The effect of p enrichment of the cracked elements is investigated by using Discretization
4. The results for this discretization are shown on Figs. 24 and 25. It can be observed the
the p enrichment of the cracked elements increases the amplitude of the oscillations of the
computed quantities. Figure 26 is identical to Fig. 25 but here the tic marks of the x-axis are
placed exactly at the times when the crack front crossed the boundary between two elements.
It can be observed that the peaks in the oscillations occur just before those instants. Note
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Figure 22: Time history for G computed with Discretizations 1 and 3. The crack advancement
direction is computed using (18).

Figure 23: Crack surface at ¢ = 0.00168s. Moving crack with advancement direction given by
(18).

that as the crack crosses the boundary between two elements it passes close to the nodes. This
same phenomena was observed by Organ [39] using the element free Galerkin method.
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Figure 24: Time history for K; and Kj; using coarse mesh and p. =041, p. =0+ (2,2,1)
(Discretizations 3 and 4).
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Figure 25: Time history for G using coarse mesh and p. = 0+ 1, p. = 0+ (2, 2, 1) (Discretiza-

tions 3 and 4).
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Figure 26: Time history for G using coarse mesh and p. = 0+ 1, p. = 0+ (2, 2, 1) (Discretiza-
tions 3 and 4). The tic marks of the x-axis are placed exactly when the crack front crosses
the boundary between two elements.

6.4 Welded T-Joint with a Crack

In this section we present a truly 3D example on using GFEM for crack propagation. The
example, as shown in Figure 27, is a beam with welded cross-section (T-section). An initial
half-penny crack is placed longitudinally between the weld and the web as shown in the figure.
The crack propagates due to an impact couple loading applied at time=0 at the end of the
beam. Dynamic waves travel through the body. Once they reach the crack area, stresses
increase sharply so that crack is propagated. It is assumed that both domain and loading are
symmetric with respect to the other end of the beam and, therefore, only half of the domain
is analyzed.

Both the web and the flange are made of the same linear elastic material with the
following properties:

e Young’s modulus = 200 x 10°.
e Poisson’s ratio = 0.3.

e Mass density = 7833.
The weld material is assumed to be ten times stiffer than the latter (i.e., Young’s modulus
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Initial _half—genny crack
(radius=0.5)

Y

2 x

Figure 27: Welded T-section beam with a crack. The initial crack surface is represented using
14 flat triangles. The representation of the outer skin of the body is also shown. The crack

surface and the outer skin of the body are used by the geometric engine as described in Section
5.
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= 200 x 10'°). The Freund propagation model is used to advance the crack (see section 4.1).
The dynamic fracture properties and parameters used to propagate the crack are as follows:

Least squares fit extraction domain: Cylinder of radius 0.5 and length 0.25.

Number of integration points in the r,§ and z directions: n = (5, 10, 3), respectively.

D is the material matrix.

Power for the weighting function = 3.

Dynamic fracture toughness in a pure mode I, K;p = 75000.

Crack speed limit = 1212.

The couple is applied as two equal and opposite impact forces at the two corners of the edge
cross section with a value of 5 x 10° each.

The initial crack surface definition is shown in Figure 27. Note that the web is not
in contact with the flange, but rather a small gap exists between the two. The domain is
discretized for GFEM as shown in Figure 28. Note that the grid is made finer around the
crack area. Linear approximation is used over all the domain.

A transient dynamic analysis is performed on the model described above. Newmark
method is used to march the solution over time. Figures 29, 30, and 31 represent the crack
surface at times 0.0015, 0.0020, and 0.0030 respectively. A solution for this problem is not
available in the literature. Presentation of this example serves the purpose of demonstrating
the capabilities and potential of the proposed methodology to solve three dimensional crack
propagation problems in geometrically complicated domains.

7 Conclusions

A partition of unity method for the simulation of three-dimensional dynamic crack propagation
is proposed in this paper. The discontinuity in the displacement field across the crack surface is
modeled by using a discontinuous Shepard partition of unity to build the shape functions. The
PU is computed using Shepard formula, the visibility or wrap-around criteria and FE shape
functions as weighting functions. This so-called FE-Shepard partition of unity has several
powerful properties. It allows arbitrary cut of the finite element mesh by the crack surface.
In fact, the finite element mesh generation can be done as if there is no crack at all in the
domain. The crack surface representation is independently created of the finite element mesh
and passed to the geometric engine which provides basic functionality like distance from a
point to the crack surface, intersection of segments with the crack surface, etc. This high level
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Figure 28: GFEM discretization for welded T-section beani:

of modeling flexibility avoids the continuous remeshing of the domain during the simulation

of propagating cracks as done in standard finite element methods. The examples presented in
Section 6 illustrate this feature.

The computational cost of the FE-Shepard PU over cracked elements is only marginally
higher than usual finite element shape functions and much smaller than, for example, moving
least square functions. The numerical integration of the shape functions can also be done as

efficiently as in the finite element method since the intersections of these functions coincide
with the integration domains.

The FE-Shepard partition of unity degenerates to a standard finite element PU along
the boundary between cracked and non-cracked elements and over non-cracked elements.
Therefore, it is not necessary to use any special transition element.

Customized shape functions that can reproduce, for example, the asymptotic expansion
of the elasticity solution near the crack front can easily and naturally be constructed using

the partition of unity framework. The examples presented in Section 6 demonstrate the
effectiveness of using customized functions near the crack front.

46



Figure 29: Crack surface of welded T-section example at time 0.0015.

Figure 30: Crack surface of welded T-section example at time 0.0020.
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Figure 31: Crack surface of welded T-section example at time 0.0030.

The present method can accommodate very general physics to predict crack direction
and speed of propagation since it imposes no restriction on the geometry of the crack surface(s).
Most importantly, the implementation of the proposed method is quite straightforward. Tt
is essentially the same as in standard finite element codes, the main difference being the
definition of the shape functions. The proposed method can be implemented into most legacy
finite element data bases.
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