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SUMMARY

A general GFEM/XFEM formulation is presented to solve two-dimensional problems characterized
by C0 continuity with gradient jumps along discrete lines, such as those found in the thermal and
structural analysis of heterogeneous materials or in line load problems in homogeneous media. The
new enrichment functions presented in this paper allow solving problems with multiple intersecting
discontinuity lines, such as those found at triple junctions in polycrystalline materials and in actively
cooled microvascular materials with complex embedded networks. We show how the introduction of
enrichment functions yields accurate finite element solutions with meshes that do not conform to
the geometry of the discontinuity lines. The use of the proposed enrichments in both linear and
quadratic approximations is investigated, as well as their combination with interface enrichment
functions available in the literature. Through a detailed convergence study, we demonstrate that
quadratic approximations do not require any correction to the method to recover optimal convergence
rates and that they perform better than linear approximations for the same number of degrees of
freedom in the solution of this type of problems. In the linear case, the effectiveness of correction
functions proposed in the literature is also investigated.
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1. Introduction

Discontinuous gradient fields appear in many problems in physics and engineering. Examples
include thermal and structural analyses of heterogeneous materials such as polycrystals,
where C0 continuity is observed along grain boundaries, or composite materials, where a
discontinuous gradient is obtained along inclusion boundaries. Homogeneous materials can
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also exhibit solutions characterized by discontinuous gradients. Examples include problems
with thermal or structural loads applied over very narrow regions, mathematically modeled as
line loads. An example of such a model can be found in the thermal response of a new type
of polymeric materials that contains an embedded microvascular network (i.e., a flow network
where the diameter of the channels can be as small as 10µm). These materials are currently
being considered for thermal management [1]. In the mathematical model of such a system,
the cooling effect of the microchannels can be collapsed to a thermal heat sink over a line.

The standard finite element method usually approaches these problems using a conforming
finite element mesh [2]. Throughout the paper the terminology conforming mesh and matching
mesh will be used interchangeably, referring to meshes where the edges of the finite elements
follow the grain boundaries or the line loads†. The inherent C0 continuous nature of the
resulting finite element approximation automatically satisfies the required jumps in the
gradient along those boundaries. However, there may be cases where creating a conforming
mesh is not feasible or is computationally too demanding. The problem geometry can be
such that the creation of a conforming mesh requires finite elements with unaceptable aspect
ratios. Furthermore, creating a conforming mesh may necessitate advanced meshing tools not
available to the analyst (especially in 3D) or sometimes not sufficiently robust to handle
complex geometries. The complexity and computational cost of creating conforming meshes
are especially critical in transient problems involving moving line loads or boundaries.

By eliminating the complexity of the computational geometry and allowing the discretization
to become independent of the underlying geometry, the Generalized/Extended Finite Element
Method (GFEM/XFEM) provides an attractive alternative for this class of problems. Since its
introduction in the mid-nineties [3, 4, 5, 6, 7, 8], the method has increasingly gained attention
in the FE community because of the added flexibility it offers compared to the conventional
FEM. For more details on the history of development of these methods we refer the reader
to [9] and the references therein. The GFEM/XFEM allows the use of a priori knowledge
about the solution of a problem to obtain an improved finite element approximation or to
recover optimal convergence by the use of a non-matching mesh. This knowledge is introduced
through the use of enrichment functions that can range from polynomials to very sophisticated
handbook functions (e.g., the Westergaard solutions for a crack in an infinite plate). The mesh
independence that the method provides plays a fundamental role in problems that require
complete remeshing or even refinement around areas of interest inside the problem domain.
Problems addressed by the GFEM include structural problems [10, 11], crack propagation in
fracture mechanics [12, 13, 14, 15, 16] and phase interface/change problems [17, 18, 19, 20].

The method has also been used for problems that involve embedded particles or holes
[21, 22, 23]. In this line of work, the material interfaces completely cut the finite elements and
the proposed enrichment functions attempt to recover the discontinuous gradient field at the
interfaces. In order to do so, the elements split by the interfaces are subdivided in integration
elements that use the right material properties according to the side of the interfaces they lie on.
Material interfaces can also be handled using the GFEM proposed by Babuška and Osborn [24].
They used the so-called broken function to solve 1D problems using finite element meshes that
do not match material interfaces. Most of the work available in the literature deals with these

†In contrast to other commonly used terminology, where a non-conforming mesh implies, e.g., regions in the
mesh having hanging nodes and thus creating a discontinuous solution.
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problems, and it was reported that some of these enrichments provide optimal convergence
when the mismatch between material properties is not too high [25]. However, little attention
has been paid to the more general case where multiple interfaces meet inside a finite element
and a C0 continuous field is recovered. In these cases, a conforming mesh to the junctions
could be used in conjunction with the interface enrichment functions mentioned above. Yet,
the use of a truly non-conforming mesh is always desired, and two approaches have been
proposed in the literature to deal with multiple intersecting weak discontinuities. The first
one uses enrichment functions based on the product of the distance functions to the interfaces
[26]. The second approach, presented in [27], uses Heaviside enrichments and the continuity is
enforced using a traction separation law, following the methodology proposed in [11] for strong
discontinuities. This work introduces new enrichment functions that address the problem of
having multiple interfaces intersecting inside finite elements and detailed convergence results
are given. The end result is the creation of a finite element mesh that is completely independent
of the geometry of the problem. The results in this paper are obtained in the context of the heat
equation, but the enrichment functions are general and can be used to simulate other physical
phenomena (e.g., elasticity problems). It is shown that in all cases, quadratic approximations
are more accurate than their linear counterparts for the same number of degrees of freedom.
It is also shown that the use of the correction to the GFEM/XFEM proposed in [28] is not
required for quadratic approximations in order to achieve optimal convergence rates and that
for linear approximations, some enrichment functions fail to recover optimal convergence even
when using such correction. A detailed review on the GFEM/XFEM for material modeling
can be found in [9].

Section 2 describes the problem to solve and gives a brief introduction to the GFEM. The
proposed enrichment functions are presented in Section 3 and convergence results follow in
Section 4. Section 5 presents real applications where the proposed enrichment functions are
used. Finally, some concluding remarks are given in Section 6.

2. Problem description

Consider in Figure 1 an open domain Ω ⊂ R2 with boundary Γ = Ω − Ω, the latter having
outward unit normal n and partitioned into mutually exclusive regions Γu and Γq such that
Γ = Γu ∪ Γq and Γu ∩ Γq = ∅. Dropping the dependance on position x, the strong form for
the steady-state thermal boundary value problem can be written as follows: Given the thermal
conductivity κ : Ω→ R2 ×R2, the heat source f : Ω→ R, prescribed temperature t : Γu → R
and prescribed heat flux q : Γq → R, find the temperature field u : Ω→ R such that

∇ · (κ∇u) + f = 0 on Ω,
u = t on Γu,

κ∇u · n = q on Γq.
(1)

Let U = {u | u|Γu = t} ⊂ H1
(
Ω
)

be the set of trial solutions for the temperature field and
V = {v | v|Γu

= 0} ⊂ H1
0

(
Ω
)

be the variation space. The weak form of the problem reads:
Given κ, f , t and q as before, find u ∈ U such that

a (w, u) = (w, f) +
(
w, q

)
Γq

∀w ∈ V, (2)
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Figure 1: Two-dimensional domain Ω used in the formulation of the problem. The boundary of
the domain is split in two mutually exclusive regions Γu and Γq where Dirichlet and Neumann
boundary conditions are applied, respectively. The figure also shows part of a mesh of triangular
elements used for discretization showing the cloud or support ωα for node xα.

where the bilinear and linear forms are given by

a (w, u) =
∫

Ω

∇w · (κ∇u) dΩ,

(w, f) =
∫

Ω

wf dΩ,(
w, q

)
Γq

=
∫

Γq

wq dΓ.

For the Galerkin approximation, let Vh ⊂ V and Uh ⊂ U be finite-dimensional sets such
that Vh =

{
vh | vh|Γu

= 0
}

and Uh =
{
uh | uh = vh + th, th|Γu

≈ t , vh ∈ Vh
}

. The Galerkin
statement of the boundary value problem is expressed as: Given κ, f , t and q as before, find
uh = vh + th ∈ Uh such that

a
(
wh, vh

)
=
(
wh, f

)
+
(
wh, q

)
Γq
− a

(
wh, th

)
∀wh ∈ Vh. (3)

The application of Dirichlet boundary conditions within the GFEM framework is not
straightforward since some enrichment functions may be non-zero at nodes with a prescribed
value of the solution. In this work, the penalty method is adopted due to the simplicity in its
implementation. The Galerkin form in this context becomes: Given κ, f , t and q as before,
find uh ∈ Uh such that

a
(
wh, uh

)
+ ρ

(
wh, uh

)
Γu

=
(
wh, f

)
+
(
wh, q

)
Γq

+ ρ
(
wh, t

)
Γu

∀wh ∈ Vh, (4)

where ρ is a penalty parameter. Dirichlet boundary conditions can also be enforced using
Lagrange multipliers [29]. A thorough discussion of these and other methods used to enforce
Dirichlet boundary conditions can be found in [30].

Let Ωh ≡ int
(
∪Mα=1Ωα

)
be a discretization of domain Ω in M finite elements such that

Ωα ∩ Ωβ = ∅ ∀α 6= β. Due to discretization error, Ω ∼= Ωh and Γ ∼= Γh ≡ Ωh − Ωh. Let
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{x1,x2, . . . ,xN} be the set of N nodes contained in the discretization and ϕα (x) be the
standard (Lagrangian) finite element shape function associated with node xα. For this node,
let ωα ≡ {x | ϕα (x) 6= 0} be the cloud or support of xα, i.e. the set of all elements attached to
it, as illustrated in Figure 1 for a mesh of 3-noded triangular elements. The partition of unity
property of finite element shape functions specifies that

N∑
α=1

ϕα = 1, ∀x ∈ Ωh. (5)

In the GFEM, the partition of unity property is used to paste together local enrichment
functions {Lαi (x) : ωα → R}Ei=1 that aim at representing some localized behavior, with E
being the number of enrichment functions used in ωα. In other words,

ψαi = ϕαLαi (no summation on α) . (6)

In order to keep the standard finite element shape functions in those elements that contain
enriched nodes, we require that Lα0 = 1, so that a set with E enrichment functions would be
{1, Lαi}Ei=1. A temperature approximation using the GFEM thus has the form

uh (x) =
N∑
α=1

ϕα (x) Ũα +
N∑
α=1

ϕα (x)
E∑
i=1

Lαi (x) Ûαi, (7)

where the first term corresponds to the standard finite element interpolation and the second
term to the enriched/extended part of the approximation, with Ũα and Ûαi denoting the
standard and enrichment degrees of freedom, respectively. The resulting functions that are
used with enriched degrees of freedom can thus be viewed as the cartesian product of the
partition of unity shape functions with those of the enrichment set:

{ψαi}Ei=0 = ϕα × {1, Lαi}Ei=1 . (8)

Elements where all nodes are enriched are called reproducing elements [28]. These are the
elements where enrichment functions have to be used in order to capture some localized
behavior. With the exception of a few cases, enrichment functions cannot be used directly as
in Equation (8) because problems arise in those elements that do not have all nodes enriched
[31, 28]. These elements, located contiguously to the reproducing elements, are called blending
elements. Optimal convergence is lost due to pathological terms in blending elements unless
the enrichment functions are by construction constant or include polynomial enrichments. A
correction to the method recently proposed in [28] will be investigated in this work: Given an
enrichment function ψαi, let ψcαi be the corrected counterpart, defined as

ψcαi = ψαic, (9)

where the correction function c over an element is defined as

c =
∑
i∈I?

ϕi, (10)

and I? is the set of all nodes that belong to reproducing elements in the mesh. In other words,
c is unity in all reproducing elements (due to the partition of unity property), ramps down in
blending elements, and is equally zero elsewhere in the domain. The use of this type of cut-off
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function can be traced back to [16], in the context of fracture mechanics. An extension of this
correction has been studied in [32] for interacting enrichments. Other approaches have been
proposed to overcome the problem that arises in blending elements, including using enhanced
formulations [31], hierarchical elements [31, 33] and even using Discontinuous Galerkin (DG)
formulations [34].

The choice of some enrichment functions can lead to a singular stiffness matrix. Therefore,
the resulting system of equations is positive semidefinite and cannot be solved by standard
Gauss elimination or Choleski decomposition. In this work, the algorithm described in [10, 35] is
used, where a solution vector is obtained by carrying out iterative refinement on the solution of
a perturbed problem (ill-conditioned but not singular). The perturbation parameter is chosen
as ε = 10−12.

3. Enrichment functions

This section presents the enrichment functions investigated in this work. The objective is to
obtain an enrichment function that is continuous and has a discontinuous gradient in the
direction perpendicular to the line segments that represent line loads or grain boundaries. The
enrichment functions should be general enough so they can be used in the case of a single
interface.

3.1. Junction ramp enrichments

Problems where the displacement field is discontinuous (i.e., strong discontinuities) have been
addressed in [13, 11, 14]. Most of the enrichment functions for problems with discontinuous
field gradients (i.e., weak discontinuities) deal with the case where the discontinuity completely
crosses the finite elements [23, 22]. As indicated earlier, for problems with multiple interfaces
meeting inside a finite element, enrichment functions based on products of distance functions
or Heaviside enrichments have been proposed in [26] and [27], respectively. Here we present
other enrichment functions that can be used when dealing with such cases.

Consider the square domain Ω shown in Figure 2. The domain is subdivided in regions
{Gi}3i=1 such that Ω = ∪3

i=1Gi. Inner sub-domain boundaries are defined as Γij ≡ Gi ∩ Gj , i 6=
j and the junction coordinate as xJ = ∩3

i,j=1,i6=jΓij . In the case of a polycrystalline
microstructure, a region Gi represents one of the grains in the domain whereas Γij represents
the material interface between grains i and j. In the case of a homogeneous material, the
sub-domain boundaries Γij can be viewed as line loads. These line loads become heat sinks in
the case of the microvascular material alluded to in Section 1.

The first enrichment considers each sub-domain individually and can be obtained by
integrating the enrichment functions proposed for strong discontinuities in polycrystalline
materials [11], in the direction perpendicular to the material interfaces (or line loads). For
a particular sub-domain, the function ramps only inside it and it is constant elsewhere. For
sub-domain Gi, the ramp enrichment function is

ri (x) =

{
1 + minni=1 di (x) if x ⊂ Gi,
1 otherwise,

(11)

where di (x) is the distance function to the i−th line segment representing one of the n
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Figure 2: A 2D square domain Ω ≡ L × L is divided in regions {Gi}3i=1 such that Ω =
∪3
i=1Gi. Each sub-domain can be viewed as different grains in the case of a polycrystalline

microstructure. In the case of a homogeneous material, inner boundaries can be viewed as line
loads (heat sinks in the case of a microvascular material for active cooling applications).

inner boundaries of Gi and the unity constant is introduced so that the resulting matrix is
better conditioned. This means that we might need to consider as many enrichment functions
as sub-domains. In [11], it was found that for n intersecting inner boundaries, considering
n− 1 enrichments was enough due to the fact that one of the enrichments could be obtained
as a linear combination of the others. This issue will be investigated shortly for the type
of enrichment functions used in this work. Schematics showing the convention adopted to
represent the enrichment function are illustrated in Figure 3 for the three sub-domain problem,
showing that for each enrichment the function is non-constant in its shaded area. Arrows in
the schematic figures indicate the direction where the ramp function increases in magnitude
whereas dashed lines indicate bisector lines between adjacent line segments. The function is C0

continuous along the bisector lines so they are also considered when subdividing the element
for integration purposes, as explained in Section 4.3.

A second option that involves less degrees of freedom can be obtained by combining the
enrichment functions defined in Equation (11) into a single junction ramp enrichment R (x).
For a junction xJ between m grains with n boudaries Γij , the enrichment function is defined
as

R (x) =
m∑
i=1

ri (x)−m =
n

min
i=1

di (x) . (12)

The enrichment function is obtained by computing the distance from point x to the closest line
in the domain. This function is illustrated in Figure 4, both in 3D and its equivalent planar
representation. Note that, when there is a single line segment (e.g., single material interface),
the enrichment function reduces to the enrichment proposed in [22].

The distance function to the i−th line can be computed analytically as follows: the closest
point lying on the ray having the same slope as the line segment defined by points p and
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8 A. M. ARAGÓN, C. A. DUARTE, P. H. GEUBELLE

x

y r1

,
x

y

r2

, . . .

Figure 3: Ramp enrichments given by Equation (11), non-constant on their respective shaded
area. Arrows denote the direction where the ramps increase in magnitude. Bisector lines are
shown as dashed lines.

x

y

R

x

y

R

Figure 4: Single junction ramp enrichment R (x) showing a 3D representation (left) and its
equivalent 2D schematic (right).

q ≡ xJ (see Figure 2) is x? = p + s (x) (q− p), with

s (x) =
(x− p) · (q− p)
‖q− p‖2

.

Then, the distance function is given by

di (x) =


‖x− p‖ if s (x) ≤ 0,
‖x− q‖ if s (x) ≥ 1,
‖p + s (x) (q− p)− x‖ otherwise.

(13)

When the closest point on the line segment is obtained through an orthogonal projection (i.e.,
0 ≤ s (x) ≤ 1), we approximate the distance function to the i−th line segment by using the
level set method [36, 26], such that

dhi (x) =

∣∣∣∣∣∣
∑
j

ϕj (x) Λij

∣∣∣∣∣∣ , (14)
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where Λij is the level set function value at the j−th node of the element that contains point x.
Polynomial functions can also be used together with the ramp functions presented. For a

quadratic finite element approximation, we enrich each node xα = (xα, yα) in the mesh with
linear polynomials

ξ =
x− xα
hα

, η =
y − yα
hα

, (15)

where hα is a scaling parameter related to the size of the cloud of node xα. The ramp functions
are also multiplied by the polynomial enrichments defined in Equation (15), so when using,
e.g., the single ramp enrichment R the enrichment functions on node xα become

L = {1, ξ, η} × {1, R} = {1, ξ, η, R, ξR, ηR} . (16)

These high-order enrichment functions follow the same concept as those proposed in [37, 38].
The aforementioned enrichment functions ri and R defined in Equations (11) and (12),

respectively, are used to enrich all nodes whose support intersect any of their sub-domain
boundaries. However, there are situations where the required information to produce these
enrichments is not easily available. The information about the intersecting lines can be obtained
locally when evaluating the junction even if the complete geometric description of the sub-
domains is not available. The proposed enrichments can still be applied to the finite element
nodes with support interacting with the junction. Other nodes of elements completely split
by the interfaces can be enriched with other interface enrichments, thus allowing the mixing
of the enrichments proposed here with other enrichment functions available in the literature.
Figure 5 shows schematically the mixing between interface and junction enrichments. The
nodes of elements that are completely cut by the sub-domain inner boundaries are enriched
with interface enrichments unless they already have a junction enrichment (see Figure 5b).
The convention used to denote the set of enrichment functions used at a node when mixing
types is

L =
{

1,
[{
LIαi (x)

}EI

i=1
|
{
LJαi (x)

}EJ

i=1

]}
, (17)

where EI and EJ represent the number of enrichment functions used for interfaces and
junctions, respectively, and [· | ·] denotes one set of enrichments or the other, but not both. For
example, the enrichment set L = {1, ξ, η} × {1, [M |R]} is equivalent to

L =
{

1, ξ, η,
[{
LIαi
}3

i=1
|
{
LJαi
}3

i=1

]}
= {1, ξ, η, [M,Mξ,Mη | R,Rξ,Rη]} ,

where
{
LIαi
}3

i=1
= {M,Mξ,Mη} and

{
LJαi
}3

i=1
= {R,Rξ,Rη} denote the sets of enrichment

functions used for interfaces and junctions, respectively. The nodes of the element that contains
the junction are enriched with the functions described above. As a result, the junction function
is non-zero over ΩL ≡ ωα ∪ωβ ∪ωγ . Thus, we use a unique enrichment function that ramps in
all directions inside ΩL (Figure 6b) or single ramp enrichments for each pair of adjacent lines
considering them as part of a fictitious sub-domain (Figure 6a). This approach also allows us to
combine the junction enrichments proposed above with other interface enrichments available
in the literature.

The correction proposed by Fries [28] may be used in conjunction with the proposed
enrichments. The corrected enrichment functions require an additional layer of nodes to be
enriched, thus increasing the size of the support of the function and consequently the number
of degrees of freedom. In other words, not only the nodes of elements that interact with inner
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xγ

xβ

(a)

junction
interface

Ω

y

x

(b)

Figure 5: Mixing between interface and junction enrichments. (a) Area ΩL ≡ ωα ∪ ωβ ∪ ωγ
(shaded area) where the junction function is applied. (b) Choice of interface and junction
enrichments.

x

y r1

,
x

y

r2

, . . .
(a)

x

y

R

(b)

Figure 6: Junction enrichment functions applied only to those nodes with support interacting
with the junction xJ . This approach is appealing for problems where the complete geometry of
the sub-domains cannot be defined easily or when mixing enrichment types. (a) r1, r2, . . .∀x ∈
ΩL; (b) R ∀x ∈ ΩL.

boundaries are enriched but also those of contiguous elements (i.e., blending elements). The
functions, taking into account the correction, are denoted hereafter as rci and Rc.

3.2. Interface enrichments

Interface enrichments have been investigated primarily for inclusions and voids inside another
material. Even though many examples in this work do not have a material interface per se,
these functions are still referred to as interface enrichments to be consistent with the existing
literature. These functions can be used to enrich the nodes of elements that are completely
cut by the lines, unless they are enriched with junction ramp enrichments ri or R or their
corrected counterparts.
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Ridge enrichment Introduced by Möes et al. [23], the ridge enrichment function is given by

M (x) =
N∑
i

|Λi|ϕi (x)−

∣∣∣∣∣
N∑
i

Λiϕi (x)

∣∣∣∣∣ , (18)

where Λi is the level set function value corresponding to the i−th node. This function constructs
a continuous field inside the element with a ridge following the path of the interface. By
construction, this enrichment function is identically zero in elements that do not contain the
interface. As a result, no problems arise in blending elements and the correction given by
Equation (10) is not necessary.

Ramp enrichments These functions are a special case of the ramp enrichments presented
before when considering a single line segment. The function R ramps in both perpendicular
directions from the line segment that represents the inner boundary. This function was
proposed by Sukumar et al. in [22] with special treatment on blending elements. Chessa et
al. made use of this function for solidification problems [39]. Fries [28] used this function
together with his proposed correction and showed optimal convergence rates in the case of
a circular inclusion for 2D elasto-statics. In this work the latter is denoted Rc. Similarly,
the functions ri, i = 1, 2 and their corrected counterparts introduced before can be used for
interface enrichments when considering a single line segment. These enrichment functions ramp
to one side of the line segment and are constant on the other side. A single ramp function
on one side of the interface was used in [40] for a comparison between the XFEM and the
Immerse Interface Method.

4. Convergence results

Convergence results for all enrichment functions investigated are presented in this section.

4.1. Single uniform heat source

This example is used to introduce the enrichment functions used in this work in the context
of a single line load. Let the temperature field over Ω ≡ L× L (Figure 7) be defined as

u (x, y) =

{
x(L−4x)(5L−4x)(L−2x)

6L3 x ≤ L/2,
(3L−4x)(L−2x)(L−x)(L+4x)

6L3 x ≥ L/2.
(19)

This function, which is constant in the y direction, was manufactured from two polynomials
X1 (x) and X2 (x) at each side of the line x = L/2 such that Ju′ (L/2)K = −1. This constant
jump along the line x = L/2 can be clearly seen in Figure 8. The body heat source term that
needs to be applied to all elements results from substituting Equation (19) in the differential
equation:

fb (x, y) =
−102L4 + 576L3x− 576L2x2

9L5
. (20)

For the finite element solutions, the domain Ωh is then discretized using matching (M) and non-
matching (NM) meshes. A single line heat source of unit magnitude per unit length traverses
the domain. This line load is the responsible for creating the jump Ju′ (L/2)K = −1. Recall
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L

L

x

y

f

Ω, fb

u = 0 u = 0

Figure 7: Schematic for the single uniform line heat source. A 2D square domain Ω = L × L
contains a single line heat source f that traverses it from side to side and a body heat source
fb. Boundary conditions include prescribed temperature u = 0 at left and right edges, and
insulated bottom and top edges.

x

y

u (x, y)

Figure 8: Temperature distribution given by Equation (19) showing the constant jump in the
derivative at x = L/2.

that by a matching mesh we mean that the heat source follows the edges of the finite elements.
Top and bottom edges are insulated (i.e., q = 0) and a temperature t = 0 is prescribed at
left and right edges. The Dirichlet boundary conditions are enforced using the penalty method
because the example involves the use of the polynomial enrichments given by Equation (15).

The results from the convergence study for this problem are illustrated in Figures 9 and 10
for the L2 and energy norms, respectively. Figures on the top show in abscissas the number
of degrees of freedom n whereas the figures on the bottom show the mesh size h. The error in
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h− E h− L2 n− E n− L2

linear FEM-M 1 2 0.5 1
quadratic FEM-M 2 3 1 1.51
linear FEM-NM 0.54 1.58 0.27 0.79
L1 = {1,M} 1 2.02 0.51 1.04
L2 = {1, r1} 0.53 1.57 0.27 0.8
L3 = {1, rc1} 1 2 0.51 1.02
L4 = {1, r1, r2} 0.53 1.58 0.27 0.8
L5 = {1, rc1, rc2} 0.99 2 0.51 1.04
L6 = {1, R} 0.53 1.57 0.27 0.79
L7 = {1, Rc} 0.56 1.62 0.29 0.83
L8 = {1, ξ, η} × {1,M} 2 3 1.02 1.52
L9 = {1, ξ, η} × {1, r1} 1.93 2.93 0.98 1.49
L10 = {1, ξ, η} × {1, r1, r2} 1.97 2.96 1 1.51
L11 = {1, ξ, η} × {1, R} 2 2.98 1.01 1.51

Table I: Convergence rates for the single uniform heat source example. All convergence rates
reported are obtained using the two most refined solutions.

the L2 is given by ∥∥u− uh∥∥
L2(Ω)

≡

√∫
Ω

(u− uh)2
dΩ,

whereas the error in the energy norm is

∥∥u− uh∥∥
E(Ω)

≡

√
‖u− uh‖2L2(Ω) +

∫
Ω

‖∇u−∇uh‖2 dΩ.

Our reference solutions are the standard finite element solutions on matching meshes, denoted
as FEM-M in Figures 9 and 10. The linear FEM-M, obtained with standard 3-noded elements,
attains optimal convergence of 2 in the L2 norm and 1 in the energy norm with respect to the
mesh size h. 6-noded elements are used in the quadratic FEM-M, and optimal convergence
rates of 3 and 2 are obtained. Refer to Table I for a complete list of convergence values.
The FEM-NM solutions refer to those of non-matching meshes without the use of enrichment
functions. The purpose of showing these solutions is two-fold: Firstly, this solution establishes
an upper bound on the error of other solutions. Secondly, even though the convergence rate is
very poor when compared to other solutions, the standard FEM still converges as the meshes
are refined because the interface is contained in increasingly smaller elements. The curve
L1 = {1,M} corresponds to the use of the ridge function proposed in [23], showing optimal
performance for this problem. All ramp enrichment functions without the correction proposed
in [28] perform as poorly as the FEM-NM. Adding the correction enables them to recover
optimal convergence rates for all ramp functions but the one that ramps to both sides of the
interface (i.e., Rc). For the quadratic approximations using enrichments, all nodes in the mesh
are enriched with the linear polynomials given by Equation (15). As explained before, the
discontinuous part of the approximation is also multiplied by polynomials so the enrichment
functions are given by Equation (16). The results show that quadratic optimal convergence is
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Figure 9: Convergence results in the L2 norm for the single uniform heat source example shown
in Figure 7. The top figure shows in abscissas the number of degrees of freedom n whereas the
bottom figure shows the mesh size h.
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Figure 10: Convergence results in the energy norm for the single uniform heat source example
shown in Figure 7. The top figure shows in abscissas the number of degrees of freedom n
whereas the bottom figure shows the mesh size h.
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x

y

u (x, y)

Figure 11: Temperature distribution given by Equation (21) showing the linear jump in the
derivative at x = L/2.

obtained in all cases, without the use of Fries’ correction term and regardless of the enrichment
used. Note also that all approximations using enrichment functions are more accurate than
the quadratic standard FE approximation on matching meshes. Furthermore, for any given
number of degrees of freedom n, quadratic approximations are more accurate than the linear
approximations. Therefore, quadratic approximations should be preferred over linear ones,
even for very coarse finite element meshes when solving this class of problems.

4.2. Single linearly varying heat source

There might be cases where the jump in the derivative of the solution is not constant but
spatially varying. To investigate this situation we multiply the temperature field from the
previous example by Y (y) = y−L/2, which results in a field that has a linearly varying jump
in the derivative along the line load (i.e., Ju,x (L/2, y)K = −Y (y)). The temperature field is
then

u (x, y) =

{
x(L−4x)(5L−4x)(L−2x)(2y−L)

12L3 x ≤ L/2,
(3L−4x)(L−2x)(L−x)(L+4x)(2y−L)

12L3 x ≥ L/2.
(21)

and again it is shown in Figure 11. The body source applied to all elements in the discretization
is the same as that given by Equation (20). Left and right edges are Dirichlet boundaries again
using the penalty method. Top and bottom edges this time have a prescribed heat flux (q = u,y
for the top edge and q = −u,y for the bottom edge).

The convergence results for this example are shown in Figures 12 and 13, where non-optimal
enrichment functions from the previous example were excluded. The results show that the
corrected ramp enrichments used previously do not achieve optimal convergence anymore.
Therefore, the corrected ramp functions can only represent a constant jump, which is clear
because the nature of the function. In other words, the function has along the line a constant
jump in the derivative normal to the line so a linear variation is not possible. However, using the
ramp functions with linear polynomial enrichments brings optimal convergence back, as shown
in the figure for the quadratic approximations. Interestingly, the ridge enrichment function
performs as well as before. This ridge function, which is not constant over the ridge, performs
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Figure 12: Convergence results in the L2 norm for the linearly varying heat source example.
Top and bottom figures show in abscissas the number of degrees of freedom n and the mesh
size h, respectively.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 10:1–6
Prepared using nmeauth.cls
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Figure 13: Convergence results in the energy norm for the linearly varying heat source example.
Top and bottom figures show in abscissas the number of degrees of freedom n and the mesh
size h, respectively.
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h− E h− L2 n− E n− L2

linear FEM-M 1 2.01 0.51 1.01
quadratic FEM-M 2 3 1 1.5
linear FEM-NM 0.53 1.55 0.27 0.78
L1 = {1,M} 1 2.02 0.51 1.02
L2 = {1, rc1} 0.53 1.58 0.27 0.81
L3 = {1, rc1, rc2} 0.61 1.88 0.32 0.98
L4 = {1, Rc} 0.6 1.66 0.31 085
L5 = {1, ξ, η} × {1,M} 2.01 3.01 1.02 1.53
L6 = {1, ξ, η} × {1, r1} 2.01 3.01 1.02 1.53
L7 = {1, ξ, η} × {1, r1, r2} 2 3.01 1.02 1.53
L8 = {1, ξ, η} × {1, R} 2.01 3.01 1.02 1.52

Table II: Convergence rates for the linearly varying heat source example. All convergence rates
reported are obtained using the two most refined solutions.

better than the ramp functions when the jump is not constant. Furthermore, no correction
is needed since the function is already zero in blending elements. As a result, this function
uses less degrees of freedom than the ramps for linear approximations and should be used
when possible. For quadratic approximations, the ramp functions perform as well as the ridge
function, and they have the same number of degrees of freedom (except when using two single-
sided ramps). Table II lists all convergence rates obtained in this example.

4.3. Multiple uniform heat sources

The same domain Ω used in the previous examples is used here. The problem now contains
three line heat sources of unit magnitude per unit length that meet at the center of the domain,
as illustrated in Figure 14. An exact solution for this problem is not available so convergence
rates will be measured with respect to an energy value obtained using a cubic approximation
on a very fine matching mesh (10-node triangles). The error in the energy norm is computed
as ∥∥u− uh∥∥

E(Ω)
≡
√
a (u, u)− a (uh, uh). (22)

The boundary conditions for this example include prescribed temperature along the right edge
whereas all other edges are insulated.

Figure 15 shows typical integration meshes used in this example when neglecting and
considering bisector lines. In the latter case, the bisector lines are considered in addition
to the lines that define the heat sources for the initial element subdivision into integration
elements. Thus, the resulting partitioned elements that lie along bisector directions are forced
to have their edges aligned with the bisector lines. During the computation of local matrices
and vectors, elements are created in places where the functions are not smooth and therefore
difficult to integrate. This can be seen in Figure 15a, where not considering bisector lines for the
initial partitioning has created smaller integration elements along the bisector directions. Thus,
this technique can be used together with the GFEM to find regions of difficult integration inside
the mesh. The algorithm used in this work uses adaptive integration only in elements with
enriched nodes. No adaptive integration is used in the rest of the mesh since in those elements
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Figure 14: Geometry of test problem with multiple uniform line heat sources. A 2D square
domain Ω of side L contains uniform heat sources fi, (i = 1, 2, 3) that meet at the center of the
domain. Boundary conditions include prescribed temperature u = 0 at the right edge whereas
the remaining edges are insulated.

a standard finite element approximation is used (as long as no polynomial enrichments are
used). Moreover, a single level of recursion is used in blending elements because the enrichment
function in those elements is smooth. Adding bisector lines reduces dramatically the level of
recursion used in elements that lie in the path of bisector lines, as noted in Figure 15b. The use
of this technique within the GFEM framework is not new and can be traced back to [41, 21].

(a) (b)

Figure 15: Resulting integration mesh using adaptive numerical quadrature. (a) Bisector lines
not considered; (b) Bisector lines considered.

Convergence results for this problem are summarized in Figure 16. As in the previous
examples, FEM-M and FEM-NM denote the standard finite element solutions on matching
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Figure 16: Convergence results in the energy norm for the multiple heat sources example. The
top figure shows in abscissas the number of degrees of freedom n whereas the bottom figure
shows the mesh size h.
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and non-matching meshes, respectively. The figure shows that the second junction enrichment
proposed (i.e.,Rc) performs sub-optimally for a linear approximation. Having a unique function
does not provide enough degrees of freedom to represent the solution accurately. Adding
polynomial enrichments improves dramatically the enrichment, but the solutions are still not
as accurate as other solutions with the same polynomial degree that we will discuss shortly.
The following curves show the results of using the first proposed enrichment for junctions (i.e.,
considering all subdomains with individual enrichments). It can be seen from the results that
considering three enrichment functions gives more accurate results than using only two. This is
in contrast to the results found in [11] for discontinuous displacement fields in polycrystalline
materials, where n − 1 enrichments are used on a junction of n grains because one of the
enrichments was linearly dependent. Here the functions within the grains are completely
different among them so the solutions obtained considering n enrichments for an n−junction
gives more accurate results. Finally, taking the ridge function proposed in [23] as the choice for
interfaces, we use local junction enrichments. Once again we see that using a unique function
to represent the junction does not perform as well as having individual enrichments, even
though it requires less degrees of freedom. Convergence rates are not reported for this example
because the reference energy has a finite accuracy. This reference value is accurate enough for
the linear approximations, but it affects the rates for the quadratic ones.

5. Applications

This section presents two real applications where the proposed enrichment functions are used.

5.1. Actively cooled microvascular material

The goal of this example is to analyze a microvascular material with active cooling capabilities,
thus using the proposed enrichments in a real problem. Much work has been done on the
development of materials that mimic living organisms to provide self-healing and active cooling
capabilities [42, 43, 44, 45]. For an active cooling microvascular material, thermal loads are
applied and an embedded network containing a cooling fluid is used to reduce its maximum
temperature. It can be shown (see reference [46]) that the equivalent heat sink generated by
the fluid in a single microchannel is given by

q = ṁcf
du

dx′
, (23)

where ṁ and cf are the the mass flow rate and specific heat of the fluid, respectively, and
x′ is the local coordinate in the direction of the channel. This simplified formulation for the
conjugated heat transfer problem, whose assumptions lie outside the scope of this work, allows
us to collapse the cooling effect of the fluid to a heat sink applied over the centerlines of the
channels. The dependance of the heat sink on the temperature field implies that Equation
(23) will contribute to the stiffness matrix in the finite element formulation. Of course, the
accuracy in the representation of these sink terms is limited to the type of approximation used.
In other words, the formulation above can represent a linear variation on the heat sink if a
quadratic approximation is used. Furthermore, the stiffness matrix loses its symmetry due to
the addition of these sink terms. The algorithm described in [10, 35] can still be used to solve
the resulting system of equations with small changes.
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Consider the mathematical model of a biomimetic active cooling material depicted in Figure
17. The material is composed of epoxy with thermal conductivity κ = 0.3 W/mK. The material
is represented by the rectangular domain Ω with sides Lx = 66 mm and Ly = 68 mm. The
microvascular cooling network, denoted as µVAC in the figure, contains microchannels that
follow Murray’s law [47]: At any junction,∑

i

D3
pi =

∑
j

D3
cj ,

where Dp and Dc denote the diameters of microchannels with inflow to and outflow from the
junction, respectively. Murray’s law ensures that the distribution of diameters in the network
minimizes the pressure drop between the inlet and the outlet locations, given that the flow
inside the microchannels is laminar. Innermost microchannels to the x barycentric axis have
the smallest diameter D = 200µm.

x

q̄

Ω

ṁO

ṁI

µVAC

Lx

Ly

y

(a) (b)

Figure 17: (a) Mathematical model of a biomimetic active cooling material composed of epoxy.
The material has en embedded microvascular network with a distribution of diameter values
that follows Murray’s law. The domain contains a single inflow ṁI and a single outflow ṁO

located on the bottom and top edges, respectively. A prescribed heat flux q is applied to the
left edge whereas the remaining edges are convective boundaries. (b) Non-conforming finite
element mesh used for the discretization.

To determine the pressure distribution in the network, the Hagen-Poiseuille law is used to
represent the pressure drop in the i−th microchannel:

∆pi =
128νLi
πD4

i

ṁi, (24)

where Li and Di denote the length and diameter of the microchannel, respectively, and ν
the kinematic viscosity of the fluid. Assembling the contribution of all microchannels in the
network results in a linear system of equation ~K~p = ~c, where ~K is the characteristic matrix
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Figure 18: Temperature distribution for a biomimetic active cooling material with flow (right)
and without it (left). The problem was solved on a non-conforming mesh using {1, ξ, η}×{1, r1}
as the set for interface enrichments and {1, ξ, η} × {1, ri}3i=1 for junction enrichments.

(the equivalent to the stiffness matrix in solid mechanics), ~p is the pressure vector and ~c is
the consumption vector. The boundary conditions consist of a prescribed water mass inflow of
20 g/min and prescribed atmospheric pressure at the outflow.

The boundary value problem for the temperature solution has a prescribed heat flux
q = 500 W/m on the left edge. The remaining edges have a convective boundary condition,
with ambient temperature u∞ = 293 K. The right edge has a heat transfer coefficient
h1 = 100 W/m2K whereas bottom and top edges have h2 = 10 W/m2K.

The problem is then solved with a mesh that does not conform to the microvascular network
(see Figure 17b) using {1, ξ, η} × {1, r1} and {1, ξ, η} × {ri}3i=1 as the sets for interface and
junction enrichments, respectively. The temperature distribution both considering the flow and
neglecting it are illustrated in Figure 18 using the same scale. Injecting flow into the domain
has the direct effect of reducing the temperature by about 25 K. Note that this formulation
is able to capture the loss in symmetry with respect to the horizontal barycentric axis due to
the fact that the fluid increases its temperature from the inlet to the outlet.

5.2. Polycrystalline microstructure example

Even though all the problems studied so far have focused on line heat sources (or heat sinks),
the enrichment functions presented in this work can also be used to study problems containing
material interfaces. Consider the polycrystalline microstructure on a square domain Ω shown in
Figure 19. A square domain is used again and the grains inside it have increasing conductivity
values (in W/mK) κ1 = 2, κ2 = 4, κ3 = 8 and κ4 = 380. A uniform heat flux q = 100 W/m
is applied over the top edge. The bottom edge is a convective boundary, with ambient
temperature u∞ = 293 K and heat transfer coefficient h = 100 W/m2K. The problem is solved
using the enrichment functions {1, ξ, η} × {1, ri}3i=1, resulting in a quadratic approximation.
The resulting temperature distribution is presented in Figure 20, clearly demonstrating the
ability of the proposed GFEM model to capture the discontinuous temperature gradients along
the grain boundaries, including those at triple junctions.
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Figure 19: Schematic for the polycrystalline microstructure example. The material is divided
in grains having different thermal conductivity values. Boundary conditions include insulated
left and right edges, a constant heat flux q on the top edge and a convective boundary along
the bottom edge.
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Figure 20: Temperature distribution for the polycrystalline microstructure example
emphasizing the discontinuous gradients along grain boundaries.
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6. Conclusions

The enrichments introduced in this work solve the problem of having multiple interfaces
converging to a single point inside finite elements. When there is only a single interface,
these enrichments reduce to the ramp enrichments discussed in detail in Sections 4.1 and
4.2. It was shown that the correction factor proposed by Fries in [28] is needed when ramp
functions are used in a linear approximation. However, the ramp functions can only represent
in this case a constant jump in the gradient of the field, so they fail to capture accurately the
linear variation studied in Section 4.2 even when using the correction mentioned above. Also,
the correction factor is not needed anymore when using a quadratic approximation and these
functions recover optimal quadratic convergence rates.

It was shown that a single enrichment function (i.e., R (x)) for multiple interfaces does
not recover optimal convergence rates. On the other hand, having one enrichment function per
subdomain (i.e., ri (x)) gives very accurate results. When the geometric representation of these
subdomains is not available, junction enrichments can be built locally and used in conjunction
with regular interface enrichments to provide more accurate results. It was shown in Section
4.3 that line bisectors have to be added because these enrichments are C0 continuous along
those lines as well. Adaptive integration can be used in the GFEM framework to find regions
where the enrichment functions are not smooth. All results in this work reveal that quadratic
approximations are more accurate than linear approximations for the same number of degrees
of freedom.

Most examples studied in this work involved line heat sources in homogeneous materials
to create the discontinuous gradient nature of the solution. The microvascular material
example showed how this technique can be used in a real problem where the mesh is
completely independent of the geometry of the network. The last example showed how the
same enrichments can be used in heterogeneous materials. In this example the discontinuity
in the gradient results from having different conductivity values across the grains in a
polycrystalline microstructure. Even though the presented work has focused entirely on the
solution of the Poisson equation, the extension to elasticity problems is straightforward, i.e.,
the enrichment functions presented are general and they should work in the context of other
physical phenomena. Although likely, the applicability of the enrichment functions presented
in this work to 3D problems with line or planar heat sources remains to be demonstrated.
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